Chapter 3

We the Expected

grmﬁ raw day first saw life, raw itself, pregnant with the future?
Four billion years, thereabouts, from the first circle of metabolic
witchery to me and to thee. Raw chance? Raw improbability that ought
never have occurred in billions of times the history of this universe?
Raw meaninglessness that we are so very unexplained?

Is life really the unthinkable accident that follows from the calcula-
tions of Fred Hoyle and N. C. Wickramasinghe? Is time the hero of the
plot, as George Wald argued? Yet we now believe there were but 300
million years or so from the cooling of the crust to clear evidence of cel-
lular life, not the 2 billion years that Wald appealed to. Time was not
there in sufficient vastness for Wald’s story, and surely not for Hoyle
and Wickramasinghe’s tale. If we the living are wildly improbable, then
we are unaccountable mysteries in the span of space and time. But if
this view is wrong, if there is some reason to believe that life is proba-
ble, then we are not mysteries in the exploding cosmos, we are natural
parts of it.

Most of my colleagues believe that life emerged simple and became
complex. They picture nude RNA molecules replicating and replicating
and eventually stumbling on and assembling all the complicated chemi-
cal machinery we find in a living cell. Most of my colleagues also believe
that life is utterly dependent on the molecular logic of template replica-
tion, the A~T, G-C Watson—Crick pairing that I wrote about in Chapter
2.1 hold a renegade view: life is not shackled to the magic of template
replication, but based on a deeper logic. T hope to persuade you that life
is a natural property of complex chemical systems, that when the num-
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but complex and whole, and has remained complex and whole ever
since—not because of a mysterious élan vital, but thanks to the simple,
profound transformation of dead molecules into an organization by
which each molecule’s formation is catalyzed by some other molecule in
the organization. The secret of life, the wellspring of reproduction, is
not to be found in the beauty of Watson-Crick pairing, but in the
achievement of collective catalytic closure. The roots are deeper than
the double helix and are based in chemistry itself. So, in another sense,
life—complex, whole, emergent—is simple after all, a natural out-
growth of the world in which we live.

The claim that life emerges as a natural phase transition in complex
chemical systems is so radical a departure from past theories that I owe
you caveats. Do we know that such a view is at least theoretically cohet-
ent? Do we know it to be physically and chemically possible? Is there
evidence for such a view? Is evidence attainable? Do we know that life
began as I shall suggest it did? The most that can be said at this stage is
that good, careful theoretical work strongly supports the possibility I
shall present. That work appears to be consistent with what we know
about complex chemical systems. Scant experimental evidence supports
this view as yet, but stunning developments in molecular biology now
make it possible to imagine actually creating these self-reproducing
molecular systems—synthesized life. I believe that this will be accom-
plished within a decade or two.

The Networks of Life

As noted in Chapter 2, most researchers are focusing their attention on
the capacity of RNA, or RNA-like polymers, to self-reproduce by tem-
plate replication. The attention is understandable. No one looking at
the beautiful double helix of DNA or RNA and regarding the Wat-
son—Crick pairing rules can avoid being struck by the beauty of nature’s
apparent choice. The fact that Leslie Orgel and his colleagues have not
yet succeeded in getting such polymers to replicate without an enzyme
does not mean that the efforts will always fail. Orgel has been at it for
perhaps 25 years; nature took something like 100 million years. Orgel is
very smart, but 100 million years is long enough, measured in three-year
National Institutes of Health grants, to try lots of possibilities. Let us try
a different tack. Suppose that the laws of chemistry were slightly differ-
ent, that nitrogen had four rather than five valence electrons, say, allow-
ing four rather than five bonding partners. Ignore the wrench this
would throw into quantum mechanics—one can sometimes get away
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with _u.mEm wretched to quantum mechanics when making a philosophi-
cal point. If the laws of chemistry were slightly different so that the
v.mm:nm:_ double-helix structure of DNA and RNA were no longer pos-
EE@ would life based on chemistry be impossible? I do not want to
ﬂ.r_bw that we were quite so lucky. T hope we can find a basis for life that
lies deeper than template self-complementarity.

The secret, I believe, lies in what chemists call catalysis. Many chemi-
n.& reactions proceed only with great difficulty. Given a long expanse of
time, a .mné molecules of A might combine with molecules of B to make
C. wﬂ.: in the presence of a catalyst, another molecule we'll call D, the
reaction catches fire and proceeds very much faster, The cvmc&
metaphor is the lock and key: A and B fit into slots on D, in just such a
way \.ﬁrmn they are far more likely to combine to form C. >vm we shall see
Hr_.m 1s a vast oversimplification, but for now it will suffice to get Hrm
point across. While D is the catalyst that joins A and B to make C, the
Muoomwonimm A, mv and C might themselves act as catalysts for other mmmn-

S. .

&ﬁ its heart, a living organism is a system of chemicals that has the ca-
pacity to .nmSFNm is own reproduction. Catalysts such as enzymes speed
up chemical reactions that might otherwise occur, but only extremel
slowly. What I call a collectively autocatalytic system is one in which EM
molecules speed up the very reactions by which they themselves are
formed: A makes B; B makes C; C makes A again. Now imagine a whole
network of these self-propelling loops (Figure 3.1). Given a supply of
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_Emcno 3.1 A simple autocatalytic set. Two dimer molecules, AB and BA, are

