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2 Induction and VC Dimension

2.1 Pattern Recognition

The problem of inductive reliability can be seen as a problem in
learning theory. It is the problem of finding reliable ways to
learn from data. For example, how can one find and assess in-
ductive methods for using data to arrive at reliable rules for classi-
fying new cases or estimating the value of a real variable?

In thinking about this problem, two kinds of methods or rules

" must be carefully distinguished. Rules of classification or estima-

tion must be carefully distinguished from inductive methods for
finding such rules. Rules of classification or estimation are rules’
.for using observed features of items to classify them or to esti-

mate the values of a real variable. Inductive methods for finding "

such rules are methods for using data to select such rules of clas-
sification or estimation.

" In the previous chapter we discussed a particular method, enu-
werative induction. In this chapter, we will say more about using
enumerative induction to learn rules of classification and to esti-
mate the values of real variables. In our next chapter we discuss
some other methods for using data to arrive at rules of classifica-
tiocn or estimation.
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Tn our fourth and final chapter we will go beyond these sorts
of inductive methods to discuss methods of fransduction that do
not (in a certain sense) first use data to arrive at rules of classifi-
cation or estimation that are then used to classify new cases ot
estimate values of a real variable for new cases as they arise.
These methods use information about what new cases have
actually come up in deciding what to say about the new cases.
But in this second chapter and the next third chapter we will
be concerned only with inductive methods for coming up with
rules of classification or estimation.

An inductive method is a principle for finding a patfern in the
data that can then be used to classify new cases or to estimate

Induction and VC Dimension 31

feature values could include representations of each of the RGB
values of each pixel (the intensities of red, green, and blue com-
ponents of the color of the pixel), so there would be 3 x W x I
features.

Each observable feature can be treated as a dimension in a
D-dimenslonal feature space. If there is a single feature, F, the
feature space is one-dimensional, a line. A point in the feature
space has a single F coordinate representing the value of that
feature. If there are two features, Fy and F,, the feature space is
the two-dimensional plane and each point has two coordinates,
an F; coordinate and a F, coordinate, indicating the values of
those two features. If there are three features, I, Fz, and I3, a

_ the values of a real variable. So, the problem of finding a good point in the three-dimensional feature space has an F1 coordi-

A
: \*‘\3‘ 5 - ‘@‘ inductive method is sometimes called a pattern recognition prob-
7Y Hiem (Bongard 1970; Duda, Hart, and Stork 2001),

nate, representing the value of feature F;, an F» coordinate,
representing the value of feature F,, and an F3 coordinate, repre-

©

2.1.1 Pattern Classification

In a pattern classification problem, we seek to come up with a
rule for using observable features of objects in order to classify
them into one of a finite number of categories, where each fea-
ture can take several possible vafues, which can be represented
by real numbers. In the most common case there are just two
categories, so this is the case we consider here. For purposes of
medical diagnosis, values of the features could represent the
results of certain medical tests. For recognition of written ad-
dresses on envelopes, the relevant area of an envelope could
be represented by a grid of W x H pixels, with a feature value
for each pixel representing the intensity of light at the pixel,
so there would be W x H different features. For face recogni-
tion from color photographs using a grid of Wx H pixels,

senting the value of feature Fs.

In the case of the H x W color pixels, there are 3 x H x W
dimensions to this space. Each point in: this large feature space
has 3 x H » W coordinates. Each such point represents a partic-
ular possible color picture, a particular way of assigning feature
values to the color pixels.

Data for learning can then be represented by labeled points in
the feature space. The coordinates of each such point represent
an object with the corresponding feature values. The label indi-
cates a classification of that object, perhaps as provided by an
“expert.”

A possible new case to be categorized is then represented by
an unlabeled point, the inductive task being to interpolate or
extrapolate labelings from already labeled data points to the

unlabeled point (figure 2.1).
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Figure 2.1
Feature space: Gray dots label points that are categotized as YESes; white

dots label points that are categorized as NOs. The point at the question
mark is unlabeled.

2.1.2 Estimating the Value of a Real Variable
A related problem is the problem of using data in order to esti-
mate the value of a real variable. This problem is like a catego-
rization problem in which the value of the real vatiable is the
correct labeling of a point in feature space. However, there are
two important differences between categorization and real vari-
able estimation. One difference is that categorization involves
applying one of a small finite number of possible categories (for
example, two—YES$ and NO), while the possible values of a real-
valued variable can be nondenumerably infinite. This gives rise
to the second difference, which is that in esimation it is not use-
ful to consider the probability of an incorrect estimate. Instead,
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Figure 2.2
Curve fitting.

it is more appropriate to consider how close one real value is to
another (rather than whether they are exactly the same).

A variable estimation problem can be considered a “curve fit-
ting problem” if the estimated values of the variable are repre-
sented by a “curve” (or hypersurface) in D+ 1 dimensional
space. To take a very simple example (figure 2.2), assume that
our estimate of the real variable y will be a function f{x) of one
argument x and our task is to use data to find a function that
provides the best estimate of y. Each datum can he represented
as a point in the plane, where the x coordinate represents the
value of the argument and the y coordinate represents the value
of the estimation function according to that particular datum.
The task is to estimate y by fitting a curve to the data.

2.2 Background Probability Distribution

In general, in classification problems there will not be a perfect
correlation between observed features and the best classi-
fications of objects with those features. For one thing, there
may be noise or errors in measurement in the observed features.
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furthermore, the relation between features and classification
may be at best merely probabilistic even apart from issues of
noise. For example, suppose the task is to recognize whether a
person is currently happy, given only a picture of the expression
on his or her face. It may very well be true that a person with a
certain visual expression is sometimes happy and sometimes
sad, so that the relation between the features revealed in that
picture and the correct classification of the person as happy of
sad is only probabilistic.

Similarly, estimation of a real valued variable must allow for
noise in the data, as well as the possibility that the variable
depends on other factors than those we use to make our
gstimate.

We have already suggested that questions about the reliability
of inductive conclusions presuppose that there is a possibly un-
known background statistical probability distribution. Discus-
sions of the reliability of a rule of classification presuppose that
there is a statistical probabilistic connection between observable
features and correct classification. And discussions of the relia-
bility of a rule of estimation of a real valued variable presuppose
that there is a statistical probabilistic connection between ob-
servable features and the value of the variable given those
features.

So, we assume that there is a background probability distribu-
tion P which (among other things) defines the conditional prob-

abilities that an item is correctly classified as an A given that it
has certain observed features, P(A|F&F&F3&...). Or we as-
sume that the background probability P defines in this way
the conditional probabilities that the value of a given variable
is A given the observation of features whose values are
[ &F&F&. ... (In many contexts, conditional probability
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densities are required, rather than simple conditional probabil-
ities. See, for example, Duda, Hart, and Stork 2001.)

In other words, we assume that the data represent a random
sample arising from the background probability distribution,
and we assume that new cases that are encountered are also ran-
domly produced by that distribution. We do not assume that we
know what that distribution is. We do not assume it is a normal
distribution or that its mean, standard deviation, and so on are
known. This is a problem in “nonparametric statistics,” because
nothing is assumed about the parameters of the background
probability distribution.

