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Abstract

Ockham’s razor is the principle that, all other things being equal, ratio-
nal scientists ought to prefer simpler theories to more complex ones. In
recent years, philosophers have argued the simpler theories make better
predictions, possess theoretical virtues like explanatory power, and have
other pragmatic virtues like computational tractability. However, such
arguments fail to explain why and how a preference for simplicity can
help one find true theories in scientific inquiry, unless one already as-
sumes that the truth is simple. One new solution to this problem is the
Ockham efficiency theorem (Kelly 2002, 2004, 2007a-d, Kelly and Gly-
mour 2004), which states that scientists who heed Ockham’s razor retract
their opinions less often and sooner than do their non-Ockham competi-
tors. The theorem neglects, however, to consider competitors following
random (“mixed”) strategies and in many applications random strategies
are known to achieve better worst-case bounds than deterministic strate-
gies. In this paper, we describe an extension of the result to a very general
class of random, empirical strategies.

1 Introduction

When confronted by a multitude of competing theories, all of which are compati-
ble with existing experimental and observational evidence, scientists prefer theo-
ries that minimize free parameters, explanatory causes, independent hypotheses,
and theoretical entities and that maximize unity, symmetry, testability, and ex-
planatory power. Today, this systematic bias toward simpler theories—known
popularly as “Ockham’s razor”—is built into computer-statistical packages that
have become everyday tools for working scientists. But why should one prefer
simpler theories, and in particular, is there any relationship between simplicity
and truth?

Some philosophers have argued that simpler theories are more virtuous than
complex theories. Simpler theories, they claim, are more explanatory, more
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easily falsified or tested, more unified, and more syntactically concise.1 However,
the scientific theory that truly describes the world might, for all we know in
advance, involve multiple, fundamental constants or independent postulates; it
might be difficult to test and/or falsify, and it might be “dappled” or lacking
in underlying unity.2 In short, since it is an empirical question about whether
the truth possesses virtues such as unity and explanatory power, it seems that
Ockham’s razor cannot be supposed to point at the truth (Van Frassen 1980).

Recently, several philosophers have harnessed mathematical theorems from
frequentist statistics and machine learning to argue that simpler theories make
more accurate predictions (Forster and Sober 1994) (Vapnik 1998) (Hitchcock
and Sober 2004) (Harman and Kulkarni 2007). There are two potential short-
comings with such arguments. First, the proposed motive for Ockham’s razor
is to maximize predictive accuracy, rather than to find true theories. In fact,
simpler theories can improve predictive accuracy in the intended sense even
when it is known that the truth is complex (Vapnik 1998). Thus, one is led
to an anti-realist stance according to which the theories recommended by Ock-
ham’s razor should be used as predictive instruments rather than believed as
true explanations (Hitchcock and Sober 2004). Second, the assumed notion of
predictive accuracy does not extend to predictions of the effects of novel inter-
ventions on the system under study: for example, a regression equation may
accurately predict cancer rates from the prevalence of ash-trays but might be
extremely inaccurate at predicting the impact on cancer rates of a government
ban on ash-trays.3 Scientific realists are unlikely to agree that simplicity con-
siderations have nothing to do with finding true explanations and even the most
ardent instrumentalist would be disappointed to learn that Ockham’s razor has
nothing to do with the vital policy decisions faced by corporate and government
policy makers on a daily basis. Hence, the question remains, “How can a sys-
tematic preference for simpler theories help one find potentially complex, true
theories?”4

Bayesians and confirmation theorists have argued that simpler theories merit
1Nolan (1997), Baker (2003), and Baker (2007) claim that simpler theories are more ex-

planatory. Popper (1959) and Mayo and Spanos (2006) both claim that simpler theories are
more severely testable. Friedman (1983) claims unified theories are simpler, and finally, Li and
Vitanyi (2001) and Simon (2001) claim that simpler theories are syntactically more concise.

2See Schlesinger (1961) for arguments concerning why falsifiability and simplicity are in-
versely related, and see Cartwright (1999) for a discussion of the apparent dis-unity of science.

3More precisely, in regression and density estimation, the predictive accuracy of the model-
selection techniques endorsed by Forster, Sober, Harman, and Kulkarni are evaluated only with
respect to respect to the distribution from which the data is sampled. Thus, for example, one
can approximate, to arbitrary precision, the joint density of a set of random variables, and yet
make arbitrarily bad predictions concerning the joint density when one or more variables is
manipulated. Similarly, in regression, standard model-selection techniques can yield accurate
predictions with respect to an underlying curve, but they provide no evidence whatsoever
concerning values of the curve’s derivative and/or integral. The objection can be overcome
by estimating from experimental data, but such data are often too expensive or unethical to
obtain precisely when policy predictions are most vital.

