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1 Introduction

We assume that science seeks true theories of the world—at least sometimes. When
multiple, alternative theories compatible with information are available, scientists rou-
tinely favor the simplest, a bias known as Ockham’s razor. Ockham’s razor raises two
fundamental questions, neither of which is settled.

I. What is empirical simplicity?

II. How does Ockham’s razor lead one to true theories better than competing strategies
would?

Neither question is easy. Simplicity appears to be an equivocal grab-bag of virtues, ranging
from testability to minimization of entities, to maximization of symmetry, to minimization
of parameters, causes, and principles. Moreover, whatever simplicity turns out to be, how
could a fixed bias toward simplicity possibly guarantee better truth-finding performance
when the truth might be complex? While a bias toward simplicity would obviously help
in simple worlds, it would hurt in the complex ones—a mere example of robbing Peter
to pay Paul, unless one begs the question by assuming, at the outset, that the world is
simple.

There is a burgeoning literature on question (I) and (II), spread across philosophy,
statistics, and machine learning, but no convincing answers have been forthcoming. There
are frequentist attempts to explain Ockham’s razor as a way to reduce predictive noise
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(Akaike, 1974; Forster and Sober, 1994; Vapnik, 1998), but that instrumentalistic ap-
proach falls short of justifying belief in the theories, themselves. At the opposite extreme,
Bayesians can post arbitrarily high betting quotients on inductive conclusions, and can
explain Ockham’s razor in a rationalistic way, as the product of conditioning over a wide
class of plausible, prior probabilities that impose flattish distributions over theoretical pa-
rameters (Jeffreys, 1961; Bandyopadhayay et al., 1996; Wasserman, 2000; Myrvold, 2003).
But that approach, while non-skeptical, does not begin to explain how such prior proba-
bilities lead one to true theories better than alternative biases would—unless one appeals
to the prior probabilities, themselves, which is circular.

This paper answers both questions in a unified way. The answer to question (I) is
that simplicity is a topological order that emerges when one coarse-grains an inductive
inference problem. The answer to question (II) is that Ockham’s razor, relative to the
emergent simplicity order, keeps one on the most direct route to the true answer to the
inductive question, even though that route cannot be entirely direct. The plan is as
follows. Section 2 introduces empirical problems. An empirical problem consists of a
set of possible worlds partitioned into a countable collection of alternative answers by a
theoretical question, and covered by a countable collection of possible information states.
The information space specifies the kind of information one might receive in the future and
the alternative answers to the question are alternative hypotheses, models, or theories.
Everything in the following development is defined relative to an empirical problem, just
as the analysis of algorithms is problem-relative in computer science. Section 3 introduces
learners and convergence to the truth.

The next several sections of the paper develop a very general, topological theory of
empirical simplicity, general enough to embrace ill-founded and even dense simplicity or-
ders. Section 4 introduces the information topology induced by the information space and
explains how standard epistemological concepts like verifiability, and refutability, are most
fundamentally topological, rather than logical or probabilistic. Chapter 5 introduces the
specialization pre-order, a standard topological concept, and demonstrates that it is iden-
tical to Karl Popper’s (1959) proposed definition of empirical simplicity. The topological
theory of empirical simplicity is developed in section 6. A stratification of a topological
space is a partition of the space into locally closed cells (called simplicity degrees) that
are homogeneous, in the sense that all of the worlds in a cell bear the same specialization
relations to all other cells. Simplicity, we propose, is just a stratification of the original
problem that decides the original question, in the sense that each answer to the original
question is verifiable, given a simplicity degree. The rich and attractive consequences of
that brief definition are developed. Section 7 presents some examples, including discrete
experimental outcomes through time, and continuous polynomial laws.

The discussion then turns from simplicity to Ockham’s razor. In section 8, the focus
shifts from solving the original problem, to identifying the true simplicity degree, which
serves as one’s reason for believing an answer to the original problem. Upper bounds on
simplicity are refutable in general. Section 9 highlights simplicity concepts with the special
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feature that lower bounds are verifiable. The difference is reminiscent of Kuhn’s celebrated
distinction between normal and revolutionary science, except that it is topological rather
than political. We construct canonical, Ockham solutions to problems of either type. In
the general case, an arbitrary enumeration of simplicity degrees is employed to impart
the requisite, additional bias necessary for convergence to the truth. Section 10 defines
Ockham’s razor relative to simplicity. Ockham’s vertical razor requires that one infer
a disjunction whose disjuncts are closed downward in the simplicity order, restricted
to degrees compatible with current information. Ockham’s horizontal razor, which is
restricted to simplicity concepts with open upward sets, requires that every minimal
degree compatible with current information be included as a disjunct. When there are
infinite descending chains of simplicity degrees, that generalizes to the requirement that
disjuncts be co-initial in the simplicity order.

With simplicity and Ockham’s razor on the table, we turn to the definition of optimally
direct convergence to the truth in section 11. Our proposal has an ancient precedent:

Fools dwelling in darkness, wise in their own conceit, and puffed up with vain
knowledge, go round and round, staggering to and fro, like blind men led by
the blind.1

Going round and round implies a credal cycle (returning to a view you once held and
then abandoned) and staggering to and fro implies a credal reversal (repudiating a view
you once held). Both explicate aspects of indirectness of one’s approach to the truth.2

We compare methods in terms of their worst-case performance, in both senses. Worst-
case optimality means doing as well as an arbitrary convergent solution to the problem
in terms of worst-case performance in every simplicity degree. Worst-case sub-optimality
means that some alternative method does at least as well in each simplicity degree and
better in some simplicity degree. Worst-case admissibility means not being worst-case
sub-optimal. In order to extend the argument to arbitrary simplicity orders, we compare
cycle and reversal sequences directly by means of sub-sequence relations, rather than
through intermediate, numerical losses associated with such sequences.

The development culminates, in section 12, with a series of results that single out
Ockham’s razors in terms of directness of approach to the truth, relative to an underlying
simplicity concept. In the case of open upward sets, Ockham’s vertical razor is necessary
for worst-case cycle optimality and Ockham’s horizontal razor is necessary for worst-case
reversal optimality. In general, Ockham’s vertical razor is necessary for worst-case cycle
optimality. How does the argument escape from the apparently insuperable problem of

1Excerpt from the Katha Upanishad (Müller, 1900).
2In formal learning theory, reversals of opinion are called mind-changes (Case et al., 1995) and cycles

are called U-shaped learning (Carlucci et al., 2005). However, it is usually assumed that learners are forced
to choose a full answer to the question at each stage, whereas we allow learners to produce arbitrary
disjunctions of answers. In that more general setting, changing one’s mind could mean strengthening
belief, dropping a belief, or both. Reversals occur only when belief is both strengthened and weakened.
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robbing Peter to pay Paul? It turns out that favoring a complex possibility over a simpler
one results in extra cycles and reversals of opinion, in some possibility in the favored,
complex simplicity degree. So both Peter and Paul get robbed when complex simplicity
degrees are favored over simple ones! That is the epistemological crux of the matter.

Finally, the theory of simplicity developed in section 6 is intended to be as weak
as possible, given the goal of justifying Ockham’s razor. However, that raises a question
about the objectivity of simplicity, since the entire argument is simplicity-relative. Section
13 presents some plausible, further principles that narrow down the range of possible
simplicity concepts for a given empirical problem considerably, particularly for problems
in which simplicity intuitions are strong. However, there are also highly symmetrical
problems in which simplicity breaks symmetry. We propose, as a meta-principle for all
possible simplicity theories, that the set of all simplicity concepts for a given problem be
closed under problem symmetries.

The proposed paper extends and improves upon the general approach of Kelly and
Glymour (2004); Kelly (2007a, 2010); Luo and Schulte (2006); Martin and Osherson (1998)
which was inspired by earlier work in formal learning theory (Putnam, 1965; Kugel, 1977;
Case and Smith, 1983; Osherson et al., 1986; Freivalds and Smith, 1993; Kelly, 1996; Mar-
tin and Osherson, 1998) and in the philosophy of science, where simplicity and truth are
major themes in the scientific realism debate (Popper, 1959; Glymour, 1980; Van Fraassen,
1980). The major advance in this study is the topological theory of simplicity relative to
problems defined, abstractly, in terms of possible world semantics and the lifting of the
justification of Ockham’s razor to that setting.3 The generality is consonant with an in-
creasing awareness that topology is the right setting for learning theoretic analysis (Kelly,
1996; Vickers, 1996; Martin et al., 2006; Schulte et al., 2007; Yamamoto and de Brecht,
2010; Case and Kötzing, 2013; Baltag et al., 2014). Furthermore, earlier versions of the
argument were based on retraction minimization. Shifting the focus to cycles and rever-
sals results in a far more general and direct optimality argument for Ockham’s razor and
also reveals the important distinction between Ockham’s vertical and horizontal razors.

2 Empirical Problems

Let W be a set of points called possible worlds. A proposition is a subset of W . Then
logical operations correspond to set theoretic operations: A∧B = A∩B, A∨B = A∪B,
¬A = W \ A, and A entails B iff A ⊆ B.

An information basis on W is a countable collection I of propositions such that I
covers W and, for each world w and E,F ∈ I such that w ∈ E ∩ F , there exists G ∈ I

3The concept of stratification of a topological space is familiar in algebraic geometry (Stratification.,
http://www.encyclopediaofmath.org/index.php?title=Stratification), which studies the numerical stabil-
ity of solutions to polynomial equations. We arrived at the concept independently, based entirely on its
aptness as a theory of empirical simplicity.
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such that w ∈ G ⊆ E∩F . In other words, every world presents at least some information
state (possibly vacuous), and for any true, finite conjunction of information states, there
is a true information state that entails the conjunction. The assumption of countability
follows Alan Turing’s (1936) argument that infinite gradations of input information are
indistinguishable.

It is now a familiar point in philosophy (Hintikka, 2007), logic (Groenendijk, 2009),
and theoretical linguistics (Roberts, 2004) that questions guide inquiry and discourse. We
propose that empirical simplicity emerges when a question is imposed on an information
basis. A questionQ on W is modeled as a countable partition of W into mutually exclusive
and exhaustive, non-empty propositions called potential answers to Q. Note that question
Q satisfies the requirements for an information basis, and may be thought of as the output
information basis. Let φQ(w) denote the unique answer Q true in w, which is just the
unique cell of Q that contains w. The function φQ is called the canonical map for Q.
Question Q refines question Q′ iff each answer to Q entails some answer to Q′. The
questions on W constitute a lattice under the refinement order, with the least refined
question Q> = {W} on top and the most refined question Q⊥ = {{w} : w ∈ W} on the
bottom.

Let I be an information basis on W and let Q be a question on W . Then I = (W, I)
is an information space, Q = (W,Q) is a question space and P = (W, I,Q) is an empirical
problem.4 It is convenient to identify P with the pair (I,Q), so that it is easy to change the
question. Henceforth, we assume, without further comment, that P = (W, I,Q) = (I,Q).

Let I(w) denote the set of all propositions in I that contain w. Call I(w) the local
information basis at w, which contains every information state that would ever be entered
in w. Furthermore, define the restriction of collection S of propositions to E ∈ I as
follows:

S �E = {S ∩ E : S ∈ S} \ {∅}.

Define the restricted problem—the problem faced in light of new information E, to be
P�E = (E, I �E, Q�E). Define restricted information and question spaces similarly.

3 Convergence to the Truth

We view inquiry as a process of processing information and producing answers relevant to
the question, in a way that should arrive, eventually, at the right answer. Let Q∗ denote
the closure of Q under union, so Q∗ contains arbitrary disjunctions of answers to Q. A
learning method for problem P is a function λ : I → Q∗ such that λ never produces the
inconsistent proposition ∅.

4In section 13 we discuss some reasons to think that a problem involves a set of questions, nested by
preuppositions, rather than just a single question.
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Solution of P in the limit demands that the learner stabilize, eventually, to the true
answer to P on increasing information. Stabilization to the truth has been a central
theme in epistemology since Plato’s discussion of knowledge as stabilized true belief in
the Meno. Say that E ∈ I(w) locks λ onto the truth in w, P iff λ(F ) = φQ(w), for all
F ∈ I(w) such that F ⊆ E.5 Let LockP(λ,w) denote the set of all E ∈ I(w) such that
E locks λ onto the truth in w, P. Then say that λ solves P in the limit iff LockP(λ,w)
is non-empty, for each w ∈ W .