The only assumptions made about the background probability
distribution are that (1) the probability of the occurrence of an
itern with certain features and classification is independent of
the occurrence of other items, and (2) the same distribution
governs the occurrence of each item. One familiar example of
an assumption of probabilistic independence and identical dis-
tribution is the assumption that the probability that a tossed
coin will come up heads is independent of the results of other
tosses and that the probability of heads for each toss is the
same. (Given a theory based on an assumption of such probabil-
istic independence and identical distribution, it may be possible
to extend the theory by relaxing the assumptions of indepen-
dence and identical distribution, but we will not consider such
extensions in this book.)

The gambler’s fallacy, mentioned briefly in the previous chap-
ter, rests on a confusion about probabilistically independent
events. After a tossed coin has come up heads four times in a
row, the gambler’s fallacy leads to the thought that the probabil-
ity of heads on the next toss is considerably greater than one
half “because heads is due.”
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This thought may rest on the following reasoning:

The coin is fair, so it should come up heads about half the time
in a long enough string of tosses. In particular, it is quite
probable that heads will come up between four and six times in
ten tosses. Since heads has not come up in the first four tosses,
it needs to come up at least four times in the next six. So the
probability of getting heads on the next toss is at least 4/6.

This reasoning is mistaken. Given that the results of tosses of
the coin are probabilistically independent and that the coin is
fair, the probability of heads on the next toss is still 1/2. It re-
mains true that in the long run, the frequency of heads will
approach 1/2, despite the initial 1un of four tails. The impact of
any finite number of initial results will be dwaifed by the impact
of the rest of the idealized long run. The “long run” is infinitely
long and thus much longer than any merely finite beginning.
Any infinite series in which the frequencey of heads approaches
1/2 will continue to do so with any large finite number of tails
added to its beginning.

2.3 Reliability of Rules of Classification and Estimation

2.3.1 Reliability of a Classification Rule

We have discussed the distinction between rules of classification
and a method for finding those rules. We have discussed how
items to be classified might be represented as points in a feature
space and how data might be represented as labeled points in a
feature space. We have noted that the reliability of a rule of clas-
sification depends on a possibly unknown background statistical
probability distribution. And we have noted that we might be
able to make only minimal assumptions about that background
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probability distribution, namely, the assumption of probabilistic
independence and identical distribution (although as we have
mentioned, this assumption can be relaxed in various ways).

We can now distinguish two questions,

1. With respect to the {unknown} background prohability distri-
bution what is a best rule of classification?

2. If the background probability distribution is unknown, under
what conditions can data be used to find a best (or good encugh)
rule of classification?

One possible answer to the first question is that the best rule is
the one that minimizes the expected frequency of error, where
the expected frequency of error is determined by the probability
{according to the unknown background probability distribution)
that a use of the rule will lead to an error.

That answer assumes all errors are equally bad. If certain sorts
of errors are worse than others, that can be taken that into ac-
count. It could happen, for example, in medical testing, where
false positives might be less serious than false negatives. We
might then assign different weights or costs to different sorts of
errors and then {reat the best rule as the one that minimizes
expected cost.

The best rule is standardly called the “Bayes Rule” (see, e.g.,
Hastie et al. 2001, p. 21), Given the (unknown) background
probability distribution, the Bayes Rule is the rule that for each
set of features chooses the classification with the smallest
expected cost, given that set of features. In the special case in
which all errors are equally bad, the Bayes Rule is the rule that
chooses, for each set of features, the classification with greatest
conditional probability given that set of features, which results
in the smallest probability of error. (For simplicity in what
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follows we wiil treat all errors as equally bad and take the best
rule to be the rule that simply minimizes expected error.)

2.3.2 Reliability of a Rule of Real Variable Estimation
Recall that, in addition to having to allow for noise in the data,
estimation of a real valued variable must also allow for the possi-
bility that the variable in question is only probabilistically re-
lated to observable features of the data. So, given values of those
observable features, there will be various possible values of the
real variable, values whose probabilities {or probability densities)
are determined by the unknown background probability distri-
bution. On a particular occasion when those are the values
of the observable features, the real variable will have a par-
ticular value. The amount of error on that occasion of a parti-
cular estimate of the value of the function for those values of
the arguments might be measured by the absolute value of the
difference between the estimate and the value of the variable on
that occasion, or by the square of that difference. More gener-
ally, the expected error of an estimate with respect to given ob-
servable features is the sum of the possible amounts of etror of
the estimate for those arguments weighted by the probability of
those errors (or an integral using probability densities rather than
probabilities—we omit details). A rule of estimation of the value
of the variable, given all possible observable features, has an
expected error equal to the sum of its expected errors for various
values of observable features weighted by the probability of
observing those values of the features, (Again, normally this
would be an integral rather than a sum.) In this way, any rule of
real variable estimation has an expected error determined by the
background probability function. The Bayes Rule for estimating
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a variable is then the best rule, that is, the rule for estimating
that variable with the lowest expected error in general,

2.4 Inductive Learning
Is there an inductive method that will lead to the selection of

the Bayes Rule, given enough data?
One way to proceed would be to try to use data first to dis-

| cover or at least approximate the background probability distri-

bution and then use that probability distribution to determine
the Bayes rule. But as we shall see that turns out to be imprac-
tical. Indeed, there is no practical way of exactly finding the
Bayes Rule that will work no matter what the background prob-
ability distribution given enough data.

Setting our sights somewhat lower, we can consider the fol-
lowing inductive learning question: To what extent can we use
data to find a rule of classification or real variable estimation

rzwith performance that is as good as (or comparable to) the per-

formance of the Bayes Rule?

The third chapter describes a positive answer to this last ques-
tion. There is a sense in which we can use data to find a rule
with performance that approaches the performance of the Bayes
Rule as we get increasing amounts of data.

But in order to explain that answer, it will be usefut to spend
the rest of this chapter considering the performance of the
method of enumerative induction that we began to discuss in
chapter 1. There we gave an example of using enumerative in-
duction to find a rule of categorization. Enumerative induction
might also be used to find a rule of real variable estimation. Re-
call that enumerative induction is a method for using data to
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choose a rule from a restricted set of rules C: choose a rule from
\56 with minimium error on the data.
The 1dea  behind enamerative induction is, first, to use a rule’s
“"empirical risk,” its rate of error on the data as an estimate of its
expected error on new cases and then, second, to choose a rule
from C whose empirical error on the data is least.

It is possible that several rules from C are tied for having the
same minimal error on the data. In that case, we will say that
enumerative induction endorses all of the tied rules,
~ As we mentioned in the first chapter, this method is useful

donly if there are significant limits on the rules included in C. If

all possible rules are included, then the rules that minimize error
on the data will endorse all possible judgments for items with
features that do not show up in the data—all possible interpola-
tions and extrapolations to other cases.

On the other hand, as we also mentioned in chapter 1, if there
{care significant limits on the rules in C, then € might not contain
the Bayes Rule, the rule with the least expected error. In fact, C
might not contain any rule with expected error comparable to
the minimal expected error of the Bayes Rule. The best rules in
C might well have significantly greater expected error than the
Bayes Rule.

Still, there will be a certatn minimum expected error for rules

in C. Then the goal of enumerative induction will be to find a
rule with expected error that is near that mintmum value. Oz,
since no method can be expected to find such a rule without a
sufficient amount of data, the goal will be to find such a rule
given a sufficient amount of data. Actually, even that goal is too
ambitious in comparison with the goal of probably finding such
a rule. That is to say, a realistic goal is that, with probability

approaching 1, given more and more data, the expected error of
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a rule endorsed by enumerative induction at each stag will
approach the minimum value of expected error for rales in .