‘ \%\‘Nw& from two simple monomers, A and B. Since AB and BA catalyze M,\um ve
reactions that join As and Bs to make the dimers, the network is antocatalytic: ”
gven a supply of “food” molecules (As and Bs), it will sustain itself e
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food molecules, the network will be able to constantly re-create itself.
Like the metabolic networks that inhabit every living cell, it will be
alive. What I aim to show is that if a sufficiently diverse mix of mole-
cules accumulates somewhere, the chances that an autocatalytic sys-
tem—a self-maintaining and self-reproducing metabolism—will spring
forth becomes a near certainty. If so, then the emergence of life may
have been much easier than we have supposed.

What I aim to show is simple, but radical. I hold that life, at its root,
does not depend on the magic of Watson—Crick base pairing or any
other specific template-replicating machinery. Life, at its root, lies in the
property of catalytic closure among a collection of molecular species.
Alone, each molecular species is dead. Jointly, once catalytic closure
among them is achieved, the collective system of molecules is alive.

Each cell in your body, every free-living cell, is collectively autocat-
alytic. No DNA molecules replicate nude in free-living organisms. DNA
replicates only as part of a complex, collectively autocatalytic network
of reactions and enzymes in cells. No RNA molecules replicate them-
selves. The cell is a whole, mysterious in its origins perhaps, but not
mystical. Except for “food molecules,” every molecular species of
which a cell is constructed is created by catalysis of reactions, and the
catalysis is itself carried out by catalysts created by the cell. To under-
stand the origin of life, I claim, we must understand the conditions that
enabled the first emergence of such autocatalytic molecular systems.

Catalysis alone, however, is not sufficient for life. All living systems
eat”: they take in matter and energy in order to reproduce themselves.
This means that they are what is referred to in Chapter 1 as open ther-
modynamic systems.

In contrast, closed thermodynamic systems take in no matter or en-
ergy from their environments. A great deal is understood about the be-
havior of closed thermodynamic systems. The theorists of thermody-
namics and statistical mechanics have studied such systems for over 100

«

years. In contrast, remarkably little is understood about the possible be-

haviors of open thermodynamic systems. Not so surprising, this igno-

rance. The vast flowering of all life-forms over the past 3.45 billion years -

is merely a hint of the possible behaviors of open thermodynamic sys-

tems. So too is cosmogenesis itself, for the evolving universe since the -

Big Bang has yielded the formation of galactic and supragalactic struc-
tures on enormous scales. Those stellar structures and the nuclear
processes within stars, which have generated the atoms and molecules
from which life itself arose, are open systems, driven by nonequilibrium
processes. We have only begun to understand the awesome creative
powers of nonequilibrium processes in the unfolding universe. We are
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mz..lnoBme atoms, Jupiter, spiral galaxies, warthog, and frog—the
HomH.o& progeny of that creative power,
Since I hope to persuade you that life is the natural accomplishment
of catalysts in sufficiently complex nonequilibrium chemical systems, I
Tmm. vmmﬂ take a moment to sketch what catalysts accomplish and rmé
QEET&:S and nonequilibrium chemical systems behave. Chemical re-
actions occur spontaneously, some rapidly, some slowly. Typically,
chemical reactions are more or less reversible: A transforms to B, but m
transforms to A. Since such reactions are reversible, it is easy :w think
mvo.:ﬁ what would occur in a beaker that began with an initial concen-
tration of A molecules and no B molecules and that was closed to the
addition of matter or energy. The A molecules would begin to convert
to B molecules, but as that occurred, the new B molecules would begin
to convert back to A molecules. Starting with only A molecules, the B
concentration would build up to the point at which the rate of mos<ﬂ.-
sion of A to B was exactly equal to the rate of conversion of B to A. This
balance is called chemical equilibrium. At chemical equilibrium Em net
concentrations of A and B do not change over time, but any »m?mn A
BQonEm may convert to B and back again thousands of times per
minute. Of course, the equilibrium is statistical. Minor fluctuations in A
and B concentrations occur all the time,

Orﬂumo& equilibrium is not limited to a pair of molecules, A and B
but will occur in any closed thermodynamic system. If the mwanog rmm
hundreds .Om different types of molecules, it will ultimately settle down
to an equilibrium in which the forward and reverse reactions between
any pair of molecules balance out.

Catalysts, of which protein enzymes and ribozymes are examples, can

speed up both the forward and the reverse reaction by the same
amount. The equilibrium between A and B is not altered; enzymes sim-
ply .v.mmﬁwb the rate at which this state of balance is Hmmormm. Suppose, at
, o.mEEuHEEV the ratio of A and B concentrations is 1, so the nonomnmnm-
tions of m.g.o two are equal. If the chemical system starts out displaced
from equilibrium—say, with a high concentration of B and almost no
A—then the enzyme
equilibrium ratio where the two concentrations are equal. In effect
then, the enzyme increases the rate of production of A, . ‘

will vastly shorten the time it takes to reach the

How does catalysis happen? There is an intermediate state between
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molecules. Think of a spring. At its rest length, it is happy. If stretched
beyond its rest length, it has stored energy—it is unhappy—and can re-
lease that energy by snapping back to its rest length, whereupon it has
low energy again.