4We pass over a further concern—that the approach ties Ockham’s razor to situations in
which the data are sampled randomly, even though Ockham’s razor seems just as intuitive for
deterministic theories and discrete, non-stochastic data.
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stronger belief in light of simple data than do complex theories. Such arguments,
however, assume either explicitly or implicitly that simpler possibilities are more
probable a priori.5 But that argument is evidently circular—a prior bias toward
complex possibilities yields the opposite result. So it remains to explain, without
begging the question, why a prior bias toward simplicity is better for finding
true theories than is a prior bias toward complexity.

One potential connection between Ockham’s razor and truth is that a sys-
tematic bias toward true theories allows for convergence to the truth in the long
run even if the truth is not simple (Sklar 1977, Friedman 1983, Rosenkrantz
1983). In particular, Bayesians argue that prior biases “wash out” in the limit
as data accumulate (Savage 1972), resulting in a degree of belief arbitrarily close
to 1 as the data accumulate. But prior biases toward complex theories also allow
for eventual convergence to the truth (Reichenbach 1938, Hempel 1966, Salmon
1966), for one can dogmatically assert some complex theory until a specified
time t0, and then revise back to a simple theory after t0 if the anticipated com-
plexities have not yet been vindicated by the data. Hence, mere convergence
to the truth does not single out simplicity as the right prior bias to have. So
the elusive, intuitive connection between simplicity and theoretical truth is not
explained by standard appeals to virtue, predictive accuracy, confirmation, or
convergence in the limit.

It is, nonetheless, possible to explain, without circularity, how Ockham’s ra-
zor finds true theories better than competing methods. It has been be demon-
strated (Kelly 2002, 2004, 2007a-e, Kelly and Glymour 2004) that scientists
who systematically favor simpler hypotheses converge to the truth in the long
run more efficiently than scientists with alternative biases, where efficiency is
measured in terms of such costs as the total number of errors committed prior
to convergence, the total number of retractions performed prior to convergence,
and the times at which the retractions occur. The argument is sufficiently gen-
eral to connect Ockham’s razor with the truth in such paradigmatic scientific
problems such as curve-fitting, causal inference, and discovering conservation
laws in particle physics.

One potential gap in the argument is that it restricts attention to determin-
istic scientific methods. Amongst game theorists, it is well-known that random
strategies can achieve lower bounds on worst-case cost than can deterministic
strategies, as in the game “rock-paper-scissors”. Thus, an important question
is: “Do scientists who heed Ockham’s razor find true theories with optimal ef-
ficiency even when compared with arbitrary, randomized scientific strategies?”
In this paper, we motivate and prove two new theorems that provide a positive
answer to that question. We call the two theorems, Ockham Efficiency Theo-
rems. Together, the theorems suggest that scientists who deterministically favor
simpler hypotheses fare no worse than those who employ randomizing devices
to select theories from data. Further, the notion of randomized strategy we con-
sider is very general, requiring only that a scientific strategy’s output depend on

5See (Jeffreys 1961) and (Rosenkrantz 1977), respectively, for arguments that explicitly
and implicitly assume that simpler theories are more likely to true.
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the total input and upon a randomly evolving, discrete, internal state according
to an arbitrary, countably-additive probability measure. That includes, as spe-
cial cases, the class of “mixed strategies” assumed in normal form games, the
class of “behavior strategies” assumed in extensive form games and the class
of Randomized Turing Machines (RTMs). A larger ambition for this project
is to justify Ockham’s razor as the optimal means for inferring true statistical
theories, such as acyclic causal networks. It is expected that the techniques
developed here for dealing with expected costs of convergence will prove to be
an essential component of any such theory.

2 Stochastic Empirical Inquiry

Empirical worlds and theories. Scientific theory choice can depend crucially
upon small, subtle, or arcane effects that can be impossible to detect without
sensitive instrumentation, large numbers of observations, or sufficient experi-
mental ingenuity and perseverance. For example, in curve fitting with inexact
data6 (Kelly and Glymour 2004, Kelly 2007a-e, 2008), a quadratic or second-
order effect occurs when the data rule out linear laws and a cubic or third-order
effect occurs when the data rule out quadratic laws, etc. When explaining par-
ticle reactions by means of conservation laws, an effect corresponds to a reaction
violating some conservation law. When explaining patterns of correlation with
a linear causal network, an effect corresponds to the discovery of new partial
correlations that imply a new causal connection in the network (Spirtes et al.
2000, Schulte, Luo, and Greiner 2007, Kelly and Mayo-Wilson 2008). To model
such cases, we assume that each potential theory is uniquely determined by the
empirical effects it implies and we assume that empirical effects are phenom-
ena that may take arbitrarily long to appear but that, once discovered, never
disappear from scientific memory.

