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How to Tell when Simplerf More Unified, 
or Less Ad Hoc Theories will Provide 

More Accurate Predictions 
MALCOLM FORSTER AND ELLIOTT SOBER* 

ABSTRA CT 

Traditional analyses of the curve fitting problem maintain that the data do not 
indicate what form the fitted curve should take, Rather, this issue is said to be 
settled by prior probabilities, by simplicity, or by a bacgkround theory. In this 
paper, we describe a result due to Akaike [1973], which shows how the data 
can underwrite an inference concerning the curve's form based on an estimate 
of how predictively accurate it will be. We argue that this approach throws 
light on the theoretical virtues of parsimoniousness, unification, and non ad 
hocness, on the dispute about Bayesianism, and on empiricism and scientific 
realism. 
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I INTROI)UCTION 

Curve fitting is a two-step process. First one selects a family of curves (or the 
form that the fitted curve must take). Then one finds the curve in that family 
(or the curve of the required form) that most accurately fits the data. These two 
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Special thanks go to A. W. F. Edwards, William Harper, Martin Leckey, Brian Skyrms, and 
especially Peter Turney for helpful comments on an earlier draft. 
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steps are universally supposed to answer to diSerent standards. The second 
step requires some measure of goodness-of-fit. The first is the context in which 
simplicity is said to play a role. Intrinsic to this two-step picture is the idea that 
these different standards can come into conflict. Maximizing simplicity usually 
requires sacrifice in goodness-of-fit. And perfect goodness-of-fit can usually be 
achieved only by selecting a complex curve. 

This view of the curve fitting problem engenders two puzzles. The first 
concerns the nature and justification of simplicity. What makes one curve 
simpler than another and why should the simplicity of a curve have any 
relevance to our opinions about which curves are true? The second concerns 
the relation of simplicity and goodness-of-fit. When these two desiderata 
conflict, how is a trade-oS to be eSected? A host of serious and inventive 
philosophical proposals notwithstanding both these questions remain 
unanswered. 

If it could be shown that a single criterion for selecting a curve gives due 
weight to both simplicity and goodness-of-fit, then the two problems 
mentioned above for traditional analyses of the curve fitting problem would 
fall into place. It would become clear why simplicity matters (and how it 
should be measured). In addition, simplicity and goodness-of-fit would be 
rendered commensurable by representing each in a common currency. In 
what follows we describe a result in statistics, stemming from the work of 
Akaike [1973], [1974], which provides this sort of unified treatment of the 
problem, in which simplicity and goodness-of-fit are both shown to contribute 
to a curve's expected accuracy in making predictions. 

2 AKAIKE WITHOUT TEARS 

In this section, we present the basic concepts that are needed to formulate the 
curve-fitting problem and to solve it. To begin with, we need to describe the 
kinds of hypotheses that curves represent and the relationship of those curves to 
the data we have available. A 'deterministic' curve is a line in the X/Y plane; it 
represents a function, which maps values of X (the independent variable) onto 
unique values of Y (the dependent variable).2 For example, Figure 1 depicts 
two such curves; each says that Y is a linear funcion of X. Each of these curves 

l There is a growing technical literature on the subject. Linhart and Zucchini [1986] surveys the 
earlier work of statisticians. Researchers in computer science have used the concept of 'shortest 
data descriptions' to warrant the trade-offbetween simplicity and goodness-of-fit. See Rissanen 
[1978], [1989], or more recently, Wallace and Freeman [1992]. While there are criteria in the 
literature that are quantitatively different from Akaike's, there is a measure of agreement in the 
way they define simplicity and goodness-of-fit. We have focused on Akaike's seminal work 
because he motivates his criterion in a general and perspicuous manner. 

2 The idea that there is just one independent variable is a simplifying assumption adopted for 
ease of exposition. The results we will describe generalize to any number of independent 
variables. 
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may be obtained by fixing the values of the parameters a() and al in the 
following equation: 

Y=a(,+al X. 

The two curves in Figure 1 are equally simple, we might say, because each is a 
straight line and each is obtained from a functional form in which there are 
just two adjustable parameters. These two curves belong to a family of 
curves namely, the set of all straight lines. We will be talking about both 
specific curves andfamilies of curves in what follows, so it will be important to 
keep the distinction between them in mind. In fact, it will turn out that there is 
no need to define the simplicity of a specific curve; all that is needed is the 
notion of the simplicity of a family of curves, and this Akaike's approach 
provides. 

Curve 2 

/ Curve 1 
Curve 2's prediction of Y ----------/ / 

.s 

The observed value of Y ------ ---- ----- *; 
Curve 1's prediction of Y -------------// 

Observed value of X X 

FIGURE 1 

Suppose the true specific curve determined the outcomes of the observations we 
make. Then, if Curve 1 were true, the set of data points we obtain would have 
to fall on a straight line (i.e., on the straight line depicted by Curve 1 itself). But 
we will suppose that the observation process involves error. Even if Curve 1 
were true, it is nonetheless quite possible that the data we obtain will not fall 
exactly on that curve. It may be impossible to say when any particular data 
point will fall above or below the true curve-only that it should 'tend' to be 
close. To represent this possibility of error, we associate a probability 
distribution with each curve. This distribution tells us how probable it is that 
the Y-value we observe for a given X-value will be 'close' to the curve. The most 
probable outcome is to obtain a Y-value that falls exactly on the true curve. 
Locations that are further offthe curve have lower probabilities (symmetrically 
above and below) of being what we observe. 

To make this idea concrete, suppose that we are interested in plotting the 
location of a planet as it moves across the sky. In this case, the X-axis 
represents time and the Y-axis represents location. The true curve is the actual, 
unique trajectory of the planet. But our observation of the planet's motion is 
subject to error. Even if Curve 1 in Figure 1 describes the planet's true 
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trajectory, it nonetheless is possible that we should obtain data that fail to fall 
exactly on that curve. 

So there are two factors that influence the observations we make. There is 
the planet's actual trajectory; and there is the process of observation, which is 
subject to error. If the planet's trajectory is a straight line, we can combine 
these two influences into a single expression: 

(LIN) Y=oc()+ocl X+v U. 

The last addend represents the influence of error. Here, of course, Y doesn't 
represent the planet's actual location, but represents its apparent location. 3 

Now consider the data points depicted in Figure 1. If Curve 1 were true, it is 
possible that we should obtain the data before us. But the same is true of Curve 
2; if it were true, it also could have generated the data at hand. Although this is 
a similarity between the two curves, there nonetheless is a difference: the 
probability of obtaining the data, if Curve 1 is true, exceeds the probability of 
obtaining the data, if Curve 2 were true: p(Data/Curve 1) p(Data/Curve 2).4 
Statisticians use the technical term likelihood to describe this diSerence; they 
would say that Curve 1 is more likely than Curve 2, given the data displayed. 
It is important to note that the likelihood of a hypothesis is not the same thing 
as its probability; don't confuse p(Data/Curve 1) with p(Curve 1/Data). 

In a sense, Curve 1 fits the data better than Curve 2 does. The standard way 
to measure this goodness-of-fit is by a curve's sum of squares (sOs). As depicted 
in Figure 1, we compute the difference between the Y-value of a data point and 
the Y-value on the curve directly above or below it. We square this difference 
and then sum the same squared differences for each data point. Curve 1 has a 
lower SOS value than Curve 2, relative to the data in Figure 1. Comparing SOS 
values is a way to compare likelihoods. Notice that if we were to irlcrease the 
number of data points, the SOS values for both curves would almost certainly 
go up.5 

We can use the concept of SOS to reformulate the curve-fitting problem. 
Given a set of data, how are we to decide which curve is most plausible? If 
minimizing the SOS value were our sole criterion, we would almost always 
prefer bumpier curves over smoother ones. Even though Curve 1 is rather close 
to the data depicted in Figure 1, we could draw a more complex curve that 

3 Alternatively, the error terrn can be given a physical, instead of an epistemological, 
interpretation, if one wishes to represent the idea that nature itself is stochastic. In that case, Y 
would represent the planet's 'mean' position. This difference in interpretation will not affect our 
subsequent discussion. 

4 When random variables are continuous, the likelihood is defined in terms of probability 
densities rather than probabilities. A lower case p is a probability density, while the upper case P 
is reserved for probabilities. 

5 The SOS value for a curve cannot go down as the data set is enlarged; it would stay the same, if, 
improbably enough, the new data points fell exactly on the curve. Also note that a curve's 
likelihood will decline as the data set is enlarged, even if the new points fall exactly on the curve. 
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passes exactly through those data points. The practice of science is to not do 
this. Even though a hypothesis with more adjustable parameters would fit the 
data better, scientists seem to be willing to sacrifice goodness-of-fit if there is a 
compensating gain in simplicity. The problem is to understand the rationale 
behind this behaviour. Aesthetics to one side, the fundamental issue is to 
understand what simplicity has to do with truth. 

The universal reaction to this problem among philosophers has been to 
think that the only thing the data tell you about the problem at hand is given 
by the SOS values. The universal refrain is that 'if we proceed just on the basis 
of the data, we will choose a curve that passes exactly through the data points'. 
This interpretation means that giving weight to simplicity involves an 
extraempirical consideration. We thereby permit considerations to influence 
us other than the data at hand. Giving weight to simplicity thus seems to 
embody a kind of rationalism; a consistent empiricist must always opt for 
bumpy curves over smooth ones. 

The elementary framework developed so far allows us to show that this 
standard reaction is misguided. Let us suppose that the curve in Figure 2 is 
true. Now consider the data that this true curve will generate. Since we assume 
that observation is subject to error, it is overwhelmingly probable that the data 
we obtain will not fall exactly on that true curve. An example of such a data 
set, obtained from the true curve, also is depicted in Figure 2. Now suppose we 
draw a curve that passes exactly through those data points. Since the data 
points do not fall exactly on the true curve, such a best-fitting curve will be 
false. If we think of the true curve as the 'signal' and the deviation from the true 
curve generated by errors of observation as 'noise', then fitting the data 
perfectly involves confusing the noise with the signal. It is overwhelmingly 
probable that any curve that fits the data perfectly is false. 