Not surprisingly, the transition state passing from A to B is exactly
the same as the transition state passing from B back to A. Enzymes are
thought to work by binding to the transition state and stabilizing it.
This makes it easier for both A and B molecules to jump to the transi-
tion state, increasing the rate of conversion of A to B, and of B to A.
Thus an enzyme increases the rate at which the equilibrium ratio of A
and B concentrations is approached.

We should be thankful that our cells are not at chemical equilibrium;
for a living system, equilibrium corresponds to death. Living systems
are, instead, open thermodynamic systems persistently displaced from
chemical equilibrium. We eat and excrete, as did our remote ancestors.
Energy and matter flow through us, building up the complex molecules
that are the tokens in the game of life.

Open nonequilibrium systems obey very different rules from those of
closed systems. Consider a simple case: we have a beaker into which we
add A molecules continuously from some outside source at a constant
rate, and we take any B molecules out of the beaker at a rate propor-
tional to the concentration of B. A will convert to B and B will convert
to A as before, but the two molecules can never reach the equilibrium
balance they attained before because of the constant addition of A and
the removal of B. Common sense says that the system will settle down
to a steady state at which the ratio of A molecules to B molecules is
higher than it was when the system was closed. In short, the ratio of A
to B will be tipped from the thermodynamic equilibrium ratio. In gen-
eral, this commonsense view is correct. In simple cases, such systems,
open to the flux of matter and energy, settle down to a steady state dif-
ferent from that found in closed thermodynamic systems.

Now consider a vastly more complex open system, the living cell. The
cells of your body coordinate the behaviors of about 100,000 different
kinds of molecules as matter and energy cross their boundaries. Even
bacteria coordinate the activities of thousands of different kinds of mol-
ecules. To think that understanding the behavior of very simple open
thermodynamic chemical systems takes us far toward understanding the
cell is hubris. No one understands how the complex cellular networks

of chemical reactions and their catalysts behave, or what laws might

govern their behavior. Indeed, this is a mystery we will begin to discuss

in the next chapter. Yet simple open thermodynamic systems are at least

a start and are already fascinating on their own. Even simple nonequi-

librium chemical systems can form remarkably complex patterns of
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oroa_o.& concentrations varying in time and space in striking ways. A
noted in Chapter 1, Ilya Prigogine called these systems dissi ma.,w\m.v i
cause they persistently dissipate matter and energy in order t S maintain
their structures. o e
Unlike the simple steady-state system in the thermodynamicall
v.m&.mmw .&5 concentrations of the chemical species in 2 moge oowsommb
dissipative system may not fall to a steady state, unchanging in RB%H@W
stead, the concentrations can start to oscillate up and down in re . Hm
cycles, called limit cycles, which are sustained for long periods OWW;@
Such systems can also generate remarkable spatial patterns. For .
E@. the famous Belosov—Zhabotinski reaction, made of moB.m sim MM»B-
ganic Boﬁoﬁmmv sets up two kinds of spatial patterns. In the mnwﬁ oM-
tern, spreading concentric circular waves of blue propagate ocﬁé@mL
over an orange background from a centra] oscillating source. Th _uwn
mb.m orange colors arise because of indicator molecules that .Q M h -
acidic or basic the reaction mixture js at any point in space Hbmmy co.
ond pattern, spiral pinwheels of blue on orange cartwheel m.voE -y
ter (Figure 3.2). Such patterns have been studied by a number Mmo o
searchers. A fine book by my friend Arthur Winfree When Time Bre NM ;
USE.». The Three-Dimensional Dynamics of m.\m%ommm&%& Wa , M
.@&Sm. Arthythmias, summarizes much of the work; Amon Hrem& o
immediate human implications is this: the heart is an open mmmSB BOM
it can beat according to patterns analogous to the w&omo<|NvaomMM&

i ..
b
gure 3.2 Self-organization at work. The Jamous Belosov—Zhabotinski reaction

howing the spontaneous emergence of order in a simple chemical system. (a)

oncentric circular waves propagate outward, (b) Radially expanding pinwheels

artwheel about a center. (From Winfree, 1987.)
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reaction. Sudden death caused by cardiac arrhythmias may correspond
to a switch from the analogue of the concentric-circles pattern (a steady
beating) to the spiral-pinwheels pattern in your myocardium. The blue
propagating wave can be thought of as corresponding to the chemical
conditions in muscle cells that lead them to contract. Thus the concen-
tric spreading pattern of the evenly spaced blue circles corresponds to
ordered contraction waves. But in the spiral pattern, the blue pinwheels
are very close together near the center of the spiral and are spaced far-
ther apart the farther out on the spiral they go. This pattern corre-
sponds to chaotic twitching of the heart muscle in the vicinity of the spi-
ral center. Winfree has shown that simple perturbations, such as
shaking the petri plate that holds the chemical reactants of the Be-
losov—Zhabotinski reaction, can switch the system from the concentric
to the spiral pattern. Thus Winfree has suggested that simple perturba-
tions can switch a normal heart to the spiral chaotic pattern and lead to
sudden death.