241 Linear Classification and Estimation Rules

Let us consider an example of enumerative induction to a classi-
fication rule. Recall that we are thinking of the observable fea-
tures of objects as represented in a feature space. Let us suppose
that we are interested In a very simple YES/NO classification
of some sort, The features might be the results of D different
medical tests. The classification of the person with those results
might be either YES, has “metrocis” (an imaginary illness) or
NO, does not have metrocis. The feature space has D dimen-
sions, one for the result of each test. In this case any classifica-
tion rule determines a set of points for which the classification
is YES according to that rule. The remaining points are classified
NO by the rule. So, instead of thinking of rules as linguistic or
symbolic expressions, we can think about the corresponding
sets of points In feature space (figure 2.3), perhaps certain
scattered areas or volumes or hypervolumes of the space—
“hypervolumes,” because the dimensions of the feature space
will typicaily be greater than three,

Linear classification rules are a very simple case which divide
the feature space into two parts separated by a line or hyper-
plane, with YES on one side and NO on the other. If there are
two medical tests with results F; and F,, then one possible clas-
sification rule would classify the patient as having metrocis if
Fi +2F, > 6 and otherwise classify the patient as not having
metrocis. This is a linear classification rule in the sense that the
rule distinguishes the YESes from the NOs by the straight line

intersecting the F; axis at (0,3) and the Fy axis at (6,0) (ﬁgure
2.4).

"\
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Figure 2.3
Rules as sets of peints in feature space.

For any given data, it is easy to find a linear classification rule
with minimum error on the data. But of course such rules are
limited in what they can represent. They cannot, for example,
represent an XOR rule in a two-dimensional feature space,
where features can have either positive or negative values. An
XOR rule classifies as a YES those and only those points for
which the product of F; and F; is negative. Points classified as
NO are those for which the produce is positive (because both Fy
and F, are positive or because both are negative). Clearly, it is
not possible to separate the YES {gray) and NO (white) points in
figure 2.5 using a straight line.

Of course, there are other sorts of classification rules besides
Hnear rules. For example, there are inner circular rules as repre-
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Figure 2.4
Linear classification: Metrocis.

Figure 2,5
XOR representation problem for linear rules.




Chapter 2

sented by the insides of circles or hyperspheres in the space. A
tule of this sort categorizes all points inside a particular circle or
hypersphere as YES and all other points as NO. There are outer
circular rules, represented by the outsides of circles or hyper-
spheres. There are circular rules consisting in both inner and
outer circalar rules. There are box rules that include both inner
box rules and outer box rules. There are quadrant rules that in-
clude the rule for XOR.

Tor any set of sets of points in feature space, there is a corre-
sponding set of classification rules. So, there are many more
classification rules than there are linguistic or symbolic represen-
tations of classification rules.

It may seem that linear categorization rules will rarely be use-
ful.! But linear estimation rules are often quite useful. We noted
in our first chapter a number of areas in which linear rules pro-
vide better estimates than people can, even experts—predicting
the success of medical interventions, predicting criminal re-
cidivism, predicting tomorrow’s weather, predicting academic
petformance, predicting loan and credit risk, predicting the
quality of a French wine vintage, to mention only a few (from
Bishop and Trout 2005, pp. 13-14).

2.5 <Conditions for Satisfactory Enumerative Induction

As we have emphasized, enumerative induction only works
given a limited set C of rules. What we would like to know is
what has to be true of the set C of rules if enumerative induction
is to work no matter what the unknown background probability
distribution.

1. Linear categorization rules do play an important role in support vec-
tor machines, as is explained in chapter 4, below.

Induction and VC Dimension

In other words, what has to be true of the set C in order to
guarantee that, with probability approaching 1, given more and
more data, the expected error for the rules that enumerative
induction endorses at each stage will approach the minimum
value of expected error for rules in C?

You might wonder whether this sort of convergence isn't
guaranteed by the statistical law of large numbers. That princi-
ple implies that with probability approaching 1, the empitical
error of any particalar rule will approach the expected error of
that rule, given more and more data. But this is not the same as
what is wanted. The trouble is that, given infinitely many rules,
as more and more data are taken into account, the rules endorsed
by enuunerative induction can change infinitely often. Even if
the emprirical error for each rule approaches a limit, that does

llfmot imply anything about the Hmit of the empirical error of the
1 varying tule endorsed by enumerative induction at each stage.

For example, C could contain a rule ¢, whose expected error is O/;/') I /‘l

0.1 and, in addition, an Infinite series of rules ¢,¢z,..., ¢y, ..
each of whose expected error is 0.5. There could be possible data
so that the following happens. The empirical etror of the rule ¢
is 0 until the number of data points n exceeds i; thereafter, the
empirical error of the rule ¢; approaches 0.5. In that case, the
empirical error of the varying rule endorsed by enumerative in-
duction at each stage will be 0, but the expected error of the
rules made available will always be 0.5. So, the expected error
of the rules endorsed at each stage will not approach the mini-
mum value of expected error for rules in C, namely 0.1,

What is needed, then, is not just that the empirical error of
each rule should converge to its expected error but also that
the empirical error of the varying rules endorsed by enumerative
induction should approach the value of the expected error of
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that rule in the limit. If ¢, is a rule endorsed by enumerative in-
duction after » data points, then what is needed is that the
empirical error of the rule ¢, after n data points should approach
the expected error of ¢, in the limit. In that case, with probabil-
ity approaching 1, given more and more data, the expected error
of the varying rules endorsed by enumerative induction will
approach in the limit the minimum value of expected error for
rules in C.
This will happen if (with probability approaching 1) the
empirical error of the rules in C converge uniformly to their
i expected error. Let R, be the expected error of the rule ¢. Let ﬁf
be the empirical error of the rule ¢ after n data points. Let
R" = max..c{{R” — R.) be the maximum value of the absolute
difference between the empirical error of a rule in C and its
expected error.? Then the empirical error of the rules in C con-
verges uniformiy to their expected error just in case R" con-
verges to 0 as i — .
What has to be true of the set of rules C for such uniform con-
vergence? Vapnik and Chervonenkis (1968) show (in effect) that
: this condition is met for classification rules if and only if the set
" of classification rules C is not too rich, whete the richness of the
set is measured by what has come to be called its “VC dimen-
sion.” (Results with a similar flavor hold for real variable estima-
tion rules with suitably modified notions of dimension, but here
we will discuss the result only for classification rules.)

i Suppose that some set of N points in the feature space is shal-

" tered by rules in C in the sense that, for any possible labeling of

2. Strictly speaking, we should use the suprerum {sup), or least upper
bound, rather than the maximum (max) here, because with infinitely
many rules in C the maximum value of the difference may not be
defined.

Induction and VC Dimension

those points, some rule in C perfectly fits the points so labeled,
Then the VC dimension of the set of rules C is at least N. More
specifically, the VC dimension of a set of rules C is the largest
number N such that some set of N points in feature space is
shattered by rules in C. If a set of rules does not have a finite
VC dimension—because for any number N there is a set of N
points shattered by rules in C—then the set of rules C has infi-
nite VC dimension.