Of course, this negative remark does not provide a recipe for disentangling 
signal from noise. We know that any curve with perfect fit is probably false, but 
this does not tell us which curve we should regard as true. What we would like 
is a method for separating the 'trends' in the data from the random deviations 
from those trends generated by error. A solution to the curve fitting problem 
will provide a method of this sort. 

Ys 

H 
* *? 

*s 

/. 

X 

FIGURE 2 
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To explain Akaike's proposal, we need to introduce a precise definition of 
how successful a curve is in identifying the trend behind the data. In addition 
to talking about a curve's distance from a particular data set, we need a way to 
measure a curve's distance from the true curve. A constraint on this new 
concept is already before us: a curve that is maximally close to the data 
(because it passes exactly through all the data points) is probably not going to 
be maximally close to the truth. Closeness to the truth is different from 
closeness to the data. How should the concept of closeness to the truth be 
defined? 

Let us suppose that Curve 1 in Figure 1 is true. We want a way to measure 
how close Curve 2 is to this true curve. Curve 1 has generated the data set 
displayed in the figure, and we can use the SOS measure to describe how close 
Curve 2 is to these data points. The idea is to define the distance of Curve 2 from 
Curve 1 in terms of the average distance of Curve 2 from the data generated by 
Curve 1. So, imagine that Curve 1 generates new data sets, and each time we 
measure the distance of Curve 2 from the generated data set. We repeat this 
procedure indefinitely, and we compute the average distance that Curve 2 has 
with respect to data sets generated by the true Curve 1. Remember that this 
average is computed over the space of possible data sets. rather than actual data 
sets.6 This allows us to define distance from the truth as follows: 

Distance from the true curve T of curve C = df 

Average[SOS of C, relative to data set D generated by T]- 
Average [SOS of T, relative to data set D generated by T]. 

First, note that the distance from the true curve is relative to the process of data 
generation; it depends on the method of generating the array of X-values 
whose asociated Y-values the curves are asked to predict.7 Second, note that 
the true curve T, is the curve that is closest to the truth (its distance from the 
truth is O) according to this definition. However, the average SOS value of the 
true curve T, relative to the data sets that T generates, is nonzero. This is 
because of the role of error; on average, even the true curve won't fit the data 
perfectly. 

We now define the concept of distance from the truth forfamilies of curves. 
The above definition defines what it means for Curve 2 to be a certain distance 
from the true curve. But what would it mean to describe how close to the true 
curve the family of straight lines (LIN) is? Here's the idea: Let's think of two data 
sets, D1 and D2, each generated by the true curve T. First, we find the specific 
curve within the family that fits D1 best. Then we compute the SOS of that 

6 Statistieians mark this distinction by using the term 'expected value' rather than 'average value'. 
We have ehosen not to do this beeause the psyehologieal eonnotations of the word 'expected' 
may mislead some readers. 

7 The X-arrays for the predieted data do not have to be the same as the X-array for the aetual 
data, but both must be generated by the same stoehastic process. 
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curve relative to the second data set D2. Imagine carrying out this procedure 
again and again for diSerent pairs of data sets. The average SOS obtained in 
this way is the family's distance from the truth: 

Distancefrom the true curve T offamily F=df 
Average[SOS of L1(F), relative to data set D2 generated by T]- 

Average[SOS of T, relative to data set D2 generated by T]. 

Here L1 (F ) is the best fitting ('likeliest') member of the family F, relative to data 
set D1.8 

Our definition of a family's distance from the truth is intended to measure 
how accurate the predictions will be that the best fitting curve in a family 
generates. Consider the family of straight lines (LIN) and the data displayed in 
Figure 1. How close is the family (LIN) to the truth? We can imagine finding the 
straight line that best fits the data at hand. The question we'd like to answer is 
how accurately that particular strai0ht line will predict new data. The average 
distance from the truth of best fitting curves selected from that family is the 
distance of the family from the truth: 

Distance from the true curve T of family F= 
Average[Distance of best fitting curves in F from the truth T]. 

Our interest in the distance of families from the truth stems from this equality. 
Families are of interest because they are instruments of prediction; they make 
predictions by providing us with a specific curve viz, the curve in the family 
that best fits the data.9 

If the true curve is in fact a straight line, (LIN) will of course be very close to 
the truth (though the distance will be nonzero).l) But if the truth is highly 
nonlinear, (LIN) will perform poorly as a device for predicting new data from 
old data. Let us move to a more complicated family of curves and ask the same 
questions. Consider (PAR), the family of parabolic equations: 

(PAR) Y = ,B(, + ,BI X + ,B2X 2 + ff U. 

Specific parabolas will be w-shaped or n-shaped curves. Notice that (LIN) is a 
subset of (PAR). If the true specific curve is in (LIN), it also will be in (PAR). 
However, the converse relation does not hold. 

So if (LIN) is true, so is (PAR) (but not conversely). This may lead one to 

8 The definition of distance from the truth of a specific curve C is a special case of the definition for 
a family of curves F. A family is a set of curves; when a family contains just one curve, its best 
fitting member is just that curve itself. 

9 In the kinds of example we consider, there will be a unique curve in a family that fits the data 
best when the number of data points exceeds the number of adjustable parameters. 
A family can be literally true (by including the true curve) and still have a non-zero distance 
from the truth because other curves in the family (including L(01 )) will be closer than the true 
curve to the actual data. 
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expect that (PAR) must be at least as close to the truth as (LIN) is. However, this 
is not so! Let's suppose that the true curve is, in fact, a straight line. This will 
generate sets of data points that mostly fail to fall on a straight line. Fitting a 
straight line to one set of data points will provide more accurate predictions 
about new data than will fitting a parabolic curve to that set. For each data set, 
the best fitting parabola will be closer to the data than the best fitting straight 
line. But this leaves open how well these two curves will predict new data. (LIN) 
will be closer to the truth (in the sense defined) than (PAR) is if the truth is a 
straight line. 

Curves that fit a given data set perfectly will usually be false; they will 
perform poorly when they are asked to make predictions about new data sets. 
Perfectly fitting curves are said to 'oveffit' the data. This fact about specific 
curves is reflected in our definition of what it means for a family to be close to 
the truth. If (LIN) is closer to the truth than (PAR) is, then a straight line 
hypothesis fitted to one data set will do a better job of predicting new data than 
a parabolic curve fitted to the same data, at least on average. In this case, the 
more complex family is disadvantaged by the greater tendency of its best fitting 
case, L(PAR), to overfit the data. 

The definitions just given of closeness to the truth do not show how that 
quantity is eplstemologically accessible. To apply these definitions and 
compute how close to the truth a curve C (or a family F) is, one must know 
what the truth (T) is. Nonetheless we can use the collcept of closeness to the 
truth to reformulate the curve-fitting problem and to provide it with a solution. 

All families with at least one free parameter are able to reduce their least SOS 
by fitting to random fluctuations in the data. This is true of low dimensional 
families as well, though to a lesser degree. For example, the data in Figure 1 
were generated by a straight line, but random fluctuations in the data enable a 
parabola to fit it better than any staight line. This shows that the phenomenon 
of overfitting is ubiquitous.ll Thus, there are two reasons why the least SOS 
goes down as we move from lower to higher dimensional families: (a) Larger 
families generally contain curves closer to the truth than smaller families. (b) 
Overfitting: The higher the number of adjustable parameters, the more prone 
the family is to fit to noise in the data. Our promised reformulation of the curve 
fitting problem is this: We want to favour larger families if the least SOS goes 
down because of factor (a), but not if its decline is largely due to (b). If only we 
could correct the SOS value for overfitting, then the corrected SOS value would 
be an unbiased indication of what we are interested in viz. the distance from 
the true curve. 

l l This is the same overfitting problem that plagues general purpose learning devices like neural 
networks. Moody [1992] and Murata et al. [1992] are working on generalizing the Akaike 
framework to apply to artificial neural networks. See Forster [1 992b] for further details. It is 
interesting that there is such a fundamental connection between neural learning and the 
philosophy of science (Churchland [1989]). 
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At this point, we will simply state Akaike's theorem without attempting to 
work through the mathematical argument that establishes its correctness. 
(See the Appendix A for a non-technical explanation of the assumptions 
needed and Appendix B for the proof of the theorem in a special case. The most 
thorough, and accessible, technical treatment is found in Sakamoto et al. 
[1986].) Akaike [1973] discovered a way of estimating the size of the 
overfitting factor. The procedure is fallible, of course, but it has the 
mathematical property of providing an unbiased estimate12 of the comparative 
distances of diSerent families from the truth under favourable conditions (see 
Appendix A). The amazing thing about Akaike's result is that it renders 
closeness to the truth epistemologically accessible; the estimate turns on facts 
that we can readily ascertain from the family itself and from the single data set 
we have before us: 

Estimated(Distance from the truth of family F) = 
SOS[L(F )] + 2k 2 + Constant. 

L(F) is the member of the family that fits the data best, k is the number of 
adjustable parameters that the family contains, and v2 iS the variance (degree 
of spread) of the distribution of errors around the true curve. The last term on 
the right hand side is common to all families, and so it drops out in comparative 
judgments. 

The first term on the right hand side, SOS[L(F)], is what we have been 
calling the least SOS for the family. It represents what empiricists have 
traditionally taken to exhaust the testimony of evidence. The second term 
corrects for the average degree of overfitting for the family. Since overfitting 
has the eSect of reducing the SOS, any correction should be positive. That this 
correction is proportional to k, the number of adjustable parameters,1 3 reflects 
the intuition that overfitting will increase as we include more curves that are 
able to mould themselves to noise in the data. That the expected degree of 
overfitting also is proportional to 2 iS plausible as well the bigger the error 
deviations from the true curve, the greater the potential for misleading 
fluctuations in the data. Also note that if there is no error (ff2 = O), then the 
estimate for the distance from the truth reduces to the least SOS value. The 

12 'Unbiased' means that its average performance will centre on the true value of the quantity 
being estimated. Note that an unbiased estimator can have a wide or narrow variance, which 
measures how much the estimate 'bounces around' on average. Unbiasedness is only one 
desideratum for 'good' estimators. 