4 Information Topology

The logic of inquiry is grounded in the information topology of the problem faced, a view
that is becoming increasingly accepted in the area of computational learning theory (Kelly,
1996; Vickers, 1996; Martin et al., 2006; Schulte et al., 2007; Yamamoto and de Brecht,
2010; Baltag et al., 2014). Let I∗ denote the closure of I under arbitrary union and let
I∗ = (W, I∗) and P∗ = (I∗,Q). Then I∗ is the topological space induced by I, which is
called the information topology. Many of the most fundamental epistemological concepts
are invariant features of the information topology. The propositions in I∗ are the open
propositions (of I∗), and elements of I∗(w) are neighborhoods of w (in I∗). We henceforth
omit reference to I unless ambiguity would result.

The open propositions are exactly the verifiable propositions, where H is verifiable
iff, for each w ∈ H there exists E ∈ I(w) such that E ⊆ H. Closed propositions are
complementary to open propositions and correspond to refutable propositions. Clopen
(closed-open) propositions are, therefore, decidable.

World w is an interior point of H iff there exists E ∈ I(w) such that E ⊆ H—
i.e., if w presents information that verifies H. The interior int(H) of H is the set of all
interior points of H, so it is just the proposition that H will be verified. World w is a
boundary point of H iff w is an interior point of neither H nor ¬H. Thus, boundary
worlds are worlds in which the binary question {H,¬H} is never answered deductively
by information. The boundary bdry(H) of H is the set of all boundary points of H.

Furthermore, bdry(Q) is the union of the boundaries of the answers to Q and int(Q)
is the union of the interiors of the answers to Q. In that case, we have the dual relation
bdry(Q) = ¬int(Q). Then bdry(Q) is the proposition that no answer will ever be verified
and int(Q) is the proposition that some answer will be verified (i.e., that information
will decide the question deductively). A purely inductive question is a question whose
boundary is W , so one necessarily faces the problem of induction with respect to it—
there is no prospect of crucial information that would settle the question. A decidable
question has interior W , so information is destined to settle it deductively. In general,
both the interior and the boundary of a question may be non-empty.

5The locking terminology follows Jain et al. (1999).

6



World w is a closure point of H iff w presents no information incompatible with H.
Equivalently, w is a closure point of H iff w is an interior point of H or a boundary
point of H. The closure cl(H) of H is the set of all closure points of H. Thus, cl(H) =
int(H) ∪ bdry(H). It is easy to show that H is open iff H = int(H) and H is closed iff
H = cl(H).

5 Falsifiability and the Specialization Pre-Order

Define the specialization pre-order over propositions in I∗ as follows:

G �I∗ H iff G ⊆ clI∗(H).

Then G entails that one faces the problem of induction with respect to H, if H is false.
As usual, drop the I∗ subscript when no ambiguity arises. Define ≺ to hold when � holds
one way and not the other and define ∼= to hold when � holds both ways.

Karl Popper proposed three distinct, but similar, concepts of empirical simplicity.
According to Popper’s second concept (Popper, 1959), G is as falsifiable as H iff every
information state incompatible with H is also incompatible with G. Then it is easy to
check that:

Proposition 1. Popper’s falsifiablity order is identical to the specialization pre-order.

One important shortcoming of Popper’s proposal is that � is only a pre-order, so “sim-
plicity cycles” are possible. For an easy example, suppose that possible worlds are natural
numbers, so W = N. Information states are upward-closed subsets of N. Suppose that the
question is the maximally refined question Q⊥. Then it is easy to check that {i} � {j}
iff i ≤ j, as one would expect—if we think of the problem as counting entities or reaction
types, then theories that posit more are usually considered to be more complex. But now
coarsen the question to Qprty, whose answers are “even” and “odd”. In that case, we
have a � cycle between “even” and “odd”, regardless of current information. However,
if the current information is lower bound 3, it seems that “odd” is simpler than “even”
and if the information is lower bound 4, then “even” is simpler than “odd”. The cyclic
simplicity order does not recover that judgment. It would do so, however, if the coarse
question Qprty is replaced with the maximally refined question Q⊥. That eliminates the
cycle by breaking it into an infinite spiral that alternates in parity. Moreover, given lower
bound 3, the simplest answer to Q⊥ is {3}, which entails “odd” and rules out “even”.

6 Empirical Simplicity

Recall, from the preceding section, that � can have cycles over the original question Q,
so the task is to somehow sift an alternative question S from Q such that � is anti-
symmetric (cycle-free) over S and still somehow reflects upon the original question. Then
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the problem S = (W, I,S) may be viewed as a simplicity concept for the original problem
P = (W, I,Q), and the answers to S can be called simplicity degrees. The resulting
partially ordered set (poset) (S,�) then corresponds to a simplicity structure for P, and
the elements of S are simplicity degrees. The induced, simplicity pre-order on worlds is
just:

w �S v iff φS(w) � φS(v).

We aim at a weak proposal whose conditions are plausible and that suffices to prove that
Ockham’s razor is the best strategy for solving inductive problems. Further conditions
are discussed in section 13.

Here are some handy concepts definable from (S,�), for arbitrary collection of propo-
sitions X . Let E ⊆ W . Then the image φS(E) = {φS(w) : w ∈ E} is just the set of
all simplicity degrees C ∈ S that are logically compatible with information E. Define
MinS(E) to be the set of all �-minimal elements of φS(E). For H ∈ S∗, let H� denote
the set of all C ∈ S such that C � H. Let H∗� denote the set of all G ∈ S∗ such that
G � H. The definitions for ≺, � and, � are similar.

6.1 Local Closure

Perhaps the most paradigmatic simplicity concept is polynomial degree. Let worlds be
polynomial functions Y = w(X). An information state consists of all polynomial functions
passing through some finite set of rectangles in the real plane.6 Call that information space
Ipoly. The question Qdeg is to determine the degree of the true polynomial function. Let
Cn assert that the true degree is exactly n. Then Cn+1 has the property that, if w ∈ Cn+1,
then one eventually receives information Ew in Cn+1 (namely, rectangles that rule out all
Ci for i ≤ n), given which, if Cn+1 is false, then more rectangles will be seen that rule out
all polynomials in Cn+1. More generally, say that proposition C is conditionally refutable
iff, for all w ∈ C, there exists E ∈ I∗(w) such that C ∩ E is closed in I∗ �E. Say that S
is conditionally refutable in I∗ iff each C ∈ S is.

The shift to the restricted space I∗ �E in the definition of conditional refutability can
be eliminated as follows. In topology, C is said to be locally closed iff C is a difference of
open propositions.7 Then we have:

Proposition 2. C is conditionally refutable iff C is locally closed.

Say that S is locally closed iff each C ∈ S is locally closed (in I∗). Our first requirement
on simplicity concepts is that they be locally closed. In terms of locally closed sets,
conditional refutability may be thought of as follows.

6This data model, known as uncertain but bounded error is discussed in Glymour (2001). The example
is developed rigorously in section 7.

7The moniker “locally closed” actually connotes conditional refutability, but we follow the standard
definition.
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Proposition 3. Suppose that S is locally closed in I∗. Suppose, further, that C ∈ S, that
A, B are open, and that C = A \B. Then:

A ∩
⋃

C≺ = ∅.

It is not true in general that
⋃
C� is open. When S satisfies that, stronger property, say

that S has open upward sets. We discuss that special case in section 9 below.
A crucial, further consequence of local closure is that it forces the simplicity order to

be a partial order—simplicity cycles are ruled out:

Proposition 4. If S is locally closed for I∗, then S is partially ordered by �.

Finally, local closure guarantees solvability in the limit. Let countable partition S =
{Ci : i ∈ N} be locally closed in I. Let Ci = Ai \ Bi, for Bi, Ci ∈ I∗. Say that E ∈ I
activates Ci iff E ⊆ Ai and E 6⊆ Bi. Let λenm(E) = the first Ci activated by E, if there
is one, and

⋃
φS(E) otherwise. Then λenm solves S.

Proposition 5. Suppose that question S is locally closed in I. Then λenm solves S in the
limit.

6.2 Homogeneity

The � relation is a partial order over locally closed partition S, but there is still an
important shortcoming in the idea. If degree C = {w, v} is heterogeneous, in the sense
that {w} ≺ D and {v} 6≺ D, then C 6≺ D, so the problem of induction from w to D is
invisible in the simplicity order (S,�). Implicit in the concept of a simplicity degree is
that one need only know the degree of the world to know which problems of induction
one faces in that world. Then the partial order (S,�) can serve as a kind of “epistemic
road map”, in the sense that one’s location in a city determines the set of all cities one
can reach from that city, without further information about one’s position in the city.
Accordingly, say that proposition C is homogeneous for S in I∗ iff:

{w} � D implies C � D,

for all w ∈ C and D ∈ S. When each C ∈ S is homogeneous for S in I∗, say that S is
homogeneous in I∗.

Homogeneity forces the information topology to align with the simplicity order on
degrees.

Proposition 6. Suppose that partition S is homogeneous in I∗ and that C ∈ S. Then:

cl(C) =
⋃

C�.
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Another important consequence of homogenity is that it holds the simplicity relation rigid
in light of new information.

Proposition 7. If S is homogeneous in I∗, then, for all C,D ∈ S such that C ∩E 6= ∅:

C �I∗ D iff C ∩ E �I∗�E D ∩ E.

6.3 Stratification

Say that S stratifies I∗ iff S is both homogeneous and locally closed in I∗.8 A stratifica-
tion ensures that the disjunction of all simplicity degrees simpler than a given degree is
refutable, which is crucial if simplicity is to be a guide to inquiry.

Proposition 8. Suppose that S stratifies I∗ and that C ∈ S. Then
⋃
C≺ is closed.

As a consequence, the open differences that witness local closure assume a normal form
that lines up with the simplicity order:

Proposition 9. If S stratifies I∗, then the local closure of C ∈ S is witnessed by:

C =
⋃

C 6≺ \
⋃

C 6�.

If S has open upward sets, then there exists witness:

C =
⋃

C� \
⋃

C�.

6.4 σ-Homogeneity

It is natural to extend the definition of homogeneity from S to S∗, as follows. Say that
proposition C is σ-homogeneous iff

{w} � H implies φS(w) � H,

for all w ∈ C and H ∈ S∗. A σ-stratification is a σ-homogeneous stratification. It makes
a difference:

Proposition 10. Homogeneity is logically weaker than σ-homogeneity.

8Stratifications have been a familiar topic in the area of algebraic geometry, since the 1950s (Strat-
ification., http://www.encyclopediaofmath.org/index.php?title=Stratification). The terminology is not
entirely standardized. Sometimes, what we call a stratification is referred to as a good stratification (Stacks
Project, http://stacks.math.columbia.edu/tag/09XY), whereas a stratification is a weaker concept.
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We do not insist upon σ-homogeneity, as it can be subtle to verify in paradigmatic ap-
plications, and our main results do not depend upon it. But the following considerations
speak strongly in its favor.

The relevant responses to question S are disjunctions of answers to S. The image
φS(H) = {φS(w) : w ∈ H} is exactly the set of all answers to S that are logically
compatible with proposition H. Furthermore, (φ−1S ◦φS)(H) =

⋃
φS(H) is the disjunction

of all such answers, which is the strongest relevant consequence of H in S:

relS(H) = (φ−1S ◦ φS)(H) =
⋃
{φS(w) : w ∈ H}.

Thus, relS is the “coarse-graining” of H by S. It is immediate from the definition that:

Proposition 11. S∗ ∩ I∗ ⊆ relS(I∗) ⊆ S∗.

The relS operation commutes with union:

Proposition 12. Let H be an arbitrary collection of propositions over W . Then:

relS(H∗) = relS(H)∗.

One may think of relS(E), for information state E, as an “empirical effect”, in the sense
in which scientists speak of a “second-order effect” or “the photo-electric effect”. One
would surely expect empirical effects to be empirically verifiable (open). That natural
condition is equivalent to σ-homogeneity.

Proposition 13. Let S partition topological space I∗.

S is σ-homogeneous for I∗ iff relS(I) ⊆ I∗.

The following corollary summarizes the preceding, three propositions:

Proposition 14. Let S partition topological space I∗. Then:

S is σ-homogeneous for I∗ iff relS(I)∗ = relS(I∗) = S∗ ∩ I∗.

Moreover, the set of all empirical effects is an information basis in its own right, so one
may simply replace the original information space with the space of empirical effects, to
arrive at an abstract version relS(P) = (W, relS(I),Q) of the original problem P:

Proposition 15. Suppose that S is σ-homogeneous for I. Then relS(I) is an information
basis on W .

Finally, when S is σ-homogeneous, the simplicity order is preserved under restriction,
over all of S∗:
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Proposition 16. If S is σ-homogeneous in I∗, then proposition 7 holds, with S∗ in place
of S.