Notice that the definition of VC dimension refers to some set
of N points being shattered, not to all sets of N points being
shattered. Consider the set of all linear classifications of points
in the plane where the YESes and NOs are separated by a straight
line. The VC dimension of this set of classification rules is 3,
because some set of three points in the plane can be shattered
by this class of rules and no set of four points can be shattered.
Three collinear points (i.e., three points on the same straight
line)} cannot be shattered by this class of rules, because there is
no such rule that can classify the middle point as a YES and the
outer points as NOs (figure 2.6). But three points that are not
coliinear can be shattered because, for example, any two can be
separated from the third by a straight line (figure 2.7). So, the
VC dimension of these linear separations is at least 3. And
no four points can be shattered by this class of rules, so the VC
dimension of these linear rules is exactly 3. (If any three of the

Figure 2.6
Three collinear points cannot he shattered.
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Figure 2.7
Shattering three noncollinear points in the plane.

Figure 2.8
No set of four points can be shattered.

four points are collinear, the four points cannot be shattered.
Otherwise, either none of the points is within the triangle
defined by the other three or one of them is. Figure 2.8 indicates
labelings that cannot be separated in those cases by linear rules.)
Some other examples: The VC dimension of the set of all linear
separations in D-dimensional spaces is D + 1. The VC dimension
of the set of all inner rectangles in the plane is 4. The VC dimen-
sion of the set of all unions of rectangles in the plane is infinite.
So, that is what the VC dimension comes to. Vapnik and
Chervonenkis {1968) show, roughly, that enumerative induc-
tion is guaranteed to work no matter what the background prob-
| ability 7 distribution if and only if the classification rules in C
have a finite VC dimension. More precisely (subject fo some

. very mild but technical regularity conditions):
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no matter what the background probability distribution,

with probability approaching 1,

as more and more data are considered,

the expected error of the rules that enumerative induction en-
dorses will approach the minimum expected error of rules in C
if and only if

the rules in C have a finite VC dimension.

Half of this result is that, if the classification rules in C do not
have a finite VC dimension, then no matter how many data
points are provided, there will be probability distributions for
which enumerative induction will not select only rules with
expected error close to the minimum for rules in C. To see this,
consider what can be expected after obtaining » items of data
and let K = 1,000,000 % n. Since the rules in C do not have a
finite VC dimension, there is a set of K points in the feature
space that is shattered by rules in C. Consider some probability
distribution that assigns probability 1/K to each member of
some such set of K points shattered by rules in C. Any subset of
those points will of course also be shattered by those rules,

So, if C does not have a finite VC dimension, then for any n
items of data, there are probability distributions that guarantee
that there are rules in C fitting whatever data are obtained but
giving all possible verdicts on all other points that might come
up, where the probability that one of these other points comes
up in any given case is very close to 1. (The probability that
one of the data points comes up again in any given case is
1/1,000,000.)

This is true no matter how large n is. So it is not true that, with
probability approaching 1, the expected error of the rules that
enumerative induction leads to will approach the minimum
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say that there is possible evidence that would be inconsistent
with the hypothesis.
According to Popper, evidence cannot establish a scientific

expected error of rules in C no matter what the background proba-
bility distribution.
The other half of Vapnik and Chervonenkis’ (1968) result is

that if the rules in C do have a finite VC dimension, then, hypothesis, it can only “falsify” it, A scientific hypothesis is

therefore a falsifiable conjecture. A useful scientific hypothesis is
a falsifiable hypothesis that has withstood empirical testing,

with probability approaching 1, the expected error of the rules

k

V

endorsed by enumerative induction will approach the minimum

£,

expected error of rules in C no matter what the background Recall that enumerative induction requires a choice of a set of
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probability distribution. If the rules in C have VC dimension rules C. That choice involves a “conjecture” that the relevant

V, there is a function m(V,e,8) that indicates the maximum rules are the rules in C. If this conjecture is to count as scientific

ER

rather than metaphysical, according to Popper, the class of rules
C must be appropriately ‘‘falsifiable.”
Many discussions of Popper treat his notion of falsifiability as
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amount of data needed (no matter what the unknown back-

-
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ground probability distribution} to ensure that the probability
is less than ¢ that enumerative induction will endorse a hypo-

an all-or-nothing matter, not a matter of degree. But in fact
Popper does allow for degrees of difficulty of falsifiability (2002,

' thesis with an expected error rate that exceeds the minimum

4
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expected error rate for rules in C by more than e.

-
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o

Where there is such a function m(V, ¢,6) there is “‘probably ap-
proximately correct’’ learning, or PAC learning {terminology due
to Valiant 1984). Here a smaller e indicates a better approxima-
tion to the minimum expected error for rules in C and a smaller
8 indicates a higher probability that the rules endorsed will be
within the desired approximation to that minimum expected
£17oT.

2.6 Popper

Vapnik (2000) sees an interesting relation between the role of
VC dimension in this result and the emphasis on falsifiability
in Karl Popper’s writings in the philosophy of science. Popper
(1934) famously argues that the difference between scientific
hypotheses and metaphysical hypotheses is that scientific
hypotheses are “falsifiable” in a way that metaphysical hypoth-
eses are not. To say that a certain hypothesis is falsifiable is to

sections 31-40). For example, he asserts that a linear hypothesis
is more falsifiable—easier to falsify—than a quadratic hypoth-
esis, This fits with VC theory, because the collection of linear
classification rules has a lower VC dimension than the collection
of quadratic classification rules,

However Corfield, Schélkopf, and Vapnik (2005) observe that
Popper’s measure of degree of difficulty of falsifiability of a class
of hypotheses does not correspond to VC dimension. Where the

" VC dimension of a class C of hypotheses is the largest number N
such that some set of N points is shattered by rules in C, what we
might call the "“Popper dimension” of the difficulty of falsifiabil-
ity of a class is the largest number N such that every set of N
points is shattered by rules in C. This difference between some
and every is important, and VC dimension turns out to be the
key notion rather than Popper dimension.

ﬁ] Popper also assumes that the falsifiability of a class of hypoth-

eses is a function of the number of parameters used to pick out
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N
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\‘3 :J ‘WN-J instances of the class. This turns cut not to be correct either for
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Popper dimension or for VC dimension, as discussed in the next
chapter.

This suggests that Popper’s theory of falsifiability would be
improved by adopting VC dimension as the relevant measure
in place of his own measure.

2.7 Summary

In this chapter we have continued our treatment of the problem
of induction as a problem in statistical learning theory. We have
distinguished inductive classification from inductive teal vari-
able estimation. The inductive classification problem is that of
assessing inductive methods for using data to arrive at a reliable
rule for classifying new cases on the basis of certain values
of features of those new cases, We introduced the notion of a
D-dimensional feature space, each point in the feature space
representing a certain set of feature values. We assumed an un-
known probability distribution that is responsible for our en-
counter with objects and for the correlations between feature
values of objects and their correct classifications. The probability
distribution determines the best rule of classification, namely
the Bayes Rule that minimizes expected error,

For the special case of a YES/NO classification, we can identify
a classification rule with a set of points in feature space, perhaps
certain scattered areas or hypervolumes. For example, linear
rules divide the space into two regions separated by a line or
plane or hyperplane.

The real variable estimation problem is that of assessing in-
ductive methods for using data about the value of a real variable
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given certain observed features to arrive at a reliable estimate of

_the value of the real variable.

Enumerative induction endorses that rule or those tules from
a certain set C of rules that minimize error on the data. If enu-
merative induction is to be useful at all, there have to be signifi-
cant limits on the rules included in C. So C may fail to contain
any rule with expected error comparable to the Bayes Rule. So,
we cannot expect enumerative induction to endorse a rule with
expected error close to the Bayes Rule. At best it will endorse a
rule with expected error close to the minimum for rules in C.
And, in fact, we have to settle for its probably endorsing a rule
close to the minimum for rules in C.