The relatively simple behaviors of nonequilibrium chemical systems
are well studied and may have a variety of biological implications. For
example, such systems can form a standing pattern of stripes of high
chemical concentrations spaced between stripes of low chemical con-
centrations. Many of us think that the natural patterns such systems
form have a great deal to tell us about the spatial patterning that occurs
in the development of plants and animals. The blue and orange stripes
in the Belosov—Zhabotinski reaction may foretell the stripes of the
zebra, the banding patterns on shells, and other aspects of morphology
in simple and complex organisms.

However intriguing such chemical patterns may be, they are not yet
living systems. The cell is not only an open chemical system, but a col-
lectively autocatalytic system. Not only do chemical patterns arise in
cells, but cells sustain themselves as reproducing entities that are capa-
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A Chemical Creation Myth

Scientists often gain insight into a more complex problem by thinking
through a simpler toy problem. The toy problem I want to tell you
about concerns “random graphs.” A random graph is a set of dots, or
nodes, connected at random by a set of lines, or edges. Figure 3.3 shows
an example. To make the toy problem concrete, we can call the dots

{ edges). For large numbers of buttons,
in one giant component. As the ratio D

Figure 3.3 Crystallization o
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“buttons” and the lines “threads.” Imagine 10,000 buttons scattered on
a hardwood floor. Randomly choose two buttons and connect them
with a thread. Now put this pair down and randomly choose two more
buttons, pick them up, and connect them with a thread. As you con-
tinue to do this, at first you will almost certainly pick up buttons that
you have not picked up before. After a while, however, you are more
likely to pick at random a pair of buttons and find that you have already
chosen one of the pair. So when you tie a thread between the two newly
chosen buttons, you will find three buttons tied together. In short, as
you continue to choose random pairs of buttons to connect with a
thread, after a while the buttons start becoming interconnected into
larger clusters. This is shown in Figure 3.34, which is limited to 20
rather than 10,000 buttons. Every now and then, lift up a button and
see how many other buttons you pick up. The connected cluster is
called a component in our random graph. As Figure 3.34 shows, some
buttons may not be connected to any other buttons. Other buttons
might be connected in pairs or triples or larger numbers.

The important features of random graphs show very regular statisti-
cal behavior as one tunes the ratio of threads to buttons. In particular, a
phase transition occurs when the ratio of threads to buttons passes 0.5.
At that point, a “giant cluster” suddenly forms. Figure 3.3 shows this
process, using only 20 buttons. When there are very few threads com-
pared with the number of buttons, most buttons will be unconnected
(Figure 3.34), but as the ratio of threads to buttons increases, small con-
nected clusters begin to form. As the ratio of threads to buttons contin-
ues to increase, the size of these clusters of buttons tends to grow. Obvi-
ously, as clusters get larger, they begin to become cross-connected. Now
the magic! As the ratio of threads to buttons passes the 0.5 mark, all of
a sudden most of the clusters have become cross-connected into one
giant structure. In the small system with 20 buttons in Figure 3.3, you
can see this giant cluster forming when the ratio of threads to buttons is
half, 10 threads to 20 buttons. If we used 10,000 buttons, the giant
component would arise when there were about 5,000 threads. When
the giant component forms, most of the nodes are directly or indirectly
connected. If you pick up one button, the chances are high that you will
pull up something like 8,000 of the 10,000 buttons. As the ratio of
threads to buttons continues to increase past the halfway mark, more
and more of the remaining isolated buttons and small clusters become
cross-connected into the giant component. So the giant component
grows larger, but its rate of growth slows as the number of remaining
isolated buttons and isolated small components decreases.

m..mm:nm 3.4 A phase transition. As the
ina random graph passes 0.5, the size
until it reaches a “phase transition” and g glant component crystallizes. (For this

,m%mﬁ.&mﬁ&m&&%&%o\&%&&a\axm Q .
buttons is fixed at 400.) mu\xo&S%Q\S?Nm&m\ﬁﬁx&mw o\
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The rather sudden change in the size of the largest connected cluster
of buttons, as the ratio of threads to buttons passes 0.5, is 2 toy version
of the phase transition that I believe led to the origin mm life. In Figure
34,1 mro.é qualitatively the size of the largest cluster mBosm.aoo smmom
as Hvo ratio of edges to nodes increases. Note that the curve is S-shaped
or sigmoidal. The size of the largest cluster of nodes increases slow] mm
first, then rapidly, then slows again as the ratio of edge to nommmmn-
creases. The rapid increase is the signature of something like a phase
:msm.:_o:.ammzmm 3.4). In the example in Figure 3.4 using 400 buttons
the sigmoidal curve rises steeply when the ratio of edges to nodes wmmmmm
0.5. The steepness of the curve at the critical 0.5 ratio depends on the
number of nodes in the system. When the number of nodes is small, the
steepest part of the curve is “shallow,” but as the number of bomnw in
the toy system increases—from, say, 400 to 100 million—the steep part
of the sigmoidal curve becomes more vertical. Were there an H.bmwwm
:chQ. of buttons, then as the ratio of threads to buttons passed 0.5
the size of the largest component would jump discontinuously from Bw\

to enormous. ‘.H.Em Is a phase transition, rather like separate water mole-
cules freezing into a block of ice.
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The intuition I want you to take away from this toy problem is sim-
ple: as the ratio of threads to buttons increases, suddenly so many but-
tons are connected that a vast web of buttons forms in the system. This
giant component is not mysterious; its emergence is the natural, ex-
pected property of a random graph. The analogue in the origin-of-life
theory will be that when a large enough number of reactions are cat-
alyzed in a chemical reaction system, a vast web of catalyzed reactions
will suddenly crystallize. Such a web, it turns out, is almost certainly au-
tocatalytic—almost certainly self-sustaining, alive.