13 In our running example, (LIN) contains two adjustable parameters and (PAR) contains three. 
The number of adjustable parameters is not a merely linguistic feature of the way a family is 
represented. For example, Y=a+,BX+yX is one way of representing (LIN), but k is still 2, 
because there is a reparameterization (viz. oc' = a,,B' = (,B + y), and y' = (,B-y)) such that 
Y=a'+:'X. In contrast, the dimension of the family Y=a+#X+yZ is 3 because there is no 
such reparameterization. 
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postulation of error is essential if simplicity (as tneasured by k) is to be relevant 
to our estimates concerning what is true.l4 

We will use the term 'predictive accuracy' to describe how close to the truth 
a curve or family is. 'Accuracy' is a synonym for 'closeness to the truth', while 
the term 'predictive' serves to remind the reader that the concept is relativized 
to the process by which the true curve generates new data. Instead of using 
SOS as a measure of distance, we use the log of the likelihood to measure 
closeness to the data (the greater the log-likelihood, the smaller the distance 
from the data). Thus, we define the predictive accuracy of a curve C, denoted by 
A(Curve C), as the average log-likelihood of C per datum. The predictive 
accuracy of a family F is the average predictive accuracy of its best fitting 
curves.l5 This leads to a more general statement of Akaike's Theorem, since 
the log-likelihood applies to cases, like coin tossing examples, in which the SOS 
value is not defined. Recalling the connection between the low SOS value of 
a specific curve and its high likelihood, the general statement of Akaike's 
theorem is as follows: 

Akaike's Theorem: Estimated[A(family F)]=(1/N) [log-likelihood(L(F))-k], 

where N is the number of data points. 16 We no longer need to assume that the 
error variance, v2, is known, for the error variance may be treated as another 
adjustable parameter. l 7 

4 We regard the total absence of error as radically implausible. Even if nature were completely 
deterministic, there still would be observational errors. And even then, there still would be 
lawless deviations from any 'curve' that limits itself to an impoverished stock of independent 
variables. For example, it may be that the temperature at a particular place and time is 
determined. A curve that truly captures the dependence of temperature on the time of day and 
time of year will not predict the temperature exactly because there are other relevant factors. 
The data will behave as randomly as if the world were indeterministic. From an epistemological 
point of view, this is all that matters. Forster [1988b] and Harper [1989] examine the role of 
this third kind of error (arising from the action of other variables) in the 'exact' science of 
astronomy. 
This average is computed as follows: Take a data set D1 generated by the true curve T, and note 
the predictive accuracy of the best curve L1 (F ) in F relative to D1 . Imagine that this procedure is 
repeated with new data sets D2, D3, . . ., each time noting the predictive values of the curves 
L2(F), L3(F), . . . Now take the average of all these values. 
The factor ( 1/N) arises from the fact that we prefer to define accuracy as the average per datum 
log-likelihood, so that the accuracy of a hypothesis does not change when we consider the 
prediction of data sets of different sizes. 

17 When O2 iS treated as unknown, a curve (by itselr) no longer confers a probability on the data. 
Literally speaking, a curve is afamily of probability distributions-one for each numerical value 
of (J2, From now on we will understand a 'curve' to be associated with some specific numerical 
value Of (J2, Also note that Akaike's estimate of predictive accuracy of a family of 'curves' in 
which a2 is a free parameter is related to the least SOS value for the family by a different formula 
(Sakamoto et al. [1986], p. 170): 

Estimate[A(Family F')] =-(1/2)10g[SOS(B(F))/N]-k'/N+ constant, 

where F' is the higher dimensional family obtained from F by making 2 adjustable. Here, 
SOS(B(F )) is the least SOS for the original family F, and k' is the dimension of the final family. 
For LIN and PAR, k' = k + 1. 
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This theorem, we believe, provides a solution to the curve-fitting problem. It 
explains why fitting the data at hand is not the only consideration that should 
aSect our judgment about what is true. The quantity k is also relevant; it 
represents the bearing of simplicity. A family F with a large number of 
adjustable parameters will have a best member L(F) whose likelihood is high; 
however, such a family will also have a high value for k. Symmetrically, a 
simpler family will have a lower likelihood associated with its best case, but will 
have a low value for k. Akaike's theorem shows the relevance of goodness-of-fit 
and simplicity to our estimate of what is true. But of equal importance, it states 
a precise rate-of-exchange between these two conflicting considerations; it 
shows how the one quantity should be traded oF against the other. We 
emphasize that Akaike's theorem solves the curve-fitting problem without 
attributing simplicity to specific curves; the quantity k, in the first instance, is a 
property of families.l8 

A special case of Akaike's result is worth considering. Suppose one has a set 
of data that falls fairly evenly around a straight line. In this case the best fitting 
straight line will be very close to the best fitting parabola. So L(LIN) and L(PAR) 
will have almost the same SOS values. In this circumstance, Akaike's theorem 
says that the family with the smaller number of adjustable parameters is the 
one we should estimate to be closer to the truth. A simpler family is preferable if 
it fits the data about as well as a more complex family. Akaike's theorem 
describes how much of an improvement in goodness-of-fit the move to a more 
complicated family must provide for it to make sense to prefer the more 
complex family. A slight improvement in goodness-of-fit will not be enough to 
justify the move to a more complex family. The improvement must be large 
enough to overcome the penalty for complexity (represented by k). 

Another feature of Akaike's theorem is that the relative weight we give to 
simplicity declines as the number of data points increases. Suppose that there is 
a slight parabolic bend in the data, reflected in the fact that the SOS value of 
L(PAR) is slightly lower than the SOS value of L(LIN). Recall that the absolute 
value of these quantities depends on the number of data points. With a large 
amount of data our estimate of how close a family is to the truth will be 
determined largely by goodness-of-fit and only slightly by simplicity. But with 
smaller amounts of data, simplicity plays a more determining role. Only when 
a nonlinear trend in the data is 'statistically significant' should that regularity 
be taken seriously. This is an intuitively plausible idea that Akaike's result 
explains. 

3 UNIFICATION AS A SCIENTIFIC GOAL 

It is not at all standard to think that the curve fitting problem is related 
lx Thus, the problems of defining the simplicity of curves described by Priest [1976] do not 

undermine Akaike's proposal. 



Malcolm Forster and Elliott Sober I2 

intimately to the problem of explaining why unified theories are preferable to 
disunified ones. The former problem usually is associated with 'inductive' 
inference, the latter with 'inference to the best explanationt. We are inclined to 
doubt that there really are such fundamentally different kinds of nondeductive 
inference (Forster [1986], [1988a], [1988b]; Sober [1988b], [199Oa], 
[199Ob].19 In any case, Akaike's approach to curve fitting provides a ready 
characterization of the circumstances in which a unified model is preferable to 
two disunified models that cover the same domain.2') 

It is always a substantive scientific question whether two data sets should be 
encompassed by a single theory or different theories should be constructed for 
each. Should celestial and terrestrial motion be given a unified treatment or do 
the two sets of phenomena obey diSerent laws? In retrospect. it may seem 
obvious that these two kinds of motion should receive the same theoretical 
treatment. But this is the wisdom of hindsight; individual phenomena do not 
have written on their sleeves the other phenomena with which they should be 
coalesced. 

Traditional approaches to this problem make the allure of unification 
something of a mystery.2l Given two data sets D1 and D1, a unified model Mu 

William Whewell [1840] described the process of curve fitting as a special case of a process of 
conceptualization called the 'colligation of facts' (Forster [1988bl). He then referred to the 
process that leads to the unification of disparate curve fitting solutions as the 'consilience of 
inductions'. On our view, both of these processes are seen as aspects of a single kind of 
inferential procedure. Bogen and Woodward [1988] argue that the inferential relationship 
of observation to theory has two parts: of observation to phenomena and of phenomena to 
theory. Again, it is not clear to us that these relationships are fundamentally diSerent in kind. 

2() We will follow statistical practice and reserve the term 'model' for a family of hypotheses, in 
which each hypothesis includes a specific statement about the distribution of errors (so that 
likelihoods are well defined). A model leaves the values of some parameters unspecified. In 
applying the term to astronomy, we need only assume that some assumption about theform of 
the error distribution is included (e.g. that the distribution is G,aussian. as was assumed in 
Gauss's own application of the method of least squares to astronomy see Porter [ 1 986] ). The 
variance of the distribution may be left as an adjustable parameter. The important point to 
notice is that distinguishing models from curves. or from abstract 'theories'. is now critical to 
the philosophy of science, since Akaike's framework only provides a way of defining the 
simplicity of models. 

21 Friedman [1983], like some ofthe authors he cites (p 242), describes unification as the process 
of reducing the number of independent theoretical assumptions. Of course, a model that 
assumes principles A, B and C is made more probable if these assumptions are whittled down to 
just A and B. However, as Friedman realizes, head counting will not deliver this verdict when 
the postulates of one model fail to be a subset of the postulates of the other. 

Friedman suggests (e.g., pp. 259-60) that a unified model receives more 'boosts' in 
confirmation than a model of narrower scope. If model Mu covers domains D1 and D2, whereas 
model M1 covers only domain Dl, then Mu can receive a confirmational boost from both data 
sets, whereas Ml can receive a boost only from Dl. Two points need to be made about this 
proposal. First, although Mu receives two boosts whereas M1 receives only one, the 
conjunction Ml and M2 receives two boosts as well. Here M2 is a model that aims to explain 
only the data in D2. The conjunction Ml and M2 is a disunified model. If one wishes to explain 
the virtues of unification. one should compare Mu with this conjunction, not Mu with Ml. The 
second point is that 'boosts' in probability are increases in probability, not the absolute values 
thus attained. The fact that Mu receives two boosts while M1 receives only one is quite 
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might be constructed that seeks to explain them both. Alternatively, a 
disunified pair of models M1 and M2 also might be constructed, each theory 
addressing a different part of the total data. If M1 fits D1 at least as well as Mu 
does, and if M2 fits D2 at least as well as Mu does, what reason could there be to 
prefer Mu over the conjunction of M1 and M2? The temptation is to answer this 
question by invoking some consideration that lies outside of what the evidence 
says. One might appeal to the allegedly irreducible scientific goal of unification 
or to the connection of unification with simplicity. 

The problem posed by the question of goodness-of-fit is a real one, since the 
combined data set D1 and D2 often will be more heterogeneous than either 
subpart is on its own. This engenders a conflict between unification and 
goodness-of-fit; a unified theary that encompasses both data sets will fit the 
data less well than a conjunction of two separate theories, each tailor-made to 
fit only a single data set. However, just as in the curve fitting problem, this 
conflict can be resolved. Once again, the key is to correct for the fact that 
disunified theories are more inclined to overfit the data than their unified 
counterparts are. 

