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CHAPTER SIX 1. the existence of hypotheses alternative to H that entail or ac-
cord with evidence ¢ (as well as or even better than H) does not
»  prevent H from passing a severe test with ¢;

. computing a test’s severity does not call for assigning probabili-
ties to hypotheses;
3. even allowing that there are always alternative hypotheses that
entail or fit evidence e, there are not always alternatives equally

severely tested by e.

Severe Tests and Methodological
Underdetermination

As important as many philosophers of science regard the alterna-
ive hypothesis challenge, others dismiss it as merely a * philosopher’s
dem,” not a genuine problem confronting scientists. In the latters’
. scientists strive to find a single hypothesis that accounts for all
he data on a given problem and are untroubled by the possibility of
ernatives. Granted, there are many examples in which it is generally
ced that any alternative to a well-tested hypothesis H is either obvi-
sly wrong or insignificantly different from H, but this enviable sttua-
ion arises only after much of the work of ruling out alternatives has
en accomplished. Anyone seeking an account adequate to the task
building up experimental knowledge, as I am, must be prepared to
al with far more equivocal situations. Moreover, an adequate philo-
phical account should be able to explain how scientists are war-
ited, when they are, in affirming one hypothesis over others that
ght also fit the data. _

- Grappling with the alternative hiypothesis objection will bear other
it. Appealing to a test’s severity lets us see our way clear around
mmon misinterpretations of standard statistical tests. In section 6.5,
or example, the question of how to interpret statistically insignificant

ferences is addressed.

The basic trouble with the hypothetico-deductive inference is that
it always leaves us with an embarrassing superabundance of
hypotheses. All of these hypotheses are equally adequate to the:
available data from the standpoint of the pure hypothetico-
deductive framework.

-—W. Salmon, The Foundations of Scientific Inference, p. 115

A MAJOR PROBLEM that has been thought to stand in the way of a
adequate account of hypothesis appraisal may be termed the alterna
hypothesis objection: that whatever rule is specified for positively apptai
ing H, there will always be rival hypotheses that satisty the rule equ
well. Evidence in accordance with hypothesis H cannot really coun
favor of H, it is objected, if it counts equally well for any numbe
{perhaps infinitely many) other hypotheses that would also acco
with H. .
This problemis a version of the general problem of underdetermi
tion of hypotheses by data: if data cannot unequivocally pick out:
pothesis H over alternatives, then the hypotheses are underdetermin
by evidence. Some have considered this problem so intractable a
render hopeless any attempt to erect a methodology of appraisa
such conclusion is warranted, however. There is no general argume
showing that all rules of appraisal are subject to this objection: at m
it has been successfully waged against certain specific rules (e.g:; t
straight rule, simple hypothetico-deductivism, falsificationist account
Since chapter 1 I have been hinting that I would propose utilizing
test’s severity to answer the underdetermination challenge. It is t
to make good on this promise. Doing so demands that we be m
clearer and more rigorous about our notion of severity than we ha
been thus far. Indeed, by exploring how an account of severe testi
answers the alternative hypothesis objection, we will at the same tin
be piecing together the elements needed for understanding thie severl
notion. In anticipation of some of my theses, I will argue that

6.1 METHODOLOGICAL UNDERDETERMINATION

“alternative hypothesis objection” that concerns me needs to be
istinguished from some of the more radical variants of underdetermi-
ation. Some of these more radical variants are the focus of a paper by
drry Laudan {1990a}, “Demystifying Underdetermination.” “{O]n the
ength of one or another variant of the thesis of underdetermina-
n,” Laudan remarks, “a motley coalition of philosophers and sociol-
gists has drawn some dire morals for the epistemological enterprise.”
veral examples follow.

- Quine has claimed that theories are so radically underdetermined by
he data that a scientist can, if he wishes, hold on to any theory he
likes, “come what may.” Lakatos and Feyerabend have taken the un-
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CHAPTER SIX SEVERE TESTS AND METHODOLOGICAL INDERDETERMINATION 177
derdetermination of theories to justity the claim that the only diff
ence between empirically successful and empirically unsuccessfy
theories lay in the talents and resources of their respective ad
cates. . . . Hesse and Bloor have claimed that underdeterminatio
shows the necessity for bringing noncognitive, social factors into pla
in explaining the theory choices of scientists. (Laudan 1990a, p. 268

idence, then when there is agreement in science, it would seem
he result of extraevidential factors (as Kuhn and others argue).
e existence of alternative hypotheses equally well tested by evi-
need not always be problematic. For example, it is unlikely to be
Jematic that a hypothesis about a continuous parameter is about as
tested as another hypothesis that differs by only a tiny fraction. In
ollowing discussion of my account of severe testing, T will focus
he seemingly most threatening variants of the MUD challenge.
Clearly, not just any rule of appraisal that selects a unique hypoth-
constitutes an adequate answer to the challenge. Not just any sort
le is going to free us from many of the most troubling implications
UD. That is why the Bayesian Way does not help with my prob-
ts way of differentially supporting two hypotheses that equally
1l"entail {or otherwise fit) the data is by assigning them different
or probabilities.” But, as I argued in chapter 3, prior probabilities,
'pt in highly special cases, are matters of personal, subjective
oice—threatening to lead to the relativism we are being challenged
avoid (inviting a MUD-slide, one might say).

Laudan argues that the Quinean thesis that “any hypothesi
rationally be held come what may” as well as other strong rels
positions are committed to what he calls the egalitarian thesis. “Tt i
that: every [hypothesis] is as well supported by the evidence as any of its
(p. 271). Nevertheless, Laudan maintains that a close look at under,
termination arguments shows that they at most sustain a weake
of underdetermination, which he calls the nonuniqueness thesis. “1
that: for any [hypothesis H] and any given body of evidence supporting
there is at least one rival (i.e., contrary) to [H) that is as well supported ds
(p. 271). Laudan denies that the nonuniqueness thesis has particul:
dire consequences for methodology; his concern is only with th
treme challenge “that the project of developing a methodology o
ence is a waste of time since, no matter what rules of evidenc
eventually produce, those rules will do nothing to delimit choice
281). I agree that the nonuniqueness thesis will not sustain the r
critique of methodology as utterly “toothless,” but I am concerned
show that methodology has a severe bite!

Even if it is granted that empirical evidence serves some ro
delimiting hypotheses and theortes, the version of underdeterminat;
that still has to be grappled with is the alternative hypothesis objectio
with which T began, that for any hypothesis H and any evidence, t
will always be a rival hypothesis equally successful as H. The objecti
it should be clear, is that criteria of success based on methodology-a
evidence alone underdetermine choice. It may be stated more exp
itly as the thesis of methodological underdetermination (MUD):

Summary of the Strategy to Be Developed

How does appealing to the notion of severity help? While there
many different conceptions of severe tesis, such accounts, broadly
peaking, hold the following general methodological rule:

“ Bvidence e should be taken as good grounds for H to the extent that
H has passed a severe fest with. e.

hat T want to argue is that the alternative hypothesis objection loses
sting once the notion of severity is appropriately made out.

"It is easy to see that the alternative hypothesis objection instanti-
ted for a method of severe testing T is more difficult to sustain than
Hen it is waged against mere entailment or instantiation accounts of
erence. The charge of methodological underdetermination for a
iven testing method, which I equate with the alternative hypothesis
bjection, must show that for any evidence test T takes as passing hypothesis
severely, there are always rival hypotheses that T would take as passing
qually severely. While MUD gets off the ground when hypothesis ap-
traisal is considered as a matter of some formal or logical relationship

Methodolegical underdetermination: any evidence taken as a good test of
{or good support for) hypothesis H would {on that account of testin
or support) be taken as an equally good test of (or equally good sup
port for) some rival to H.

While not alleging that anything goes, it is a mistake to suppose t
the MUD thesis poses no serious threat to the methodological en
prise. The reason formal accounts of testing and confirmation ran int
trouble was not that they failed to delimit choice at all, but that the
could not delimit choice sufficiently well (e.g., Goodman’s ridd
Moreovez, if hypothesis appraisal is not determined by methodolog

: 1. Indeed, if two hypotheses entail the evidence, then the only way they can
e differently confirmed by that evidence by Bayes’s theorem is if their prior proba-
ailty assignmments differ.
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hetween evidence or evidence statements and hypotheses, th1 3
so in our experimental testing framework.

The cornerstone of an experiment is to do something to ma__e
data say something beyond what they would say if one passive
across them. The goal of this active intervention is to ensure that

jpported, e is more probable on H than on not-H, e is far from the
ial of H on some distance measure, etc.?). Minimally, H does not fit
¢ is improbable under H.

:b Second requirement: e’ fitting B must constitute a good test of H. Those
o endorse some version of the severity requirement concur that a
uine test calls for something beyond the minimal requirement that
avoided. The error of concern in passing H is that one will do soiw, ts e. A severity requirement stipulates what this “something more”

) uld be.

‘Following a practice common to testing approaches, 1 identify
ving good evidence (or just having evidence) for H” and “having a
d test of A.” That is, to ask whether ¢ counts as good evidence for
n the present account, is to ask whether H has passed a good test
th ¢. This does not rule out quantifying the goodness of tests. It does
out saying that “e is a poor test for H” and, at the same time, that
s evidence for H.”

. The severity criterion {for experimental testing contexts). To formulate
e pivotal requirement of severe tests, it is sufficient to consider the
st outputs—"H passes a test T with experimental outcome ¢” or “H
ils a test T with experimental outcome e.” I am assuming that the

counts for hypothesis H because it corresponds to having good reasg
tor ruling out specific versions and degrees of this mistake.

Stated simply, a passing result is a severe test of hypothesis H jiss
extent that it is very improbable for such a passing result to occur, were ¥
Were H false, then the probability is high that a more discordant
would have occurred. To calculate this probability requires conside
the probability a given procedure has for detecting a given typ
ror. This provides the basis for distinguishing the well-testedness
hypotheses—despite their both fitting the data equally Wel_l
hypotheses may accord with data equally well but nevertheles
tested differently by the data. The data may be a better, more se:
test of one than of the other. The reason is that the procedure
which the data arose may have had a good chance of detecting
type of error and not so good a chance of detecting another. Wh
ostensibly the same piece of evidence is really not the same
least not to the error theorist.

This underscores a key difference between the error statistic
proach and the Bayesian approach. Recall that for the Bayesian, i
hypotheses entail evidence e, then in order for the two hypothes
be differently confirmed there must be a difference in their prior
abilities. In the present approach, two hypotheses may entail ev1d
¢, while one has passed a far more severe test than the other.