Vapmik and Chervonenkis (1968) show that for inductive clas-
sification, no matter what the background probability distribu-
tion, with probability approaching 1, as more and more data
are considered, the expected error of the rules that enumerative
induction endorses will approach the minimum expected error
of rules in C, if and only if the rules in C have a finite VC
dimension. (A similar result holds for inductive real variable
estimation.)

VC dimension is explained in terms of shattering, Rules in C
shatter a set of N data points if and only if for every possible
labeling of the N points with YESes and NOs, thete is a rule in
C that perfectly fits that labeling.

In other words, there is no way to label those N points in a
way that would falsify the claim that the rules in C are pettfectly
adequate. This points to a possible relationship between the role
of VC dimension in leaming by enumerative induction and the
role of falsifiability in Karl Popper’s methodology, a relationship
to be discussed further in the next chapter,
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3.1 Introduction

We are concerned with the reliability of inductive methods.
So far we have discussed versions of enumerative induction. In
this chapter, we compare enumerative induction with methods
that take into account some ordering of hypotheses, perhaps by
simplicity. We compare different methods for balancing data-
coverage against an ordering of hypotheses in terms of simplic-
ity or some simplicity substitute. Then we consider how these
ideas from statistical learning theory might shed light on some
philosophical issues. In particular, we distinguish two ways to
respond to Goodman's (1953) “new riddle of induction,” corre-
sponding to these two kinds of inductive methods. We discuss
some of Karl Popper's ideas about scientific method, trying to
distinguish what is right and what is wrong about these ideas.
Finally we consider how an appeal to simplicity or some similar
ordering might provide a principled way to prefer one hypothe-
sis over another skeptical hypothesis that is empirically equiva-
lent with it.
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3.2 Empirical Error Minimization

In chapter 2 we described an important result (Vapnik and
Chervonenkis 1968) about enumerative induction. In statistical
learning theory, enumerative induction is called “‘empirical risk

minimization.” In a context in which all errors are equally bad,
its only criterion for choosing a rule from C is that the rule
should be one of the rules in C with the least empirical error on
the data. Vapnik and Chervonenkis show that the method of
empirical risk minimization, when used to select rules of classifi-
cation, has the following property. If, and only if, the VC di-
mension of C is finite, then no matter what the background
probability distribution, as more and more data are obtained,
with probability approaching 1, enumerative induction leads to
the acceptance of rules whose expected error approaches the
minimum expected etrror for rules in C.!

Moreover, when C has finite VC dimension V we can specify
a function, m(V,¢,d), which indicates an upper bound to the
amount of data needed to guarantee a certain probability (1 — &)
of endorsing rules with an expected error that approximates that
minimum by coming within ¢ of the minimum.

Although this is a very nice result, it is also worrisome, be-
cause if C has a finite VC dimension, the best rules in C can
have an expected error that is much greater than the best possi-
ble rule, the Bayes Rule, For example, if C contains only one rule
that is always wrong, the best rule in C has an error rate of 1

1. Some very mild measurability conditions are required. And, as we
mentioned, a similar result holds for enumerative induction used to
select rules to estimae the value of a real variable. For the moment, we
concentrate on induction to rules of classification.
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even if the Bayes Rule has an error rate of 0. Even if C contains
many rules and has a large VC dimension, the best rule in C may
have an error rate close to .5, which is no better than random
guessing, even though the Bayes Rule might have an error rate
close to 0.

Recall our discussion of linear classification rules, which sepa-
tate YESes and NOs in a D-dimensional feature space with a line,
a plane, or a hyperplane. These rules have a VC dimension equal
to D+ 1, which is finite as long as the feature space has finite
dimension, which it normally does. But linear rules are by them-
selves quite limited. Recall, for example, that an XOR classifica-
tion rule cannot be adequately represented by a classification
using a linear separation of YESes and NOs. Indeed, the best
linear rule for that classification can have a very high expected
error.

To be sure, we can use a class of rules C with many more rules,
in addition to or instead of linear rules; we can do so as long as
the VC dimension of C is finite. But no matter how high the VC
dimension of C, if it is finite there is no guarantee that the
expected error of the best rules in C will be close to the expected
error of the Bayes Rule.

3.3 Universal Consistency

In order to guarantee that the expected error of the best classifi-
cation rules in C will be close to the expected error of the best
rule of all, the Bayes Rule, it is necessary that C should have infi-
nite VC dimension. But then the nice result about enumerative
induction is not forthcoming. We will not be able to specily
a function m{o,d, ¢} that would provide an upper bound to the
amount of data needed to guarantee a certain probability (1 — &)
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of endorsing rules whose expected error is within e of the mini-
mum expected error for rules in C, which in this case will be the
error rate of the Bayes Rule,

On the other hand, there are other inductive methods for
finding categorization rules that do not have the sort of
guarantee of uniform convergence provided by the Vapnik-
Chervonenkis result but do have a different desirable property.
In particular, it can be shown that certain methods are univer-
saily consistent. A universaily consistent method is one that,
for any background probability distribution, with probability
approaching 1, as more and more data are obtained, the ex-
pected error of rules endorsed by the method approaches in

N ! the limit the expected error of the best rule, the Bayes Rule.

f i & Universal consistency does not imply uniform convergence.
L k" There may be no bound on the amount of data needed in order
to ensute that (with probability approaching 1) the expected er-
ror of the rules endorsed by the method will be within ¢ of the
expected error of the Bayes Rule, Nevertheless, universal consis-
tency is clearly a desirable characteristic of a method. It does
provide a convergence result, because the error rate of the rule
endorsed by a universally consistent method converges to the
expected error of the Bayes Rule, Although this does not guaran-[ !
tee a rate of convergence, it can be shown that no method pro-L}J b

vides such a guarantee.

1

d

3.3
There is a kind of nearest neighbor rule that is universally

Nearest Neighbor Ruies

consistent, although the simplest such rule is not universally
consistent.

Recall that data can be represented as labeled points in a fea-
ture space. Suppose that a distance measure is defined on that
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Figure 3.1
Nearest neighbor classification.

space. Then the l-nearest neighbor method says to classify a
new item as having the same category as the nearest datum in
the feature space. Any set of r data itemns then serves to specify
the corresponding rule of classification (figure 3.1). As more and
more data are obtained, the corresponding tule changes to adapt
to the labels on the new items. The 1-nearest neighbor rule is
not universally consistent, but it can be shown that in the limit
the expected error of the I-nearest neighbor rule is no more

¥ than twice the expected error of the Bayes Rule, which is quite

!

good if the Bayes Rule has a very small error rate.

It is possible to do better by using a variant of the l.nearest
neighbor rule. For example, a k-nearest neighbor method says
to classify a new item by looking not just at the nearest datum
in the feature space but to the k nearest data and assigning to
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the new item the classification of a majority of those k nearest
data. This sometimes (not always) does better than a 1-nearest
neighbor rule but is not yet universally consistent,
The key to getting a universally consistent nearest neigh-
q or rule is to let the number of neighbors used grow with
@1 (the amount of data we have) but not too quickly. That is,
we let k¥ be a function of n, so this is called a k,-nearest
neighbor rule. We let k; — o0 so that we use more and more

neighbors as the amount of training data increases. But we

kn
n

of neighbors we use is a negligible fraction of the total amount

of data. This ensures that we use only neighbors that get

closer and closer to the point in feature space that we want to

categorize, For example, we might let k, = \/# to satisfy both
conditions.