We close with a pair of examples illustrating the pathologies of non-σ-homogeneous
partitions. The first example possesses an information state whose strongest relevant
consequence is unverifiable. Let W = N. Let I consist of upward-closed subsets of N,
under the standard order, together with the special information state {0}. Let S =
{0, 1} ∪ {{n} : n > 1}. It is intuitively odd to associate the isolated world 0 with the
generic world 1. However, � is just the identity relation over S, so homogeneity is satisfied
trivially. Local closure is also satisfied, since {0, 1} = W \ {n ∈ N : n > 1}, so S is a
stratification. But {0} is an information state and relS({0}) = {0, 1} is not open, so
σ-homogeneity fails by proposition 13. To see how, note that {0} 6≺ {{n} : n > 1} and
{1} ≺ {{n} : n > 1}. The natural remedy is to split the gerrymandered degree {0, 1}.

A similar example illustrates failure of relS(I) to be an information basis and failure
of relS(I∗) to be a topological space, for information basis I. Let N0 and N1 be two
disjoint copies of the natural numbers and let a0, a1 be two further worlds. Let W =
N0 ∪ N1 ∪ {a0, b0}. Each information state is either a singleton {ni}, for i ≤ 1, or a
set of the form {ai} ∪ X, where X is an upward-closed subset of Ni, for i ≤ 1. Let
S = {{a0, a1}} ∪ {{n0} : n0 ∈ N0} ∪ {{n1} : n1 ∈ N1}. Then S stratifies I∗, but violates
σ-homogeneity, in light of proposition 15, because relS(I) is not an information basis and
rel∗S(I) is not a topological space. The violation is witnessed by {a0, a1} ∈ S, because
a0 ≺ N0 and a1 6≺ N0. The natural remedy is to split the gerrymandered degree {a0, a1}.

6.5 Deciding the Original Problem

Stratification depends entirely on the information topology I∗. The third requirement
relates I∗ to the question Q. Say that S decides Q in I∗ iff H ∩ C is open in I � C,
for each C ∈ S and H ∈ Q. Therefore, the problem of induction is always external
to simplicity degrees, where it is represented explicitly by the simplicity relation, due to
homogeneity. That is a natural condition, if the idea is for S to make the epistemological
structure P explicit in terms of �. Furthermore, when S decides Q, one can think of
answers to S as reasons for answers to Q, in the sense that answering S suffices, in light
of incoming information, for answering Q. Let λ be a convergent solution to S. Turn λ
into a method for the original problem P as follows.

λQ(E) =
⋃

φQ(λ(E) ∩ E).

Then:

Proposition 17. Suppose that S decides Q in I∗ and that λ solves S in the limit. Then
λQ solves P in the limit.
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6.6 Simplicity Defined

In light of the preceding discussion, we propose that S is a simplicity concept for P iff S
is a stratification of I∗ that decides Q. In other words:

(s1). S is locally closed in I∗;

(s2). S is homogeneous in I∗;

(s3). S decides Q in I∗.

If S is also σ-homogeneous, say that S is a σ-simplicity concept for P.

Proposition 18. Conditions (s1)-(s3) are logically independent. Furthermore, σ-homogeneity
does not follow from (s1)-(s3).

If S is a simplicity concept for P, then (S,�) is a partially ordered set, by proposition
4. Let SimpI(S,Q) abbreviate that S = (W, I,S) is a simplicity concept for problem
P = (W, I,Q). Define SimpI(S) to hold iff there exists question Q such that SimpI(S,Q),
in which case S is a simplicity concept for I and S = (I,S) is a simplicity problem. Define
σ-Simp similarly. As usual, drop the subscripts when no ambiguity arises. Then:

Proposition 19. Simp is transitive.

Furthermore:

Proposition 20. Simp(S) iff Simp(S,S).

Hence:

Proposition 21. Simp pre-orders the set of all simplicity concepts for I.

Examples presented below easily refute both symmetry and anti-symmetry. Crucially,
simplicity concepts are preserved under restriction by new information, so one never
has to seek a new simplicity concept in light of new information, as one would hope, if
simplicity is to be a diachronic guide to inquiry.

Proposition 22. If SimpI(S,Q) then SimpI�E(S �E,Q�E), for all E ∈ I.

Finally:

Proposition 23. Propositions 19-22 hold, as well, for σ-Simp.

13



7 Examples

We begin with highly abstract problems, whose simplicity concepts are fairly obvious.
Consider a very elementary inductive problem in which there is a number n concealed in
a box, and λ is informed of successively greater lower bounds on n, with the guarantee that
λ is informed, eventually, that the lower bound is n. The problem is inductive, because
there is no stage at which the information available rules out that the truth ism > n. More
generally, replace (N,≤) with an arbitrary, countable, partially ordered set (W,≤) and let
the information space I↑(W,≤) be the set of all upward sets w↑ = {v ∈ W : w ≤ v}, for
w ∈ W . Then (W,≤) = (I↑(W,≤),Q⊥) is the Alexandrov problem S↑(W,≤) on (W,≤),
since (I↑(W,≤))∗ is known as the Alexandrov topology generated by (W,≤).

Alexandrov problem S↑(W,≤) wears its simplicity order on its sleeve, since {w} � {v}
iff w ≤ v. Furthermore, S↑(W,≤) is a simplicity problem. Condition (s1) is easily met,
because {w} = w↑ \

⋃
v>w v

↑. Local closure and σ-homogeneity are satisfied trivially by
Q⊥. Some coarsenings of Q⊥ may also count as simplicity concepts. Condition (s3) rules
out the union of ordered degrees, and (s2) imposes a strong, global requirement on the
fusion of un-ordered degrees—e.g., no finite chain can be fused with an infinite chain.

Suppose that W = N, that the information space is I↑(N,≤), and the question Qparity

is whether n is even or odd. That question is not a simplicity concept for itself, since
there is a simplicity cycle between the two answers, in violation of proposition 4. But
Q⊥ is a simplicity concept for Qparity and, moreover, is the unique simplicity concept
for Qparity, because any coarsening either combines successive degrees, violating (s3), or
skips an intermediate degree, violating (s1). So when the question is over-coarsened, the
proposed theory of simplicity can sometimes isolate the essential, underlying simplicity
concept that refines it.

We now shift attention to a slightly different way of generating a problem from a given,
partial order (W,≤). Given partial order (W,≤), let information basis Ico−↓(W,≤) consist
of all non-empty complements of downward closed sets in (W,≤) and let Ico−↓(W,≤) and
Sco−↓(W,≤) be the associated information space and problem with question Q⊥. Call
such problems TD problems, since I is the weakest TD topology on W with specialization
order � (Aull and Thron, 1962). Such problems are still simplicity problems, and the
order (W,≤) is still isomorphic to the simplicity concept (Q⊥,�).

The preceding problems abstract from time and wear their simplicity concepts on
their sleeves. Less abstractly, assume that λ receives sequential, discrete inputs, and the
question pertains to the sequence of inputs λ will receive in the future. Let I denote the
countable set of all possible such inputs, and let W be some collection of infinite sequences
of inputs. Let w � t denote (w0, . . . , wt−1). The information imparted by observation
of finite sequence e of inputs is just [e] = the set of all w ∈ W that extend e. Let
Iseq = {[w � n] : w ∈ W and n ∈ N}. Then Iseq is an information basis. One can
formulate many inductive problems by varying W and the question asked. For example,
suppose that I = N ∪ {∗}, where asterisk is a non-numeric input. Let Wfin contain all
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infinite sequences of inputs that have finite range. For finite set S of natural numbers,
let w ∈ CS iff the set of numbers occurring in w is exactly S, and let the range question
Qrng denote the set of all CS such that S is a finite subset of N. Let w ∈ Cn iff w ∈ CS
and |S| = n and let the counting question Qcnt denote the set of all Cn such that n ∈ N.
Then we have the intuitive simplicity relations:

Proposition 24.

Cn �Iseq Cn′ iff n ≤ n′;

CS �Iseq CS′ iff S ⊆ S ′.

The proof is intuitive—no matter which inputs one has seen so far, one could always see
a new input later. Furthermore:

Proposition 25. The questions Qcnt and Qrng are σ-homogeneous simplicity concepts for
themselves and for one another, over Iseq �Wfin.

The proposed account of simplicity also applies to many standard kinds of scientific
problems involving continuous quantities, without prior translation into logic or infinite
temporal sequences. To see how it all works, consider the paradigmatic problems of
inferring polynomial degrees. Let Wcts be the set of all continuous functions with support
on [a, b]. Let a = (a1, . . . , an) be a finite vector of real numbers such that an 6= 0.
A polynomial function is a function expressible as fa =

∑
i≤n aix

i. Let Wpoly ⊂ Wcts

denote the set of all polynomial functions with support on the interval [a, b]. Then n
is the degree of fa, and the form of fa is the set S of non-zero positions in a. Let
Dn denote all f ∈ Wpoly of degree n and let FS denote the set of all f ∈ Wpoly with
form S. Then question Qdeg = {Dn : n ∈ N} asks what the degree of the true law
is, and Qform = {FS : S is a finite subset of N} asks what its form is—the questions of
theory choice and model selection, respectively. Data are finite sets of open coordinate
rectangles in the real plane, which are just non-empty cross products (x1, x2) × (y1, y2).
Each such rectangle corresponds to an inexactly observed data point. Given finite set
R of such rectangles, the information state ER is the set of all f ∈ Wcts that have non-
empty intersection with each element of R. Let Irec denote the set of all such information
states. Then Irec is an information basis, for given E,E ′ ∈ Irec, the conjunction E ∩ E ′
is the set of all continuous functions that pass through R ∪ R′, for corresponding, finite
sets of rectangles R,R′. Thus, Icts = (Wcts, Irec) is an information space. Similarly,
Ipoly = Icts �Wpoly is an information space. As one would expect, polynomial degree and
form are simplicity concepts for themselves. Furthermore, they are simplicity concepts
for one another.

Proposition 26. The questions Qdeg,Qform are simplicity concepts for themselves, and
for one another, over Ipoly. Furthermore, Qdeg is σ-homogeneous.
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8 Simplicity as a Reason

The main issue is to provide an epistemic justification for favoring simpler theories over
complex ones. A theory is simple, if it is entailed by a simplicity degree that is minimal
in the simplicity order, given current information. It therefore facilitates the development
that follows to focus on the problem S of inferring simplicity degrees, rather than an-
swers to the original problem P, which may, in general, cut across the simplicity degrees.
Proposition 17 ensures that the simplicity problem is solvable in the limit if and only if the
original problem is. Furthermore, one may think of λP(E) as basing its conclusions about
P on conclusions about S and on current information E. It is possible that λP stabilizes
to a conclusion in P before reversing opinion concerning a simplicity degree in S, which
amounts to an inductive example of a Gettier case (1963). Finally, basing conclusions on
simplicity does not beg the fundamental question at issue, which remains why simpler
simplicity degrees should be favored over complex ones. Therefore, we henceforth focus
attention on solving the simplicity problem S, rather than the given problem P.

9 Simplicity with Open Upward Sets

Thomas Kuhn’s (1962) celebrated distinction between “normal” and “revolutionary” sci-
ence is highly suggestive, but notoriously vague (Masterson, 1970). A similar, but clearer,
distinction is whether simplicity considerations alone suffice to solve the problem, or some
further “control structure” is necessary to guide convergence to the truth. In the former
case, all Ockham agents solving the same simplicity problem must agree. In the lat-
ter case, rational disagreement is possible. Consider the following Ockham strategy for
simplicity problem S:

λMin(E) =
⋃

MinS(E).

Recall that simplicity problem S has open upward sets iff
⋃
C� is open, for all C ∈ S.

Then σ-homogeneity comes for free:

Proposition 27. If S is homogeneous and has open upward sets, then S is σ-homogeneous.

As an immediate corollary, every Alexandrov problem S↑(W,≤) is σ-homogeneous.
The same is true of the polynomial degree problem:

Proposition 28. The question Qdeg has open upward sets over Ipoly.

It may come as a surprise that the polynomial form problem does not have open upward
sets, so λMin cannot solve it in the limit.