2. This allows us to state the first requirement for H to pass a test with ¢ as
.Hfits e,

the understanding that a suitable notion of fit, which may vary, needs to be
ulated for the problem at hand. While some accounts of testing construe the fit
gical entailment (with suitable background or initial conditions), except for
ersal generalizations this is rarely obtained. One way to cover both universal
statistical cases is with a statistical measure of fit, such as e fits H to the extent
at P{e | H) is high. (The entailmeni requirement results in P(e | H) being 1.} Be-
tse Ple | I} Is often small, even if H is true, passing a test is commonly defined
mparatively. Evidence e might be said to fit H if e is more probable under H than
dér all {or certain specified) alternatives to H.
‘There is nothing to stop the hypothesis that passes from being composite (dis-
tive). For example, in a Binornial experiment H may assert that the probability
suceess exceeds .6, ie., H:p > .6, The alternative H' asserts that p = .6, In such
s, ¢ fits H might be construed as ¢ is further from alternative hypothesis H' than
om any (simple) member of H, where “further” is assessed by a distance mea-
‘as introduced in chapter 5. .
3. The question of whether H's passing a test with result ¢ provides a good test
my notion from others, I will sometimes refer 1o it as error-severity. H'may alternately be asked as the question of whether ¢ provides confirmation
a. First requirement: e must “fit" H. Even widely different approae upporlt for H. However, when the question is put t.hxs way w1th‘m a testing
h Ily, for H to pass a test, H should agree wit pproach it should not be taken to-mean that the se_arch §s for a guant}tanve mea-
concur that, minimally, b of degree of support—or else it would be an evidential-relationship and not a
some wvay fit with what is expected (or predicted) according to H

tinng approach. Rather, the search is for a criterion for determining if a passing
can apply and contrast our definition with that of other approach

t provides good evidence for H—although the goodness of a test may itself be
allowing “H passes with ¢” to be construed in many ways (e. atter of degree.

6.2 THE (ERROR)-SEVERITY REQUIREMENT

The general requirement of, or at least preference for, severe’
common to a variety of approaches (most commonly testing
proaches), with severity taking on different meanings. To distin
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underlying assumptions or background conditions for a test—wh
ever they are—are located in the various data models of an experime
tal inquiry, as delineated in chapter 5. This frees me to characteriz '
severity requirement by itself. The severity requirement is this:

: {SC*) ’I.‘l.ue severity criterion for a “pass-fail” test: There is a very high
* probability that the test procedure T fails H, given that H is false.

ydeling tests in this “Binomial” manner may be sufficient for speci-
ing a test with appropriate error probabilities. However, it is often
o coarse grained for interpreting a particular result, which is why its
- leads to many criticisms of standard error statistics—a point to be
plained in chapter 11. The trick is to be able to calculate the severity
hieved by some specific outcome among those the test would take as
ssing H. That is the reason for my more cumbersome definition.
ertheless, the severity criterion for the pass-fail (or Binomial) test
SC*), because of its simplicity, is the one I recommend keeping in
ind even in arguing from a specific passing result. One need only be
lear on how it may be used to arrive at the general SC, the calculation
ve-really want. Let us illustrate.

- That H passes with a specific outcome e may be regarded as H hav-
passed with a given score, the score it gets with outcome ¢, just like
COIc Oon an exam. Suppose we want to calculate the severity associ-
ted with that particular passing score e. We can divide the possible
es into two: scores higher than the achieved score e, and those as
as or lower than e. We have now (reymodeled our test so that it

s_-:0n1y two results, and we can apply the simple severily calculation
pass-fail test. We have

Severity requirement: Passing a test T (with e} counts as a good test o
or good evidence for H just to the extent that H fits ¢ and Tis a sever;
fest of H,

and the severity criterion (SC) I suggest is this:

Severity criterion 1a: There is a very high probability that test proceduir
T would #ot yield such a passing result, if H is false.

By “such a passing result” I mean one that accords at least as well wit
H as ¢ does. Its complement, in other words, would be a result th
either fails H or one that still passes H but accords less well with H
¢ does. It is often useful to express SC in texms of the improbab
the passing result. That is:

Severity criterion 1b: There is a very low probability that test procedur 3
T would vield such a passing result, if I is false.

One may prefer to state the SC in terms of the measure of accdtfia‘
or fit. {1a) and (14) become

5C*: The probability is high that test T would »of yield so high a score

Severity criterion 2a: There is a very high probability that test proced:'ur or H as ¢, given that H is false,

T would yield a worse fit, if H is false.

lteicnativel}n in terms of the complement (b) we h
Severity criterion 2b: There is a very low probability that test procedur P @ e

T would vield so good a fit, if H is false. SC*: Itis very improbable that H would have passed with so successful

. “ascore as ¢, given that H is false,
While the # versions express severity in terms of the test’s high p

bility to detect the incorrectness of H, the equivalent b versions exp.
severity in terms of the low probability of its failing to detect the:ine
rectness of H,
d. The Severity Criterion in the Simplest Case (SC*): A Test as a
Statistic. Standard statistical tests are typically framed in terms of
two possible results: H passes and H fails, although “accept” an
ject” are generally the expressions used rather than “pass” an
This reduction to two results is accomplished by stipulating
point such that any particular result e that differs from H beyon
cutoff point is classified as failing H; all others pass H. The test, 11 §
is modeled as a Binomial (or pass-fail) procedure. The severity crite
for this special case is simpler to state than for the general case

ave arrived at the calculation that the more general severity crite-
(5C) demands.

How to understand the probabilities referred to in our severity cri-
lon is a question whose answer may be found in the discussion of
quentist probability in the last chapter. A high severity assignment
erts that were we experimenting on a system where H is false, then
a long series of trials of this experiment, it is extremely rare (infre-
ent) that H would be accorded such a good score; the overwhelming

4. Calculating SC* considers the probability that an outcome would reach the
atoll for failing H, even if H is false.

- This will be clarified further in distinguishing severity from “power” in chap-
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FPassing a maximally severe (100 percent severity) test: H passes a maximally
evere test with ¢ if and only if test T would never yield results that
ccord with H as well as e does, if H is false.

preponderance of outcomes would accord H a worse fit or a |
score.

Minimum (0) and Maximum (1) Severity A test is maximally severe if the results that the test takes as pass-

ng i cannot occur (in trials of the given experimental test), given that
pothesis H is false. It is a maximally reliable error probe for . That
assing a maximally severe test warrants accepting H may seem too
ous to merit noting. After all, in such a test passing with ¢ entails
Nevertheless, as will be seen in chapter 8, not all accounts of testing
guntenance maximally severe tests as good tests.

Let us move from 100 percent severity to merely high severity and
‘whether the reasoning still holds. Consider two tests, T, and T,

/T, is known to have a very high, say a .99, probability of falhng a
dent (giving her an F grade, say) if the student knows less than 90
cent of the material. That is, 99 percent of the time, students igno-
anf of 10 percent of the material fail test T,.

“Test T, let us suppose, is known to have only a 40 percent proba-
ty of failing a student who knows less than 90 percent of the ma-
al.

T, is obviously a more severe test than 7, in our ordinary use of
1at term, and likewise in the definition I have given, Passing the more
vere test T, is good evidence that the student knows more than 90
ercent of the material. (For, if she were to know less than 90 percent,
st T, would, with high probability, .99, have detected this and failed
er.) Clearly, all else being equal, better evidence of the extent of a
udent’s knowledge is provided by the report “She passes test T,,” than
y the report “She passes test T,.” Passing test T, is an altogether com-
on occurrence (probability .6) even if the student knows less than
0 percent of the material.

We can get at the commonsense rationale for desiring high sev
and eschewing low severity by considering extreme cases of violat
or satisfying severity. Here the probabilities of I not passing when fz
may be shown to be 0 and 1 (or practically so), respectively. I be
with the first extreme case, that of a minimally severe or a zero-
test.

Passing a minimally severe (zero-severity) fest: H passes a zero-severity tes
with ¢ if and only if test T would always vield such a passing resu
even if H is false, :

In the present account, such a test is no test at all. It has no pow
whatsoever at detecting the falsity of H. If it is virtually 1mp0551ble f
H to receive a score less than e on test T, even if false, then H's receiv
score e provides no reason for accepting H; it fails utterly to discrimi
H being true from H being false.

That a test would always pass H even if H is false does not enta
that H's passing is always erroneous or that I is false. H may be tru
may even have a warrant for accepting H, on other grounds. It is
that passing with a zero-severity test itself does not warrant sucha
acceptance. (That is, one can be right, but for the wrong reasons.}

These remarks accord well with familiar intuitions about wheth
passing marks on an exam warrant merit of some sort. Consider a.f
to determine whether a student can recite all the state capitals in
United States; say the hypothesis H is that the subject can correctly
recite {aloud) all fifty. Suppose that a student passes the test so lo
as she can correctly assert the capital of any one state. That a per
passes this test is not much of a reason to accept H, because it is not
very severe test. Suppose now that a student passes the test so long as
she can recite anything aloud. Granted, being able to recite all fifty'c

tals entails being able to speak aloud (H entails ¢), but this test is ew
less severe than the first. It is easier {more probable) for a pass to oc
even if the student is not able to recite all the state capitals (H is false

Alternatively, if a student passes a test where passing requires reci
ing all fifty capitals correctly, certainly that is excellent support for h
pothesis H, that the student can correctly recite them all. This ldent_lﬁ
the other extreme, that of a maximally severe test:

An Analogy with Diagnostic Tools

. Tools for medical diagnoses {e.g., ultrasound probes) offer other
seful analogies to extract these intuitions about severity: If a diagnos-
¢tool has little or no chance of detecting a disease, even if it is present
ow severity}, then a passing resuli—a clean bill of health—with that
strument fails to provide grounds for thinking the disease is absent.
That is because the tool has a very high probability of issuing in a clean
[ of health even when the disease is present. It is a highly unreliable

r probe. Alternatively, suppose a diagnostic tool has an extremely
high chance of detecting the disease, just if present—suppose it to be

6. Popper (1979, 354) also uses an exam analogy to make this point. highly severe error probe. A clean bill of health with that kind of tool
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provides strong grounds for thinking the disease is not present. K
the disease were present, our probe would almost certainly have
tected it. ‘ .

It is important to siress that my notion of severity always attac
to a particular hypothesis passed or a particular inference reache
ask, How severe is this test? is not a fully specified question untj
made to ask, How severe would a test procedure be, if it passed.:
and such a hypothesis on the basis of such and such data? A proced
may be highly severe for arriving at one type of hypothesis and
another. To illustrate, consider again a diagnostic tool With'ar_l_
tremely high chance of detecting a disease. Finding no disease (a lea
bill of health) may be seen as passing hypothesis I1;: no disease i
ent. If H, passes with so sensitive a probe, then H, passes a severe t
However, the probe may be so sensitive that it has a high probabili
of declaring the presence of the disease even if no disease exists:
claring the presence of the disease may be seen as passing hypoth'
H,: the disease is present. If H, passes a test with such a highly sensit
probe then H, has not passed a severe test. That is because ther
very low probablhty of not passing H, (not declaring the presence
the disease} even when H, is false (and the disease is absent). Th
verity of the test that hypothesis H, passes is very low.