Formally, let E be a non-empty, countable (finite or countably infinite) set of
empirical effects.7 A problem is a set K ⊆ 2E that corresponds to an empirical
constraint on which finite sets of effects one might see for eternity. An empir-
ical world in K is an infinite sequence w (of order type ω) of disjoint subsets
of E such that

⋃
i∈ω wi ∈ K. Let WK be the set of all empirical worlds. Let

w|n denote the finite initial segment (w0, . . . , wn−1) of w, so that, in particular,
w|0 = (). Let FK denote the set of all finite, initial segments of worlds in WK .
Let e, e′ ∈ WK ∪ FK . Let l(e) denote the length of e and let e < e′ hold just in
case e is a proper initial segment of e′. let e− denote the result of deleting the
last entry in e, if e 6= () and let e− denote () otherwise. Let ∗ denote sequence
concatenation. The set of effects presented along e is denoted by Se and let Ke

6It is usually assumed that the data are received according to a Gaussian distribution
centered on the true value of Y for a given value of X. Since our framework does not yet
handle statistical inference, we idealize by assuming that the successive data fall within ever
smaller open intervals around the true value Y .

7In this paper, empirical effects are stipulated. It is also possible to define what the
empirical effects are in empirical problems in which they are not presupposed (Kelly 2007b,
c). The same approach could have been adopted here.
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be the restriction of K to finite sets of effects extending Se. The unique theory
corresponding to effect set S is TS = {w ∈ W : Sw = S}. For brevity, let Tw

denote TSw
. Let ThK = {TS : S ∈ K} and let ThK,e = {TS : S ∈ Ke}, which

respectively denote the set of all theories and the set of theories compatible with
the effect sequence e. If T ∈ ThK , let ST denote the unique S′ ∈ K such that
Sw = S′, for each w ∈ T . Finally, let AnsK = ThK ∪ {‘?’} be the set of answers
available to the scientist, where ‘?’ represents a refusal to commit to a given
theory.

Discrete state stochastic methods. Let {Xe : e ∈ FK} be a collection
of random variables on some underlying, countably additive probability space
(∆,D, µ). Think of Xe as the “random state” of method M.8 We assume,
further, that the random states of M are discrete, by which we mean that the
random variables assume values in a countable measure space (Σ,S) such that
for each state value σ ∈ Σ, the singleton event {σ} ∈ S. Prior to receiving any
inputs, M is initialized to its start state X() = σ0 ∈ Σ. As more data arrive,
M enters subsequent random states. We impose no statistical independence
assumptions whatever upon the random state evolution. When random state
Xe = σ is reached, M employs a uniform rule or procedure αe(σ) for choosing
an answer A ∈ AnsK . Define Me = αe(Xe), so the probability p(Me = A) is
defined. When these conditions are met, say thatM is a discrete state stochastic
empirical method (or method for short).

Let M be a method with components as specified in the preceding section.
When e ∈ FK , the random state trajectory of M in response to e is the finite,
random sequence X[e] = (Xe|i : i ≤ l(e)) and the random output trajectory of
M in response to e is the finite, random sequence M[e] = (Me|i : i ≤ l(e)). If
A ⊆ Ans

≤l(e)
K , the probability p(M[e] ∈ A) is defined. Let e ∈ FK , let s ∈ Σl(e)

and let D ∈ D satisfy p(D) > 0. Define the conditional state support of M on
e given D as Spt(X[e] | D) = {s ∈ Σl(e)+1 : p(X[e] = s | D) > 0}.