For example, consider the two data sets represented in Figure 3 and the 
following three models: 

(Mu) The X and Y values in Dl and D2 are related by the function 

Y=a()+a1 X+a2 X2+v U. 

(M1) The X and Y values in D1 are related by the function 

Y=p()+p1 X+v U. 

(M2) The X and Y values in D2 are related by the function 

Y=y(,+71 X+v U. 

Since each data set is close to collinear, M1 will be more likely than Mu with 
respect to D1 and M2 will be more likely than Mu with respect to D2. However, 
what happens when we use Akaike's Theorem to compare Mu with the 
conjunction M1 and M2, relative to the combined data? Notice that Mu has four 
free parameters, whereas the conjunction M1 and M2 has five. If its 

consistent with MUES remaining less probable than Ml. Friedman (pp. 143-4) recognizes this 
problem. His solution is to argue that deriving M1 from a unified theory Mu renders M1 more 
plausible than it would be if Ml were not so derivable. We note that this claim, even if it could be 
sustained, does not show why Mu is more plausible than M1 and M2, where the unified model 
and its disunified competitor are incompatible. In addition, the fact that Ml is more plausible in 
one scenario than it is in another does not bear on the question of how plausible Mu is. 

In addition to these specific problems with Friedman's proposal, we also wish to note that its 
basic motivation is contrary to what we learn from Akaike's framework. Friedman seeks to 
connect unification with paucity of assumptions; as we will see in what follows, unified models 
impose more constraints than their disunified counterparts. 
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assumptions apply (see Appendix A), Akaike's Theorem entails that Mu may be 
more predictively accurate even though its best case is less likely than the best 
case of M1 and M2. The best fitting case of the disunified theory would have to 
have a log-likelihood at least 1 unit greater than the best fitting case of the 
unified model if the disunified model were to be judged predictively superior. 
This is not true for the data in Figure 3. We conclude that estimated accuracy 
explains why a unified model is (sometimes) preferable to its disunified 
competitor. At least for cases that can be analyzed in the way just described, it 
is gratuitous to invoke 'unification' as a sui generis constraint on theorizing. 

The history of astronomy provides one of the earliest examples of the 
problem at hand. In Ptolemy's geocentric astronomy, the relative motion of 
the earth and the sun is independently replicated within the model for each 
plaxlet, thereby unnecessarily adding to the number of adjustable parameters 
in his system. Copernicus's major innovation was to decompose the apparent 
motion of the planets into their individual motions around the sun together 
with a common sun-earth component, thereby reducing the number of 
adjustable parameters. At the end of the non-technical exposition of his 
programme in De Revolutionibus, Copernicus repeatedly traces the weakness of 
Ptolemy's astronomy back to its failure to impose any principled constraints on 
the separate planetary models. 

In a now famous passage, Kuhn ([1957], p. 181) claims that the unification 
or 'harmony' of Copernicus' system appeals to an 'aesthetic sense, and that 
alone'. Many philosophers of science have resisted Kuhn's analysis, but none 
has made a convincing reply. We present the maximization of estimated 
predictive accuracy as the rationale for accepting the Copernican model over 
its Ptolemaic rival. For example, if each additional epicycle is characterized by 
4 adjustable parameters, then the likelihood of the best basic Ptolemaic model, 
with just twelve circles, would have to be e2" (or more than 485 million) times 
the likelihood of its Copernican counterpart with just seven circles for the 
evidence to favour the Ptolemaic proposal.22 Yet it is generally agreed that 
22 If the log-likelihood is penalized by subtracting k, then the likelihood is pellalized by multiplying 

it by a 'decay factor' e-k. 
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these basic models had about the same degree of fit with the data known at the 
time. The advantage of the Copernican model can hardly be characterized as 
merely aesthetic; it is observation, not a prioristic preference, that drives our 
choice of theory in this instance.23 

4 CAUSAL MODELLING 

Newton's first Rule of Reasoning in Philosophy in Principia was that 'we are to 
admit no more causes of natural things than such as are both true and 
sufficient to explain their appearances'. Here Newton gives voice to a version of 
Ockham's razor-explanations that postulate fewer causes should be preferred 
over explanations that postulate more. Although this injunction is often 
thought to be quite separate from the criterion of evidential support, some 
everyday applications of the rule can be given a simple representation in 
Akaike's framework. 

The entries in the following table represent the probabilities that an event C 
has, given the four combinations of the putative causes A and B: 

P(C/- ) 

A -A 

B w+a+b+i w+b 
-B w+a w 

Next we define a characteristic function XA: 

XA= 1 if A occurs 

%A= 0 if A does not occur. 

Ditto for the definition of XB 
We now can formulate three hypotheses about the probability thac C has in 

these four possible circumstances: 

(INT) P(C/XA = XATXB = XB) = W + aXA + bXB + iXAXB 

(ADD) P(C/%A = XA,%B = XB) = W + aXA + bXB 

(SING) P(CIXA = XA,XB = XB) = W + aXA. 

(SING) says that only a single cause (namely A) makes a diSerence in whether 
C occurs. (ADD) says that two causes play a role and that their relationship is 
additive. (INT) says that there are two causes whose contributions are 
interactive (i.e., nonlinear or nonadditive). The hypotheses are listed in order of 
increasing parsimoniousness-one cause is simpler than two, and an additive 

23 Forster [1988b] and Harper [1989] argue that the subsequent impact of Kepler and Newton 
may be understood in the same terms. 
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model with two causes is simpler than an interactive model for those two 
causes. 

As in the curve fitting problem, it is standard to understand causal modeling 
as a problem with two parts. First one selects a hypothesis about the form the 
causal relationship is to take; then one finds the best hypothesis of that form by 
estimating parameter values. Rather than solving the first problem by appeal 
to simplicity, our approach shows how estimated predictive accuracy can be 
brought to bear from the beginning. Suppose one has a large and equal 
number of observations for each of the four treatment cells. Let the empirical 
frequencies of C in those four cells be: 

P(C/- ) 

A -A 

B 0 5 02 

-B 05 02 

The three hypotheses now have the same best case, namely one in which 
w= 0*2, a = O 3, b-O, and i = O. Recall that the estimated predictive accuracy 
of each model is 1/Ntimes its maximum log-likelihood minus k/N. This means 
that when one model is a special case of another and they have the same best 
case, the model of lower dimensionality has greater estimated predictive 
accuracy. Iffollows that (SING) has greater estimated predictive accuracy than 
(ADD) and (ADD) has greater estimated predictive accuracy than (INT). For 
the data just given, predictive accuracy explains why it is vain to postulate 
more causes when fewer suffice.24 And as in our discussioIl of unificationt it is 
possible to adjust the data set so as to provide a rationale for favouring a 
hypothesis of greater complexity. 

5 THE PROBLEM OF AD HOCNESS 

The bugbear of ad hoc hypotheses has traditionally been raised within the 
framework of a hypothetico-deductive philosophy of science. Predictions can 
be deduced from theories only with the help of auxiliary hypotheses. On this 
view, we test a theory by observing whether its predictions are true. However, 
the Quine-Duhem thesis states that the core theory may always be shielded 
from refutation by making after-the-fact adjustments in the auxiliary 
hypotheses, so that correct predictions are deduced. The classic example of this 
is Ptolemaic astronomy, where the model may always be amended in the face 

24 In this examp}e, it is not just that fewer causes are preferable to more; in addition, we have 
shown why an additive modeI for two causes is preferable to an interactive model of those two 
causes. Counting causes is a special case of the more general consideration of dimensionality. 
Forster [1988b] argues that Newton was sensitive to this wider conception. 
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of potential refutation by adding another circle so much so that the 
expression 'adding epicycles to epicycles' has become synonymous with 'ad 
hocness'. Although we reject the hypothetico-deductive picture of science, we 
do accept the usual conclusion that there is an important distinction to be 
drawn between reasonable revision and ad hoc evasion. 

Philosophers of science have recognized that protection of the core theories 
by post hoc revision is not always bad. The example usually cited is Leverrier's 
postulation of Neptune's existence to protect Newtonian mechanics from the 
anomalous wiggles in Uranus' orbit. The problem is to understand the 
epistemological grounds for distinguishing good from bad revisions of 
auxiliary hypotheses (which Lakatos [19 70], refers to as the protective belt). As 
is customary, we reserve the term 'ad hoc' for revisions of the bad kind, but 
reject the ad hominem or historicist construal of the term. Ad hocness, if it is 
relevant to questions of evidenceE has nothing to do with the motives of the 
person advocating the hypothesis, or with historical sequences of theories and 
their evidence.25 

Lakatos [1970] notes, with approval, that Leverrier's amendment of the 
prior Newtonian planetary model produced novelpredictions; he introduces the 
derogatory term 'degenerating' for research programmes that fail to do this. 
But there are at least two problems with this approach. Musgrave [1974] 
warns that a careless reading of the term 'novel' may tempt us into a view of 
confirmation in which historical contingencies are given undue emphasis. The 
second defect in Lakatos's idea is that it fails to distinguish estimated predictive 
success from predictive power. It is obvious that predictive power is important, 
for without it there can be no predictive success. But predictive power is not 
enough to indicate that model revisions are of the good kind. For example, the 
continued addition of epicycles in Ptolemy's astronomy is not degenerate in 
Lakatos's sense. Each addition leads to novel predictions about the future 
positions of the planets. What we need is a measure of the predictive success 
that these additions can be expected to bring, and this is what Akaike's idea of 
estimated predictive acuracy provides. 

Our proposal is that a research programme is degenerative just in case loss in 
simplicity is not compensated by a suicient gain in fit with data. Of course, the 
fit will always improve, but the improvement may not be enough to increase 
the estimated predictive value. 