Proposition 29. The question Qform does not have open upward sets over Ipoly.
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Here is a simplified example that illustrates how that can happen. Let N1 and N2 be
disjoint copies of the natural numbers and let ≤ be the standard order on both copies,
with no ordering between the copies. Then λMin solves S↑(N1 ∪ N2,≤) in the limit,
because one of the chains is refuted eventually, after which there is a unique, minimal
degree compatible with the information at each stage. But in Sco−↓(N1 ∪N2,≤), neither
infinite chain is ever ruled out. Think of each infinite chain as a “paradigm”, each step
along which is a sharply testable “articulation”—e.g., the first chain could correspond to
polynomial degree and the second could correspond to trigonometric polynomial degree.
Neither paradigm is ever refuted by information, but each articulation of each paradigm
is refutable. Hence, there are always two minimal possibilities in light of the information,
and λMin fails to converge to the truth. The problem is bi-laterally symmetric with
respect to the two chains. Therefore, a bias or control structure extrinsic to the problem’s
structure is required to break the symmetry and select one minimal possibility over the
other. Many such strategies are possible. A Popperian (1959) strategy is to favor the
paradigm whose current articulation is simpler (in terms of rank in the order on N). A
more Lakatosian (1970) strategy is to favor the paradigm that was re-articulated least
recently, even though its simplicity rank may be higher. Both converge to the truth in a
way that respects the (partial) simplicity order.

In the preceding examples, there at least exists an alternative simplicity concept that
does have open upward sets—just coarsen the partial order by rank, in which case Popper’s
rank method is mandated by Ockham’s razor. But some simplicity problems have no
simplicity concept with open upward sets, so the general case is not always avoidable. For
a very elementary example of that kind, the information space Sco−↓(N,=) reflects the
situation in which each singleton is refutable but not verifiable, and there is no simplicity
order over the singletons.

Proposition 30. Question Q⊥ is its own simplicity concept over Sco−↓(N,=), but has
no simplicity concept with open upward sets over Sco−↓(N,=).

Another example is like the preceding one, except that there are now infinitely many
paradigms (disjoint copies of N). Neither Popper’s rule nor Lakatos’ rule suffices to solve
problems with infinitely many paradigms (disjoint copies of N), since, at every stage,
infinitely many of the paradigms may have escaped re-articulation. We now present a
method that works for such problems and, furthermore, for every simplicity problem S,
even when the order types of the paradigms are so structurally diverse that complexity is
“incommensurable” (non-rankable) over all of them. Since S is countable, choose arbitrary
enumeration S = {Ci : i ∈ N}. Think of it as a symmetry-breaking, epistemic preference
over answers to S that may have nothing to do with the structure of S. The obvious idea is
to let λ(E) = the first Ci ∈ MinS(E), if there is one, and the vacuous conclusion

⋃
φS(E)

otherwise. However, that procedure allows for the possibility that some Cj prior to Cj that
is not simplest in light of E0 becomes simplest in light of further information E1, in which
case the proposed method would drop the truth after having found it, only to return to it
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later, resulting in a cycle of conclusions. That is also a violation of rational monotonicity,
a familiar requirement on rational belief revision (Alchourrón et al., 1985; Pearl, 1990;
Lehmann and Magidor, 1992), which holds of λ in S iff, F ⊂ E and λ(E)∩F 6= ∅ implies
λ(F ) ⊆ λ(E), for all E,F ∈ I(w). The trick for learning in a rationally monotone way
that respects simplicity is to withhold conclusion Ci until information rules out all prior
answers that might become minimal in light of future information, because they are not
more complex than Ci. That is possible whenever S stratifies I. Let OrdminS(E) denote
the set of all Ci ∈ MinS(E) such that Ci ≺ Cj, for all j < i such that Cj ∈ φS(E). In
other words, current experience rules out every competitor prior to Ci that is not more
complex than Ci. Note that OrdminS(E) is either empty, or contains a unique element.
So it makes sense to define:

λOrdmin(E) =

{
the unique Ci ∈ OrdminS(E) if OrdminS(E) 6= ∅;
relS(E) otherwise.

Method λOrdmin implements a version of Ockham’s razor relative to the given enumera-
tion, but the enumeration amounts to an extraneous, supplementary bias subordinate to
simplicity. So λOrdmin interweaves “revolutionary” and “normal” scientific decisions in a
natural way. Method λOrdmin works even if the simplicity order is ill-founded, dense, or
has chains of order type greater than ω.

Proposition 31. If S stratifies I, then (i) λOrdmin is rationally monotonic in S and (ii)
λOrdmin solves S in the limit, no matter how S is enumerated.

10 Ockham’s Razors

We begin with some natural conditions on λ that are more basic than Ockham’s razor.
First, we assume that λ is deductively cogent in the sense that λ(E) is consistent with and
entails relS(E):

∅ 6= (φS ◦ λ)(E) ⊆ φS(E).

Furthermore, say that H ∈ S∗ is σ-homogeneous given E ∈ I iff {w} � λ(E) implies
φS(w) � H, for all w ∈ relS(E). Then λ is σ-homogeneous iff λ(E) is σ-homogeneous
given E, for each E ∈ I. Every method for S is σ-homogeneous, if S is, but sufficient
care guarantees σ-homogeneity over arbitrary simplicity concepts. For example:

Proposition 32. If S is a simplicity problem, then λOrdmin is deductively cogent and
σ-homogeneous in I∗.

Henceforth, we consider only methods that are deductively cogent and σ-homogeneous.
In light of the preceding restrictions, Ockham’s razor serves to constrain the choice

among non-empty, σ-homogeneous subsets of φS(E). Ockham’s razor is a preference for
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simpler simplicity degrees. Preference—epistemic or otherwise—should have consequences
for choices. If C ∈ φS(E) is logically compatible with λ(E), that is an epistemic compli-
ment by λ to C. If D ∈ φS(E) and D ≺ C, then λ should pay the same compliment to D
as well, if λ has an epistemic preference based on simplicity. Say that output disjunction
H ∈ S∗ satisfies Ockham’s weak, vertical razor in response to E iff:

φS(E) ∩ {C� : C ∈ φS(H)} ⊆ φS(H).

Note, however, that a compliment is also paid to H = λ(E), itself, which may be disjunc-
tive, so the compliment should be extended to each C as simple as H that is compatible
with E:

φS(E) ∩H� ⊆ φS(H).

That is the full version of Ockham’s vertical razor. Say that λ satisfies the vertical razor
iff λ(E) does, with respect to each E ∈ I. Since φS(H) ⊆ H�, by the definition of H�,
the vertical razor is equivalent to:

φS(E) ∩H� = φS(H).

For the same reason, the weak, vertical razor follows from the full one. The converse
implication fails—for example, in problem (Iseq,Q⊥)�Wfin, the weak version countenances
the apparently non-Ockham conclusion H100 =“there are exactly 100 effects” when no
effects have been seen, but the full version plausibly rules it out, because the singleton
containing the effect-free world is simpler than H100.

Karl Popper (1959) linked simplicity to falsifiability. In fact, Ockham’s vertical ra-
zor is equivalent to the requirement that one’s conclusions be falsifiable, given the σ-
homogeneity requirement on learning methods:

Proposition 33. Let H ∈ S∗ be σ-homogeneous in I∗. Then H is closed (refutable) in
I∗ �E iff H is vertical Ockham in response to E.

Ockham’s vertical razor is satisfied by plumping for
⋃
H such that H ⊆ MinS(E) is

finite, without providing any horizontal advice constraining which disjuncts to include
in H. Simplicity is not the only bias in science—e.g., reliance only on known causal
mechanisms—and those other biases may help to select a unique, simplest answer. But,
in other cases, such as data mining or causal discovery over large variable sets, plausibil-
ity considerations can be lacking, and then it sounds questionable to choose among the
simplest possibilities. Then, it is natural to insist that every element of MinS(E) be taken
seriously:

MinS(E) ⊆ (φS ◦ λ)(E).
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That principle is vacuous when MinS(E) is empty, due to infinite, descending chains.
Therefore, Ockham’s horizontal razor demands, more generally, that (φS ◦ λ)(E) be co-
initial in (φS(E),�), in the sense that, for each C ∈ φS(E), there exists D ∈ λ(E) such
that D � C.

Neither razor implies the other in general, and they work together as a natural team—
the horizontal razor ensures breadth of coverage over simplicity anti-chains and the vertical
razor fills in the gaps along chains. The vertical razor is, at least, no impediment to solving
arbitrary simplicity problem S:

Proposition 34. If S stratifies I, then λOrdmin is a vertical Ockham solution to S.

We now present a strategy that satisfies both razors and that solves every simplicity prob-
lem with open upward sets. A very conservative approach is to return C if E verifies open
set
⋃
C�, for C ∈ S, and to return the vacuous, relevant proposition relS(E) otherwise.

We present a more interesting and aggressive method, that agrees with λMin when S has
a well-founded simplicity order. Let NmbS(E) (for “no minimum below”) denote the set
of all C ∈ φS(E) such that no D ∈ MinS(E) satisfies D ≺ C. Define the Nmb method:

λNmb(E) =
⋃

NmbS(E).

Proposition 35. Suppose that S is a simplicity problem with open upward sets. Then:

1. λNmb is deductively cogent and σ-homogeneous;

2. λNmb solves S in the limit;

3. λNmb(E) satisfies Ockham’s horizontal and vertical razors in S;

4. λNmb(E) is closed in I∗ �E.

5. λNmb = λMin, if (φS(E),�) is well-founded.

11 Optimal Inductive Strategies

The aim is to justify Ockham’s razor as the best strategy for answering inductive questions.
Inductive inquiry is non-monotonic, so course reversals are inevitable along the way. But
one can, at least, insist upon the most direct route possible, where directness is explicated
in terms of epistemic reversals and cycles. Sequence a = (A0, . . . , An) of propositions in
S∗ is a reversal sequence iff Ai ∩ Ai+1 = ∅, for each i from 1 to n− 1. A cyclic sequence
is a reversal sequence with the additional property that the terminal entry An logically
entails the initial entry A0.

Our argument is based on worst-case considerations. The standard objection to such
reasoning is that it is too pessimistic, but that gets the situation backwards in this
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case, because we obtain a strong, non-circular vindication of Ockham’s razor, in con-
trast to the circular arguments that inevitably result from expected-case reasoning based
on simplicity-biased prior probabilities.

The usual approach to worst-case reasoning is to tally worst-case losses incurred by
each method in each world, to compute the supremum over all worlds in a given simplicity
degree and then to compare those worst-case bounds for alternative methods. That
works for very elementary examples like Qcnt, in which all maximal simplicity chains are
ordered as the natural numbers. But when there are infinite descending chains, that
approach would result in infinite worst-case loss in each degree occurring in the chain,
trivializing all method comparisons. Therefore, we adopt the more refined approach of
comparing output sequences directly, without assigning intervening, numerical losses.9

Define (A0, . . . , An) ≤ (B0, . . . , Bm) to hold iff m = n and ∅ 6= Ai ⊆ Bi, for each i ≤ n.
Then, if b is a reversal sequence, a is also a reversal sequence that reverses at least as
sharply. Moreover, if b is a cycle sequence, then a carries out the cycle at least as sharply.

An information history in I is a finite, non-empty, downward-nested sequence e =
(E0 ⊃ . . . ⊃ En) of elements of I. Let λ(e) = (λ(E0), . . . , λ(En)). Let E ∈ I and C ∈ S.
Let HstI denote the set of all information histories (E0 ⊃ . . . ⊃ En), and let HstI(C,E)
denote the set of all information histories starting with an information state included in
E and ending with an information state compatible with C.

Let λ, λ′ be methods for S and let C ∈ S. Define the the worst-case comparison:

λ′ ≤rev
(S,C,E) λ iff for every e ∈ HstI(C,E) such that λ(e) is a reversal sequence,

there exists e′ ∈ HstI(C,E) such that λ′(e′) ≤ λ(e).

Then define λ′ ≤rev
S,E λ to hold iff λ′ ≤rev

(S,C,E) λ holds in each C ∈ S. The relation ≤rev
(S,C,E)

is a pre-order. The corresponding, strict order holds if the pre-order holds one way and
not the other and the corresponding equivalence relation holds if the pre-order holds both
ways.

Say that λ is reversal optimal given E ∈ I in S iff (i) λ solves S in the limit and (ii)
λ′ ≤rev

S,E λ, for every λ′ such that λ′ solves S in the limit. Say that λ is reversal sub-optimal
given E in S iff (i) λ fails to solve S in the limit, or (ii) λ <rev

S,E λ
′, for some λ′ such that

λ′ solves S in the limit. Finally, λ is reversal optimal in S iff λ is reversal optimal in S
in each E ∈ I, and λ is reversal sub-optimal in S iff λ is reversal sub-optimal in some
E ∈ I. Repeat the entire chain of definitions, substituting cycles for reversals.