Some further points of interpretation are in order.

It is learned that an error is present when a procedure of inquiry that
has a very high probability of not detecting an error if {and only if)
none exists nevertheless detects an error.

t a procedure detects an error does not mean it definitely finds the
ror. It is generally not known whether the procedure gets it right.
means that a result occurs that the procedure takes as passing the
/pothesis that an error is present. An analogous reading is intended
r detecting no error,

¢ In the canonical arguments from error, the probabilistic severity
quuement may capture the argument from error so well that no dis-
ction between so-called formal and informal modes is needed. In
eral, however, asserting that a hypothesis H passed a highly severe
est in this formal sense is but a pale reflection of the actual experimen-
al argument that sustains inferring 7. The purpose of the formal char-
cterization is to provide a shorthand for the actual argument from
or, which necessarily takes on different forms. The formal severity
terion may be seen to represent a systematic way of scrutinizing the
ippropriateness of a given experimental analysis of a primary question.

Referring to the Suppean hierarchy of models from the last chapter, it
s'a critigue at the level of the experimental testing model.

On the one hand, the informal and often qualitative argument
rom error takes central stage in applying our severity criterion to ac-
val experiments. On the other hand, there are many features of the
ormal characterization of severity that offer crucial guidance in doing
0. This latter point is as important as it is subtle, and to explain it is
10t as simple as I would wish. Let me try.

In an informal argument from error one asks, How reliable or se-
ere is the experimental procedure at hand for detecting an error of
nterest? To answer this question, it is essential to be clear about the
probabilistic) properties of the experimental procedure. Our informal
hinking about such things may be anything but clear, and formal ca-
onical models (from standard random experiments) may come to the
escue. For example, at the heart of a number of methodological con-

oversies are questions about whether certain aspects of experimental
design are relevant to appraising hypotheses. Does it matter whether a
ypothesis was constructed to fit the data? Does it matter when we

ecide how much data to collect? These are two examples that will be

aken up in later chapters.

The formal severity criterion, by reminding us that the test proce-

dure may be modeled as a random variable, comes to our aid. For we

now that we cannot determine the distribution of a random variable

ithout being clear on what it is that is being taken to vary from trial

Severity and Arguing from Error

Experimental learning, I have been saying, may be addresse_d_.
formal or informal mode, although those might not be the best term
In its formal mode, experimental learning is learning about the pro
bilities (relative frequencies) of specified outcomes in some actual
hypothetical series of experiments—it is learning about an experime
distribution. In its informal mode, experimental learning is learni __
the presence or absence of errors. Experimental learning, in its for
mode, is learning from tests that satisfy the severity criterion (SC)
its informal mode, it is learning by means of an argument from et
one variant of which was given in section 3.2, Here are two versi

1t is learned that an errox is absent when {and only to the exten
that) a procedure of inquiry (which may include several tests take
together) that has a very high probability of detecting an error if (and
only if7} it exists nevertheless detects 1o error. :

7. The “only if” clause is actually already accommodated by the first req
ment of passing a severe test, namely, that the hypothesis fit the data. 1t th
required is entailment, then the probability of passing given the hypothesis is
is maximal. ;
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to trial. Ts it just the sample mean that varies (e.g., the different propg
tions of heads in # trials)? Or is the very hypothesis that a test p
dure winds up testing also varying? Formally modeled {canonical)
periments demonstrate how error probabilities and, correspondin
severity can be altered—sometimes dramatically—by changing w
is allowed to vary. {Doing so is tantamount to changing the ques
and thereby changing the ways in which answers can be in eérrg
Carrying a few of the formally modeled test procedures in our exp :
mental tool kit provides invaluable methodological service.

The distinction between the formal model and informal argurmer
from error also frees us to talk about a hypothesis being true withow
presuming a realist epistemology. Within a canonical experime ita
test, the truth of H means that H gives an approximately corr
description or tnodel of some aspect of the procedure generating e
perimental outcomes. Precisely what this statement of experimenty
knowledge indicates about the system of interest will vary and 'w
have to be decided on a case by case basis. The main thing to note
that our framework allows numerous interpretations to be given toi
correctness of H, as well as to the success of I. Realists and nonrealis(:
of various stripes can find a comfortable home in error testing. Asid
from varying positions on realism, a variety of interpretations of “H
true” (and, correspondingly, “evidence indicates that H is true”) a
called for because of the very different kinds of claims that may by
gleaned from experiments. (The Kuhnian normal scientist of chaptc
2, for example, may view “H is true” as asserting that His a satlsfacto A
solution to a normal problem or puzzle.) _

Despite this room for diversity, there is uniformity in the patter
of arguments from error. We can get at this uniformity, T propose, b
stating what is learned from experiment in terms of the presence o
absence of some error (which may often be a matter of degree). Fo
example, a primary rypothesis H might be

rowledge—knowledge of the results to be expected were certain
eriments carried out.

‘We now have to tackle the “other hypothesis” objection. For the
stence of alternative hypotheses that accord equally well with test
lts may be thought to strangle any claim purporting that a test’s
erity is high.

6.3 1s THE OTHER HYPOTHESIS OBJECTION AN
ORBJECTION TO SEVERITY?

he thrust of the “other hypothesis” objection is this: the fact that data
hypothesis H fails to count (or to count much) in favor of H because
1e data also fit other, possibly infinitely many, rival hypotheses to H.
he above characterization of severe tests suggests how this objection
avoidable: mere fitting is not enough! If hypotheses that fit the data
equally well were equally well supported {or in some way credited) by
he data, then this objection would have considerable weight. But the
ery raison d'étre of the severity demand is to show that this is not so.
- still it might be charged that demanding severity is too demanding.
s is Barman’s (1992) criticism of me. Examining his criticism allows
' to address an anticipated misunderstanding of the severity crite-

on, namely, the supposition that it requires what I called the Bayesian
catchall” factor (section 4.3),

Earman's Criticism of Error-Severity

.- In order for hypothesis H to pass a severe test, the test must have

low probability of erroneously passing 4. (This alludes to the » forms
f SC.} Earman’s criticism of my severity requirement seems to be that
it requires a low probability to the Bayesian catchall factor. The Bayes-
ian catchall factor (in assessing H with evidence e}, recall, is

H: the error is absent, P(e | not-H).

and not-H, that the error is present. {Alternatively, H can be construe
as denying that it would be an error to assert H.) When an outcome is
in accordance with H and {appropriately) far from what is expected
given not-H, then the test passes H. Error now enters in a second way.
The error of concern in passing H is thai one will do so while H is not
true, that the error will be declared absent though actually present. .

When a test is sufficiently severe, that is, when an argument from
error can be sustained, the passing result may be said to be a good indica-
tion of (or good grounds for) H. The resulting knowledge is experimen-

However, satisfying SC does not require computing the Bayesian
catchall factor.

+  The catchall, not-H, refers to all possible hypotheses other than H,
including those that may be conceived of in the future. Assessing the
probability of e on the catchall requires having a prior probability as-
signment to the catchall. Assigning a low value to the Bayesian factor
on the catchall, while all too easy for a personalist—it is sufficient that
- he or she cannot think of any other plausible explanation for e—is
_ too difficult for a tempered subjectivist or frequentist Bayesian, for it
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“requires, recalling Salmon’s remark, that we “predict the future coy
of the history of science” (Salmon 1991, 329).
Earman grants the desirability of a low assignment to the Bay
catchall factor, because, as we said, the lower its value, the more Bay
ian confirmation accrues to H. The difficulty he sees is in obtaining
While I agree that this presents an obstacle for the Bayesian approa,
to support, satisfying the severity criterion SC does not require ¢g
puting the Bayesian catchall factor. Because of this, alternatives in'th,
~catchall that might also fit the evidence are not the obstacle tg's
taining high severity that Earman thinks they are, i
Consider the example Earman raises in this connection (I subs

tute ¢ for his F to be consistent with my notation) :

This reply depends on a key feature of my accou‘nt of testing,
amely, that an experimental inquiry is viewed as a series of m9de]s,
on with different questions, stretching from low-level ‘theor?es of
ita and experiment to higher level hypotheses an(.l theories of inter-
est. In relation to the hypotheses about the deﬂECtIOI:l effect, alterna-
ves to the general theory of IelatiVitY. are on a higher level. The
higher—level alternatives are not even being tested by the test at hapd.
ost important, higher-level alternatives pose no tl.n‘eat fo learmnlg
ith severity what they needed to learn in the specific 1919 experi-
men;zr a silly analogy, consider a dialogue about what can be inferred
ffom an exam (we assume cheating is ruled out):

If we take H to be Eiustein's general theory of relativity and e to be’
the outcome of the eclipse test, then in 1918 and 1919 plrysicists were
Inno position 10 be confident that the vast and then unexplored space
of possible gravitational theories denoted by —GTR does not contain.

alternatives to GTR that yield the same prediction for the bending of
light as GTR. (Barman 1992, 117)

Teacher: Mary scored 100 percent on my geography final—she clearly knows
her geography. . ,
ic: n you be so sure?
Té:i,filf;‘-' %gl,ci isYpossible that she guessed all the correct answers, but I doubt
“ that any more than once in a million years of teaching would a student
as Mary by merely guessing.
_ :Skepgg ;suv:;lllere is arrlyen{iless stzng of childhood learning theoriesd that Woultc_l
In fact, he continues, there is an endless string of such alternative the predict s0 good a score. Perhaps it's the new text you adopted or our a
vies. The presumption is that alternatives to-the GTR that also predict figh) tempts {0 encourage girls’ to compete orf h hypotbeses, They might be
bending would prevent high severity in the case of the eclipse test. : Teacher: My final exam wasn't testing an{}f ‘ Oinzfm of her performance,
But alternatives to the GTR did not prevent the eclipse results fro fun to test some fcii ay'l b;ll ! “;hI;t: :lif: re;f;inows her geography.
being used to test severely the hypotheses for which the eclipse expe her score on the final show.
ments were designed. Those tests, to be taken up in chapter §,
ceeded by asking specific questions: Ts there a deflection of light of
about the amount expected under Einstein’s law of gravitation? Is it
due to gravity? Are alternative factors responsible for appreciable
amounts of the deflection? Finding the answers to these questions in
a reliable manner did not call for ruling out any and all alternatives
the general theory of relativity. :
Take the question of the approximate deflection of light. If this is:
the primary question of a given inquiry, then alternative answers to it
are alternative values of the deflection, not alternatives to the general
theory of relativity. If alternative theories predict the same results, so
far as the deflection effects g0. as Earman says they do, then these
alternatives are not rival to the particular hypotheses under test. If the
endless string of alternative theories would, in every way, give the
same answers to the questions posed in the 1919 tests, then they alb:
agree on the aspects of the gravitation law that were tested. They are

not members of the space of alternatives relative to the primary ques-
tion being addressed. '

The general lesson goes beyond answering Earmar%. It points up a
strategy for dispelling a whole class of equal_ly good ﬁtifmg alternlati:fes
to a hypothesis H. The existence of alternatives at a l}lgher level than
H is no obstacle to finding high severity for 4. The higher-level ques-
tions, just like the question about the. correctness of the whole of the
GTR, are simply asking the wrong question.