Reaction Networks

It is convenient to draw a metabolic reaction graph with circles repre-
senting chemicals and square representing reactions. To be concrete, we
will consider four simple kinds of reactions. In the simplest, one sub-
strate, A, converts to one product, B. Since reactions are reversible, B
also converts back to A. This is a one-substrate, one-product reaction.
Draw a black line leaving A and entering a small square lying between
A and B, and draw a line leaving the square and ending on B (Figure
3.5). This line and the square represent the reaction between A and B.
Now consider two molecules, say A and B, that are combined, or “lig-
ated,” to form a larger molecule, C. In the reverse reaction, C is
“cleaved” to form A and B. We can represent these reactions with two
lines leaving A and B and entering a square representing this reaction,
plus a line leaving the square and entering C. Finally, we should con-
sider reactions with two substrates and two products. Typically, this
kind of reaction occurs by breaking off a small cluster of atoms from
one substrate and bonding the cluster to one or more atoms on the sec-
ond substrate. We can represent two-substrate, two-product reactions
with pairs of lines leaving the two substrates and entering a square rep-
resenting that reaction, and two more lines leaving the square and con-
necting to the two products. Now consider all the kinds of molecules
and reactions possible in a chemical reaction system. The collection of
all such lines and squares between all the chemical circles constitutes
the reaction graph (Figure 3.5).

Since we want to understand the emergence of collectively autocat-
alytic molecular systems, the next step is to distinguish between sponta-
neous reactions, which are assumed to occur very slowly, and catalyzed
reactions, which are assumed to occur rapidly. We want to find the con
ditions under which the same molecules will be catalysts for and prod

ucts of the reactions creating the autocatalytic set. This depends on the
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BAAAA BAAAAAAB
AA
BAA
AAB
A
BA AB
Q ABBAB
BBA BAB
BB
BEABB BBBAB

Figure 3.5 From buttons and threads to chemicals. In this bypothetical network
of chemical reactions, called a reaction graph, smaller molecules (A and B) are
combined to form larger molecules (AA, AB, etc.), which are combined to form
still larger molecules (BAB, BBA, BABB, etc.). Simultaneously, these longer mol-
ecules are broken down into simple substrates again. For each reaction, a line
leads from the two substrates to a square denoting the reaction; an &.\mg leads
from the reaction square to the product. (Since reactions are reversible, the use of

- arrows is meant to distinguish substrates from products in only one direction of

the &m%&.%\ flow.) Since the products of some reactions are substrates of further
reactions, the result is a web of interlinked reactions.

possibility that each molecule in the system can play a double role: it

can serve as an ingredient or a product of a reaction, but it can also

serve as a catalyst for another reaction. This dual role, as ingredient or
catalyst, is perfectly possible, even familiar. Proteins and RNA mole-
cules are known to play such a dual role. An enzyme called trypsin
cleaves proteins you eat into smaller fragments. In fact, trypsin will
cleave itself into fragments as well. And, as noted in Chapter 2, ri-
'bozymes are RNA molecules that can act as enzymes on RNA mole-
cules. It is perfectly familiar that all kinds of oreanic molectiles cran e
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substrates and products of reactions, but simultaneously act catalyti-
cally to hasten other reactions. No mystery stands in the way of a dual
role for chemicals.

To proceed further, we need to know which molecules catalyze which
reactions. If we knew this, we could tell whether any set of molecules
might be collectively autocatalytic. Unfortunately, this knowledge is not,
in general, yet available, but we can sensibly proceed by making plausi-
ble assumptions. I will consider two such simple theories, each of which
allows us, in the model wotlds we will consider, to assign, somewhat at-
bitrarily, catalysts to reactions. You should be skeptical about this ma-
neuver. Surely, it might be thought, one must actually know which mol-
ecules catalyze which reactions to be certain that a set of molecules
harbors an autocatalytic set. Such skepticism is well placed and allows
me to introduce a mode of reasoning on which I am depending. One
might easily object that if in the real world of chemical reactions the
laws of chemistry dictated a somewhat different distribution of which
molecules catalyzed which reactions, then the conclusions would not
hold. My response is this: if we can show that for many alternative “hy-
pothetical” chemistries, in which different molecules catalyze different
reactions, autocatalytic sets emerge, then the particular details of the
chemistry may not matter. We will be showing that the spontaneous
emergence of self-sustaining webs is so natural and robust that it is even
deeper than the specific chemistry that happens to exist on earth; it is
rooted in mathematics itself.