Note that λ′ <rev
(S,C,E) λ can be described by saying that λ weakly dominates λ′ in terms

of worst-case bounds over the simplicity degres in S. Thus, sub-optimality ranges from
weak dominance ( S = Q⊥) to being non-minimax ( S = Q>). Therefore, one advantage
of a more refined simplicity concept S (e.g., a partial order rather than a total order) is
that the comparison more closely approximates weak dominance in the finer concept. But

9The same idea was applied to retractions and retraction times in (Kelly, 2007b).
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there is a limit to refinement, due to the assumption that questions are countable, and to
the preference for eventual, unique minima, when possible.

12 A Strategic Justification of Ockham’s Razor

The aim is to provide a strategic justification of Ockham’s razor, in terms of directness of
convergence to the truth, as reflected by course-reversals and cycles. When S has open
upward sets, the vertical and horizontal Ockham method λNmb is both cycle-optimal and
reversal-optimal:

Proposition 36. Let S be a simplicity problem with open upward sets. Then λNmb is a
reversal-optimal and cycle-optimal solution to S.

Therefore, cycle and reversal optimality are achievable, for simplicity problems with open
upward sets. Moreover, conformity with Ockham’s horizontal razor is equivalent to rever-
sal optimality:

Proposition 37. Let S be a simplicity problem with open upward sets that is solved in
the limit by λ. Then the following are equivalent:

1. λ is reversal optimal in S;

2. λ is not reversal sub-optimal in S;

3. λ satisfies Ockham’s horizontal razor in S.

In the general case, the method λOrdmin is cycle-free and, hence, cycle-optimal, in
arbitrary simplicity problem S.

Proposition 38. Let S be a simplicity problem. Then λOrdmin is cycle-optimal for S.

Thus, cycle-optimality is achievable. Furthermore, every method that violates Ockham’s
vertical razor is sub-optimal with respect to cycles, so one ought not to violate it.

Proposition 39. Let S be a simplicity problem. Suppose that method λ for S violates
Ockham’s vertical razor for S at E. Then λ is cycle-sub-optimal in S, as witnessed by
λOrdmin.

One would like to say, in addition, that Ockham’s vertical razor is also sufficient, in
some sense, for cycle optimality. However, nothing prevents the learner from gratuitously
cycling between vertical Ockham outputs when S lacks open upward sets—some further,
diachronic restriction is required, such as rational monotonicity. But less than that is
required to vindicate Ockham’s razor—it is enough that Ockham’s razor is both necessary
and sufficient for being able to avoid cycles in the future, from that point onward. And
that is true—it is always possible to continue by means of λOrdmin, after H is refuted.
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Proposition 40. Suppose S is a simplicity problem and λ solves S in the limit. Let
E ∈ I, and suppose that λ(E) is σ-homogeneous for E. Then the following are equivalent:

1. λ(E) satisfies Ockham’s vertical razor with respect to E.

2. There exists a method λ′ for S�E such that:

(a) λ′(E) = λ(E);

(b) λ′ solves S�E in the limit;

(c) λ′ is cycle-optimal in S�E.

Regarding Peter and Paul, violations of Ockham’s horizontal razor that are also violations
of the vertical razor incur extra reversals at each degree higher than the omitted simple
disjunct. Violations of the horizontal razor that are not also violations of the vertical razor
can result in extra reversals only in the simple, omitted degree. But worst-case reversals
are not improved for the favored, simple degree, since zero reversals are already achieved
there by λNmb. Of course, there has to be some advantage for the favored, simple degree,
and that is an improvement in time to convergence to the true answer, at the expense of
alternative, simple degrees.

We close with a back-and-forth theorem analogous to proposition 40.

Proposition 41. Suppose S is a simplicity problem with open upward sets, and λ solves
S in the limit. Let E ∈ I. Then the following are equivalent:

1. λ(E) satisfies Ockham’s vertical and horizontal razors with respect to E.

2. There exists a method λ′ for S�E such that:

(a) λ′(E) = λ(E);

(b) λ′ solves S�E in the limit;

(c) λ′ is both cycle and reversal optimal in S�E.

That concludes our argument for the uniquely optimal truth-conduciveness of Ockham’s
razor.

13 Simplicity and Objectivity

The justification of Ockham’s razor is one traditional puzzle concerning simplicity. An-
other is whether simplicity is a mere, subjective consideration. Principles (s1-s3) are
weak, by design, since our focus was on justifying Ockham’s razor relative to a simplicity
concept, for which those principles suffice. But, of course, it is interesting to consider
further principles that plausibly narrow down the range of possible simplicity concepts
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for a given problem. We present the following principles more as rules of thumb, to be
applied with judgment, rather than as hard, necessary conditions.

To begin with, the many virtues of σ-homogeneity have already been discussed:

s4. It is preferable that S be σ-homogeneous for I∗.

Furthermore, it is very natural to prefer simplicity concepts with open upward sets, when
the choice arises—e.g., polynomial degree over polynomial form.

s5. It is preferable that S have open upward sets in I∗.

Pathological simplicity concepts remain. For a spectacular example, Q⊥, whose simplicity
order is trivially flat, is a simplicity concept for Qcnt in Iseq �Wfin, in spite of (s1-s5).10

Clearly, Qcnt is a better simplicity concept for Qcnt than Q⊥ is. One diagnosis is that
the simplicity order over Q⊥ is trivially flat—it is plainly more apt to represent, explicitly,
all of the simplicity relations that already hold among answers to the original question.
That idea is captured in an elegant and general way by the relation of simulation, a central
concept in modal logic (van Benthem, 1983) and automata theory (Milner, 1971). Let
Q, Q′ be questions over I∗. Say that Q′ is an upward simulation of Q iff for all C ∈ S,
if φS(w) � C, then there exists D ∈ S ′ such that D ∩ C 6= ∅ and φS′(w) � D. The
corresponding preference principle, which easily rules out Q⊥ as a simplicity concept for
Qcnt, is:

s6. It is preferable that S be an upward simulation of Q in I∗;

Principles (s1-s6) rule out trivial simplicity concepts likeQ⊥ andQ>, but they allow for
a range of disagreeing, non-trivial variants. Consider the problem Pcnt = (Iseq �Wfin,Qcnt),
for which Qcnt is a natural simplicity concept. Now define the “grue-like” (Goodman,
1983) bijective map ψk,k′ : Wfin → Wfin as follows. Inspect the first k + k′ entries in
w. If they are all *, then pass over the first k′ asterisks and replace the subsequent k′

asterisks with 0, 1, . . . , k− 1. If w starts with k′ asterisks followed by 0, 1, . . . , k− 1, then
replace the first k + k′ entries with *. Otherwise, leave w unaltered. Then ψk,k′(Qcnt)
satisfies (s1-s6) for Qcnt in Iseq �Wfin. However, Qcnt and ψk,k′(Qcnt) are not the same
question described differently—they are distinct sets of propositions. Since the original
question is part of the problem, and simplicity is problem-relative, there exist structural
conditions that rule out the gerrymandering. One plausible and direct prohibition against
the simplicity concept S gerrymandering the given question Q is as follows, where Q∧Q′
denotes the greatest common refinement of Q and Q′. Then, due to its cross-cutting
character, the gerrymandered simplicity concept is ruled out by:

s7. It is preferable that S ∧ Q ⊆ S ∪Q.

10The dual concept Q> is already ruled out by s3.

24



A stronger principle is to leave well enough alone:

s8. It is preferable that the simplicity concept modify the original question as little as
possible.

Principles (s3, s6, s7, s8) rule out potential simplicity concepts based on asymmetries
in the original question. But the question can also also be symmetrical, as in the problem
(Iseq �Wfin,Q⊥). In that case, gerrymandered variants are no longer ruled out. One might
hope that Qcnt is right, and that its gerrymandered variants are still wrong, for reasons
missed by (s1-s7). However, that judgment cannot be grounded in the empirical structure
of the problem as presented and, hence, could not have anything to do with arriving at
the truth as directly as possible by purely empirical means. A symmetry of problem P
is a self-homemorphism of I∗ that is also an automorphism of Q. Each symmetry of a
problem preserves the structure of the problem perfectly. Since every bijection preserves
Q⊥, each homeomorphism of I∗ is a symmetry of (I∗,Q⊥), so there is no structural
criterion for ruling out ψk,k′(Qcnt) as a simplicity concept for Q⊥ in Iseq �Wfin. It is still
open to the metaphysically inclined to add hidden structure to empirical problems—e.g.,
there might be some sort of brute, metaphysical dependence or correlation between our
biases and the nature of the world we live in (e.g., providence before Darwin and evolution
thereafter). By ad hoc adjustment of the hidden dependence, any feature of empirical
hypotheses could be a guide to truth, but the irony of justifying Ockham’s razor with
hidden, untestable forces or tendencies is palpable.

Although the intuition that Qcnt is the “right” concept cannot be grounded in problem
(Iseq �Wfin, Q⊥), it is plausibly explained as an ambiguity in the problem to be solved.
A natural way to pose the question Q⊥ over Iseq �Wfin is “how many effects will occur,
and when does each one occur?”. That could be viewed as an expression of the question
Q⊥, but it could also be viewed as a sequence of two questions, ordered by presupposition
(an occurrence time presupposes an occurence). The first question corresponds to Qcnt,
which breaks symmetry in Q⊥. Then, the following preference is very plausible:

s9. In light of a set of questions ordered by presupposition, it is preferable to satisfy
(s4-s8) with respect to more deeply presupposed questions in the sequence.

By that principle, (s6) continues to rule out Q⊥ as a simplicity concept for Qcnt and
(s7) continues to rule out gerrymandered simplicity concepts for Qcnt. Of course, the
presupposed question could be a gerrymandered question, in which case that would be
the appropriate simplicity concept.

We have considered problems in which both the information space and the question
are symmetrical, so one’s choice among gerrymandered variants is arbitrary, as well as
problems in which the question breaks symmetries in the information space. It is also
possible that the information space, itself, is asymmetrical. For example, let the informa-
tion space be C≤1 = C0 ∪C1, and let the question be Q⊥, which is perfectly symmetrical.
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Note, however, that each w ∈ C1 is an interior point of φQ⊥(w) = {w}, whereas the world
v ∈ C0 is not interior to its answer φQ⊥(w) = {w}. Here is one way to extract simplicity
from that asymmetry, even when the question is symmetrical. Let P be an arbitrary,
empirical problem. Let the boundary of Q be the set of all boundary points of answers to
Q. Define the Cantor-Bendixson problem11 SP generated by P as follows. First, define
downward-nested subsets of W by transfinite recursion:

X0 = W ;

Xα+1 = bdryI∗�Xα(Q);

Xγ =
⋂
α<γ

Xα, for limit ordinal γ.

Since Xα is nested downward, there exists a least ordinal α∗ such that Xβ = Xβ+1. Define:

Cα = Xα \Xα+1, for α < α∗;

SP = {Cα : α ≤ α∗};
WP = W \Xα∗ .

Let IP = I �WP, and SP = (IP,SP). There is no guarantee that WP = W . When that
happens to be the case, then say that problem P is scattered. Then:

Proposition 42. If WP 6= ∅, then SP satisfies (s1-s6) for P �WP, such that the order
type of (SP,�) is α∗. Thus, SP is a simplicity concept for P, if P is scattered.

Cantor-Bendixson rank was explored by (Freivalds and Smith, 1993) (Martin et al., 2006)
as a measure of empirical problem complexity, rather than as a theory of empirical sim-
plicity. In light of the proposition, that work can also be viewed as studying a special case
of empirical simplicity. One considerable advantage of the approach is that it constructs
a unique, total simplicity ranking if the problem is scattered:

s10. The simplicity concept SP is preferable, if P is scattered.

Alas, the paradigmatic examplesQcnt andQdeg are not scattered, so (s10) does not apply—
the proposed, non-constructive axioms for simplicity are far more generally applicable.
Moreover, the Cantor-Bendixson solution to (C0∪C1, Q⊥) is not always intuitively correct.
Suppose that question is expressed as: “will an effect be observed at stage 1 and, if not, will
one be observed later, and if so, when?” Now, the first question is empirically decidable,
by waiting until stage 1, so neither answer is more complex than the other. After that
is settled, an effect in the future is more complex than no effect, for the usual reasons.
Principle (s9) gives the right result, and the Cantor-Bendixson procedure applied directly
to question Q⊥ does not. Principle (s9) also gives the right answer—in agreement with
the Cantor-Bendixson procedure—when the question is posed as “will there be an effect
and, if so, when?”.