Testing versus Learning About

Saying that the eclipse tests were not test.ing the full-blown theory
of general relativity does not mean that nothing was learned abt.)l;t tﬁe
theory from the tests. What was learned was the extent to which the
theory was right about specific hypotheses, for example, about the pa-
rameter A, the deflection of light. . o

This points up a key distinction between expenmenta.l learning in
the present approach and in the Bayesialjl approach, which may ex-
plain why Barman thinks that crror-severity fopnders on the altegna}-
tive hypothesis objection. For a Bayesian, leaming a.bout a hypqt esis
or theory is reflected in an increase in one’s posterior probability as-
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signment to that hypothesis or theory. For a result to teach something ay that it is caused by some other factor possibly operative in the ex-
about the theory, say the GTR, for a Bayesian, that theory must h
received some confirmation or support from that result, But tha
means the theory, the GTR, must figure in the Bayesian computatio
That, in turn, requires considering the probability of the result on
negation of the GTR, that is, the Bayesian catchall factor. That is w
Earman's criticism raises a problem for Bayesians.? .

For the error theorist, in contrast, an experiment or set of expe)
ments may culminate in accepting some hypothesis, say about the ¢
istence of some deflection of light. This can happen, we said, if
hypothesis passes a sufficiently severe test. That done, we are corre
in saying that we have learned about one facet or one hypothesis ¢
some more global theory such as the GTR. Such learning does not r
quire us to have tested the theory as a whole.

Our approach to experimental learning recommends proceed np
in the way one ordinarily proceeds with a complex problem: brea
up into smaller pieces, some of which, at least, can be tackled. Oneis
led to break things down if one wants to learn. For we learn by ruling
out specific errors and making modifications based on errors. By usin'g

tates that the effect is systematic—of the sort brought about more
ften than by chance—then not-g states that it is due to chance. How
pecific the question is depends upon what is required to ensure a good
chance of learning something of interest (much like ensuring satisfac-
tion of the Kuhnian demarcation criterion of chapter 2),

Tam not denying the possibility of severe tests of higher-level theo-
retical hypotheses. When enough is learned from piecemeal studies,
vere tests of higher-level theories are possible. Kuhn was right that
everity of test-criteria is simply one side of the coin whose other face
puzzle-solving tradition.” The accumulated results from piecemeal
udies allow us at some point to say that several related hypotheses
are correct, or that a theory solves a set of experimental problems cor-
rectly.

Earman (1992, p. 177) discusses for a different reason the progress
that has been made in a program by Thorne and Wil ( 1971) to classity
theories of gravity, those already articulated as well as other possible
theories satisfying certain minimal requirements.® Such a program
hows which available experiments can eliminate whole chunks of
heories (e.g., so-called nonmetric theories of gravity) and which sets

simple contexts in which the assumptions may be shown to hold su
ficiently, it is possible to ask one question at a time. Setting out all possible
answers to this one question becomes manageable, and that is all th :
has to be “caught” by our not-H. : ndlcat.es i}OW progress might be made by devising experiments to fur-
Apart from testing some underlying theory (which may not even . her dlscrlmlneEte b‘etwee.n them (e.g., making cosmological observa-
be in place), scientists may explore whether neutral currents exis ) ). Something like this kind of program of partitioning and elimi-
whether dense bodies are real or merely artifacts of the electron micr nating chunks of theories is what the present program would call for
scope, whether F, and F, chromosomes play any part in certain typ t the level of large-scale theories,
of Alzheimer’s disease, and so on. In setting sail on such exploratio 15, . Much more work is also needed to show how learning in large-
the immediate aim is to see whether at least one tiny little error can scale inquiries proceeds by piecemeal canonical questions. Later I will
be ruled out, without having to worry about all the ways in which on locus on specific cases, but the philosopher of experiment’s search is
could ever be wrong in theorizing about some domain, which would

only make one feel at sea. way r_h'at has ordipariiy been understood. Still, there are some general

Within an experimental testing model, the falsity of a primary h / ftrategies for getting at larger questions by inquiring, biecemeal, into
pothesis H takes on a specific meaning. If H states that a parameter is smaller CITOrS: testi‘ng parameters, estimating the cffects of background
greater than some value ¢, not-H states that it is less than ¢; if H states f:actors. distinguishing real effect from artifact, and so on with the other
that factor x is responsible for at least p percent of an effect, not-H t_?_apomcal eIrors. There are also general methodological rules for speci-
states that it is responsible for less than p percent; if H states that an fying an experimental test from which one is likely to learn, based on

effect is caused by factor f, for example, neutral currents, not-H may

9. The aim of the program Earman describes is “the exploration of the possibil-
ty space, the design of classification schemes for the possible theories, the design
and execution of experiments, and the theoretical analysis of what kinds of theories
‘are and are not consistent with what experimental results” {Barman 1992, 177).

8. These remarks do not encompass all the ways that the error-severity calcu
lation differs from calculating the Bayeslan catchall factor. They simply address the
point that was at the heart of Earman’s criticism. :
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background knowledge of the types of errors to be on the lookou
and strategies for attaining severe tests with limited information

My concern just now is to get small again, 1o proceed with me
standard tools for severe tests in the experimental models laid &
chapter 5. While they may enable us to take only baby steps
enable us to take those baby steps severely. Such baby steps are
heart of the experimenter’s focus on what we variously referre 1o
“topical hypotheses” (Hacking) and “normal puzzles” (Kuhn): Me

-over, what these baby steps accomplish will be sufficient for the py;
lem of this chapter: methodological underdetermination. For the
son that arguments about evidence underdetermining hypothes, ¢ then ask the above questions more formally in terms of our “sig-
appear to go through is that we have not bothered to be Very:¢ ificance question”: What is the probability of the experiment produc-
about what specific evidence is being talked about, what spec ig so large a difference from what is expected under the null hypothe-
hypotheses are being tested, and what specific models of experime s H,, if in fact the null hypothesis is true? The answer, we said, was
and data are available to constrain inferences. 3—quite easily calculated using the Normal distribution.!! We have

one standard deviation being .05). We ask ourselves: Suppose we
vere to pass H' (assert that she does better than chance} whenever the
yperiment results in 60 percent or more successes. How severe would
hat test procedure be? Would it often lead to mistaking chance effects
for systematic or “real” ones?

. The test procedure can be written in several ways. One is

Test procedure T (in Binomial experiment 5.2): Pass hypothesis H': ?
>.5) (faill H,) if at least 60 percent out of the (100) wials are suc-
cessful.

P(test T passes H', given that H' is false [H, is true]) = .03.

6.4 CALCULATING SEVERITY :
This is the probability of erroncously passing H': the b variant of the

severity criterion. The state of affairs “such a passing result would #ot
ave occurred” refers to all of the (100-fold) experimental trials that
sult in less than 60 percent successes. The probability of this event is
minus the probability of erroneously passing H', namely, .97. So the
verity for H’ is high (.97). This means that in a series of repetitions
of the experiment (each with 100 trials), 97 percent of the outcomes
rould yield less than 60 percent successes, were we in fact experi-
enting on a population where the probability of success was only .5.
e can picture this as the area under the Normal curve to the left of
. assuming the null hypothesis H, to be true (fig. 6.1). By rejecting
:é null hypothesis H, only when the significance level is low, we auto-
atically ensure that any such rejection constitutes a case where the
nonchance hypothesis H' passes a severe test. Such a test procedure T
can be described as follows:

To determine what, if anything, is learned from an experimental
we must ask, What, if anything, has passed a severe test? Considel
Binomial experiment for the tea-tasting example (example 5.2, sécti
5.4). We would pass hypothesis H'—that the probability of successfyll
discriminating the order of tea and milk in an infusion, p, exceeds
by failing or rejecting the null hypothesis H;: p = .5 (i.e., the la
merely guessing). Here, notice that H, is the denial of the hypothes
H' that we pass. _
The question concerned the population parameter p. The possi
answers, the parameter space, consists of all the possible proporti
for p from 0 to 1, but the question asked divides it into two spaces,
-5and p > 5. A different inquiry might have tested H, against a specifi
alternative, say p > .8. With minor modifications (of test spécifi
tion'?), this calls for the same basic test as in our original partitio
that is a good place to start. It is just this kind of rough and simpl
question that provides a standard for distinguishing between experi
mental effects and backgrounds. :
In this test the tea-tasting lady scored 60 percent successes in
trials. That is, the distance (in the positive direction) between the ob
served proportion or relative frequency of successes and the hypothe
sized proportion of successes (.5) equals 2, in standard deviation unit

Test Procedure T: Pass H' whenever the statistical significance level of
the difference (between X and H,) is less than or equal to « (for some
small value of a)."2

11. A standard chart on the Normal distribution tells us that a sample mean
-xcecds the population mean by as much as 2 standard deviations less than 3 per-
cetit of the time, The central limit theorem ensures that the Normal approximation
s more than adequate.

: 12, Because of the adequacy of using the Normal approximation it does not
matter if we use “less than” or “less than or equal to «.” That is because it is a
ontinuous distribition.

10. In this case we would need to increase the sample size beyond 100 10 té__
a rejection of the null hypothesis as severely indicating p > .8. 1 return to $uch
considerations in chapter 11.
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eral, even infinitely many, alternatives to the primary hypothesis H
‘which severity is being calculated. In those cases the “not-H” is a
isjunction of hypotheses, H, or H, or H, or. . . . How, it will be asked,
i1 severity be made high in such cases? How can we assess the proba-
ﬂity that I does not pass, given either H, or H, or H, or ... 7?

The probability of an outcome conditional on a disjunction of alter-
atives is not generally a legitimate quantity for a frequentist. Its calcu-
tion requires a prior probability assignment to each hypothesis H,
ost readers declare, “Aha, you are being Bayesian after all!” I had
etter explain what SC requires in such cases. It requires that the se-
erity be high against each such alternative. Tn other words, the mini-
mum severity against each of these alternative hypotheses needs to
be high (the maximum error probability needs to be low), and prior
robability assignments are not required to calculate them.