Established research programmes often achieve considerable predictive 
success, so why do some researchers put their money on an undeveloped 
programme? First note that on our proposal there is no impediment for new 
programmes to take over the predictive successes of old ones. There is no 
'problem of old evidence' (Glymour [1980], Eells [1985]), since estimated 
25 We do not rule out the possibility that historical or psychological circumstances may 

sometimes be a reliable indication of ad hocnes. Our only point is that these circumstances do not 
make a theory ad hoc, anymore than a barometer makes it rain. 
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predictive accuracy does not depend on the historical sequence of discovery. 
But further, it is perfectly understandable that researchers may decide where 
to invest their energy by formulating a judgment about projected predictive 
success, and the degree to which current programmes are degenerating is thus 
a relevant consideration.26 

6 THE SUB-FAMILY PROBLEM 

While this explication of Lakatos' notion is a point in favour of our approach, 
there is another type of ad hocness that is a threat to Akaike's programme. A 
literal reading of Akaike's Theorem is that we should use the best fitting curve 
from the family with the highest estimated predictive value. However, for any 
such family, it is possible to construct an ad hoc family of curves with the same 
best fitting curve, with yet higher estimated predictive accuracy: Fix one or 
more of the adjustable parameters at their maximum likelihood values. Each 
sub-family, so constructed, will have the same best case. At the end of the 
procedure, we obtain a zero dimensional family whose only member is the best 
fitting curve of the original family. The AkaikeSs estimate of the predictive 
accuracy of this singleton family is just the log-likelihood of the curve. If this is 
allowed, then we are pushed back towards selecting complicated curves that fit 
the data exactly. We call this the sub-family problem.27 

Our resolution of this problem returns us to an idea described in Section 2: If a 
curve fits the data so well that it looks 'too good to be true', then it probably is. 
In order to spell this out, we now describe a theorem (stronger than Akaike's) 
that characterizes the behaviour of the error in estimating the predictive 
accuracy of families. The error of the estimated predictive accuracy of family F, 
or Error[Estimated(A(F ))], is defined as the diSerence between Akaike's 
estimate of the predictive accuracy of family F and the true predictive accuracy 
of that family. Notice that the true predictive accuracy is constant it does not 
depend on which hypothetical data set generated by the truth happens to be 
the actual data set. On the other hand, the estimated predictive accuracy of F 
does depend on the actual data it is what statisticians call a random variable. 
So Error[Estimated(A(F))] also depends on the data, and the following theorem 
describes this dependence by decomposing it into the sum of three errors:28 

2(. The Akaike approach also finesses the problem of 'Kuhn loss': Superceding theories do not 
always carry over all the successes of their predecessors. For example, Cartesian vortex theory 
'explains' why all planets revolve around the sun in the same direction, whereas Newton's 
theory dismisses this as a mere coincidence. Within Akaike's framework, the losses are weighed 
against the gains in the common currency of likelihoods. 

27 The reader should not be misled into thinking that the subfamily problem is a problem for 
Akaike's criterion alone; it arises for any proposal that measures simplicity by the paucity of 
parameters. 

28 The result we are about to describe is close to, but not identical with, equation (4.55) in 
Sakamoto et al. ([1986], p. 77). Similar formulae were originally proven in Akaike [19 73]. See 
Forster [1992a] for further explanation. 
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The Error Theorem: 
Error[Estimated(A(F ))] = 

Residual Fitting Error + Common Error + Sub-family Error. 

It is important to remember that these errors are not errors of prediction-they 
are errors in the estimation of predictive accuracy. This is why the Error 
Theorem might be called a 'meta-theorem' it is a theorem about the 
'meaning' of Akaike's Theorem. However, it rests on the same assumptions as 
Akaike's Theorem (see Appendix A). 

Akaike's Theorem states that the average of Error[Estimated(A(F ))] over all 
possible data sets generated by the truth is zero, which is to say Akaike's 
estimate of predictive accuracy is statistically unbiased.29 'Statistically 
unbiased' means that its average performance will centre on the true value of 
the quantity being estimated; it is a minimal requirement for 'good' estimators. 
Akaike's estimate conforms to this standard, but sometimes fails to meet 
another desideratum, which we will refer to as epistemic unbiasedness. We shall 
now explain the distinction in terms of an example. 

First, consider a standard example of a statistically unbiased estimate: the 
measurement of the mass of an object. For this measurement, the deviation 
from the true mass value is determined by a symmetrical error distribution 
centred on the true mass value, so that it is just as probable that the measured 
value is below the true value as it is above the true value. The measured value 
of mass is a statistically unbiased estimate of the true mass. But now suppose 
that we modify this estimate by ading + 10 or-10 depending on whether a 
fair coin lands heads or tails, respectively. Suppose that the measured value of 
mass was 7 kg, and the fair coin lands heads. Then the new estimate is 17 kg. 
Suprisingly, this new estimate is also a statistically unbiased estimate of the 
true mass! The reason is that in an imagined series of repeated instances, the 
+ 10 will be subtracted as often as it is added, so that the value of the average 
value of the modified estimate will still be equal to the true mass value. 
However, we know that the modified estimate is an overestimate in this 
instance, because we know that the coin landed heads. If the coin had landed 
tails, then the estimate would have been-3 kg, and would have been known 
to be an underestimate. In either case, we say that the modified estimate is 
epistemically biased. In sum, the unmodified measurement value is a statisti- 
cally and epistemically unbiased estimate of the mass, while the modified 
estimate is statistically unbiased, but epistemically biased. Other things being 
equal, we prefer an estimate that is epistemically unbiased. 

With this distinction in hand, the Error Theorem is able to explain the 
limitations of Akaike's method. Here is a brief overview of our analysis: First, 

29 Statistical unbiasedness is really a property of the formula for obtaining the estimate, rather 
than the particular value of the estimator. 
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the common error is the same for all families (hence its name); it cancels out 
when we make comparisons, and has no eSect on model selection. It will not be 
mentioned again. Second, the Residual Fitting Error is statistically and 
epistemically unbiased. But the Sub-family Error has a peculiar property. It is 
statistically unbiased (as is required by Akaike's Theorem); however, it is not 
always free of epistemic bias. Sometimes Akaike's estimate displays an 
epistemic bias, and this bias is highlighted by the subfamily problem. A careful 
analysis of the Sub-family Error will reveal the source and nature of the 
problem. 

We begin by filling in some background. One of the assumptions of these 
theorems is that there is some complex K-dimensional family of hypotheses 
(curves) that includes the true hypothesis, and that every family F that we may 
wish to consider is a sub-family of this superfamily (which we will call K). 
Every hypothesis under consideration may be represented as a point in the 
parameter space of K. This space may be treated as a K-dimensional vector 
space. So, if we imagine that our coordinate frame is centered on the Truth 
(where else?), then various hypotheses may be located in different directions, 
as shown in Figure 4. The two vectors shown are particularly important 
because the sub-family error is equal to the dot product, or scalar product, of 
these two vectors. The first vector is the one to L(K), the best fitting curve in K. 
Clearly this vector will move around when we consider different data sets 
generated by the truth. In fact, its tip falls just as probably on one point as on 
any other on the circle shown, although its length will vary as well. The other 
vector is fixed. It is the vector from the truth, T, to the hypothesis in the family F 
that is closest to T (viz. the most predictively accurate hypothesis in F ). Now, 
the dot product is the product of the lengths of these two vectors times the 
cosine of the angle between them. The cosine factor is + 1 if the vectors are 
parallel, O if they are orthogonal,-1 if they are anti-parallel, and in between 
for in between angles. 

The Akaike estimate for a low dimensional family whose best fitting case is 
close to the data (and such families are the dangerous 'pretenders', for they 
'unfairly' combine high log-likelihoods with small penalties for complexity) 

s L(K), representing the data 

/ _>in parameter space 

/ /\ 
T / The hypothesis in F 

closest to T 

FIGURE 4 
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exhibits an epistemic bias, as we now explain. The most predictively accurate 
hypothesis in such small families will also be close to the data, and therefore 
close to L(K). The danger is that the tips of the two vectors (whose dot product 
is equal to the subfamily error) will be close together. Then the cosine factor is 
close to + 1 and the subfamily error is large andpositive. To illustrate this aspect 
of the relationship of Akaike's Theorem and the Error Theorem, consider 
the following example. Suppose we have a very large data set that exhibits 
strong linearity. We wish to estimate the predictive accuracies of L(LIN) and 
L(POLY-n), where POLY-n is the family of n-degree polynomials with n 
parameters free, and L(F) is obtained by using the data to single out the best 
fitting curve in family F.3" We may apply Akaike's Theorem to (LIN) and 
(POLY-n) directly, or we can apply it to the singleton families containing just 
L(LIN) and L(POLY-n), respectively. The surprising fact that the ad hoc 
Akaike's estimate for L(POLY-n) is surely an overestimate of the predictive 
accuracy of L(POLY-n)-may have been anticipated from the fact that 
unreliable ad hoc comparisons of L(POLY-n) and L(LIN) will always favour 
L(POLY-n), because it is always closer to the data. In sumt both the direct and 
the ad hoc method of accuracy estimation are statistically unbiased (as required 
by Akaike's Theorem), but the ad hoc application of Akaike's method yields an 
estimate that we know is too high. The ad hoc application yields an estimate 
that is epistemically biased.3l 

We have now unpacked our slogan about a curve's looking 'too good to be 
true' to provide deeper insights into the source and solution of the subfamily 
problem: The Akaike estimates of the predictive accuracy of l(F) obtained by 
viewing L(F ) as the best fitting case in the ad hoc hierarchy of subfamilies of F 
tend to be too high. Indeed, that is exactly what vtre observe the Akaike 
estimate of L(F ) increases steadily as we move down the hierarchy towards the 
singleton subfamily. In sum: We have good reason not to trust the Akaike 
accuracy estimates for ad hos subfamilies constructed by fixing adjustable 
parameters at their maximum likelihood values. We emphasize that this has 
nothing to do with when subfamilies are constructed or who constructs them. 

Our analysis of the Error Theorem has been brief and necessarily incomplete. 
Much more research is needed on the management of errors in Akaike's method 
of model selection. Our aim has been to give the reader a taste for the heuristic 
power of Akaike's framework in addressing such foundational questions. We 
close by pointing out that the resolution we have sketched depends (like 
Akaike's Theorem) on the existence of prediction errors, for otherwise the 
3() Remember (from Section 2) that we are interested in estimating the predictive accuracy of a 

family only because it also provides an estimate of the predictive accuracy of its best fitting 
curve. 