Picture, as noted earlier, a reaction between a pair of molecules, A
and B, as black lines or edges connecting A and B to the reaction square
between them. Now picture some other molecule, C, that is able to cat-
alyze the reaction between A and B. Represent this by drawing a blue
arrow with its tail in C and its head on the reaction square between A
and B (Figure 3.6). Represent the fact that the reaction between A and
B is catalyzed by changing the black line between A and B to a red line.
Consider each molecule in the system, and ask which reaction or reac-
tions, if any, it can catalyze. For any such catalyst, draw a blue arrow to
the corresponding reaction square, and color the corresponding reac-
tion edges red. When you have finished this task, the red edges and the
chemical nodes they connect represent all the catalyzed reactions, and
collectively make up the catalyzed reaction subgraph of the whole reac-
tion graph. The blue arrows and the chemical nodes from which they
leave represent the molecules that carry out the catalysis (Figure 3.6).

Now consider what is required for the system to contain an autocat-
alytic subset: first, a set of molecules must be connected by red cat-
alyzed reactions; second, the molecules in this set must each have its
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Figure 3.6 Molecules catalyzing reactions. In Figure 3.5, all the reactions were
assumed to be spontaneous. What happens when we add catalysts to speed some
of the reactions? Here the reaction squares indicated by dashed-line arrows are
catalyzed, and the beavy, darker lines connect substrates and products whose re-

actions are catalyzed. The result is a pattern of heavy lines indicating a catalyzed
subgraph of the reaction graph.

formation catalyzed by a blue arrow from some molecule in the same
set or be added from outside. Call the latter molecules food molecules.
If these conditions are met, we have a network of molecules that can
catalyze its own formation, creating all the catalysts it needs.

The Central Idea

How likely is it that such a self-sustaining web of reactions would arise
mmgnmzww Is the emergence of collective autocatalysis easy or virtually
impossible? Do we have to pick our chemicals carefully, or would just
about any mixture do? The answer is heartening. The emergence of au-
tocatalytic sets is almost inevitable
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Here, in a nutshell we will unpack later, is what happens: as the diver-
sity of molecules in our system increases, the ratio of reactions to chemi-
cals, or edges to nodes, becomes ever higher. In other words, the reac-
tion graph has ever more lines connecting the chemical dots. The
molecules in the system are themselves candidates to be able to catalyze
the reactions by which the molecules themselves are formed. As the
ratio of reactions to chemicals increases, the number of reactions that
are catalyzed by the molecules in the system increases. When the num-
ber of catalyzed reactions is about equal to the number of chemical
dots, a giant catalyzed reaction web forms, and a collectively autocat-
alytic system snaps into existence. A living metabolism crystallizes. Life
emerges as a phase transition.

Now we will unpack our nutshell.

The first step is to show that as the diversity and complexity of the
molecules in our system increase, the ratio of reactions to chemical dots
in the reaction graph increases as well. It is easy to see why this is true.
Consider a polymer consisting of four “monomers,” which we can think
of as atoms ABBB. Clearly, the polymer can be formed by gluing A to
BBB, by gluing AB to BB, or by gluing ABB to B. So it can be formed in
three ways, by three different reactions. If we increase the length of the
polymer by one atom, the number of reactions per molecule will rise.
ABBBA can be formed from A and BBBA, AB and BBA, ABB and BA,
or ABBB and A. Since a polymer of length L has L — 1 internal bonds
in general, a polymer of length L can be formed from smaller polymers
in L — 1 ways. But these numbers account for only what chemists call
ligation reactions, building up molecules from smaller pieces. Molecules
can also be formed through cleavage. ABBB can be formed by lopping
the A from the right-hand side of ABBBA. So it is rather obvious that
there are more reactions by which molecules can be formed than there
are molecules themselves. This means that in the reaction graph there
are more lines than dots.

What happens to the ratio of reactions to molecules in the reaction
graph as the diversity and complexity of those molecules increase?
After some simple algebra, it is easy to show for simple linear polymers
that as the length of the molecules increases, the number of kinds of
molecules increases exponentially, but the number of reactions by
which they convert from one to another rises even faster. This increas-
ing ratio means that as more complex and diverse sets of molecules are
considered, the reaction graph among them becomes ever denser with
paths by which they can change from one into another. The ratio of re-
action “lines” to dots becomes denser, a black forest of possibilities.
The chemical system becomes ever more fecund with reactions by
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At this point we have a flask of slow, spontaneous reactions. For the
system to catch fire and generate self-sustaining autocatalytic networks,
some of the molecules must act as catalysts, speeding up the reactions.
The system is fecund, but not yet pregnant with life, and will not be-
come so until we have a way to determine which molecules catalyze
which reactions. Thus it is time to build some simple models. The sim-
plest, which will do very well for a variety of purposes, is to assume that
each polymer has a fixed chance, say one in a million, of being able to
function as an enzyme to catalyze any given reaction. In using this sim-
ple model, we will “decide” which reactions, if any, each polymer can
catalyze by flipping a biased coin that comes up heads once in a million
times. Using this rule, any polymer will be randomly assigned, once and
for all, the reactions it can catalyze. Using this “random catalyst” rule,
we can “color” the catalyzed reactions red, draw our blue arrows from
the catalysts to the reactions each catalyzes, and then ask whether our
model chemical system contains a collectively autocatalytic set: a net-
work of molecules connected by red lines and also containing the very
molecules that catalyze, via the blue arrows, the reactions by which the
molecules themselves are formed.