11The standard Cantor-Bendixson construction is the special case for problems with the trivial question
Q> = {W}.
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14 Conclusion and Projects

We define empirical problems very generally, in terms of an information basis and a ques-
tion. We provide three axiomatic conditions (s1)-(s3) and a collection of further principles
that recover simplicity concepts from empirical problem structure. The theory is general
enough to allow for problems with ill-founded and dense simplicity orders. Some simplic-
ity concepts have open upward sets. In the general case, additional, subjective biases are
required to solve the problem. The distinction is reminiscent of Kuhn’s celebrated distinc-
tion between “normal” and “revolutionary” science, but it is grounded firmly in problem
structure. Relative to a simplicity concept, we identify two, independent components of
Ockham’s razor, the vertical razor and the horizontal razor. We define optimally direct
convergence to the truth, in terms of minimization of cycles and reversals of opinion, prior
to convergence to the true answer to the question, from information provided by the infor-
mation basis. We establish that Ockham’s vertical razor is necessary for cycle-optimalitiy
and Ockham’s horizontal razor is necessary for reversal-optimality, if it is compatible with
convergence to the truth at all. Cycle-optimal performance is feasible in all problems that
are their own simplicity concepts, and reversal-optimal performance is feasible in all such
problems.

We close, customarily, with some open questions and projects. We did not settle
whether every problem solvable in the limit has a simplicity concept in the sense of (s1-
s3).

It would be interesting to compare the proposed approach systematically to competing
proposals, such as Kolmogorov complexity, VC dimension, and Bayes factors.

Furthermore, the examples presented in this paper just scratch the surface. The ideas
developed in our handling of the polynomial case can be extended naturally to other classes
of functions, to functions of arbitrarily high arity, and to functionals (i.e., to systems of
differential equations).

It remains to extend the entire development to stochastic models and theories, but the
preceding results come close. The simplicity theory already applies to statistical models
(understood in the usual way as sets of sampling distributions over a fixed collection of
random variables)—choose the information basis I to be metric balls with respect to a
standard metric on probability measures, such as total variation metric. It is conjectured
that the cycle-minimization results will also carry over, with convergence in probability
replacing convergence and cycles in probability replacing cycles (i.e., probably producing
an answer, then probably producing a mutually incompatible answer, and finally, probably
producing the first answer again).12 It is impossible to eliminate cycles in chance entirely,
so the results will be indexed by a parameter α > 0 that resembles significance, but
that really reflects cycle-tolerance. The aim is to arrive at a comprehensive, frequentist

12Reversals pose a greater challenge for the optimality argument, because the robbing Peter to pay
Paul problem re-emerges to a degree, due to overlapping tails of probability distributions. That issue is
discussed with respect to retractions in Kelly and Glymour (2004).
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framework for inductive inference of stochastic theories and models in which the usual
practice of favoring the sharp null hypothesis over the complex alternative is literally an
application of Ockham’s vertical statistical razor to a binary question. Unlike the standard
approach to frequentist model selection, which views models as instruments for prediction
relative to the sampling distribution, the projected justification of Ockham’s statistical
razor would apply to counterfactual inductive inferences concerning modifications to the
sampling distribution, such as causal discovery from non-experimental data (Kelly and
Mayo-Wilson, 2010).

15 Proofs

Proof of proposition 2. Suppose that C = E \F , for open E,F . Let w ∈ C. Then w ∈ E.
Then C ∩ E = E \ F , so C is closed in I∗ �E.

For the converse, suppose that C is conditionally refutable. So for each w ∈ C, let C
be closed in I∗ �Ew. So there exists open Fw such that C ∩Ew = Ew \ Fw. Furthermore,
by construction, Fw∩C = ∅. Let E =

⋃
w∈C Ew and let F =

⋃
w∈C Fw. Then F ∩C = ∅.

Let w ∈ C. Then w ∈ Ew ⊆ E. But since w ∈ C, it follows that w 6∈ F . So w ∈ E \ F .
Now, suppose that w 6∈ C. Suppose that w ∈ E. Then there exists v ∈ W such that
w ∈ Ev. Since w 6∈ C, it follows that w ∈ Fv ⊆ F . So w 6∈ E \ F . Thus, C = E \ F .

Proof of proposition 3. Suppose that w ∈ A ∩
⋃
C≺. Then there exists D ∈ S such that

w ∈ D ≺ C. Since C ∩ D = ∅, and w ∈ D, it follows that w ∈ B. So B is an open
neighborhood of w disjoint from C. So {w} 6� C. So D 6� C. Contradiction.

Proof of proposition 4. It is a standard fact that � is a pre-order over arbitrary subsets
of W , so it suffices to show that � is anti-symmetric over C,D ∈ S. Suppose C � D
and C 6= D. Since S is locally closed, C = A \ B for A,B open. Since C � D, there is
w ∈ A∩D. But since w ∈ D 6= C, w ∈ B. Since B is open and disjoint from C, {w} � C
and D � C.

Proof of proposition 5. Let w ∈ W . Let i be least such that w ∈ Ci. So w ∈ Ai. Let
X denote the set of all j < i such that w ∈ Aj. Then w ∈ Bj, for all j ∈ X. Let
D = Ai ∩

⋂
j∈X Bj, which is open. So there exists E ∈ I(w) such that E ⊆ D. Let

F ∈ I(w) such that F ⊆ E. Then F ⊆ Ai and F 6⊆ Bi, so F activates Ci. Consider
j < i. If j 6∈ X, then F 6⊆ Aj. If j ∈ X, then F ⊆ Bj. So F does not activate Cj. Thus,
λenm(F ) = Ci. So E ∈ LockS(λenm, w).
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Proof of proposition 6. Homogeneity is used in the second step of the following argument:

w is a closure point of C iff {w} � C

iff φS(w) � C

iff φS(w) ∈ C�
iff w ∈

⋃
C�.

Proof of proposition 7. The left-to-right side is immediate. For the converse, suppose that
C ∩ E �I∗�E D ∩ E. Then {w} �I∗�E D ∩ E, for all w ∈ C ∩ E. Since C ∩ E is non-
empty, there exists w such that preceding statement holds. Thus, w ∈ clI∗�E(D ∩ E). So
w ∈ clI∗D. So {w} �I∗ D. So C �I∗ D, by homogeneity of S.

Proof of proposition 8. Recall that
⋃
C� is closed, by homogeneity and proposition 6.

Again, by homogeneity, W \C� = C 6�. So C 6� is open. Let C = A \B, for A,B open, by
local closure. Then A ⊆

⋃
C 6≺, by local closure and proposition 3. So

⋃
C 6≺ = A ∪

⋃
C 6�,

which is open.

Proof of proposition 9. For the first claim, recall that � is a partial order, due to local
closure and proposition 4. So it is immediate that C =

⋃
C 6≺ \

⋃
C 6�. Furthermore,⋃

C 6≺ is open, by homogeneity and proposition 8 and
⋃
C 6� is open, by local closure,

homogeneity, and proposition 6.
For the second claim, C =

⋃
C� \

⋃
C�, since � is a partial order. Since S has open

upward sets, C� is open. Furthermore, for each D � C, we also have that D� is open, so
C� =

⋃
D�C D� is open.

Proof of proposition 10. The former clearly implies the latter. To refute the converse
implication, consider the problem in which W = N∪{a, b}, for a, b 6∈ N. The information
states in I are {a}, together with {b}∪{n, n+ 1, . . .}, for each n. Let the degrees in S be
{a, b} together with {n}, for each n ∈ N. Then S is homogeneous, but not σ-homogeneous
for I∗.

Proof of proposition 11. Suppose that H ∈ I∗∩S∗. Since H ∈ I∗, we have that relS(H) ∈
relcs(I∗). Since H ∈ S∗, it follows that H = relS(H). So H ∈ rel(I∗). The second inclusion
is immediate.

Proof of proposition 12. Let v ∈ (φ−1S ◦ φS)(
⋃
H) =

⋃
{φS(w) : w ∈

⋃
H}. So there

exists H ∈ H and w ∈ H such that φS(w) = φS(v). So w ∈ (φ−1S ◦ φS)(H) and therefore
w ∈

⋃
(φ−1S ◦ φS)(H). For the converse inclusion, let v ∈

⋃
(φ−1S ◦ φS)(H) =

⋃
{(φ−1S ◦

φS)(H) : H ∈ H}. So there exists H ∈ H such that v ∈ (φ−1S ◦ φS)(H) =
⋃
{φS(w) : w ∈

H} ⊆
⋃
{φS(w) : w ∈

⋃
H} = (φ−1S ◦ φS)(

⋃
H).
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Proof of proposition 13. Suppose that S is σ-homogeneous for I∗. Let E be open. Let
X = φS(E) and let Y = S \ X . Let w ∈

⋃
X . Then there exists v ∈ φ(w) ∩ E. So E

witnesses that {v} 6�
⋃
Y . By σ-homogeneity, φS(v) = φS(w) 6�

⋃
Y . So there exists

open Fw such that φS(w) ⊆ Fw and Fw ∩
⋃
Y = ∅, so Fw ⊆

⋃
X . So

⋃
X =

⋃
w∈E Fw,

which is open.
For the converse, suppose that S is not σ-homogeneous for I∗. So there exist w, v ∈ W

and Y ⊆ S such that φS(w) = φS(v), and {w} 6�
⋃
Y , and {v} �

⋃
Y . Since {w} 6�

⋃
Y

there exists E ∈ I∗(w) such that E ∩
⋃
Y = ∅. Then X = (φ−1 ◦ φ)(E) =

⋃
φS(E)

is disjoint from
⋃
Y . Suppose, for contradiction, that X is open. Note that φS(w) =

φS(v) ∈ φS(E). So X witnesses that v 6�
⋃
Y . Contradiction.

Proof of proposition 15. For (1), let w ∈ W . Then there exists E ∈ I such that w ∈ E.
So w ∈ relS(E) ∈ relS(I). So relS(I) covers W . Next, let w ∈ C,C ′ ∈ relS(I). Then
C,C ′ ∈ I∗(w), by proposition 13. So C ∩C ′ ∈ I∗(w). Furthermore relS(C ∩C ′) = C ∩C ′.
So, letting E = C ∩ C ′, E ∈ relS(w) and E ⊆ C ∩ C ′.

For (2), relS(I)∗ is an information topology by (1). The identity follows by proposition
12.

Proof of proposition 16. Proceed as in the proof of proposition 7

Proof of proposition 18. First, let P = (W, I,Q), where W = {0, 1}, I denotes the up-
ward sets of W , and Q = Q⊥. Then S = {W} satisfies (s1), (s2) but not (s3). Next, let
W = {0, 1, 2}, let I = {{0, 1}, {1}, {2}}, and let S = {{0, 2}, {1}}. Then (s1), (s3) are
satisfied, but not (s2). Let P = (W, I,Q), where W = N, I denotes the upward sets of
N, and Q is the question “n is even” vs. “n is odd”. Then S = Q satisfies (s2)-(s3), but
not (s1). For the second claim, recall the first example at the end of section 6.4.

Proof of proposition 19. Conditions (s1) and (s2) don’t depend on the question. For (s3),
suppose that Z decides Y decides X . Let X ∈ X and Z ∈ Z. We need to show that X is
open in I�Z. Since Y decides X , we have that X is open in I�Y , for each Y ∈ Y . So for
each Y ∈ Y , there exists open AY such that AY ∩ Y = X ∩ Y . Similarly, since Z decides
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Y , we have that for each Y ∈ Y , there exists open BY such that BY ∩ Z = Y ∩ Z. Thus:

X ∩ Z =

(⋃
Y ∈Y

(X ∩ Y )

)
∩ Z

=
⋃
Y ∈Y

X ∩ Y ∩ Z

=
⋃
Y ∈Y

AY ∩ Y ∩ Z

=
⋃
Y ∈Y

AY ∩BY ∩ Z

=

(⋃
Y ∈Y

(AY ∩BY )

)
∩ Z.

Proof of proposition 20. Suppose that Simp(S,Q). Then S satisfies (s1) and (s2) with
respect to I. For (s3), S trivially decides itself. The converse is immediate.

Proof of proposition 22. For (s1), let C ∈ S � E. So there exists D ∈ S such that
D ∩ E = C. By (s1) for S, we have that D is locally closed, so let C = A \ B, for open
A,B. So D = C ∩E = (A \B) ∩E = (A ∩E) \ (B ∩E). Both (A ∩E) and (B ∩E) are
open in I �E. So C is locally closed in I �E.

For (s2), suppose that w ∈ E and C ∈ S �E and {w} �I�E C. There exists D ∈ S
such that C = D ∩ E. By proposition 7, {w} � D. By (s2) for S, we have φS(w) � D.
So by proposition 7, again, φS(w) �I�E D ∩ E = C.