It turns out that with any such k, (such that k; — c0 and

§ ky/m — ), in the limit as the amount of training data grows,

that of the optimal Bayes Rule, so this sort of k,-nearest neigh-
bor rule is universally consistent.

(\\ RV . . . .
\J;’ NJ fo achieve a certain performance, as we have indicated above.

)  might not contain the Bayes Rule and might not contain a

e

rule with an error rate that is close to the error rate of the Bayes
Rule.

also make sure that = — 0, so that asymptotically the number

the performance of the k,-nearest neighbor rule approaches

.S) Unfortunately, there will always be probability distributions
\\5 for which the convergence rate is arbitrarily slow. This is differ-
Cs) Y ent from enumerative induction using a class of rules C of finite

N \}‘ | VC dimension, where convergence to the best error rate for clas-

5 ] .~ sification rules in C is not arbitrarily slow and we can specity a -

7
/7 function that sets an upper bound on how much data is needed :

~  On the other hand, with enumerative induction the rules in C
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3.4 Structural Risk Minimization

We now want to discuss another kind of universally consistent
method for using data to select a rule of classification. This alter-
native to enumerative induction trades off empirical adequacy
with respect to data against another factor, sometimes called
“simplicity,” although that is not always the best name for this
factor,

One example of this sort of method, “structural risk minimi-
zation” (Vapnik and Chervonenkis 1974), is defined in relation
to a class of rules that includes an infinite nesting of classes of
rules of finite VC dimension. More precisely, C=CiuCu-- v
Cov--, Wwhere Cy c Cy <+ @ Gy ---, and where the VC di-
mension of C; is strictly less than the VC dimension of C; when
i < j. Any class C of this sort has infinite VC dimension,

Structural risk minimization endorses any rule that minimizes
some given function of the empirical error of the rule on the
data and the VC-dimenston of the smallest class containing the
rule. It might, for example, endorse any rule that minimizes
the sum of these two quantities.

It can be shown that there are many ways to choose these
nested classes and the trade-off between fit to data and VC di-
mension so that structural risk minimization will be universally

consistent by endorsing rules that, with probability approaching |} ;

1, have expected errors that approach in the limit the expected
error of the Bayes Rule.

3.5 Minimum Description Length

Structural risk minimization is one way to balance empirical
adequacy with respect to data against some ordering of rules or
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hypotheses. In that case rules are members of nested classes of
finite VC dimension and are ordered by the VC dimension
of the smallest class which they belong to. Various other sorts
of ordering have been proposed {(e.g., Rissanen 1978; Barron
et al. 1998; Chaitin 1974; Akaike 1974; Blum and Blum 1975;
Gold 1967; Solomonoff 1964).

One aliernative type of ordering of rules uses the lengths of
their shortest representation in some specified system of repre-
sentation, for example, the shortest computer program ofa cer-
tain sort that specifies the relevant labeling of points in the
feature space. The class of rules that are represented in this way
can have infinite VC dimension, so enumerative induction with
its reliance on empirical risk minimization alone will not be ef-
fective. But any such ordering of all representable rules can be
used by an inductive method that balances the empirical ade-
quacy of a rule on the data against its place in the ordering.
Some methods of this sort will in the limit tend to endorse rules
with expected error approaching that of the Bayes Rule.

Notice, by the way, that if rules are ordered by minimum de-
scription length, it will not be true, for example, that all linear
rules y = gx+ b have the same place in the ordering, because
the parameters a and » must be replaced with descriptions of
their values, and, given a fixed system of representation, differ-
ent values of the parameters will be represented by longer or
shorter representations. For this reason, some linear rules will re-
quire considerably longer representations than some quadratic
rules, which will by this criterion then be treated as “simpler”
than those linear rules.

The kind of ordering involved in structural risk minimization
is of a somewhat different sort from any kind of ordering by
length of representation. Structural risk minimization identifies
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rules with mathematical functions and is therefore not limited
to considering only rules that are finitely represented in a given

system. Whereas the number of linear rules conceived as mathe-
matical functions is uncountably infinite, the number of finitely
representable linear rules is only countably infinite.

Even apart from that consideration, the ordering that results
from structural risk minimization need not be a well-ordering,
because it might not have the property that every rule in the
ordering has at most only finitely many rules ordered before
it. In a typical application of structural risk minimization, infi-

nitely many linear mles are ordered before any nondegenerate
quadratic rule. But an ordering of rules by description length
can be converted into a well-ordering of rules (by ordering
“alphabetically” all rules whose shortest representations have
the same length).

3.6 Simplicity

If the ordering against which empirical fit is balanced is sup-
posed to be an ordering in terms of simplicity, one might object
that this wrongly assumes that the world is simple. But to use
simplicity in this way in inductive reasoning is not to assume
the world is simple. What is at issue is comparative simplicity.
Winduction favors a simpler hypothesis over a less simple hypoth-

o

i esis that fits the data equally well. Given encugh data, that pref-

"ererice can lead fo the acceptance of very unsimple hypotheses.

3.7 Estimating a Real Variable and Curve Fitting

We have discussed these two sorts of induction as aimed at

coming up with rules of classification. Similar results apply to
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function estimation or curve fitting. Here we review our earlier
discassion of estimating the value of a real variable and note
how structural risk minimization applies.

In real value estimation, the task is to estimate the value of a
variable given the values of each of D observed features. The

variable in question may or may not depend on all of the fea-

tures and may depend on other quantities as well. We assume

that there is a background probability distribution that specifies

the probability relationship between values of the features and
possible observed values of the function. We represent each of
the [} observable features using a D-dimensional feature space.

A passible rule for estimating the value of the variable can be -

represented as a curve in a D+ 1 space.
We mentioned a very simple example where D = 1 and we are

trying to estimate an unknown variable using a single feature. °

As we have already discussed, any function estimating the

variable has an error determined by the background probability -

distribution.

Fach datum can be represented as a point in the plane, where
the x coordinate represents the value of the observable feature
and the y coordinate represents the value of the variable the
datum provides for that obsetved feature. The task is to esti-

mate the value of the variable for other values of the feature by

fitting a curve to the data. .
Obvicusly, infinitely many curves go through all the data (fig-
ure 3.2). So there are at least two possible strategies. We can lim-

it the curves to a certain set C, such as the set of straight lines, '

and choose that curve in C with the least error on the data, Or
we can allow many more curves in C and use something like
structural risk minimization to select a curve, trying to minimize
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Figure 3.2
Curve fitting,

some function of the empirical error on the data and the com-
plexity of the curve,

We might measure complexity by the VC dimension of the
class C, thinking of these curves as the border between YES, too
high, and NO, too low.

One might use simple enumerative induction to fit a curve to
data points, for example, a linear equation. Or one might bal-

ance empirical fit to data against something else, as in structural
risk minimization,

3.8 Goodman'’s New Riddle

The distinction between empirical risk minimization and struc-
tural risk minimization sheds light on certain philosophical
issues. For one thing, it sheds light on different ways some phi-
losophers have reacted to Nelson Goodman’s “new riddle of
induction” (Goodman 1953).