3 Methodological Properties

A methodological property is a relation of form Φ(K,M, e′, e, s), which can
be re-written mnemonically as ΦK(M, e′ | X[e] = s). It is not assumed that
Φ depends upon all of its arguments. Say that methodological property Φ
holds henceforth of M in K given X[e] = s if and only if ΦK(M, e′ | X[e] =
s) holds for all e′ ∈ FK,e. A stronger notion of Φ “continuing to hold” is per-
fection, which varies the conditioning event along with the time. Say that
methodological property Φ holds perfectly of M in K given X[e] = s if and only
if ΦK(M, e′ | X[e′] = s′) holds, for all e′ ∈ FK,e and s′ ∈ Spt(X[e′]). When Φ
holds henceforth given X[()] = (σ0), say that Φ holds always and when Φ holds
perfectly given X[()] = (σ0), say that Φ holds perfectly. Say that methodological

8More technically, the random states constitute a stochastic process indexed by FK (cf.
Lawlor 2006). That statement carries with it the relevant measurability properties.
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property ΦK(M, e′ | X[e] = s) is stable just in case for each e′′ ∈ FK,e, the
following conditions are equivalent:

a. ΦK(M, e′ | X[e] = s);

b. ΦK(M, e′, | X[e′′] = s′′), for each s′′ ∈ Spt(X[e′′]).

We now consider some examples of stable methodological properties.

Empirical Simplicity and Ockham’s Razor. A path in Ke is a finite or
infinite sequence of elements of Ke ordered by ⊂. Let pathK(S | e) denote the
set of all finite paths in Ke that terminate in S. Define the empirical complexity
of S given e as:

cK,e(S) = max{l(q) : q ∈ pathK(S | e)} − 1.

Then define cK,e(w) = cK,e(Sw); cK,e(TS) = cK,e(S); and CK,n(e) = {w ∈ We :
cK,e(w) = n}. The set CK,n(e) is the nth empirical complexity class of worlds
relative to problem K given e. Let OckK,e assume value {‘?’, T} if T is the unique
T ′ ∈ ThK,e such that cK,e(T ′) = 0, and let OckK,e′ be {‘?’} if there is no unique
such T ′. Let s ∈ Spt(X[e]). It follows from the definitions that CK,0(e) 6= ∅ and
that the only way a theory can cease to be Ockham is to be refuted.9 Say that
M is Ockham at e′ given X[e] = s if and only if p(Me′ ∈ OckK,e′ | X[e] = s) = 1.

Stalwartness. Ockham’s razor proscribes answers other than the uniquely
simplest, which leaves the option of returning the uninformative answer‘?’. In
the deterministic case, stalwartness insists that one never retract an informa-
tive Ockham answer until it is no longer Ockham. The statistical general-
ization of that idea is: if you ever have a chance of producing an informa-
tive answer, produce it with unit chance conditional on having just produced
it. More precisely, M is stalwart for T at e′ given X[e] = s if and only if
l(e′) > 0 and p(Me′−

= T | X[e] = s) > 0 and T ∈ OckK,e′ imply that
p(Me′ = T | Me′−

= T&X[e] = s) = 1. It follows that a stalwart method
can statistically “mix” at most one informative answer with ‘?’ and can do even
that at most once before leaping all the way to the informative answer. Thus,
stalwart, Ockham methods are trivial variants of deterministic methods.

Statistical consistency. In statistical usage, a consistent method is a method
that converges in probability to the truth. Let e ∈ FK and let s ∈ Spt(X[e])
and let e′ ∈ FK . Say that M is consistent over K given X[e] = s if and only if
limi→∞ p(Mw|i = Tw | X[e] = s) = 1, for each w ∈ WK,e.

Eventual informativeness. Say that M is eventually informative over K
given X[e] = s if and only if limi→∞ p(Mw|i = ‘?’ | X[e] = s) = 0, for all w ∈
WK,e. Eventual informativeness is entailed by consistency and implies that M

9The latter property fails if disjunctive theories are entertained.
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cannot keep producing ‘?’ infinitely often with non-vanishing probability.

One argument in favor of using an eventually informative, stalwart Ockham
method is that such methods converge to the truth (the proof is in appendix
5.3):

Proposition 1 Suppose thatM is both henceforth stalwartly Ockham and even-
tually informative given X[e] = s. Then M is consistent over K given X[e] = s.

But that is just one way to converge to the truth. One could just as well guess a
complex theory for a thousand stages and revert to a stalwart, Ockham strategy
thereafter. So it remains to explain why one should follow Ockham’s razor now.
We will argue that Ockham’s razor is the most efficient possible route to the
truth.