For (s3), let H ∈ Q�E, and let C ∈ S �E. There exist H ′ ∈ Q and C ′ ∈ S such that
H = H ′ ∩ E and C = C ′ ∩ E. By (s3) for S, we have that H ′ is open in I �C ′. So there
exists open X such that H ′ = X ∩C ′. So H = H ′ ∩E = X ∩C ′ ∩E = X ∩C ∩E. So H
is open in I�(C ∩ E). So S �E decides Q�E in S�E.

Proof of proposition 23. Substitute an appeal to proposition 16 for the the appeal to 7 in
the proof of proposition 22.

Proof of proposition 25. Consider the claim that Qrng is a simplicity concept for itself.
For (s1), note that CS = AS \ BS, where AS is the disjunction of all [e] such that the
numbers occurring in e are exactly those in S and BS is the disjunction of all [e] such
that some number missing from S occurs in e. For (s2), suppose that w, v ∈ CS and
that H ⊆ Qrng. Then w �

⋃
H iff there exists CS ∈ H such that rng(w) \ {∗} ⊆ S iff

there exists CS ∈ H such that rng(v) \ {∗} ⊆ S iff v �
⋃
H. Condition (s3) is trivially

satisfied. The proof that Qcnt is a simplicity concept for itself is similar. To see that Qcnt

is a simplicity concept for Qrng, one must only re-check (s3). Note that
⋃

(CS)� is the
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union of all [e] such that S ⊆ rng(e), so
⋃

(CS)� is open. But CS ∩Cn =
⋃

(CS)� ∩Cn, so
CS is open in Iseq �E. Condition (s3) is immediate in the case of Qrng being a simplicity
concept for Qcnt, since Cn ∩ CS is either Cn or ∅.

Let IL2 be the information basis induced by the L2 norm on Wcts. Then IL2 = (Wcts, IL2)
is a Hilbert space.

Lemma 1. If S is a finite subset of N, F<S, F≤S are closed in IL2.

Proof of lemma 1. Every finite dimensional subspace of a Hilbert space is closed. Finite
unions of closed sets are closed.

Lemma 2. If D ⊆ Wcts is closed in IL2, it is closed in Icts.

Proof of lemma 2. Suppose D ⊆ Wcts is not closed in Irec. Then there is f ∈ clIrec(D)\D.
Exploiting continuity and the compactness of [a, b], we can construct a Cauchy sequence
{fi} ⊂ D converging to f in the L2 norm. Since every closed subset of a complete metric
space is complete, it must be that D is not closed in IL2 .

Lemma 3. If S, S ′ are finite subsets of N and f ∈ FS then {f} �Icts S
′ iff S ⊆ S ′.

Proof of lemma 3. ⇐: It suffices to show that for all f ∈ FS and ε > 0, there exists
g ∈ FS′ such that sup |f − g| < ε. Since the xi are continuous, |

∑
i∈S′\S x

i| is continuous

as well. Since [a, b] is closed and bounded, |
∑

i∈S′\S x
i| attains a maximum M on [a, b] by

the extreme value theorem. So letting a = ε/M , and g = f +
∑

i∈S′\S ax
i, sup |f − g| < ε.

⇒: Immediate from lemmas 1 and 2.

Proof of proposition 26. By lemmas 1 and 2, since F<S, F≤S are closed in IL2 , they are
closed in Icts and therefore closed in the restriction Ipoly. Therefore FS = F≮S \ F�S
is locally closed in Ipoly. Since Dn = F�{1,...,n−1} ∩ F≤{1,...,n} it is locally closed by lem-
mas 1 and 2. Homogeneity of both questions follows from lemma 3. Obviously, both
questions decide themselves and polynomial form decides polynomial degree. The fact
that polynomial degree decides polynomial form follows from lemma 2 and the fact that
every finite-dimensional subspace of a Hilbert space is closed. Finally, we establish σ-
homogeneity. Let H =

⋃
i∈S Di, for some S ⊆ N. Suppose that {w} � Dj, for some

j ∈ S. By homogeneity, Dn = φQdeg
(w) � Dj, so φQdeg

(w) � H. Alternatively, {w} 6� Dj,
for all j ∈ S. So k = max(S) is finite and n > k. By homogeneity, Dk ≺ Dn. Choose
E ∈ I such that Dn ⊆ E and E ∩ Dk = ∅. Hence, E ∩ Dj = ∅, for each j ≤ k. So
Dn ∩ E ∩H = ∅, which suffices, since Dn ⊆ E.

Proof of proposition 27. Suppose that S has open upward sets. Let H ⊆ S and w ∈ W .
Suppose that {w} �

⋃
H. Then, since

⋃
(φS(w)�) is open, it follows that some D ∈ H is

in φS(w)�. So φS(w) � D ⊆
⋃
H, by homogeneity. Hence, φS(w) �

⋃
H.
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Proof of proposition 28. By lemmas 1 and 2, D<n = F{1,...,n−1} is closed, so D≥n is open.
Let w ∈ D. Then, there exists E ∈ I(w) such that E ⊆ D≥n. So F ⊆ D≥n, for all
F ∈ I(w) such that F ⊆ E. Then Dn ∈ MinS(F ). So E is locking for λMin.

Lemma 4. If D ⊆ Wcts is open in Icts, it is open in Iunf .

Proof of lemma 4. Let R be a rectangle and let f ∈ ER ∈ Icts. Let (c, f(c)) ∈ R. By
continuity of f there is a rectangle Rf = G×N centered at c such that graph(f,G) ⊂ Rf

and Rf ⊆ R. Then f ∈ ERf ∈ Iunf . Furthermore, ERf ⊆ ER. Finally, ER = ∪f∈ERERf ∈
Iunf as required.

Lemma 5. Suppose A is a subalgebra of Wcts which contains a non-zero constant function.
Then A is dense in Iunf if and only if A separates points.

Proof of lemma 5. Immediate consequence of the Stone-Weierstrass theorem.

Proof of proposition 29. Define the graph of f on A ⊂ [a, b] as follows: graph(f, A) =
{(x, f(x)) : x ∈ A}. Each rectangle R = G × N defines an information state ER = {f :
graph(f,G) ⊂ R}. Let Iunf be the set of all such information states. Iunf = (Wcts, Iunf) is
known as the topology of uniform convergence on Wcts. Say that a set A ⊆ Wcts separates
points iff, for every two distinct points x, y ∈ [a, b], there exists a function f ∈ A with
f(x) 6= f(y). Let A be the algebra generated by x3 and some non-zero constant function.
Since x3 is increasing, it separates points. By lemma 5, A is dense in Iunf . By lemma 4,
A is dense in Icts and Ipoly as well. Let F2 = {ax2 : a ∈ R} ∈ Qform. Then F2 � A. But,
by lemma 3, for all F ∈ Qform such that F ∩A 6= ∅, F2 � F . So Qform does not have open
upward sets over Ipoly.

Proof of proposition 30. For (s1), each singleton is closed and, hence, locally closed in
Sco−↓(N,=). Conditions (s2, s3) are trivial for Q⊥. Suppose that S contains only finite
subsets of N. Then C 6≺ D, for each C,D ∈ S, so

⋃
C� = C, which is closed but not

open (C ≺ W \ C). Alternatively, suppose that S contains an infinite cell. Then (s3) is
violated, since no singleton compatible with infinite C is open in the information topology
restricted to C. In neither case is S a simplicity concept for Q⊥ that has open upward
sets in Sco−↓(N,=).

Proof of proposition 31. For (ii), let w ∈ Ci. Let J = {j < i : Ci 6≺ Cj and Cj 6≺ Ci}.
Define:

Gi =
⋃

(Ci) 6≺; Gj =
⋃

(Cj)6�; G = Gi ∩
⋂
j∈J

Gj.

Then w ∈ Gi, because Ci 6≺ Ci and, for each j ∈ J , we have that w ∈ Gj, since Ci 6� Cj.
So G ∈ I∗(w), by stratification and propositions 6, 8. Let E ∈ I(w) such that E ⊆ G.
Let F ∈ I(w) such that F ⊆ E. Let j < i. Suppose that Ci 6≺ Cj. Case 1: Cj ≺ Ci.
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Then Cj 6∈ φS(F ), since F ⊆ (Ci)6≺. Case 2: Cj 6≺ Ci. Then j ∈ J , so Cj 6∈ φS(F ),
since F ⊆

⋃
(Cj) 6�. So, by contraposition, we have that Ci ≺ Cj, for each j < i such

that Cj ∈ φS(F ). Furthermore, Ci ∈ φS(F ), by case 1. So Ci ∈ OrdminS(F ). So
λOrdmin(F ) = Ci = φS(w).

For (i), suppose that E,F ∈ I such that F ⊂ E and λ(E) ∩ F 6= ∅. If λOrdmin(E) =⋃
φS(E), we are done, so suppose that λOrdmin(E) = Ci ∈ OrdminS(E). Then Ci ∈

OrdminS(F ), by proposition 7 and the stratification property.

Proof of proposition 32. Consider the case in which λOrdmin(E) = C ∈ MinS(E). Then
∅ 6= C ⊆ φS(E). Also, since C ∈ S, the homogeneity of S ensures σ-homogeneity.
Consider the alternative case in which λOrdmin(E) = relS(E). Then cogency is immediate
and φS(w) ⊆ relS(E), so σ-homogeneity holds as well.

Proof of proposition 33. Suppose that H is σ-homogeneous in response to E. Suppose
that φS(E) ∩ H� ⊆ φS(H). Let w ∈ E, and suppose that w ∈ cl(H). Then {w} � H.
So, by σ-homogeneity, φS(w) � H. So φS(w) ⊆ H and, hence, w ∈ H. Hence, H is
closed in I∗ �E. For the converse, suppose that φS(E) ∩H� 6⊆ φS(H). Then there exists
C ∈ φS(E) such that C � H and C 6⊆ H. Since C ∈ φS(E), there exists w ∈ E ∩C such
that w ∈ cl(H) and w 6∈ H. So H is not closed in I∗ �E.

Proof of proposition 34. Method λOrdmin satisfies the vertical razor, because either λOrdmin(E) =
some C ∈ MinS(E), or λOrdmin(E) =

⋃
φS(E), both of which are closed downward in

φS(E). Apply proposition 31.

Proof of proposition 35. For (1), σ-homogeneity follows from the fact that the range of λ
is S∗, and S is σ-homogeneous, by proposition 27. Also, λNmb(E) ⊆ φS(E), by definition.
Furthermore, if MinS 6= ∅, then each C ∈ MinS is a subset of λNmb(E). If MinS = ∅,
then λNmb(E) = φ(E). Either way, λNmb(E) 6= ∅. So λNmb is deductively cogent.

For (2), let w ∈ W . Let C = φS(w). Since S has open upward sets, we have that
C =

⋃
C� \

⋃
C�, by proposition 13. Since C� is open, by proposition 6, there exists

E ∈ I(w) such that E ⊆ C�. Let F ∈ I(w) such that F ⊆ E. Then C� = φS(F ), by the
definition of �. Thus, C ∈ MinS(F ), so NmbS(F ) = {C}. Therefore, λNmb(E) = C, as
required.

For (3), let C ∈ φS(E). If there exists no D ∈ MinS(E) such that D ≺ C, then
C ∈ NmbS(E). Alternatively, there exists D ∈ MinS(E) such that D ≺ C, so D ∈
NmbS(F ). Therefore, λNmb satisfies the horizontal razor. For the vertical razor, suppose
that C ∈ NmbS(E) and that some D ∈ φS(E) is simpler than C. Then no G ∈ MinS(E)
is simpler than D, else G is also simpler than C, contradicting the case hypothesis. So
D ∈ NmbS(F ).

For (4), notice that φS(E) \ λNmb(E) =
⋃

D∈MinS(E)

D�, which is open by assumption.

For (5), the inclusion MinS(E) ⊆ NmbS(E) holds generally. When (φS(E),�) is
well-founded, the converse inclusion NmbS(E) ⊆ MinS(E) is immediate.
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Proof of proposition 36. Method λNmb satisfies Ockham’s horizontal and vertical razors
in S and solves S in the limit, by proposition 35. For optimality, let e = (E1, . . . , En) ∈
HstS(C,E) and suppose that λNmb solves S in the limit.