31 Although the estimate is known to be too high, given the data at hand the Akaike estimate of 
the predictive accuracy of that same singleton family relative to otller data sets generated by the 
true 'curve' will be too low. On average. of course. the estimate will be centred on the true 
value. 
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vector to L(F) would be O and there would be no sub-family errors for any 

family. 

7 THE BEARING ON BAYESIANISM 

The fundamental principle behind Akaike's method is that we should aim to 
select hypotheses that have the greatest predictive accuracy. Since the truth 
has the maximum possible predictive accuracy and accuracy is a measure of 
'closeness', Akaike's recipe aims to move us towards the truth. In contrast, the 
central thesis of the kind of Bayesianism we will criticize here is that 
hypotheses should be compared as to their probability of truth.32 

In this section, we examine the possibility that Akaike's method might be 
recast in a Bayesian framework. Since our argument is many-faceted, we 
provide a brief summary here. We criticize two diSerent Bayesian proposals 
that promise to yield a solution to the curve fitting problem. The first Bayesian 
strategy is to focus on families show that the best families by Akaike's 
standards are the most probable families, and then give a Bayesian justification 
for selecting the best fitting case. The second approach is to bypass families, 
and show how the most accurate individual hypotheses end up with higher 
posterior probabilities. After criticizing these suggestions, we end the section 
by suggesting that Bayesian methods may be useful for assessing the risks in 
applying Akaike's criterion. 

The key element of any Bayesian approach is the use of Bayes' Theorem, 
which says that the probability of any hypothesis H given any data is 
proportional to its prior probability times its likelihood: p(H/Data)ocp(H) x 
p(Data/H). However, it is an unalterable fact about probabilities that (PAR) is 
more probable than (LIN), relative to any data you care to describe. No matter 
what the likelihoods are, there is no assignment of priors consistent with 
probability theory that can alter the fact that p(PAR/Data) kp(LIN/Data). The 
reason is that (LIN) is a special case of (PAR). How, then, can Bayesians explain 
the fact that scientists sometimes prefer (LIN) over (PAR)?33 

32 The problems we will enumerate for Bayesianism in what follows apply with equal force to 
what might be called incremental Bayesianism. This doctrine has no interest in assigning 
absolute values to prior and posterior probabilities, but seeks only to make sense of differences 
or ratios that obtain between these quantities. If H1 and H2 are both confirmed by the data, both 
P(Hl/Data)/P(Hl) and P(H2/Data)/P(H2) are greater than unity. To compare these ratios to find 
out which hypothesis received the larger boost, we need to evaluate the likelihood ratio P(Data/ 
Hl)/P(Data/H2). When the hypotheses are single curves, the better fitting hypothesis 
automatically receives the higher boost. When the hypotheses are families, evaluating this 
ratio leads to the problems we will describe in connection with Bayesian approaches to defining 
the likelihood of families. 

33 One might seek to evade this conclusion by saying that (LIN) and (PAR) are embedded in 
different theoretical contexts, that this difference gives rise to differences in meaning between 
their respective theoretical parameters, and that it follows from this that (PAR) is not entailed 
by (LIN). Although we are prepared to grant that this might be plausible in certain special 
cases, we doubt that this is an adequate response in general. 
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Bayesians might propose to address this problem as follows. Instead of (LIN) 
and (PAR), let us consider (LIN) and (PAR*), where (PAR*) is some subset of 
(PAR) from which (LIN) has been removed. Since (LIN) and (PAR*) are 
disjoint, nothing prevents us from ordering their prior probabilities as we see 
fit. In response, we note that this ad hoc maneuver does not address the problem 
of comparing (LIN) versus (PAR), but merely changes the subject. In addition, it 
remains to be seen how Bayesians can justify an ordering of priors for the 
hypotheses thus constructed and how they are able to make sense of the idea 
that families of curves (as opposed to single curves) possess well defined 
likelihoods. 

Rosenkrantz [1977] and Schwarz [1978] independently argued for a 
proposal of the first kind ignoring the problems of logical entailment, they 
seek to compare the likelihoods offamilies of curves.34 So consider some family 
of curves F with dimension k. The idea is to define the average likelihood of 
the family in terms of some prior weighting of the members of the family, 
p(Curve/F ). 35 

If p(Curve/F ) is strictly informationless, then it is easy to see that 
p(I)ata/F ) = O. Almost every curve in the family will be very far from the data. 
This means that if we accord equal weight to every curve in F, the average 
likelihood of F will be zero. What if we let p(Curve/F ) be 'almost' information- 
less? This means that we divide the curves in the family into two subsets- 
within one subset (which includes curves close to the data points), we let the 
weights be equal and nonzero; outside this volume, we let the weights be zero. 
We illustrate this proposal by returning to the examples of (LIN) and (PAR), 
where the error variance 2 iS known. For (LIN), we specify a volume V1 of 
parameter values for a() and oc1 within which the likelihoods are non-negligible. 
For (PAR), we specify a volume V2 of parameter values for p(, ,B1. and p3 with 
the same characteristic. If we let boldface x and # range over curves in (LIN) 
and (PAR) respectively, the average likelihoods of those families then may be 
expressed approximately as follows: 

p(Data/LIN) = (l/Vl)I . . . fp(Data/x,LIN) da 

p(Data/PAR) = (1/V2) . . . Xp(Data/#,PAR) d#, 

where the integration is restricted to the subsets of curves with non-zero 
weights. Note that as larger and larger volumes are taken into account, the 
average likelihoods approach zero (as the weighting become more strictly 
informationless) . 

How are these two likelihoods to be compared? The volume V1 has two 
34 They ignore the entailment problem by comparing only the likelihoods of families; they bracket 

the Bayesian comparison of posterior probabilities. 
3 5 Here, the 'average likelihood' is an average over the members of a family of curves, and the Data 

are fixed. In contrast, the 'average log-likelihoods' we discussed in previous sections were 
averages of the log-likelihood of a single curve with respect to many (hypothetical) data sets. 
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dimensions in parameter space; the volume V2 has three. Although Rosen- 

krantz [1977] and Schwarz [1978] do not formulate their analysis in terms of 

the volumes V1 and V2, their proposal is equivalent to setting V1 = V2. This is 

one way to render commensurable the volumes of diSerent dimensionality 

that appear in the likelihood expressions.36 
The trouble is that the proposal is not invariant under reparameterization. 

Consider the following pair of equations: 

(LIN) Y=oc(,+alX+vU 

(LINt) Y= (a(')/3 + (a1'/2)X+ vU. 

These equations define exactly the same family of straight lines. Yet, the 

proposal entails that the latter has 6 times the average likelihood of the 

former.37 
Let us now turn to another strategy that Bayesians might pursue in finding a 

solution to the weighting problem. This is to let p(oc/LIN) be equal to some 

informative probability p(oc/LIN,E(,). Here the weighting scheme is a posterior 

probability, constructed on the basis of some evidence E(, that was acquired 

before the Data. The difficulty with this proposal is that it only pushes the 

problem back a step. One still has to make sense of the average likelihood 

p(E(,/LIN). This requires us to evaluate quantities of the form p(oc/LIN). 

Eventually, this must lead the Bayesian back to the quest for informationless 

(or almost informationless) priors, which we have discussed already.38 In light 

36 The ad hocness of any such assumption is noted by Aitkin [1991], who refers his readers to 
Lindley [19 5 7] . 

37 The reader can most easily grasp this result by considering the problem of integrating a 

function f(x), where f(x) = 1 between the limits O and 1, andf(x)-O elsewhere. Clearly, 

00 

I f(x)dx= 1. 
-,30 

Yet if we transform coordinates such that x'=6x, while equating g(x') and f(x) for 
corresponding values of x and x', we obtain 

c 

J g(x')dx' = 6. 
-00 

38 Nevertheless, Schwarz [1978] has pressed ahead and derived an interesting asymptotic 
expression for the average likelihood (with the V term omitted). Under conditions similar to 
those for Akaike's Theorem, 

Log(Average Likelihood of F)=logp(Data/L(F))-(logN)k/2 +other terms, 

where L(F) is the maximum likelihood hypothesis in F, N is the number of data, and k is the 
dimension of F. The 'other terms' are negligible for large N. The resulting recipe for model 
selection is often referred to as the Bayesian Information Criterion, or BIC for short. We will not 
evaluate the criterion here. But we deny that it is securely grounded in the Bayesian 
framework, for the reasons we have given. In that regard, it is interesting to note that the same 
criterion has been independently derived from quite different principles by Akaike [19 7 7] and 
Rissanen [1978], [1989]. 
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of these considerations, we think it is highly questionable that this first 
Bayesian approach in which families of curves are the objects of investiga- 
tionan provide a satisfactory treatment of the curve fitting problem.39 

So let us consider a Bayesian who compares the probabilities of particular 
curves. The problem here is that there seems to be no principled way for 
estimated predictive accuracies to affect the estimated probability of their 
truth. For such a Bayesian is bound by Bayes' Theorem, which says that the 
posterior probability of such a particular hypothesis is proportional to the prior 
probability times the likelihood relative to the total evidence: 

p(Curve/Data) =p(Curve)p(Data/Curve )/p(Data). 

The likelihood term, p(Data/Curve), simply measures the goodness-of-fit, so 
the only vehicle for including any estimate of the predictive value of the curve 
is in the prior probability, p(Curve). In order to replicate the Akaike results, we 
would need 

p(Curve) = p(Data)e - k, 

where p(Data) is merely a normalization factor. But we do not see how a 
Bayesian can justify assigning priors in accordance with this scheme. 