4 Efficiency of Empirical Inquiry

Cognitive loss. Efficiency is a matter of avoiding cumulative loss. A loss
function is a mapping λ : Ansω ×WK → <. A local loss function is a mapping:
γ : Ans<ω ×WK → <. Let c ∈ Ans<ω. Let the local error loss function ε(c, w)
charge one unit of cost if the last entry in c is a theory false of w and 0 units
of cost otherwise.10 Define the local retraction loss function Ret(c) to charge a
unit of loss if the last entry of c differs from the second to last entry and the
second to last entry is not ‘?.’ Retractions are an unavoidable consequence of
inductive, or non-monotonic inference. Everyone prefers deductive (monotonic)
inferences when they suffice for finding the truth, but when induction is required
one can, at least, insist upon methods that approximate monotonicity as closely
as possible—i.e., that minimize retractions en route to the truth. Thus, one
needs to compare cumulative losses accrued by methods, where cumulative loss
is defined to be the sum γ(c, w)[βm=

∑β
i=m γ(c|i, w), where β may be finite or

infinite.
An Ockham efficiency theorem can be obtained for cumulative errors and

cumulative retractions alone, but a stronger Ockham efficiency theorem can be
obtained if one considers, as well, the lag time to each retraction, the idea being
that if a retraction is going to happen, it is best to get it out of the way as soon
as possible—both to minimize the number of applications that must be flushed
along with the theory and to alleviate the insouciance implied by adherence
to views one is destined to reject. If γ is a local loss function, define the lag
time prior to aggregated cost r to be the least n such that γ(c, w)[i0 ≥ r, if
there is such an n, and 0 otherwise. Thus, the lag time to the nth retraction is
given by τρ≥n. Since the cumulative losses and their incursion times can all be
shown to be measurable, it makes sense to speak of expected errors, retrctions,
and lag time to incursion of the nth retraction. It is convenient to abbreviate:

10That is crude, but the overall argument continues to work as long as the cost of producing
a theory in error is invariant over worlds in which the theory is false, as in the epistemic utility
theory of I. Levi (1972).
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γ<n
c,w = γc,w[n−1

0 ; γ≤n
c,w = γc,w[n0 ; γ>n

c,w = γc,w[ωn+1; γ≥n
c,w = γc,w[ωn . In appendix 5.5,

it is shown that the losses in question are measurable, so that their (possibly
infinite) expectations exist.

States of inquiry. We wish to rank stochastic methods M,M′ in terms of
cumulative loss in light of finite input history e, but it isn’t that simple because
M has, by that time, already traversed some state trajectory s ∈ Spt(X[e]) and
M′ has traversed some state trajectory s′ ∈ Spt(X ′

[e]). The two state spaces
could be entirely disjoint. Therefore, we will begin by ranking states of inquiry
for K at e, by which we mean pairs (M, s) such that M is a stochastic empir-
ical method for K and s ∈ Spt(X[e]). Let InqK,e denote the set of all states of
inquiry for K at e.

Worst-case cumulative loss. One approach to comparing methods is to
compare their worst-case loss bounds. But in problems of unbounded empirical
complexity, WK,e is infinite, which would result in equivalence of all methods.
On the other hand, some methods can achieve finite retraction bounds in each
empirical complexity class, which explains both the reason why we consider
retractions as a loss function and why we will consider rankings defined in
terms of worst-case loss taken not over all of WK,e, but over complexity classes
CK,e(i), for i ∈ ω. For local loss function γ, define: (M, s) ≤γ

K,e,n (M′, s′) to
hold if and only if:

sup
w∈CK,e(n)

Exp(γ≥0
M,w | X[e] = s) ≤ sup

w∈CK,e(n)

Exp(γ≥0
M,w | X ′

[e] = s′),

where Exp denotes expected value. It is immediate from the definition that
≤γ

K,e,n is a pre-order (reflexive and transitive) over InqK,e.
There is a slight wrinkle in the worst case cost comparison concept when it

comes to expected retraction times. The most obvious way to compare worst-
case expected retraction times for alternative methods is to compare the ex-
pected time of the nth retraction, for each n. But that isn’t right, intuitively.
Consider the sequence (T0, ?, T0, ?, T0, ?) and the sequence (T0, T0, T0, T0, T0, ?).
The former seems worse than the latter, but the first retraction in the for-
mer comes earlier than the first retraction in the latter. It is more natural
to ignore the first two retractions in the first sequence and to note that the
first sequence is then still as bad as the second in terms of expected retrac-
tion times. So in the special case of τ , define (M, s) ≤τ

K,e,n (M′, s′) to hold
if and only if for each w ∈ CK,e(n), there exist w′ ∈ CK,e(n) and a local loss
function γ bounded everywhere by ρ such that for each j ≤ ω, the inequality
Exp(τρ≥j

M,w | X[e] = s) ≤ Exp(τγ≥j
M′,w′ | X ′

[e] = s′) holds. Then:

Proposition 2 ≤τ
K,e,n is a pre-order over InqK,e.