.. Consider tesiing the value of a discrete or continuous parameter
: Specific examples that will arise later are the mean value for Avo-
adro’s number {chapter 7) and the mean deflection of light {chapter
8) The hypothesis H: . exceeds some value p’, has as its alternative
the complex hypothesis made up of all the values less than ', That is,
H is false” here means that p. is one of the infinitely many values less
than or equal to p.’. Consider the highest of these values, the one that
just makes H false, namely, u'. This corresponds to the simple alterna-
tive hypothesis H': n equals y'. The probability that the test would
ot pass H, given that this highest valued alternative, H', were true, is
calculated in the usual way. A good test {(one with a sensible measure
of distance from H) yields even higher severity values for each of the
alternative p. values less than u'. In other words, in a good test, if the
test has a high chance of detecting that H is just barely false, it has an
even higher chance of detecting that H is even more false. This allows
us to say that the severity is high against all alternatives. Good error
statistical tests provide just such guarantees. Actual experiments can
and often do take their lead from these canonical tests. T return to this
in chapter 11.

. Tt may be objected that with substantive questions all the possible
alternative hypotheses cannot be set out in the manner of alternative
values of a parameter. We may not even know what they arc. Even
where this is so, it does not present an insurmountable obstacle to ex-
perimental testing. In such cases what often may be managed is to find
a more general or less precise hypothesis such that when it is severely

Severity = .97

[
.5 .6

(observed resulf

Bt

FIGURE 6.1,  The severity for passing H' with X = _6 equals the probability:1h
test T would yield a result closer to H, {i.e., .5) than .6 is, given that H, is tru

Calculating severity means calculating 1 minus the probability of suc
a passing result, when in fact the results are due to chance, that'i
when H, is true. By definition,

P(T yields a result statistically significant at a level = o, given tha
H, is true) = a.

So the severity of the test procedure T for passing H' is 1 — a.

As might be expected, were the observed success frequency eve
higher than 60 percent—say she scored 70 percent or 80 percent suc
cesses—the severity for H' would be even higher than .97. Here it'i
enough to see that the severity of passing H' with result .6 (the 2
standard-deviation cutoff} gives a minimum boundary for how sever
the test is for A', and that minimum boundary is high. What is indi
cated in affirming the nonchance hypothesis H' is that the effect
systematic, that the subject’s pattern of correct discernments is not th
sort typically brought about just by guessing. Granted, to learn this
typically just a first step in some substantive inquiry. Having found
systematic effect, subsequent questions might be: How large is it (per.
haps to subtract it out from another effect)? What causes it? and so on
The aim just now was to illustrate how the current framework allow
splitting off one question at a time,

Calculating Severity with Infinitely Many Alternatives

In the Binomial experiment above, the hypothesis that passes the
test (the nonchance hypothesis H') had only one alternative hypothe:
sis (the “guessing” hypothesis H: p = .5)."* In many cases there are

“alternative” in formal statistics. When calculating the severity of a test that passes
the non-nul hypothesis I, the alternative to H' is the null hypothesis H,.

13. That H,, the null hypothesis, plays the role of the alternative here should:
cause no confusion despite the fact that #t is B that would generally be called th
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¢ hypothesis objection. In particular, it will become clear that a hy-
jothesis (e.g., a null hypothesis of no difference) may accord quite well
ith data (e.g., a negative result) and yet be poorly tested and poorly
varranted by that data.

tested, there are at the same time grounds for rejecting all the alte
tives in a manner meeting the severity requirement. The idea is to
tition the possible alternatives to learn about the features that any
verely tested hypothesis will atfirm. What we try to do, in short 1
emulate what is possible in canonical experimental tests.

I can rule out the killer’s being over six-feet tall without scruti
ing all six-footers. A single test may allow ruling out all six- foote
Using a similar strategy Jean Perrin was able to rule out, as causes
Brownian motion, all factors outside a certain liquid medium. He dig
so by arguing that if the observed Brownian motion were due to six
external factors—whatever they might be—the motion of Brownian

Learning from Failing to Find a Statistically Significant
Difference: The Case of the Pill

A good example is offered by the randomized treatment-control
rial on birth-control pills, sketched in example 5.1 (section 5.2). The
uestion of interest concerned parameter A, the difference in rates of
lotting disorders among a population of women. The question in this
ticles would follow a specified coordinated pattern. His experimental tudy concerned the error of supposing #, (no increased risk} when in
tests, Perrin argued, would almost surely have detected such a pattery act H' is true—there is a positive increase in risk. That is, we tested
of coordination, were it to exist; but only uncoordinated motion: Wwas ;A = 0against H': A > 0.

found. In this way, a whole set of extraneous factors was ruled ou The actual difference observed in the Puertes study was not statisti-
This example will be explored in chapter 7. ally significant. In fact, the (positive) difference in disease rates that
vas observed has a statistical significance level of .4. That is to say, 40
ercent of the time a difference as large as the one observed would
jccur even If the null hypothesis is true. {See note 14.)

However, failing to find a statistically significant difference with a
iven experimental test is not the same as having good grounds for
sserting that H, is true, that there is a zero risk increase, The reason is
hat statistically insignificant differences can frequently result even in
tudying a population with positive risk increases. The argument from
‘error tells us that we may not declare an error absent if a procedure
ad little chance of finding the error even if it existed. The severity
equirement gives the formal analog of that argument.

* Of course, the particular risk increase (A value) that is considered
ubstantively important depends on factors quite outside what the test
itself provides. But this is no different, and no more problematic, than
the fact that my scale does not tell me what increase in weight I need
‘to worry about. Understanding how to read statistical results, and how
to read my scale, informs me of the increases that are or are not indi-
‘cated by a given result. That is what instruments are supposed to do.
‘Here is where severity considerations supply what a textbook reading
.of standard tests does not.

> Although, by the severity requirement, the statistically insignifi-
‘cant result does not warrant ruling out any and all positive risk in-
“creases—which would be needed to affirm H,; A = 0—the severity
‘requirement does direct us to find the smallest positive increase that
‘can be ruled out. It directs us to find the value of A’ that instantiates
‘the following argument:

6.5 USING SEVERITY TO AVOID MISINTERPRETATIONS OF STATISTIC A
TEsTS: THE CASE OF NEGATIVE RESULTS

I intend the severity criterion to provide a way of scrutinizing wha
has been learned from applying standard statistical tests. This scrutiny
allows us to go beyond merely following the standard conventions
say, rejecting the null hypothesis on the basis of a statistically signi
cant result. As such, assessing severity is a tool for avoiding common
misinterpretations of standard error statistics. Severity consideratioris;
we can say, scrve the “metastatistical” function of scrutinizing erro
statistical results. They can be used to develop standard tools for
avoiding canonical mistakes of interpretation (see section 11.6). These
mistakes run to type.

A type of mistake particularly appropriate to consider in the pre
ent context concerns statistically insignificant results—that is, resulfs
where the null hypothesis is #nof rejected by the conventional signifi-
cance test. A classic flaw we need to be on the lookout for in interpr
ting such “negative” results is the possibility that the test was not sensi:
tive (severe) enough to detect that H, was in error in the first plac
(The test, it would be said, has too low a power.) In that case, just bé-
cause the test deiects no error with hypothesis H, is no indication that
the error really is absent. I discuss this well-known error in detail else:
where (e.g., Mayo 1983, 1985a, 1985b, 1989, 1991b), and will address
it in discussing statistical tests in chapter 11. Here my concern is to tie
our handling of this canonical error with our avoidance of the altern
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joint I made in grappling with Barman’s criticism in section 6.3. We
-an avoid pronouncing as well tested a whole class of hypotheses that,
while implying (or in some other way fitting) a given result, are never-
heless not part of the hypothesis space of the primary test. They are
imply asking after the wrong question, so far as the given test is con-
erned.

Arguing from a statistically insignificant increase: Observing a statisticall
insignificant (positive) difference only indicates that the actual POpl:
lation increase, A, is less than A’ if it is very probable that the teg
would have resulted in observing a more significant difference, wer,
the actual increase as large as A'.

The “if clause” just says that the hypothesis asserting that A is less th
A’ must have passed a severe test.

Using what is known about the probability distribution of the
tistic here (the difference in means), we can find a A value that woi]
satisfy the severity requirement. Abbreviate the value that is foun
A*. The above argument says that the statistically insignificant
indicates that the risk increase is not as large as A*. That is, the hypoth
esis that severely passes, call it H*, is

Alternatives That Ask the Wrong Question

Regarding the Binomial experiment on the tea-tasting lady, ex-
mples of wrong question hypotheses would be the variety of hypoth-
ses that might be adduced to explain how the lady achieves her
ystematic effect, such as psychophysical theories about sensory dis-
rimination, or paranormal abilities. That these other hypotheses pre-
dict the pattern observed does not redound to their credit the way the
esults count in favor of H’, that she does better than guessing. This
hows up in the fact that they would not satisly the severity criterion.
The procedure designed to test severely whether the effect is easily
xplained by chance is not automatically a reliable detector of mistakes
ibout the effect’s cause. With regard to questions about the cause of a
ystematic effect, a whole different set of wrong answers needs to be
ddressed. At the same time, the existence of these alternative (causal)
typotheses do not vitlate the severity assignment regarding hypothe-
es for which the test is well designed.

This same argument can be made quite generally to deal with al-
ernatives often adduced in raising the alternative hypothesis objec-
ion. While these alternatives to a hypothesis H also fit or accord with
the evidence, they may be shown to be less well tested than is H. Often
these alternatives are at a higher level in the hierarchy than the pri-
mary hypothesis under test (e.g., hypotheses about parameter values
when the primary question is about a correlation, questions about the
lirection of a cause when the primary question is about the existence
f a real correlation). There are two main points: First, these alternative
ypotheses do not threaten a high severity assignment to the primary
lypothesis. Second, it can be shown that these alternatives are not
qually severely tested. Because they ask a different question, the ways in
which they can err differ, and this corresponds to a difference in severity. More-
ver, if the primary hypothesis is severely tested, then these alterna-
ives are less well tested. It is not that the nonprimary hypotheses
hemselves cannot be subjected to other severe tests, although there is
ertainly no guarantee that they can be. It is simply that they are not
sted by the primary test at hand. It follows that hypotheses that entail
well-tested hypotheses need not themselves be well tested.

A scientific inquiry may involve asking a series of different primary

H*: A is less than A*.

Let RI be the statistic recording the observed risk increase (the positv
difference in disorder rates among treated and untreated womeri
Then the severity requirement is satisfied by setting A* = RI + 2 sta
dard deviations (estimated). For example, suppose that the particula
risk increase is some value RI, and that this result is not statistical
significant. Then the hypothesis

H* Aisless than RI

obs

+ 2 standard deviations

would pass a severe test with R, .'* The severity is .97. .