The problem is not avoided by adopting a subjectivist approach that eschews 
the need for objective justification. The problem is deeper than that. The 
trouble is that a particular curve, as opposed to a family of curves, cannot be 
assigned a value of k on a priori grounds. After all, any curve is a member of 
many families of diSerent dimensions. While this problem for Akiake arises in 
the guise of the sub-family problem, the proposed solution was to distruct sub- 
families that have a special relationship with the data. However, no comparable 
solution is available to Bayesians because the determination of k must be 
made independently of the data. Thus, Bayesians must find an entirely 

39 However, Aitkin [1991] has a different 'average likelihood' proposal, which allegedly solves the 
curve fitting problem. He computes the average by weighing each curve in the family by its 
posterior probability p(Curve/Data), given all the available data. A theorem based on the same 
assumptions as Akaike's Theorem shows that: 

Log(Aitkin Average Likelihood of #')=Log-likelihood(L(F))-(k/2)10g2. 
Since log2 is less than l (the logarithms are to base e). Aitkin imposes less than 1/2 of Akaike's 
penalty for complexity. This is already an uncomfortable consequence because the Error 
Theorem shows that (PAR) will be chosen over (LIN) by Aitkin's criterion more often than not 
even when (LIN) is true. But the real problem is that the criterion is just 'pulled out of a hat'. 
What will families of greater average posterior likelihood provide for us? Will they tend to bring 
us closer to the truth, or give us more accurate predictions, or what? Aitkin provides no 
answers to these questions. Given that Aitkin's proposal does not have more fundamental 
principles to fall back on, how does he cope with the sub-family problem? There is no anologue 
to the Error Theorem for Aitkin because there is no sense in which average likelihood is in error 
if it is not estimating allything. Also see the commentaries immediately following Aitkin's 
paper, including one by Akaike. 
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diSerent kind of solution to the sub-family problem, and we fail to see how this 
can be done.4" 

Our diagnosis of the problem is that Bayesianism is unable to capture the 
proper significance of considering families of curves. We work with families 
because they deliver the most reliable estimates of the predictive accuracy of a 
few curves; namely their best fitting cases. There is no reason to suspect that 
such an enterprise can be construed as maximizing the probability that these 
best fitting cases are true. Why should we be interested in the probability of 
these curves' being true, when it is intuitvely clear that no curve fitting 
procedure will ever deliver curves that are exactly true? If we have to live with 
false hypotheses, then it may be wise to lower our sights, and aim at 
hypotheses that have the highest possible predictive accuracy. Thus, the brand 
of Bayesianism most popular amongst philosophers is founded on too narrow a 
conception of the scientific enterprise.41 

Having said all that, we do not draw the rash conclusion that Bayesian 
methodology is irrelevant to Akaike's new predictive paradigm. There are 
many Bayesian solutions to practical statistical problems. However, Akaike's 
reconceptualization of statistics does recommend that the Soundations of 
Bayesian statistics require rethinking.42 A positive suggestion may be that 
Bayesian methods can help determine the probability that one hypothesis is 
more predictively accurate than another. In that way, Bayesian methods 
might be usefully brought to bear on the problem of assessing the reliability of 
estimated accuracies, for that appears to be an important and open area of 
research. 

8 EMPIRICISM AND REALISM 

One virtue of our approach is that it makes clear what the simplicity of a curve 
has to do with the reasons one might have for believing it. Popper [1959] 
argued that simpler curves are more falsifiable; Sober [1975] suggested that 
simpler curves are more informative. These proposals, and others like them,43 

4() In this respect, we think it is instructive to consider the recent attempt by Jeffreys and Berger 
[1992] to provide a Bayesian rationale for Ockham's razor. We criticize their proposal in Sober 
and Forster [1992]. 

41 It is easy to construct examples which show that maximizing probability of truth is different 
from maximizing closeness to the truth. A common example is the use of averages to estimate a 
discrete number, say the number of children in an American family. An estimate of 1-9 
children has less probability of being true in any case than an estimate of 2, but may be 
predictively more accurate nevertheless. 

42 Akaike [1985] shows how the rule of Bayesian conditionalization, as a method of updating 
probabilites, may be understood in terms of maximizing expected predictive accuracy. 

43 Turney [1990] demonstrates that simpler families of curves are more stable. Roughly, the 
instability of a family of curves, relative to the data, is the expected 'distance' (measured by the 
SOS) of a new best fitting curve from the old best fitting curve when the data are perturbed in 
accordance with the known error distribution. Turney's measure of instability takes one step 
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make it diicult to say why one ought to believe simpler curves rather than 
their more complex competitors. In contrast, the analysis we have proposed 
greatly simplifies the task of justification. When a simpler curve is more 
plausible than its more complex alternatives, this is because it has a higher 
estimated predictive accuracy. 

We believe that our account of curve fitting is good news for empiricism, 
although it does not accord with what has been said by many empiricists. The 
idea that some sui generis criterion of simplicity is relevant to judging the 
plausibility of hypotheses is deeply inimicable to empiricism. For empiricism, 
hypothesis evaluation should be driven by data, not by a priori assumptions 
about what a 'good' hypothesis should be like. Empiricists often take this point 
to heart and conclude that simplicity is a merely pragmatic virtue, one having 
to do with the usefulness of hypotheses, but not with their plausiblity (cf. e.g., 
Van Fraassen [1980], pp. 87-9). The embarrassing thing about this dismissal 
of simplicity is that it applies not just to highly theoretical hypotheses, but to 
quite mundane empirical generalizations of the sort that figure in some curve 
fitting problems. In these contexts, skepticism about simplicity threatens to 
lead the empiricist down the garden path to skepticism about induction (Sober 
[1 990a]). Empiricists therefore should welcome the idea that curve fitting does 
not require a sui generis criterion of simplicity. This does not show that some 
form of radical empiricism is true. Rather, we draw the more modest 
conclusion that the data tell you more than you may have thought.44 

Although our goal has been to show how the simplicity of a curve can reflect 
important facts about its predictive accuracy, we do not claim that all uses of 
simplicity and parsimony in science reduce to purely evidential considerations. 
We do not deny that scientists often have pragmatic reasons for using simpler 
curves instead of more complex ones. However, we would insist that these 
pragmatic considerations not be confused with evidential ones. Monolithic 
theories about simplicity and parsimorly which claim that these considera- 
tions are never evidential or that they are never merely pragmatic should be 
replaced by a more pluralistic approach. At least in the context of the curve 
fitting problem, Akaike's technical result provides a benchmark that identifies 
the degree to which simplicity has evidential significance. Any further weight 
accorded to simplicity, we suspect, derives from pragmatic considerations. 

Our analysis supports the idea that the simplicity of a family of curves is an 

towards estimating the degree of overfitting, as we have characterized it. However, in our 
opinion, his paper does not show why stability should be relevant to the question of what to 
believe. We also note that Turney leaves open the justification for trade offs between simplicity 
and goodness-of-fit. Akaike's Theorem is more general than Turney's theorem in any case it 
is not restricted to the standard curve fitting situation, and does not assume a known error 
variance. 

44 For the bearing of this thesis on traditional arguments against the existence of component 
forces in Newtonian physics, see Forster [1988b]. 
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epistemic epiphenomenon.45 Sometimes simpler curves are to be preferred 

over more complicated ones, but the reason for this is not that simplicity is an 

epistemic end-in-itself. At other times, more complex curves are to be preferred 

over simpler alternatives, but this is not because the irreducible demands of 

simplicity are overwhelmed by more weighty consi(lerations of some other 

sort. Whether a simpler curve is preferable to some more complex alternative, 

or the reverse is true, has nothing to do with simplicity and everything to do 

with predictive accuracy. 
Our brand of empiricism is not antithetical to the realist view that science 

aims at the truth,46 in the same sense that archers aim at the bull's eye even 

when they have no hope of hitting it. In the past, the curve fitting problem has 

posed a dilemma: Either accept a realist interpretation of science at the price of 

viewing simplicity as an irreducible and a prioristic sign of truth and thereby 

eschew empiricism, or embrace some form of anti-realism. Akaike's solution to 

the curve fitting problem dismantles the dilemma. It now is possible to be a 

realist and an empiricist at the same time. 
Popper [1968] initiated a realist program that takes the 'disastrous meta- 

induction' (Laudan [1984]) seriously all of our scientific theories in the past 

have been false, so it is likely that all of our theories in the future will also be 

false. Even granting this prediction of failure, it may make sense to claim that 

our theories aim at the truth if we could (1) define a measure of closeness-to- 

the-truth, and (2) show how theory choice could be viewed as implementing 

some method that would, more often than not, take us closer to the truth. 

Proposed solutions to the problem of defining verisimilitude have never 

gained wide acceptance,47 and the second part of the programme is seldom 

discussed. 
We have already described predictive accuracy as a measure of closeness to 

45 This thesis complements the view of parsimony developed in Sober [1988b], [199Ob]. It also 
might be formulated in terms of the idea of screening oJ: Simplicity is correlated with 
plausibility, but only because simplicity also is correlated with predictive accuracy. Once the 
estimated predictive accuracy of a hypothesis is held fixed, its simplicity has nothing futher to 
contribute to an assessment of its plausibility. 

46 We do not claim that this is the only aim of science. We agree with sociologists of science that a 
complete account of the practice of science must include an account of pragmatic and social 
values. Modern theories of decision making are well equipped to model scientific practice in 
terms of pragmatic, social, and evidential considerations, in a way that is compatible with 
realism (Hooker [1987]). However, we do oppose those extremists who believe that internal 
evidential considerations play no role in the social dynamics of science. 

4' Popper's original definition of verisimilitude was formulated in terms of the dle(lu( tive 

consequences of theories: fatal flaws were detected independently by Tichy [1974] and by 
Miller [19 74]. Tichy [19 74] presents an alternative definition of his own, which Miller [19 74] 
shows to be language dependent. Miller [1975] also argues that the intuitive notion of 
accuracy of prediction is also subject to the same kind of language variance. Cood's [1975] 
reply to Miller's paper contains a brief explanation of why a probabilistic definition of 
accuracy, like Akaike's, is not susceptible to Miller's objection. See Forster [1 992a] for futher 
discussion. 
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the truth. To that extent, Akaike's approach revitalizes Popper's programme.48 
However, we suspect that those neo-Popperians who seek some grand 
metaphysical definition of closeness to the truth will be disappointed with a 
notion of predictive accuracy defined by reference to a specified domain of 
inquiry.49 Nonetheless, we are convinced that any definition of verisimilitude 
must be limited in this way if we are primarily interested in epistemological 
questions. In any event, the important point is that Akaike's Theorem lays the 
epistemological foundation for our progress towards the truth in this domain- 
relative sense. 

In spite of our sympathy for Popper's quest for a concept of verisimilitude, we 
nonetheless reject hypothetico-deductivism, on which the Popperian pro- 
gramme is founded.5" The hypothetico-deductivist strategy has been to adopt 
an idealized model of science in which there are no probabilistic errors in the 
data, to use this error-free idealization to solve various philosophical problems, 
and then to add an account of error as an afterthought.5l Our analysis suggests 
that many central problems in the philosophy of science are not decomposable 
in this way. Simplicity and unification are relevant to our judgments about 
what is truth-like only to the extent that observing and inferring are subject to 
error. 