Pareto-Rankings. It remains to assemble the various worst-case rankings
under consideration into a single ranking. We do so in the least controversial
way, by ordering two states of inquiry just in case all the individual rankings
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agree. That is known as the Pareto ranking. Think of γ ∈ {ρ, ε, τ} as a formal
parameter picking out relation ≤γ

K,e,n. Let Γ ⊆ {ρ, ε, τ}. Then define:

(M, s) ≤Γ
K,e,n (M′, s′) iff (M, s) ≤γ

K,e,n (M′, s′), for each γ ∈ Γ;

(M, s) <Γ
K,e,n (M′, s′) iff (M, s) ≤Γ

K,e,n (M′, s′) and (M′, s′) 6≤Γ
K,e,n (M, s);

(M, s) �Γ
K,e,n (M′, s′) iff (M, s) <γ

K,e,n (M′, s′), for each γ ∈ Γ.

These rankings are complexitiy-relative. To avoid grounding our results on sub-
jective weights over complexity classes, we again restrict attention to Pareto
comparisons that agree in every complexity dimension. First define the global
upper complexity bound for sub-problem Ke as: cK,e = sup{i + 1 : i ∈
ω and CK,e(β) 6= ∅}.11 Then define:

(M, s) ≤Γ
K,e (M′, s′) iff (M, s) ≤Γ

K,e,n (M′, s′), for each n ∈ ω;

(M, s) <Γ
K,e (M′, s′) iff (M, s) ≤Γ

K,e (M′, s′) and (M′, s′) 6≤Γ
K,e (M, s);

(M, s) �Γ
K,e (M′, s′) iff (M, s) �Γ

K,e,n (M′, s′), for each n < cK,e.

The relation <Γ
K,e is weak Pareto-dominance and�Γ

K,e is strong Pareto-dominance.

Switching Methods in Midstream. Let M be a stochastic method for K.
Suppose that one has been using M and the current, finite input sequence is
e. Given that X[e] = s, where e > (), the past outputs of M along e− cannot
be changed, so one is stuck with the output sequence c = M[e−](s) and with
the cumulative loss γ(c)[l(c)−1

0 . Now consider alternative stochastic method M′

with state variables {X ′
e : e ∈ FK}. Given that X ′

[e] = s′, one has the option to
switch methods from M to M′ with state history s′ from e onward. But one is
still stuck with the costs from having used M. So, when switching from M to
M′ at e, one must consider not the overall resource consumption of M′ given
X[e′] = s′, but the cost of M′ given X[e′] = s′ from l(e) onward, added to the
resource consumption of M given X[e] = s along e−. It is convenient to conceive
of the switch from M to M′ at e as having always followed hybrid method
M ?s

e M′, which acts like M given X[e] = s along e− and like M′ thereafter.
That is readily accomplished simply by modifying the output function α′ of M′.
Define the hybrid output function:

(α ?s
e α′)e′(σ) =

{
αe′(s(l(e′))) if e′ < e;
α′e′(σ) otherwise.

Then define the hybrid method: M ?s
e M′ to be the result of replacing α′ with

(α ?s
e α′) in M′.

Efficiency. Say that M is Γ-efficient for K given X[e] = s if and only if
for each (M′, s′) ∈ InqK,e, if M′ is consistent given X ′

[e] = s′ then (M, s) ≤Γ
e

11Adding 1 makes the bound strict both in the case of finitely bounded and finitely un-
bounded orders of complexity.
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(M ?s
e M′, s′). Next, say that M is weakly Γ-dominated given X[e] = s if

and only if there exists (M′, s′) ∈ InqK,e such that M′ is consistent from e

given X ′
[e] = s′ and (M ?s

e M′, s′) <Γ
e (M, s). Finally, say that M is strongly

Γ-dominated given X[e] = s if and only if there exists (M′, s′) ∈ InqK,e such
thatM′ is consistent from e given X ′

[e] = s′ and (M?M′, s′) �Γ
e (M, s). Note

that these concepts are relative to e and that such a property holds perfectly just
in case it holds at every e ∈ FK . Thus, one may speak of perfect Γ-efficiency,
perfect non-Γ dominance and perfect non-Γ-strict-dominance.

4.1 Ockham Efficiency Theorems

It is now possible to state the main results, whose proofs are available in (Kelly
and Mayo-Wilson 2009).

Theorem 1 (Ockham Efficiency Characterization) Assume thatM is con-
sistent and that:

{ε, ρ} ⊆ Γ ⊆ {ρ, ε, τ} or
{τ} ⊆ Γ ⊆ {ρ, ε, τ}.