A somewhat more chemically plausible model supposes that our
polymers are RNA sequences and introduces template matching. In this
simplified version, Bs fit with As in a kind of Watson—Crick pairing.
Thus the hexamer BBBBBB might be able to act like a ribozyme and
bind two substrates, BABAAA and AAABBABA, by their two corre-
sponding AAA trimer sites, and catalyze the ligation of the two sub-
strates to form BABAAAAAABBABA. To make things even more
chemically realistic, we might also demand that even if a candidate ri-
bozyme has a site that matches the left and right ends of its substrates, it
still has only one chance in a million to have other chemical properties
that allow it to catalyze the reaction. This captures the idea that other
chemical features beyond template matching may be required to
achieve ribozyme catalysis. Let us call this the match catalyst rule.

Here is the crucial result: no matter which of these “catalyst” rules
we use, when the set of model molecules reaches a critical diversity, a
giant “red” component of catalyzed reactions crystallizes, and so collec-
tively autocatalytic sets emerge. Now it is easy to see why this emer-
gence is virtually inevitable. Suppose we use the random catalyst rule
and assume that any polymer has a one-in-a-million chance to act as an
enzyme for any given reaction. As the diversity of molecules in the
model system increases, the ratio of reactions to molecules increases.
When the diversity of molecules is high enough, the ratio of reactions to
polymers reaches a million to one. At that diversity, on average each
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in a million equals one. When the ratio of catalyzed reactions to chemi-
cals is 1.0, then with extremely high probability a “red” giant compo-
nent, a web of catalyzed reactions, will form—a collectively autocat-
alytic set of molecules.

In this view of the origin of life, a critical diversity of molecules must
be reached for the system to catch fire, for catalytic closure to be at-
tained. A simple system with 10 polymers in it and a chance of catalysis
of one in a million is just a set of dead molecules. Almost certainly, none
of the 10 molecules catalyzes any of the possible reactions among the 10
molecules. Nothing happens in the inert soup save the very slow spon-
taneous chemical reactions. Increase the diversity and atomic complex-
ity of the molecules, and more and more of the reactions among them
become catalyzed by members of the system itself. As a threshold diver-
sity is crossed, a giant web of catalyzed reactions crystallizes in a phase
transition. The catalyzed reaction subgraph goes from having many dis-
connected tiny components to having a giant component and some
smaller, isolated components. Your intuitions may now be tuned
enough to guess that the giant component will contain a collectively au-
tocatalytic subset able to form itself by catalyzed reactions from a sup-
ply of food molecules.

I have now related the central ideas about how I think life may have
formed. These ideas are really very simple, if unfamiliar. Life crystallizes
at a critical molecular diversity because catalytic closure itself crystal-
lizes. These ideas, I hope, will become experimentally established parts
of our new chemical creation story, our new view of our ancient roots,
our new sense of the emergence of life as an expected property of the
physical world.

In the computer-simulation movies we have made of this process, we
can see this crystallization happening through an increase in either the
diversity of molecules or the probability that any molecule catalyzes any
reaction. We call these parameters M and P. As either M or P increases,
at first nothing much happens in the dead soup; then suddenly it
springs to life. The experiment has not been done with real chemicals
yet, although I'll return to that later. But on the computer, a living sys-
tem swarms into existence. Figure 3.7 shows what one of these model
self-reproducing metabolisms actually looks like. As you can see, this
model system is based on the continuous supply of several simple food
molecules, the monomers A and B, and the four possible dimers: AA,
AB, BA, and BB. From this, tlie system crystallizes a collectively auto-
catalytic, self-sustaining model metabolism with some 21 kinds of mole-
cules. More complex autocatalytic sets have hundreds or thousands of
molecular components.
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@ = food set

O = other chemicals

V| = reactions

4 -+ = action of catalysts

Figure 3.7 An autocatalytic set. A typical example of a small autocatalytic set in

which food molecules (a, b, aa, bb) are buils up into a self-sustaining network of

molecules. The reactions are represented by points connecting larger polymers to

their breakdown products. Dotted lines indicate catalysis and point from the cata-
lyst to the reaction being catalyzed.

The same basic results are found if we use the template-matching
model of catalysis. The ratio of possible reactions to polymers is so vast
that eventually a giant catalyzed component and autocatalytic sets
emerge. Given almost any way in which nature might determine which
chemicals catalyze which reactions, a critical molecular diversity is
reached at which the number of red catalyzed reactions passes a phase
transition and a vast web of chemicals crystallizes in the system. This
vast web s, it turns out, almost always collectively autocatalytic.
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In a normal aqueous environment, the equilibrium ratio of cleaved
amino acids to amino acid pairs (dipeptides) is about 10 to 1. But the
same calculation holds for a dipeptide plus a single amino acid coming
together to form a tripeptide. In an aqueous environment, the ratio of
the dipeptide and amino acid to the tripeptide will be about 10 to 1 at
chemical equilibrium. Note the consequence: at equilibrium, the ratio
of two amino acids to the dipeptide they form is 10 to 1, and the ratio of
the dipeptide plus a single amino acid to the tripeptide is also 10 to 1.
Thus the ratio of single amino acids to tripeptides is not 10 to 1, but
roughly 100 to 1. Similarly, at equilibrium, the ratio of amino acids to
tetrapeptides is about 1,000 to 1, As the bigger polymer increases in
length, its equilibrium concentration relative to the amino acids falls by
a factor of about 10-fold for each increase of one amino acid in length.