As formulated, Goodman's “new riddle” doesn’t fit into the

standard statistical learning theory paradigm. But there is a
reformulation of it that does fit.
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We might formulate the original version as follows. The prob-
lem Is to predict whether a given item is gteen or niot, when it is
first observed. In other words, there is a single feature, represent-
ing time of first observation, and the feature space is therefore
one-dimensional. The data consist in labeled points in this one-
dimensional feature space, where each label is either “green” or
“not green.” We want to use the data to select a function that
assigns labels to all points in the feature space. Our goal is to
minimize expected error in our predictions about cases as they
arise,

This version of the problem does not fit the basic statistical
learning theory paradigm in which data are assumed to arise
from the same probability distribution as new cases to be pre-
dicted, In this first version of Goodman's problem, the relevant

| feature, time of first dbservation, is not randomiy distributed be-
| cause there is no chance that the data will assign labels to items
lﬁrst examined later than the current time,

But we can easily modify the problem by taking the relevant
feature to be some property of items that we can assume to
have the same random distrtbution in the data and in new cases,
for example, the weight or mass of the item. Then the data con-
sist in certain pairings of values of measured mass and labels,
“green’ and ‘not green.” Again we want to use the data to select
a function that assigns labels to all possible values for mass,
where our goal is to minimize expected error in our predictions
about cases as they arise.

Suppose that we want to use enumerative induction with no
limit on the hypotheses in C. Of course, if all the data points
are labeled “green” and none is labeled ‘“not green,” it seermns
we would want to adopt the hypothesis that all points are to be
labeled ‘‘green,” because that hypothesis has no error on the

Induction and “Simpiicity”

data. This would Iead us (o predict that the next item, no matter
what its mass, will be correctly labeled “‘green.”” However, to
adapt Goodman's point in his original formulation of the riddle,
‘there are other hypotheses that correctly fit the data but give
different predictions about new items. For example, there will al-
‘%‘ ays be a possible hypothesis that says assigns the label “green”
;to all the actual data points and “not green” to all other points.

S0, the rule of enumerative induction does not give useful ad-
vice about cases whose values of the relevant feature differ from
any data points.

From this, Goodman concludes that we cannot allow enu-
merative Induction to treat all possible hypotheses equally, In
our terms, there must be limits on C. Furthermore, Goodman
assumes that there is a unique class of hypotheses C, consisting
in those hypotheses that are “confirmed” by their instances.
The “new 1iddle of induction” is then the problem of character-
izing the relevant class of hypotheses, C, the confirmable or law-
like hypotheses. Goodman attempts to advance a solution to this
problem (a) by characterizing a class of “projectible’” predicates
in terms of the extent to which these predicates have been used
to make successful predictions in the past, and (b) by giving prin-
ciples that explain the confirmability of a hypothesis in terms of
the projectibility of the predicates in which it is expressed.

Goodman argues that projectible predicates cannot be identi-
fied with those predicates for which we have a single word, like
“green’” as opposed to “green if mass of 15, 24, 33,... and not
green otherwise,” because we could use a single word “grue” for
the latter predicate. He argues that projectible predicates cannot
be identified with directly observational predicates, like “green,”
because we can envision a machine that can directly observe
whether something is “grue.” Goodman himself suggests that
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the projectible predicates can be characterized in terms of the
extent to which these predicates have been used to make suc-
cessful predictions in the past.

Statistical learning theory takes a very different approach. It
does not attempt to solve this “new riddle of induction.” It
does not attempt to distinguish those predicates that are really
projectible from those that are not, and it does not attempt to
distinguish those hypotheses that are really confirmable from
their instances from those that are not.

Of course, statistical learning theory does accept the moral
that induction requires inductive bias among hypotheses. But

it does not attempt to specify a unique class C of confirmable

"hypotheses. In the case of enumerative induction, statistical
learning theoty says only that the set C of hypotheses to be con-
sidered must have finite VC dimension. In the case of structural
risk minimization, statistical learning theory requires a certain
structure on the set of hypotheses being considered. Statistical
learning theory does not attempt to specify which particular
hypotheses are to be included in the set C, nor where particular
hypotheses appear in the structures needed for structural risk
minimization.

Goodman's riddle has received extensive discussion by philos-
ophers {(some collected in Stalker 1994 and Elgin 1997), While
- many authors suppose that the solution to the new riddle of
induction requires specifying some relevant class of projectible
hypotheses, others have argued instead that what is needed is

" ;an account of “degrees of projectibility,” where for example

intuitively simpler hypotheses count as more projectible than
intuitively more complex hypotheses,

Ome observation about these two interpretations of the riddle
is that the first, with its emphasis on restricting induction to a
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special class of projectible hypotheses, involves identifying in-
duction with enumerative induction, conceived as empirical
risk minimization, with the advantages and disadvantages of
considering only rules from a class of rules with finite VC di-
mension. The second interpretation, with its emphasis on
degrees of projectibility, can allow consideration of rules from a
class of rules with infinite VC dimension. It can do this by aban-
doning simple enumerative induction in favor of structural
risk minimization or some other way of balancing data-coverage
against simplicity or projectibility.

Philosophers discussing Goodman’s new riddle have not
fully appreciated that these two ways of approaching the
new riddle of induction involve different kinds of inductive

ethods, empirical risk minimization on the one hand and

ethods that balance fit to data against something else on the
jother hand.

One philosophically useful thing about the analysis of induc-
tive reasoning in statistical learning theory is the way it sheds
light on the difference between these two interpretations of
Goodman’s new riddle,

3.9 Popper on Simplicity

We now want to say something more about Popper’s {1934,
1979} discussion of scientific method. We noted earlier that
Popper argues that there is no justification for any sort of induc-
tive reasoning, but he does think that there are justified scien-
tific methods.

In particular, he argues that a version of structural risk mini-
mization best captures actual scientific method (although of
coutrse he does not use the term “structural risk minimization”).
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In his view, scientists accept a certain ordering of classes of
hypotheses, an ordering based on the number of parameters
needing to be specified to be able to pick out a particular mem-
ber of the class. So, for example, for real value estimation on the
basis of one feature, linear hypotheses of the form y = ax+b
have two parameters, a and b; quadratic hypotheses of the form
y = ax? + bx + ¢ have three parameters, @, b, and ¢; and so forth, -

S0, linear hypotheses are ordered before quadratic hypotheses,
and so forth.

Popper takes this ordering to be based on “falsifiability” in the
sense that at least three data points are needed to “falsify” a
claim that the relevant function is linear, at least four are needed

to “falsify” the claim that the relevant function is quadratic, and -

50 forth.

As explained in chapter 2, in Popper’s somewhat misleading
terminology, data “falsify” a hypothesis by being inconsistent
with it, so that the hypothesis has positive empirical error on
the data. He recognizes, however, that actual data do not show

that a hypothesis is false, because the data themselves might be

noisy and so not strictly speaking correct.

Popper takes the ordering of classes of hypotheses in terms of
parameters to be an ordering in terms of “simplicity” in one im-
portant sense of that term. So, he takes it that scientists balance
data-coverage against simplicity, where simplicity is measured
by “falsifiability” (Popper 1934, section 43).

We can distinguish several claims here.

(1) Hypothesis choice requires an ordering of nested classes of
hypotheses.

(2) This ordering represents the degree of “falsifiability” of a
given class of hypotheses,
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(3} Classes are ordered in accordance with the number of
parameters whose values need to be specified in order to
pick out specific hypotheses.

(4) The ordering ranks simpler hypotheses before more complex
hypotheses.