Notice that the test result severely rules out all increases in exces
of A* (i.e., all smaller values pass severely). It thereby illustrates
circumstance discussed in the last subsection—how severely ruling ¢
one hypothesis may entail severely ruling out many others as wel
(I return to this example and the question of interpreting statistic
insignificant results in chapter 11.)

6.6 SEVERITY IN THE SERVICE OF AITERNATIVE
HyroTHESIS OBJECTIONS

The standard examples of the last two sections have shown both ho
to obtain and how to argue from high severity. These standard
amples, I believe, let us make short work of the variants of the alterna
tive hypothesis objection. For starters, these cases demonstraie

14. In the Fuertes et al. {1971) experiment, 9 of the approximately 5,00
treated and 8 of the approximately 5,000 unireated women showed a particul
blood-clotting disorder at the end of the study. The observed difference is 1/5,00
For a discussion, see Mayo 1985b. :
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ellerization. Clearly, we are not impressed with many maximally likely
ypotheses adduced to explain given evidence, but the challenge for
account of inference is to provide a general and satisfactory way of
arking those intuitively implausible cases. Bayesians naturally appeal
prior probabilities, and for reasons already addressed this is unsatis-
tory to us. Moreover, at least from the present point of view, this
sdiagnoses the problem. The problem is not with the hypothesis it-
elf, but with the unreliability (lack of severity) of the test procedure
.¢-a whole. Infamous examples—both formal and informal—serve as
anonical cases of how maximally or highly likely hypotheses can be
ived at in ways that yield tests with low or minimal severity. I call
em “gellerized” hypothesis tests.

. An informal example is that of the Texas sharpshooter. Having shot
veral holes into a board, the shooter then draws a target on the board
that he has scored several bull’s-eyes. The hypothesis, H, that he is
good shot, fits the data, but this procedure would very probably yield
good a fit, even if H is false. A formal variant can be made out with
eference to coin-tossing trials:

Example 6.1: 4 gellerized hypothesis test with coin-tossing trials. The ex-
erimental result, let us suppose, consists of the outcemes of # coin-
sing trials—where each trial yields heads or tails, Call the outcome
eads a success and tails a failure. For any sequence of the # dichoto-
us outcomes it is possible to construct a hypothesis after the fact
that perfectly fits the data. The primary hypothesis here concerns the
ue of the parameter p—the probability of success on each coin-
ossing trial. The standard null hypothesis H, is that the coin is “fair"—
hat p is equal to .5 on each coin-tossing trial. Thus any alternative
wypothesis about this parameter can be constdered an alternative pri-
mary hypothesis. In any event, this is what our imaginary alternative-
iypothesis challenger alleges.

. Let G(e) be some such hypothesis that is constructed so as to per-
tly fit data e. (G(e) is constructed so that P[e | G(e)] = 1.) Suppose
hat G(e) asserts that p, the probability of success, is 1 just on those
rials that result in heads, and 0 on the trials that result in tails.)” It

questions, and each will {typically) require its own hierarchy of exp
mental and data models. One cannot properly scrutinize hypoth
isolation from the specific framework in which they are tested.:

Alternative Primary Hypotheses

It will be objected that I have hardly answered the alternativi
pothesis objection when it becomes most serious: the existence
ternative hypotheses to the primary hypothesis. This is so. But wi
handle such cases in much the same fashion as the previous ones:
a distinction in severity.

One point that bears repeating is that I am not aiming to show:th:
all alternatives can always be ruled out. Experimental learning is ne
guaranteed, What I do claim to show, and all that avoiding MU
quires, is that there are not always equally well tested alternatives th.
count as genuine rivals, and that there are ways to chscrlmm
hypotheses on grounds of well-testedness that get around aitern
hypothesis obiections. :

Maximally Likely Alternatives. A type of alternative often adduced in'rai
ing the alternative hypothesis objection is one constructed after th
fact to perfectly fit the data in hand. By perfectly fitting the data;
entailing them, the specially constructed hypothesis H makes the'd
maximally probable (i.e., P(e | H) = 1). Equivalently, ¢ makes H
mally likely. The corresponding underdetermination argument is th
for any hypothesis H there is a maximally likely alternative that'is
well or better tested than H is.

The “curve-fitting problem” is really an example of this: for
curve connecting sample points, infinitely many other curves conn
them as well. (The infamous Grue problem may be seen as one var
ant.) The problem of maximally likely alternatives was also a cen
criticism of the account of testing that Ian Hacking championed
Hacking 1965."* In this account, evidence e supports hypothesis
more than hypothesis H, if ¢ is more probable given H, than given H
The trouble is, as Barnard {1972) pointed out, "there always is suc
rival hypothesis, viz. that things just had to turn out the way they acty
ally did” (p. 129).

A classically erroneous procedure for constructing maximally likely riva,

- 17. Por example, suppose that e, the result of four tosses of a coin, is heads,
alls tails, heads. That is, e = 5,f,fs where s,f are the abbreviations for “success” and
failure respectively. Then G(e¢) would be: the probability of success equals I on
rials one and four, 0 on trials two and three. The null hypothesis, in contrast,
ssérts that the probability of success is .5 on each trial. Another & hypothesis that
ould do the job would assert that the observed pattern of successes and failures
ill always recur in repeating the #-fold expertment. I owe this second example to
.J. Good.

15. It was one of the reasons he came to reject the account. See, for exampl
Hacking 1972. .

16. The probability of e given H,, P(e | H,), is called the likelihood of
Hacking’s rule of support can also be stated as e supports H, more than H, if th
likelihood of H, exceeds the likelihood of H,.
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matters not what if any story accompanies this alternative hyp()th 5i
This hypothesis G(e) says that

hypothesis selected for testing is one that is constructed to provide
xcellent fit for the data, but in such a way that the constructed
othesis passes a test with minimal (or near minimal) severity.

The manner in which the severity criterion ¢liminates such gelier-
d alternatives is important for it hinges on the distinctive feature of
or statistical approaches—the centrality of error probabilities. How
contrasts with other approaches will become much clearer Iater
chapters 8-11}). It should be stressed that gellerized hypotheses are
emed poorly tested by my account not because they are construcied
r the fact to fit the data. As I shall argue (in chapter 8), such after-
al constructions {“use-constructed” hypotheses) can pass with max-
severity. They are deemed poorly tested because in gellerized
nstructions the tactic yields a low or 0 severity test. A primary hy-
othesis that fits the outcome less well than this type of rigged alterna-
-may actually be better, more severely, tested.

- The example of gellerization (which comes in several forms), then,
sa canonical example of a minimally severe test. As with all canonical
xamples, it is a basis for criticizing substantive cases that while less
viously fallacious are quite analogous.

G(e): p equals 1 on just those trials that were successes, 0 on th
others.

The test procedure, let us suppose, is to observe the sexies of howe
many trials, find a hypothesis G{e) that makes the result ¢ maxi
probable, and then pass that hypothesis. In passing G{e), the test reJ
the null hypothesis H, that the coin is fair.

Test procedure T (in example 6.1): Fail (mull) hypothesis H, and pass
the maximally likely hypothesis G(e} on the basis of data e

The particular hypothesis G{¢) erected to perfectly fit the data will'va
in different trials of our coin-tossing experiment, but for every data se
some such alternative may be found. Therefore, any and all exp
mental results are taken to fail null hypothesis H, and pass the hyp
esis G{e) that is constructed to fit data e—even when G{¢} is false ar
H, is true (i.e., even when the coin is “fair”). In a long-run serie
trials on a fair coin, this test would always fail to correcily declare the
coin fair. Hence the probability of passing G(e) erroneously is max
mal-—the severity of this test procedure is minimal.

To calculate severity in cases where the hypothesis is constructed
on the basis of data e, it is important to see that two things may var
the hypothesis tested as well as the value of e. One must include
part of the testing procedure, the particular rule that is used to dete
mine which hypothesis to test. When the special nature of this type
testing procedure is taken into account, our severity criterion SC b
colmes

ctically Indistinguishable Alternatives. What about alternatives that
annot be distinguished from a primary hypothesis H on the grounds
severity because they differ too minutely from H? This occurs, for
ample, when H is an assertion about a continuous parameter. My
uick answer is this: if there are alternatives to H that are substantive
vals~—one differing merely by a thousandth of a decimal is unlikely
create a substantive rival—and yet they cannot be distinguished on
1e grounds of severity, then that is grounds for criticizing the experi-
ental test specifications (the test was insufficiently sensitive). It is not

SC with hypothesis construction: There is a very high probability that fest rounds for methodological underdetermination.

procedure T would not pass the hypothesis it tests, given that the hy-

pothesis is false. pirically Equivalent Alternatives. We have yet to take up what some

light consider the most serious threat to a methodology of testing: the
xistence of rival primary hypotheses that are empirically equivalent
H, not just on existing experiments but on all possible experiments.
In the case where the alternative H’ was said to ask the wrong ques-
on, it was possible to argue that the severity of a test of primary hy-
othesis H is untouched. (If the ways in which H can err have been
eH probed and ruled out, then H passes a severe test. There is no
:ason to suppose that such a test is any good at probing the ways in
hich H' can err.) But the kind of case we are to imagine now is not
like that. Here it is supposed that although two hypotheses, H and ',

To ascertain whether SC is satisfied, one must consider the pamcu
rule for designating the hypothesis to test.
Let the test procedure T be the one just described. The hypoth
that Ttests on the basis of outcome e is G(e). There is no probability. tha
test T would nof pass G{e), even if G(e} were false. Hence the severit
minimal (i.c., 0). In other words, the test procedure T'is a maximall
unreliable probe when it comes to detecting the relevant error (‘Fh
error of rejecting H, when H, is true}. This amounts to the defin
characteristic of what I call a gellertzed hypothesis—or, more precisel
gellerized hypothesis-testing procedure. With a gellerized procedure
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es a severe test to the extent that there are good grounds for ar-
1ing that were the bacteriology hypothesis false, then it almost surely

1d have been found to be false. Such grounds may or may not exist
the bacteriology case, as Miller notes, it seems that they do). What
atters is that no obstacle to such grounds is presented by a rigged
ernative, R. Hypothesis R, in effect, makes the following assertion:

give different answers to the same primary question, both have
same testable consequences. Does it follow that a severity asses
is unable to discriminate between any tests they both pass?

That depends. If it is stipulated that any good test is as hkely
pass H, although H' is true, as it is to pass H' although H is true
is stipulated that any test must have the same error probabilitie
both hypotheses—then it must be granted. In that case no severg
can indicate H as opposed to A'. The best example is mathematicg]
two hypotheses being Euclidean and non-Buclidean geometry:
apart from certain, not entirely uncontroversial cases in physics, ik
is o reason to suppose such pairs of rivals often exist in scier
Moreover, even if we grant the existence of these anomalous cas
this would fail to sustain MUD, which alleges that the problem¢
for any hypothesis. There is no reason to suppose that every hypoth
has such a rival.