Cycle case. By lemma 6.2, λNmb(e) is not a cycle sequence. So, trivially, λNmb ≤cyc
(S,C,E)

λ in E, for all methods λ.
Reversal case. Suppose that λNmb(e) is a reversal sequence, for e ∈ HstS(C,E) By

lemma 6.1, there exists chain C1 ≺ . . . ≺ Cn in (φS(E),�) such that Ci ∈ NmbS(Ei), for
1 ≤ i ≤ n. Construct d = (D0, . . . , Dn) ∈ HstI(C,E), as follows. Since C1 ∈ NmbS(E1) ⊆
φS(E1), there exists w ∈ E ∩ C1. Since λ solves S in the limit, let D1 ∈ I(w) such that
D1 ⊆ E be locking for λ, w. Suppose that n > 1. Then, since w ∈ C1 ≺ C2, it follows
that D1 ∩ C2 6= ∅.

Now, suppose that we are given downward-nested dk = (D1, . . . , Dk), for 1 ≤ k < n,
such that Ck+1 ∩ Dk 6= ∅. Choose v ∈ Dk ∩ Ck+1. Since λ solves S in the limit, let
Dk+1 ∈ I(w) such that Dk+1 ⊆ Dk be locking for λ, v. Suppose that n > k + 1. Then
w ∈ Ck+1 ≺ Ck+2, so Dk+1 ∩ Ck+2 6= ∅.

By construction, dn is downward-nested, and D1 ⊆ E. Furthermore, since Cn � C, it
follows, from the choice of Dn, that Dn ∩ C 6= ∅. So dn ∈ HstS(C,E). Furthermore, we
have that λ(Di) = Ci ⊆

⋃
NmbS(Ei) = λNmb(Ei), for 1 ≤ i ≤ n. So λNmb ≤rev

(S,C,E) λ.

Proof of proposition 37. Suppose that S has open upward sets and that λ solves S in
the limit. It is immediate from the definitions that (1) implies (2). Next, argue by
contraposition that (2) implies (3). Suppose that λ violates Ockham’s horizontal razor at
E1 ∈ I. Then (φS ◦ λ)(E1) is not co-initial in (φS(E1),�). So there exists C2 ∈ φS(E1)
such that D 6∈ (φS ◦ λ)(E1), for all D ∈ φS(E1) such that (*) D � C2. Let w2 ∈ E1 ∩C2.
Let E2 ∈ I(w1), such that E2 ⊆ E1, be locking for λ,w2. Let e = (E1, E2). Then λ(e)
is a reversal sequence in HstS(C2, E1). Let d = (D1, D2) ∈ HstS(C2, E1). Suppose that
λNmb(D1) ⊆ λ(E1), and λNmb(D2) ⊆ λ(E1) = C2. Then NmbS(D1) ⊆ (φS ◦ λ)(D1) and
NmbS(D2) = {C2}. So, by (*), we have that NmbS(D1) ∩ NmbS(D2) = ∅. Since C2 ∈
NmbS(D2), we have that C2 ∈ φS(D2) ⊆ φS(D1). So C2 ∈ φS(D1) \ NmbS(D1). Hence,
there exists D ∈ MinS(D1) such that D ≺ C1, by the definition of NmbS, contradicting
(*). Therefore, λ 6≤rev

(S,C,E) λNmb. But λNmb ≤rev
S λ, by proposition 36. So λNmb <

rev
S λ.

To show that (3) implies (1), assume that λ, λ′ solve S in the limit and that λ also
satisfies Ockham’s horiziontal razor in S. Let C ∈ S, E ∈ I, and e = (E0 ⊃ . . . ⊃ En) ∈
HstI(C,E). Set o = (λ(E0), . . . , λ(En)). Suppose that o is a reversal sequence. Construct
c = (C0 ≺ . . . ≺ Cn) such that ∅ 6= Ci ⊆ λ(Ei), for i ≤ n and Ci ∩ Ci+1 = ∅, for
i < n, as follows. In the base case, let Cn be an arbitrary element of (φS ◦ λ)(En), which
exists because λ is a learning method for S. Let 0 < i < n, and assume, inductively,
that Ci+1 ∈ (φS ◦ λ)(Ei+1). Since λ satisfies Ockham’s horizontal razor, we have that
(φS ◦ λ)(Ei) is co-initial in (φS(E),�). So there exists Ci ∈ (φS ◦ λ)(Ei) such that
Ci ≺ Ci+1. Moreover, since o is a reversal sequence, we have that Ci+1 ∩ Ci = ∅.

Next, construct f = (F0 ⊂ . . . ⊂ Fn) ∈ HstI(C,E) such that Ci+1 = (φS ◦ λ′)(Fi), for
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each i ≤ n. Let w0 ∈ E ∩ C0. Since λ′ solves S in the limit, there exists F ′0 ∈ I(w) such
that λ(F ) = C0, for all F ⊆ F ′0. So, since I is a topological basis, there exists F0 ∈ I(w0)
such that F0 ⊆ F ′0 ∩ E0 and λ′(F0) = C0. Suppose, inductively, that (F0 ⊂ . . . ⊂ Fi) and
(w0, . . . , wi) are given, such that Fj ∈ I(wj), and λ′(Fj) = Cj, for j ≤ i. Since Ci ≺ Ci+1,
and Fi ∈ I(wi), there exists wi+1 ∈ Fi ∩ Ci+1. Since λ′ solves S in the limit, there exists
F ′i+1 ∈ I(wi+1) such that λ(F ) = Ci+1, for all F ⊆ F ′i+1. So, since I is a topological
basis, there exists Fi+1 ∈ I(wi+1) such that Fi+1 ⊆ F ′i+1 ∩ Fi and λ′(Fi+1) = Ci+1. Since
Ci 6= Ci+1, it follows, moreover, that Fi+1 ⊂ Fi.

By construction, f ∈ HstI(C,E). So, since o ≤ c and λ′(f) = c, where f ∈ HstI(C,E),
we have that λ ≤rev

S,C,E λ
′.

Proof of proposition 38. Immediate consequence of proposition 31.

Proof of proposition 39. Suppose that λ solves simplicity problem S in the limit. Suppose
that λ violates the vertical razor at E1, which means that there exists C2 6∈ (φS ◦ λ)(E1),
such that C2 ∈ φS(E1)∩λ(E1)�. Since C2 ∈ φS(E1), there exists w1 ∈ E1∩C2. Let E2 ⊆
E1 be locking for λ,w2, so λ(E2) = C2. Since C2 ∈ λ(E1)�, there exists C3 ∈ (φS ◦λ)(E1)
such that C2 ≺ C3. Hence, there exists w3 ∈ E2 ∩ C3. Let E3 ⊆ E2 be locking for λ,w3,
so λ(E3) = C3. Then e = (E1, E2, E3) ∈ HstS, since E3 ⊂ E2 ⊂ E1. Furthermore, λ(e) is
a reversal sequence. Finally, C3 ⊆ λ(E1), so λ(e) is cyclic. But λOrdmin(d) solves S, and
is non-cyclic, for all d ∈ HstS, by proposition 38. So λOrdmin <

cyc
S λ.

Lemma 6. Suppose that S is a simplicity problem. Let e = (E1, . . . , En) ∈ HstI(C,E),
for C ∈ S and E ∈ I.

1. If λNmb(e) is a reversal sequence, then there exists chain C1 ≺ . . . ≺ Cn in (S,�)
such that Cn � C and Ci ∈ NmbS(Ei), for i ≤ n;

2. λNmb(e) is not a cycle sequence.

Proof of lemma 6. For claim (1), define C1 ≺ . . . ≺ Cn inductively, starting with Cn.
Suppose that C ∈ NmbS(En). Then set Cn = C. Alternatively, suppose that C 6∈
NmbS(En). Note that C ∈ φS(En), since (E1, . . . , En) ∈ HstI(C,E). Therefore, by the
definition of NmbS, there exists D ∈ MinS(En) ⊆ NmbS(En) such that D ≺ C. Set
Cn = D.

For the inductive step, let Ci+1 ≺ . . . ≺ Cn be given, such that Ci+1 ∈ NmbS(Ei+1).
Then Ci+1 6∈ NmbS(Ei), since λNmb(e) is a reversal sequence. But Ci+1 ∈ φS(Ei), since
NmbS(Ei+1) ⊆ φS(Ei+1) ⊆ φS(Ei). Therefore, by the definition of NmbS, there exists
D ∈ MinS(Ei) ⊆ NmbS(Ei), such that D ≺ Ci+1. Set Ci = D.

For claim (2), suppose that λNmb(e) is a cycle sequence. Then Cn ∈ NmbS(E1), and
n > 1. Then C1 ≺ Cn. Recall that C1 ∈ MinS(E1), if n 6= 1. Thus, Cn ∈ NmbS(E1).
Contradiction.
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Proof of proposition 40. Suppose that (1) is false. Follow the argument for proposition
39 to force an arbitrary method satisfying (a) and (b) to perform a cycle starting at E,
contrary to (c). Next, suppose that (1) is true. Then H is closed in I �E, by hypothesis
and proposition 33. Therefore, H is refuted if false. Enumerate the elements of φS(E).
Let λ′(E) = λ(E). For open F ⊂ E, let λ′(F ) = λOrdmin(F ∩H) so long as F ∩H 6= ∅.
Let λ′(F ) = λOrdmin(F ) otherwise. By the argument for proposition 38, λOrdmin avoids all
cycles.

Proof of proposition 41. Let λ′(E) = λ(E) and for all F ∈ I, such that F ⊂ E, λ′(F ) =
λNmb(F ). λ′ solves S � E in the limit by proposition 35. First we show that (*) if
λNmb(F ) ∩ λ′(E) = ∅ then F ∩ λ(E) = ∅. Suppose that λNmb(F ) ∩ λ′(E) = ∅, then
by definition of λNmb, for C ∈ λ′(E) either C /∈ φS(F ) or there is D ∈ Min(F ) such
that D ≺ C. Suppose that there is D ∈ Min(F ) such that D ≺ C. Since λ(E) is
vertical Ockham, D ∈ λ(E). But then since Min(F ) ⊆ λNmb(F ), λ′(E) ∩ λNmb(F ) 6= ∅.
Contradiction. So it must be that F ∩ λ(E) = ∅. From (*) and lemma 6 it follows that
λ′ is cycle-free. It remains to show that λ′ is reversal optimal. Since λ′(F ) = λNmb(F )
for F ⊂ E and λNmb is reversal optimal we have that λ ≤rev

S,C,F λ
′ for every C ⊆ F and λ

that solves S �E in the limit. It remains to show that for every (E,F ) such that λ′(e)
is a reversal sequence, there is e′ such that λ(e′) ≤ λ′(e). By (*), if (λ′(E), λ′(F )) is a
reversal sequence, then F ∩ λ′(E) = ∅. But since λ′(E) is horizontal Ockham, for every
C ⊆ λ′(F ), there is D ⊆ λ′(E) such that D ≺ C. Let E1 be locking for D, λ and E2 be
locking for C, λ. Then λ(d) ≤ λ′(e) for d = (E1, E2) as required. To show that (2) entails
(1), reproduce the arguments of propositions 39 and 37.

Proof of proposition 42. Condition (s1) holds because Xα is closed. In the base case,
X0 = W is closed. For induction, the limit ordinal case is immediate, since closed sets
are closed under intersection. For the successor ordinal case, suppose that Xα is closed,
so W \Xα is open. Suppose that w ∈ Xα \Xα+1. Then w is an interior point of φQ(w)
in I∗ �Xα. So there exists open Aw such that w ∈ Aw ∩W \Xα ⊆ φS(w). Let:

Z = W \Xα ∪
⋃

w∈Xα\Xα+1

Aw.

Since Z is open, it suffices to show that W \Xα+1 = Z. Suppose that v ∈ W \Xα+1. If
v ∈ W \Xα, then v ∈ Z, so suppose that v ∈ (W \Xα+1) \ (W \Xα) = Xα \Xα+1. Then
v ∈ Av ⊆ Z. Conversely, suppose that v ∈ Xα+1. Then v 6∈ W \Xα, since Xα+1 ⊆ Xα.
Furthermore, v is in the boundary of φQ(w) in I∗ �Xα, so v is in no Aw. So v 6∈ Z.

For conditions (s2, s4), we have that {w} 6� Cα for each {w} ∈ Cβ such that β < α,
because W \ Xβ is open, by the argument for (s1). Next, suppose that w ∈ Cα. Then
{w} � Cα+1, by the construction of Xβ+1.

For condition (s3), suppose thatQ is not open in I∗ �Cα. Then there exists a boundary
point w of some H ∈ Q in I∗ �Cα ⊆ I∗ �Xα. But then w ∈ Xα+1, which is disjoint from
Cα.

37



For conditions (s5, s6), it suffices that the simplicity order over SP is total, by the
argument for (s2). The order type of the order also follows from the argument for (s2).
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