Claim (1) is also part of structural risk minimization, Claim (2)
Is similar to the appeal to VC dimension in structural risk minj-
mization, except that Popper's degree of falsifiability does not
coincide with VC dimension, as noted in chapter 2 above, As
we will see in a moment, claim {3) is inadequate and, interpreted
as Popper does, it is incompatible with (2) and with structural
tisk minimization. Claim (4) is at best terminological and may
be just wrong,

Claim (3} is inadequate because there can be many ways to
specify the same class of hypotheses, using different numbers of
parameters. For example, linear hypotheses in the plane might
be represented as instances of abx + cd, with four parameters in-
stead of two. Alternatively, notice that it is possible to code a
pair of real numbers g, b as a single real number ¢, so that g and
b can be recovered from ¢, That is, there are functions such that
fla,b) = ¢, where f1{c) = a and f2(c) = b.* Given such a coding,
we can represent linear hypotheses as f; (¢)x -+ f2(c} using only the
one parameter c. Int fact, for any class of hypotheses that can be
represented using P parameters, there s another way to represent
the same class of hypotheses using only one paraméter.

Perhaps Popper means claim (3) to apply to some ordinary or
preferred way of representing classes in terms of parameters, so
that the representations using the above coding functions do

2. For example, f might take the decimal representations of ¢ and b and
interleave them to get ¢
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A

Figure 3.3
Real variable estimation using sine curves.

not count. But even if we use ordinary representations, claim (3}
conflicts with claim (2) and with structural risk minimization.

To see this, consider the class of sine curves y = a sin(bx). For -

almost every set of n1 consistent data points (which do not assign
different y values to the same x value) there will be sine curves
coming arbitrarily close to those peoints (figure 3.3). In that
sense, the class of sine curves has infinite “falsifiability” in
Popper’s sense even though only two parameters have to be
specified to determine a particular member of the set, using
the sort of representation Popper envisioned. Popper himself did
not realize this and explicitly treats the class of sine curves as
relatively simple in the relevant respect (1934, Section 44).

The class of sine curves can also be seen to have infinite VC
dimension if we think of the curves as rules for dlassifying points
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as “too high” or “not too high,” because for any N there will be
a set of N points that is shattered by the class of sine curves.
That is, members of that class can provide the 2V possible classi-
fications of the N points,

The fact that the class of sine curves has infinite VC dimen-
sion, as well as infinite falsifiability in Popper’s sense, is some
evidence that the relevant ordering of hypotheses for scientific
hypothesis acceptance is not a simplicity ordering, at least if
sine curves count as “simple.”

3.10 Empirically Equivalent Rules

Finally, we consider whether empirically equivalent hypotheses
must always be treated in the same way in statistical learning
theory. In particular, what about scientific hypotheses in com-
parison with empirically equivalent skeptical hypotheses?

Suppose two hypotheses, I and G, are empirically equivalent.
For example, where H is some highly regarded scientific hypoth-
esis, let G be the corresponding demonic hypothesis that a pow-
erful godlike demon has arranged that the data you get will be
exactly as expected if H were true. Could simplicity as analyzed
in statistical learning theory provide a reason to accept H rather
than G?

One might suppose that the answer is “no,” because the kinds

of analyses provided by statistical learning theory concern how

to minimize expected errors, and these two hypotheses make ex-
actly the same predictions. Indeed, if we identify the hypotheses
with their predictions, they are the same hypothesis.

But it isn't obvious that hypotheses that make the same
predictions should be identified. The way a hypothesis is rep-
resented suggests what class of hypotheses it belongs to for
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purposes of assessing simplicity, Different representations sug-
gest different classes. Even mathematically equivalent hypo-
theses might be treated differently within statistical learning
theory. The class of linear hypotheses, f(x) = ax + b, is simpler
than the class of quadratic hypotheses, f (x) = ax? +bx +c, on

vartous measures—number of parameters, VC dimension, and -

so on. If the first parameter of a quadratic hypothesis is 0, the
hypothesis is mathematically equivalent to a linear hypothesis.
But its linear representation belongs to a simpler class than the
quadratic representation, So for purposes of choice of rule, there
is reason to count the linear representation as simpler than the
quadratic representation.

Similarly, although H and G yield the same predictions, there
is a sense in which they are not contained in the same hypothe-
sis classes. We might say that H falls into a class of hypotheses
with a better simplicity ranking than G, perhaps because the
class containing H has a lower VC dimension than the class con-
taining G. The relevant class containing G might contain any
hypothesis of the form, “The data will be exactly as expected as
if ¢ were true,” where ¢ ranges over all possible scientific hy-
pothesis. Since ¢ has infinite VC dimension, so does this class
containing (. From this perspective, there is reason to prefer H
over G even though they are empirically equivalent.

So, in fact we may have reason to think that we are not living
in the Matrix (Wachowski and Wachowski 1999)!

3,11 Important Ideas from Statistical Learning Theory

Here are some of the ideas from statistical learning theory that
we have discussed so far which we believe are philosophically
and methodologically important.
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the reliability of a rule of classification in terms of expected cost
or expected error, where that presupposes a background statist-
cal probability distrtbution.

With respect to rules of classification, there is the notion of
the Bayes Rule, the most reliable rule, the rule with the least
expected error or expected cost,

The goodness of an inductive method is to be measured in
terms of the reliability of the classification rules the method
comes up with,

Usetul inductive methods require some inductive bias, either
as reflected in a restriction in the tules in C or as a preference
for some rules in C over others.

There is the idea of shattering, as capturing a kind of notion of
falsifiability, and the corresponding notion of VC dimension.

There is the contrast between uniform convergence of error
rates and universal consistency.

In the next chapter we will discuss some additional ideas from
statistical learning theory and consider their significance for psy-

chology and cognitive science as well as for philosophy.

3.12  Summary

In this chapter, we compared enumerative induction with meth-
ods that also take into account some ordering of hypotheses.
We discussed how these methods apply to classification and to
real variable estimation or curve fitting. We compared two differ-
ent methods for balancing data-coverage against an ordering of
hypotheses in terms of simplicity or some simplicity substitute,
We noted that there are two ways to respond to Goodman's
(1965) new riddle of induction, corresponding to these two

Statistical learning theory provides a way of thinking about

[ljeey
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xinds of inductive method. We also discussed some of Karl
Popper’s ideas about scientific method, trying to distinguish
what is right and what is wrong about these ideas. Finally, we
considered how appeal to simplicity or some similar ordering
might provide a principled way to prefer one hypothesis over
another skeptical hypothesis that is empirically equivalent
with it

4 Neural Networks, Support Vector Machines, and
Transduction

4.1 Introduction

In our three previous chapters we discussed methods of induc-
tion that arrive at general rules of classification on the basis
of empirical data. We contrasted enumerative induction with
nearest neighbor induction and with methods of induction that
balance empirical risk against some sort of ordering of hypoth-
eses, including structural risk minimization in which classes of
hypotheses are ordered by their VC dimension. We compared
results about these methods with philosophical discussions by
Nelson Goodman and Karl Popper.

In this final chapter, we briefly sketch some applications of
statistical learning theory to machine learning, including per-
ceptrons, feed-forward neural networks, and support vector
machines. We consider whether support vector machines might
provide a useful psychological model for human categorization.
We describe recent research on “transduction.” Where induc-
tion uses labeled data to come up with rules of classification,
fransduction also uses the information that certain new un-
labeled cases have come up.