Then following are equivalent:

1. M is always Ockham and stalwart;

2. M is perfectly Γ-efficient;

3. M is perfectly weakly Γ-undominated.

Regarding the main question posed in the introduction, it follows from the theo-
rem that random methods cannot do better than deterministic Ockham methods
and that most randomized strategies do worse. Recall that every stalwart strat-
egy must produce Ockham answer T with chance 1 immediately after producing
T with any non-zero probability as long as T remains Ockham. Thus, the only
“mixtures” of answers such a method can produce involve a single informative
theory T and the uninformative answer ‘?’ and after producing such a mix-
ture once, the method must produce T with probability 1 thereafter, until T is
refuted.

It is immediate from the definitions that weak Γ-dominance at some e implies
Γ-inefficiency at that e, but the converse, implied by the preceding theorem, is
not at all trivial: it holds only because of the asymptotic character of the costs
considered and because of nature’s ability to force one arbitrarily late retraction
for each degree of empirical complexity from an arbitrary, consistent method.
Thus, the consistent methods are neatly partitioned into the efficient, stalwart,
Ockham ones and the weakly dominated ones, with no awkward cases remaining
to be resolved by subjective weights on costs or complexity classes. In that
important sense, Ockham’s razor is a matter of logical structure rather than of
practical taste.

The simple idea behind the proof is that nature has a strategy to force an
expected retraction for each step along a path in Ke, which is the worst that
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a stalwart, Ockham strategy would do, since Ockham strategies always allow
Nature to lead the way through the paths in Ke. Hanging onto a refuted theory
does not add extra retractions, but does add extra errors and elapsed time to
the first retraction in complexity class 0. Violating stalwartness adds an extra
retraction in each complexity class.

Theorem 1 does not imply that a strategy is dominated each time it violates
Ockham’s razor. For example, suppose that Ke = {{a}, {a, b}, {c}} and that M
produces T{a} with probability 1 both at e− and e, which are Ockham violations
because T{c} is equally simple. Then it is a bad idea to retract to ‘?’ at e, as
Ockham demands, since a competitor who sticks with T{c} at e would retract
at most once in complexity class CK,1(e) and zero times in CK,2(e), whereas
Ockham would retract at least once in both non-empty complexity classes. Note
that the path ({a}, {a, b}) in this example is longer than the path ({c}). A much
stronger Ockham efficiency theorem holds under the special hypothesis that K
has no short paths, which means that for each e ∈ K and for each S ∈ Ke there
is a path p of maximum length over all paths in Ke such that p begins with S.
For example, K has no short paths if each maximal path in K is infinite, as
in standard examples like curve fitting. When there are no short paths, each
method that fails to be always Ockham and stalwart does strictly worse in every
complexity class at each violation. That is to say, Theorem 2 proves that there
is a always a good reason never to deviate from the behavior of an Ockham,
stalwart strategy.

Theorem 2 (Strong, Stable Ockham Efficiency Characterization) Suppose
that K has no short paths. Let e ∈ FK , s ∈ Spt(X[e]) and let M be consistent
given X[e] = s. Assume that {τ} ⊆ Γ ⊆ {ρ, ε, τ}. Then following are equivalent:

1. M is henceforth Ockham and stalwart given X[e] = s;

2. M is perfectly Γ-efficient given X[e] = s;

3. M is perfectly strongly Γ-undominated given X[e] = s.

5 Discussion and Future Work

The Ockham efficiency theorems establish that scientists who systematically
favor simpler theories minimize errors and the number and timeliness of retrac-
tions of opinion. Intricate randomized strategies, moreover, are of little help:
the proofs show that scientists who deterministically select the simplest theory
compatible with the data still minimize costs of empirical inquiry. Therefore,
there is a deep sense in which simplicity marks the “shortest path” to the true
scientific theory governing a particular phenomenon.

Because our concept of a “stochastic empirical method” is closely related to
that of a “mixed strategy,” it is, perhaps, of some interest to frame the results
within a more game-theoretic perspective. In fact, we conjecture that Ockham
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methods form the scientist’s half of every Nash equilibrium in a strictly com-
petitive game with Nature, where Nash equilibrium is understood with respect
to a generalized sense of preference to be clarified below.