9 APPENDIX A: THE ASSUMPTIONS BEHIND AKAIKE S THEOREM 

There are three kinds of assumption behind the proof of Akaike's Theorem. 
First, there is a 'uniformity of nature' assumption that says that the true curve, 
whatever it is, remains the same for both the old and the new data sets 
considered in the definition of predictive accuracy. The second kind of 
assumption consists of mathematically formulated conditions that ensure the 
'asymptotic normality' of the likelihood function (viz. the likelihood viewed as 
a function of parameter values). These assumptions contribute to proving 
various central limit theorems in mathematical statistics. The final assumption 
is that the sample size (the amount of data) is large enough to ensure that 
the likelihood function will approximate its asymptotic properties. It is the 
second assumption that requires the most explaining. We first say what the 

48 This perspective also is relevant to Cartwright's [1983] argument that the proliferation of 
mutually incompatible models in physics is a reason to reject realism. This is an embarrassment 
to a realist who interprets all (viable) models as true. On the other hand, our brand of realist is 
only interested in interpreting hypotheses as being more or less close-to-the-truth. A plurality 
of models is conducive to this more modest realist porogramme. 

49 We note in this connection that there are philosophical issues raised by the concept of 
prediction that are not addressed by Akaike's notion of predictive accuracy. 

50 Note that hypothetico-deductivism, as we understand it, is not rescued by the fact that 
probabilistic assertions about future data are deduced from scientific hypotheses. For 
hypothetico-deductivism demands that at least some of the deductive consequences of our 
theories are observations, but we do not observe probabilities. 

51 See Forster [1992c] for a discussion of how this bears on Hempel's raven paradox. 
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'normality' assumption is, and describe the pivotal role it has played in 
statistics. 

The normal, or Gaussian, probability distribution is easily recognized in its 
one dimensional form by its characteristic bell shape. In its more general 
multivariate form, the normal distribution has come to play a pivotal role in 
experimental and theoretical statistics. In experimental statistics, error 
distributions (in the estimation of parameter values) are found to be 
approximately normal, especially for large data sets. According to Cramer 
([1946), p. 231), 'Such is the case, e.g., with the distributions of errors of 
physical and astronomical measurements, a great number of demographical 
and biological distributions, etc.'. In fact, the assumption that measurement 
errors are normally distributed around a mean value is so widespread in 
science that it is often referred to as the law of errors. On the theoretical side, 'the 
central limit theorem affords a theoretical explanation of these empirical facts'. 
In a somewhat humorous tone, Cramer ([1946), p. 232) sums up by quoting 
Lippman as saying: 'everyone believes in the law of errors, the experimenters 
because they think it is a mathematical theorem, the mathematicians because 
they think it is an experimental fact', and adds that 'both parties are perfectly 
right, provided that their belief is not too absolute'. 

Mathematically, these assumptions are difficult to state explicitly, not just 
because they are mathematically esoteric, but also because there are various 
ways in which the assumptions may be weakened (see Cramer [1946]). For 
this reason, mathematical statisticians almost always vaguely refer to the 
assumptions as 'certain regularity conditions'. They would certainly not make 
the brazen claim that these conditions hold for all real scientific models, and we 
follow their lead here. However, we do wish to say that the conditions are not 
unduly restrictive. There is no need to assume that the error distributions 
associated with the observational data are themselves aproximately bell- 
shaped. The stardard coin tossing example illustrates the point. The assumed 
'error' distribution is the binomial distribution (the probability getting the high 
value is p, while the probability of the low value is (1-p)), yet the distribution 
for the p-estimates is asymptotically normal. The second point is that 
asymptotic normality is not restricted to models that are linear in their 
parameters. For example, suppose that the product x,B occurs in one of the 
equations of the model. If a and ,1t are their maximum likelihood estimates and 
the values of a and p are sufficiently close to these estimates, then we may 

write: ap= (a + lva)(A+ A0 a,+ a/v,B+ ,^a. Here, a and ,? are constants, and 

the nonlinear product is now linear in the new, transformed, parameters /\a 
and A,B. This approximation will be valid because the region of non-negligible 
likelihoods becomes more narrowly concentrated around the best estimates as 
the sample size increases. The same argument applies to other sufficiently 
smooth nonlinear equations, such as Y=sin(aX+:). and so on. 

Perhaps the most restrictive assumption is that the sample size be large. This 
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does not mean merely that the total data set is large, but that there is enough 
data within the domain of each parameter. For examplet the approximate 
normality of the model M1 and M2 in Section 3 requires that both of the data 
sets D1 and D2 are sufficiently large. 

IO APPENDIX B: A PROOF OF A SPECIAL CASE OF AKAIKE S 
THEOREM 

Suppose that we are sampling from a target population of values of a random 
variable X (e.g., the population of possible measurements of the mass of an 
object) with mean p* (the true mass) and variance v2 (the error of 
measurement), where the true probability distribution p for the values x of the 
random variable X is normal, or Guassian. That is, 

1 - 1 - 

p(x ) = exp - 252 (x - ,u ) 

Now consider a hypothesis ('curve') that (falsely) asserts that the mean is p. 
The hypothesis in question asserts that the probability distribution for 
measured values of X is 

q(x) = exp - 2 (X-p) 

o/ _ 2 

Hypotheses like q(x ) form afamily of hypotheses, each of which corresponds to 
a particular value of the parameter ju. Thus, it is notationally convenient to 
denote the hypothesis itself by ,u. (It will be clear from the context when p is the 
parameter, the parameter value, or the hypothesis in the family corresponding 
to a parameter value.) The simplicity of a family of hypotheses (referred to by 
statisticians as a model) is measured by the number of adjustable parameters; 
in this case there is only one (u). 

If we accept this family of hypotheses, the next step is to find the best fitting 
hypothesis, and this is the hypothesis that confers the highest probability 
(density) on the data (i.e., has the maximum likelihood out of all the members 
of the family). We denote the maximum likelihood hypothesis (which is also 

q(x) 
p(x) 

* 

FIGURE 5 
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the maximum log-likelihood hypothesis) by ,ii. How will ,i, obtained from past 
data, fare in the prediction of new data drawn from the same population? For 
any particular datum x, we might measure the accuracy with which it is 
predicted by its goodness-of-fit; viz. the log-likelihood, logp(x). But we are really 
interested in the 'average datum' drawn from the population, so we define the 
predictive accuracy (A for 'accuracy') of an arbitrary hypothesis jLl to be: 

A(/1) = dfE*(logq(x)), 

where q(x) is the probability distribution in the family corresponding to the 
parameter value , and E* is the expected value calculated with respect to the 
true hypothesis (,u*). That is, 

ct 

A(H)= I p(x)logq(x)dx. 
-x 

Note that A(p) is the expected log-likelihood per datum for a data set of arbitrary 
size N. From the diagram, it is intuitively clear that a distribution q(x) with 
central point p that is far from the true value ,u* is not going to do so well in 
predicting data randomly sampled from the true population. By the same 
token, p(x) is going to do the best job of fitting the data it generates. The 
following result gives this intuitive fact a quantitative representation: 

A(u) = A(,u*)-2(#-p*)2|52 

Proof: The log of _ _ 

exp 2ff2 (x p) 

is clearly equal to 
-2(X-8)21ff2 

But, 

(X-p)2 = (X _ p* _ (# _ p*))2 = (X _ p*)2 _ 2(x-p)(p _ p*) + (p _ p )2. 

When we take expectations and simplify the result follows. This completes the 
proof. 

Since (1) holds for any hypothesis in the family, it surely holds for the 
hypothesis that best fits the past data. Thus, 

A(/i) = A(u*)-2(#-p*)2/a2. 

While interesting, this result is still epistemologically unhelpful because we 
don't know A(,u*) and we don't know the value of,u*. The second problem is 
surmounted in the following way. We may estimate AX p) by the expected value 
of the right hand side, where the expected value is taken over the maximum 
likelihood estimate ,i. That is, 

Estimate of A( ji) = E*[A(,u*)-2(8-p*)-/ff21, 
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But the central limit theorem tells us that the expected sum of squared deviations 
of an estimate of ,u from its true value is just v2/N, where N is the number of 
data in the sample from which the estimate is taken (the number of 'past data'). 
Thus, we have 

Estimate of A(,ii)=A(p*)-2/N. (2) 

The only remaining problem is to estimate A(u*). Again the qualitative facts 
are clear. If i is the best fitting hypothesis relative to past data, then it fits the 
past data better than any other hypothesis (by definition), and therefore fits 
better than ,u*. Thus, if l(ji) is the log-likelihood of the best fitting hypothesis, 
then l(/i)>l(,u*) and therefore E*(l(/i)/N)>E*(l(u*)/N)=df A(p*). The question 
as to how much greater is answered by the following result (without proof): 

A(/u*) = E*(l(,ii)/N)-2/N= E*(l(/i)/N-2/N) (3) 

If we now combine (2) and (3) we get: 

Estimate of A(ji) = E*(l(ii)-1 )/N. 

Since l( ji)-1 is clearly an unbiased estimate of E*(l(,ii)-1), we finally arrive at 
the main result, as it applies to this example: 

Akaike [1 9 73 ]: Estimate of A(,i) = ( 1 /N )[I(u)-kl. 

That is, if we are interested in the predictive accuracy of the best fitting 
hypothesis from the family, we should not judge its accuracy by its goodness- 
of-fit, for that estimate is usually biased towards being too high. An unbiased 
estimate is obtained by using a corrected measure of goodness-of-fit. 

The important fact is that this result generalizes (surprisingly well) to a 
variety of conditions, and to examples of models with many adjustable 
parameters. If k is the number of adjustable parameters in a model, then we 
may state Akaike's theorem in its general form: 

Akaike [1973]: Estimate of A(,ii) = (l/N)[I(/i)-k]. 

This is the formula that quantifies the trade-off between simplicity (the number 
of adjustable parameters) and goodness-of-fit (the maximum log-likelihood). 

Depart1lle1lt of P11ilosop1ly 
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