We can go further. When one looks at attempts to argue in ge‘n,'g
for the existence of such empirically {or testably) equivalent rivals;'s
finds that severity considerations discriminate among them after g
fact, one finds that such attempts appeal to tactics remarkably sii
to those eschewed in the case of gellerized hypotheses. They too't
out to be “rigged” and, if countenanced, lead to highly unreliable_-
procedures.

Richard Miller {1987) gives a good example in objecting to al]ege
empirically equivalent, “just-as-good” alternatives. He asks, Wha
the theory, contradicting elementary bacteriology, that is just as
confirmed by current data?” (p. 425} Granted, an alternative that
be constructed is “that bacteria occasionally arise spontaneously:
only when unobserved.” The severe testing theory dismisses stuich
general tactic the same way it dismisses an alleged parapsychologist
claim that his powers fail when scientists are watching. Such a t
(gellerization again!) allows the alternative hypothesis to pass the tes
but only at the cost of having no (or a low) chance of failing, even
is false—at the cost of adopting a minimally severe test. I Conde'
such tests because one cannot learn from them.

But, the alternative hypothesis abjector may persist, doksn’t ti
existence of such an alternative prevent a high-severity assignme
the hypothesis of elementary bacteriology? No. The grounds for:a
sessing how severely this hypothesis passes are a separate matte

Rigged hypothesis R: a (primary) alternative to H that, by definition,
would be found to agree with any experimental evidence taken to
pass H.

nsider the general procedure of allowing, for any hypothesis H, that
me rigged alternative or other is as warranted as H. Even where H
had repeatedly passed highly severe probes into the ways H could err,
is general procedure would always sanction the following argument
pst H: all existing experiments were affected in such a way as to
stematlcally mask the falsity of H. That argument procedure is highly
reliable. It has a very high (if not a maximal) probability of erron-
usly failing to discern the correctness of 4.

Alternatives about Experimental Assumptions

One way of challenging the claim to have severely tested H is by
allenging the experimental assumptions. Assigning a high severity
a primary hypothesis H assumes that the experimental assumptions
ire approximately met. In fact, the key feature of well-specified experi-
ental tests is that the only nonprimary hypotheses that need to be
rried about, for the sake of answering the single question at hand,
: challenges to the assumptions of the experimental model. Chapter
discusses how to handle these assumptions (they were placed at the
tage of checking the data models yet lower down in the hierarchy),
0 a sketch should suffice.
Again, the procedures and style of argument for handling experi-
nental assumptions in the formal, canonical inquiries are good stan-
ards for learning in actual, informal experiments. These experimental
rocedures fall into two main groups. The first consists of the various
chniques of experimental design. Their aim is to satisfy experimental
ssumnptions before the trial is carried out. The second consists of pro-
edures for separately testing experimental assumptions after the trial.
ften this is done by means of the “same” data used to pass the primary
hypothesis, except that the data are modeled differently. (For instance,
1e same sequence of trials may be used to answer questions about the
ssumptions of the Binomial experiment—e.g., is the cause of the ef-
fect the color of the cups? The data set is remodeled 1o ask a different

18. Earman {1993) suggests that the existence even of exotic empirica]ljf"
finguishable rivals is enough to make us worry that only a lack of imagina
keeps us from recognizing others “all over the map” (p. 31).
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question.) With respect 10 the statis.tical assu'mptions of tille ltvn]r;) :
studied earlier (the pill and tea-t'astmg expenrr_lents?, 'El 1W ole afte
of separate statistical tests is available, thc?n with triwahassumgt}gn
Moreover, we know from the central limit theorem (c' aptFr ) .
with such a large sample size (100), the Norxpal al')prf)xulr;?tlon .tq_t.
Binomial experiment in the tea-tasting test is easily justified witho
furﬂl:{eerc;ﬁetclll(;t [ initially separated out the error of vio'latlng "exPe'
mental assumptions (the fourth canon?cal error [error d] in SG.CUOIIIL
because in general a far less demanding type of a}Igument is need d
here. A rough idea of the distribution of the e)fperlmentalftes; sta?sn
suffices to say, approximately, how often it is hke'1y to be lelrt dfr ;—0
hypothesized values. A host of virtually assumption-free checks .(-) t
doesIItthth?el:)r. cases it may be nccessary to generate additionfxl da;%
rule out possible auxiliary factors, such as when the _Cete}?s p?}r_:_:
conditions become suspect. In vet other cases al:[ernatlve. ypotl §
may be rejected on the basis of evidence from earlier eXpen.ments,_ x:o :
part of the background knowledge, or because they force {nconsn:»d e
assignments to physical constants. Cpapter 7, on Browmant 1_110111
and the discussion of the eclipse experiments in chapter 8 contain

i both types of strategies. ‘ _
traltlfl)'mrllls (?ff this othE):ourse requires astute eXp.erimental Qesiign aqqga;
analysis. By means of the experimental planning, the 1(1Jg1ca y p(c:;z; ;s
explanations of results are effectively I‘EI.ldEI:Cd actua.l ' 1:)1;1 i)r; el
impossible. The experimentalist thse aim is tq g(.et hlt rig N (; !
appeal to hard cores, prior probablhtle‘s, or thf: I}ke, e or she app
to the various techniques in the experimentalist’s tool‘kit. 1

To reiterate, I do not hold that relevant alternatives canba weli =
successfully be put to rest in these ways. If the thr.eats cam];ot' g.rutz
out satisfactorily, then the original argument alllegmg H t‘o ; iny ZCSES
is vitiated. Even so, it does not follow thatlthls. alternatwed Ypo.__:S:
is itself well tested. To say that the alternative is well tested require
separate argument showing that if has passed a severe test.

r of the test rule in (actual or hypothetical) repetitions of the experi-
ment, and the falsity of the hypothesis refers to the presence of some
specific error. This relativity to an experimental testing model and the
focus on (frequentist) probabilities of test procedures distinguish my

count, particularly from others that likewise appeal to probabilities
articulate the criterion for a good or severe test—even from ac-
counts that at first blush look similar, most notably Poppers.

It is important to distinguish Popperian severity from ours because,
ike the case of the straight rule, Popperian testing has been success-
ully criticized as open to the alternative hypothesis objection. T ex-

ained in chapter 1 why earning a “best tested so far” badge from
Yopper would not suffice to earn a “well-tested” badge from me. There
re, however, several places in which Popper appears to be recor-
nding the same kind of severity requirement as I am. I suspect that
opper’s falsification philosophy is congenial to so many scientists be-
use they suppose he is capturing the standard error-testing principles
hat are at the heart of experimental practice. Less advertised, and far
€$s congenial, is Popper’s negativism, that, as he admits, corroboration
elds nothing positive, and that it never warrants relying on well-
tested hypotheses for future applications. But Popper’s most winning

slogans are easily construed as catching the error-severity spirit. Here
re a few:

Mere supporting instances are as a rule to0o cheap to be worth having;
they can always be had for the asking; thus they cannot carry any
weight; and any support capable of carrying weight can only rest
upon ingenious tests, undertaken with the aim of refuting our hy-
pothesis, #f it can be refufed. (Popper 1983, 130; emphasis added)

The theoretician will therefore try his best to detect any false theory
... he will try to “catch” it. That is, he will . . try to think of cases or
situations in which it is likely to fail, if it is false. Thus he will try to
construct severe tests, and crucial test situations. {Popper 1979, 14)

It is not difficult 1o hear these passages as echoing the goal of se-

vere tests in the sense of SC, Nevertheless, this goal is not accomplished

by means of the logical relationships between evidence and hypothesis

6.7 SEVERITY, POPPERIAN STYLE hat Popper calls for. (The partic

ular mathematical formulas Popper
uffered for measuring the degree of severity are even more problematic
and they will not be specifically considered here.} Popper kept to the
ogical notion of probability, although no satisfactory account of that

oncept was ever developed. He failed to take what may be called the
‘error probability turn.”

In appealing to severity to answer the ot.her hypothesis ob]ectlo‘inc;- i
clear that the probability in SC does not jl:lst fall out from sct);lne gw
relationships between statements of evidence .and i‘lypo ese_fi.én__
must look at the particular experimental context in x_ivhlch t.he ev1bab_
was garnered and argue that its fitting a hypothesis is very improbal
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' : pperian severity:

m the next passage, and elsewhere, Popper describes ;che type vy
. ' idi i SEVETE;
context that he takes as providing grounds for calling a tes :

2. Each availab
A theory is tested . .. by applyihg it to very special cases—cases for

hich it yields results different from those we should ha}/e expectefn w‘;tgff}f
;); 1 theory, or in the light of other theories . . . those crucial n:ase;;%2 hid
z shoulci expect the theory to fail if it is not true. (Popper R
wi
emphasis added)
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1. Hentails e (P(e| H) = 1)

red alternatives entail no
yrobable, saying that B’

L

209

or e is very probable given H
le ' alternative to & counterpredicis .
p

Since it is not clear wh

ether condition 2 requires that the consid-
t-e or simply that each renders e very im-
counterpredicts e denotes either, €xcept where

3 test of H if A predicts e, while ¢ is anom
i that hypothes vere
i that the reason he thinks ;
Iiere Popper plainly states

b ected to fail if false is that background and aitemaﬁ ternative hypothese
H can be expredict not-e—e being the result taken to corroborate
hYpOt.heses . for Popper, a nonfalsified hypothesis I passcs a sevel
That is tg) S?fY:all alternatives to H that have so far been conmdere(._i:.
E:Eevc‘iﬂente‘ail not-e (or render not-e highly probable). A weaker co

. : me primary question; the
trual requires only that the alternatives say nothing about whether
stru

or not-¢ will occur.

i i f what counts as
i terms of the question o ¢
test is alternately put in : : .

ff;\féleevidence for a hypothesis. The answer given b}{ POF}??; : ;:211;1

ment here is tantamount to requiring thf;t e be ilcl)(ve ig e e
] vel. The evidence taken

sgrave calls theoretically no ‘ s
Il:/égcegﬂly novel if it is not already derivable from bacl;grglér;;lr e i
Lakatos and Musgrave (at times) endorsed both weak a )
struals:

um rightly asks how

qua pure deductivist,

- sense] should “count

Accor dlrlg to E]:llS I:heoleticall View, a4 NCwW th.eol 15 111de CIldenﬂy‘ ese “cr UCIELI cases
. N th

if i i i hich is
testable (or predicts a “novel fact”) if it predicts sometiklllri‘i V;.'re -
not also predicted by its background theory. ancef: Ev Eich e two
i dictions, tests o
i f independent or novel pre : ests e ¢
l'j‘:::s 0 ;irst pthere are predictions which conffict mtkllalti:eslt);%(iltc‘}:;::n
e ba : hese will be crucial te

kground theory—tests of t 1l o

S}ithe l\f'l:::hgory and the old. Second, there are predlcthns con:;:irr?lnag
he Ef}mena about which the background theory predicts no b ﬁes
Ie)dle—te'sts of these will also be independent tests and sever e, oo e