To analyze our learning model as a two-person game, one must decide what
sort of “strategies” ought to be available to a second player, Nature. It is natural
to view Nature not as a real player but as a personification of the scientist’s prior
probabilities over the set WK of possible worlds. Thus, each pure strategy for
Nature is a world and a mixed strategy for Nature is a possible prior probability
of the scientist. Preliminary results suggest that there are no equilibria in which
science fails to play an Ockham strategy and, furthermore, that there exist
Ockham equilibria in which Nature’s mixture favors complex theories.12 Thus,
the game-theoretic argument may serve as the basis for a non-circular Bayesian
vindication of Ockham’s razor.

To prove the preceding conjecture, one must surmount at least four obstacles.
The preceding argument essentially addresses the first three obstacles, but the
fourth remains open for future research. First, game theorists typically assume
that players’ preferences over outcomes of the game are totally ordered; in our
game, outcomes are often incomparable with one another (for both players), as
when one method retracts fewer times but later than another method. In the
absence of totally-ordered preferences, standard game-theoretic results, such as
Nash’s theorem, fail to guarantee the existence of equilibria. It is possible to
show (Mayo-Wilson 2009) that Nash equilibria often exist in games in which
player’s preferences are merely pre-orders (i.e. transitive and reflexive), so we
expect that the Pareto-orderings on cost discussed in this paper are not an
impediment to representing our model as a game.

Second, in extensive-form games, game theorists standardly assume that
a player’s disposition to perform a particular action at a move in the game
is probabilistically independent of the actions taken by players in the past. In
many cases, this amounts to assuming that players ignore important information
from the past, which is especially unrealistic when modeling empirical inquiry
as a game. Here, our results make no independence assumptions whatsoever,
and no complications arise when Nature is introduced as a second player.

Third, game theorists routinely employ discount functions or other asymp-
totic artifices to ensure that cumulative costs in (repeated or extensive-form)
games are bounded. Such discount factors are ad hoc even in practical applica-
tions and it would be all the more odd if the validity of Ockham’s razor were
to depend upon the selection of such a factor. In contrast, we follow practice in
the theory of computational complexity (Garey and Johnson 1979), in which cu-
mulative computational costs such as the total number of steps of computation
are also unbounded over all possible world states (inputs to a given algorithm).

12We also conjecture that there are no equilibria in which Nature’s mixture is countably
additive. The idea is that if Nature’s mixture were countably additive, the scientist could
reduce expected retractions by producing ‘?’ for a longer expected time and then Nature
would regret not having withheld effects for even longer expected time. In a finitely additive
mixed strategy, Nature can present effects “infinitely late”. For a discussion of the connection
between finite additivity and skeptical arguments, cf. (Kelly 1996, chapter 13).
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The idea in computational complexity theory is to partition possible states (in-
puts) according to length, so that the worst-case computational time over each
length class exists and is finite. In the case of inquiry, inputs never cease, so
we plausibly substitute empirical complexity for length. Then we seek methods
that are admissible not with respect to all states of the world, but with respect
to worst case bounds over all empirical complexity classes. The resulting com-
parisons are richer than admissibility with respect to world states and are also
less objectionably pessimistic than worst-case (maximin) comparisons.

The fourth and major hurdle in representing our theorems as game-theoretic
equilibria is the development of a more general theory of simplicity. The defi-
nition of simplicity stated in this paper is very narrow, allowing only for prior
knowledge about which finite sets of effects might occur—knowledge about tim-
ing and order of effects is not allowed for. But nothing prevents nature from
choosing a mixed strategy that implies knowledge about timing or order of ef-
fects (recall that nature’s mixture is to be understood as the scientist’s prior
probability. Such knowledge may essentially alter the structure of the problem:
e.g., if nature chooses a mixing distribution according to which effect a is always
followed immediately by effect b, then the sequence a, b ought properly to be
viewed as a single effect rather than as two separate effects.13 But if simplicity
is altered by nature’s choice of a mixing distribution, then so is Ockham’s razor
and, hence, what counts as an Ockham strategy for the scientist. Therefore,
in order to say what it means for Ockham’s razor to be a “best response” to
Nature, it is necessary to define simplicity with sufficient generality to apply
to every possible restriction of an effect accounting problem WK to a narrower
domain W ′ ⊆ WK of worlds. More general theories of simplicity than the one
presented in this paper have been proposed and have been shown to support
Ockham efficiency theorems (Kelly 2007d, 2008), but those concepts are still
not general enough to cover all possible restrictions of WK . Of course, a gen-
eral Ockham efficiency theorem based on a general concept of simplicity would
be of considerable interest quite independently of this exploratory discussion of
game theory. Current work on that important problem is promising but, as yet,
inconclusive.
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