(Musgrave 1974, 15-16)

i i —e disa
test of H may be understood either in the strong ‘formH’ € e Ert
vsisth what would be expected given ead.lualter?atweto g fb'l

hing about e. I will contimue .
eak form—H' says not ; e
gler stronger version, as the one Popper champions. Th

. Pr s In WO!IHH 19?8 330
9. F pper ed a W VICW va a 1Cat10[. 1.
1 (8] Conﬁl‘m that thls as his vi in a prt te commu
Y T d af er the data., then 50 10I!g as H dOES not en =
ma be constructe I Eaﬂ not-¢ 1t 1s

10 see ] oW l] 1§ €01 {tORn cax e sai sfie W‘ le ] € test o H EVE!” EIESS haS. ; 8, I

Griinbaum’s “Alternative Hypothesis "

Referring to Popper’s statement above (

inconsistency, as he does, that successfiel

verity. A version of the so-called tackin,
tH = H' and ¢. Here perfectly fits ¢ (i
:any hypothesis #’, such an agreement may be assu

20. He asks “of what avail is it to Pop
Is one of an infinitude of theories . .
th which scientists had been

Objection to Popperian Severity
Popper 1962, 112), Griin-

can Popper possibly maintain without serious

results [of tests severe in his
in favor of the theory . . . in the sense that in

”

- - we should expect the theory to fail if it is not
*true”? (Griinbaum 1978, 130)

ssing a severe test in Popper’s sense, Griinbaum claims, would leave
the truth of the ‘infinitely” weaker disjunction . .

ose hrypotheses which individually entail [e]” {
mself acknowledges the existence of infinitely

In other words, suppose that oulcome ¢ is o
s that entail not-¢ are rejected, and H, which e

. of ALL and only
p. 130).*° And Popper
many alternatives,

bserved. The hypothe-
ntails e, passes the test.
refuted—but neither have the infinitely many
1 hypotheses that also entail e. Evidence e, it

g paradox will serve this function. Simply
.e., it entails ). But since this can be done
red whether or not H is false,

DEL. qua deductivist, that by predicting €
- Incompatible with thoge particular theories
working by way of historical accident?” (Griinbaum
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ults of chemotherapeuntic trials is to follow a demonstrably unreliable
ocedure.

- Here are the bare bones of this kind of example: A given hypothe-
H predicts that there will be a significant correlation between 4
g., a cancer drug) and B (the remission rate), Alternative hypothesis
predicts that there will be no significant correlation between factors
and B in the experimental trials. For example, &' may assert that
nly a new type of laetrile treatment can help. The data, let us suppose,
re just what H' predicts—no significant correlation between 4 and B
e.g., in remission rate). ' passes a Popperian severe test, but for the
or-tester it has passed no genuine test at all {or at best a very weak
rie).

- My criticism of Popperian severity is not merely that credit cannot
ccrue to currently passing hypotheses because there are, invariably,
o_t yet-considered alternatives that also would pass. It is rather that,

seems, counts as much for these other alternatives as it does for H.
Griinbawm puts it (using C for outcome ¢}, :

according to Popper’s definition . . . the experiment E which yielde
the riskily predicted C does gualify as a “severe test” of H . But.surei
the fact that H makes a prediction ¢ which is incompatible with Eh
prior theories constituting the so-called ”backgrourfd knowledg(? j
does not justify the following contention of Popper’s: A deductivist is.
entitled to expect the experiment E to yleld a result contrary to ¢
unless H is true. {(P. 131)

For even if H is false, its falsity is not weeded out. That is because so;
true (but not yet considered) hypothesis predict.s .the same oulcome
that allows H to pass. Given the Popperian definition of severity, an
given the assumption that there are always infinitely many hYPOt_h_
that entail evidence, Griinbaum’s worry is well founded. Nor s the
situation amelorated by the additional requirement Popper ofte we have just seen, a good test is not constituted by the mere fact
vanced, that the hypotheses precede the data (that the data be “temip jat a hypothesis fits the evidence counterpredicted by existing alter-
rally novel,” to use a term taken up in chapter 8)'21. g atives.*? Often we can go lurther and argue that the test is poor be-
The error-severity requirement, in contrast, exists only as part o ~ cavuse it did not guard against the types of errors that needed to be
an experimental account whose central mission is to create situatio arded against.
and specify procedures where we are entitled to e}.;pect the e)lcpenm_e;_n I Hand H' are the only possible alternatives—and H' entails not-
to fail H, if H is false, It is easy to see that satisfying POI_)PEI 5 Severl while ¢ occurs—then e is a maximally severe test of H in our sense
criterion is not sufficient to satisfy ours. One example will sutfice. 1d presumably everyone else’s). But, in general, Popperian severity
not sufficient for severity in our sense. Neither is Popperian severity
cessary for error-severity. To consider Popperian severity necessary
for.a good test would seem to prevent any data already entailed by a
10own hypothesis to count as severely testing a new hypothesis. {This
argued in Worrall 1978a, 330-31.)
_This should finish up the problem with Popperian corroboration
first posed in chapter 1. Corroboration, passing a test severe in Popper’s
sense, says something positive only in the sense that a hypothesis has
t been found false—this much Popper concedes. But Popper also
ggests that the surviving hypothesis H is the best-tested theory so
ar. I have argued that Popperian tests do not accomplish this, After all,
Popper himself insists, for a hypothesis to be well tested it must have

Cancer Therapies

Each chemotherapeutic agent hypothesized as being'the singl
bullet cure for cancer has repeatedly failed to live up to .1ts expec
tions. An alternate, unorthodox treatment, let us imagine, accor
with all the available evidence. Let us even imagine that_ this nonch
motherapeutic hypothesis predicts the chemotherapeutic agfnt._s-:_._
fail. As such, it may be accorded (one of) Popper’s “well-tested” badg .
On the error-severity account, the existing data from telsts of Che____.o
therapeutic agents provide no test at all of the .altern.atlve t:‘reatrnent
because these tests have not probed the ways in which claims ma
for this alternative treatment can be in error. To count an alte.n__l_:
cancer treatment as well tested simply because it accords with the,
22, Determining if $C is met by Popper’s criterion requires asking, “What is
hic probability of the conditions for If’s passing a Popperian severe test being satis-
fed {in the case at hand) even if H is false?” SC requires two things of any test rule:
Ist, that we be able to approximately determine the probability that it results in

passing even if H is false; and second, that this probability is determined to be
0w, Bui Popper's severity condition does not provide grounds for assigning a low

robability to erroneously passing H.

21. For Popper, evidence ¢ cannot count as a severe test of H if e is Iiilre_ad
explained by other hypotheses. In reality, however, the VETY DEWDESS ofap esn on
enon may count against the first hypothesis to expl.am it, b‘ecause onelsu pec
there may be lots of other uniried explanations. Until there is some work of_-.
matter, there are not yet grounds to think that H would have failed if it were 1a
I return to this in chapter 8.
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been put through the wringer. One needs to be able to say that
little chance of withstanding the inquiry if false. It is a mistake to:g
sider a result counterpredicted by known alternatives to H as autom
cally putting H through the wringer. .

Looking at the problem in terms of the logical relationships
tween evidence and hypotheses ignores all of the deliberate and actj
intervention that provides the basis for arguing that if a specific'er
is committed, it is almost certain to show up in one of the result
a given probe (series of tests). By such active intervention one ¢
substantiate the claim that we should expect (with high probabil
hypothesis H to fail a given test, if H is false. And we can do so even
we allow for the possibility of infinitely many alternative hypothe

Granted, arguing that a hypothesis is severely tested takes w
In many cases the most one can do is approximate the canonical cases
that ground formal statistical arguments. But often it can be argu
that a hypothesis is severely tested—even if it means modifying (wr :
ening) the hypothesis. By deliberate and often devious methods, ¢
perimenters are able to argue that the test, in context, is severe enou
to support a single answer to a single question. '

-breaking it down into pieces, at least some of which will suggest a
estion that can be answered by one of the canonical models of error,
i1 some cases one actually carries out the statistical modeling, in oth-
t suffices to do so informally, in ways to be explained.) With, regard
the local hypotheses involved in asking questions about experimen-
al mistakes, the task of setting out all possible answers is not daunting.
though it may be impossible to rule out everything at once, we can
nd do rule out one thing at a time.
Naturally, even if all threats are ruled out and H is accepted with a
:é_vere test, H may be false. The high severity requirement, however,
nsures that this erroneous acceptance is very improbable, and that in
uture experiments the error will likely be revealed.
The thrust of experimental design is to deliberately create contexts
hat enable questions to be asked one at a time in this fashion. In focus-
ng too exclusively on the appraisal of global theories, philosophers
ve overlooked how positive grounds are provided for local hypothe-
es, namely, whenever evidence counts as having severely tested them.
y attempting to talk about data and hypotheses in some general way,
part from the specific context in which the data and hvpothesis are
generated, modeled, and analyzed to answer specific queéiions, philos-
phers have missed the power of such a piecemeal strategy, and under-
‘determination arguments have flourished.
. Having set out most of the needed machinery—the hierarchy of
models, the basic statistical test, and the formal and informal argu-
ments from severe tests—it is time to explore the themes here ad-

vanced by delving into an actual scientific inquiry. This is the aim of
the next chapter.

6.8 My REPLY TO THE AITERNATIVE HYPOTHESIS OBJECTION

Let us recapitulate how my account of severe testing deals with a
native hypothesis objections that are thought to be the basis for MUD
The MUD charge (for a method of severe testing 7) alleges that for
evidence test T takes as passing hypothesis H severely, there is alway
a substantive rival hypothesis H' that test T would regard as havin
passed equally severely. We have shown this claim to be false, for eac
type of candidate rival that might otherwise threaten our ability to sa
that the evidence genuinely counts in favor of H. Although H' m_a
accord with or fit the evidence as well as H does, the fact that eacl
hypothesis can err in different ways and to different degrees shows u
in a difference in the severity of the test that each can be said to hav
passed. The same evidence effectively rules out H's errors—that i
rules out the circumstances under which it would be an error to affirm
H-—to a different extent than it rules out the errors to affirming H'2

This solution rests on the chief strategy associated with my experi-
meental testing approach. It instracts one to carry out a complex inqui

23. This strategy for distinguishing the well-testedness of hypotheses can als
be used to resolve the philosophical conundrums known as the Grue paradox and:
the Ravens paradox. i
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