The implication of the previous simple calculation is this: in an equi-

librium mixture of single amino acids and various peptides up to
length, say 25, the average ratio of the amino acid concentrations to that
of any specific peptide of 25 amino acids would be about 1 to 10-2 . To
be concrete, if amino acids were dissolved to the highest concentration
in water that can be attained, then at equilibrium the number of copies
of any specific sequence of amino acids 25 residues long would be less
than one molecule in a liter of water! By contrast, the number of copies
of any of the single amino acids might be on the order of 102 to 102,
Autocatalytic sets may use large polymers. How can high concentra-
tions of such molecules be achieved in the face of this thermodynamic
difficulty?

There are at least three fundamental ways that this vast obstacle
might have been overcome. Fach is remarkably simple. First, reactions
can be confined to a surface rather than occurring in a volume. The rea-
son this helps form larger polymers is simple. The rate at which a chem.
ical reaction occurs depends on how rapidly the reaction partners col-
lide with one another, If an enzyme is involved, the enzyme must be
encountered as well. If the reaction is occurring in a volume, such as a
beaker, then each molecule must diffuse in three dimensions and bump
into its reaction partners. It is rather easy for molecules wandering in

three dimensions to keep missing one another (recall the cartoon I de-

sctibed in Chapter 2). By contrast, if the molecules are confined to a
very thin surface layer, such as clay or a bilipid membrane, then the

search occurs in only two dimensions. It is a lot harder for the mole-

cules to miss one another. To tune your intuition, imagine the molecules

diffusing in a one-dimensional tube with a tiny diameter. Then they are
bound to run into one another, In short, confining reactions to occur on
surfaces strongly increases the chances of substrates hitting one another,

hence enhancing the rate of formation of lonoer nalvrm e
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A second simple mechanism to enhance the formation of longer poly-
mers is to dehydrate the system. Dehydration removes water molecules,
hence slowing down the cleavage of peptide bonds. In computer simu-
lations with my colleagues Doyne Farmer, Norman Packard, and, later,
Richard Bagley, we found strong evidence that even simple dehydration
ought to suffice to allow real autocatalytic systems of polymers to repro-
duce. Our model fits the laws of chemistry and physics without strain-
ing.

Dehydration is not a cheat; it actually works. A famous reaction,
called the plastein reaction, was well studied beginning almost 60 years
ago. The enzyme trypsin in the stomach helps digest the proteins we
eat. If trypsin is mixed with large proteins in an aqueous medium, it
cleaves the proteins into smaller peptides. But if the reaction system is
dehydrated, lowering the concentration of water relative to the pep-
tides, the equilibrium shifts in favor of the synthesis of larger polymers
from the small peptide fragments. Trypsin obliges by catalyzing these
ligation reactions, yielding larger polymers. If these larger polymers are
removed and the system is again dehydrated, trypsin obliges by synthe-
sizing still more large polymers.

Reactions on surfaces and dehydration can be used to favor the for-
mation of large polymers. But contemporary cells also use a more flexi-
ble and sophisticated mechanism. As cells form bonds, they obtain the
needed energy by simultaneously breaking down the high-energy bonds
in ubiquitous helper molecules. Adenosine triphosphate (ATP) is the
most common of these. Reactions that require energy are called ender-
gonic; those that release energy are called exergonic. Cells drive ender-
gonic reactions by linking them to exergonic reactions.

A number of plausible candidates have been suggested for high-en-
ergy bonds that may have powered eatly self-reproducing metabolisms.
For example, pyrophosphate, two phosphates linked together, is abun-
dant and releases substantial energy upon cleavage. Pyrophosphate may
have been a useful source of free energy to drive synthesis in early living
systems. Farmer and Bagley have used computer simulations to show
that model systems powered by these bonds meet plausible thermody-
namic criteria and can reproduce.

What is required to link exergonic and endergonic reactions? Does
some new mystery confront us beyond the achievement of catalytic clo-
sure? I think not. A problem is here, but hardly a mystery. All that is re-
quired, after all, is that the autocatalytic set include catalysts that link
exergonic and endergonic reactions, so that one powers the other. The
endergonic synthesis of large molecules must be coupled with the

degradation of high-energy bonds supplied by food molecules or, ulti-
mately, sunlight. But this does not seem an overwhelming obstacle.
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Chapter 4

Order for Free

‘..—erm living world is graced with 2 bounty of order. Fach bacterium

orchestrates the synthesis and distribution of thousands of proteins
and other molecules. Each cell in your body coordinates the activities of
about 100,000 genes and the enzymes and other proteins they produce.
Each fertilized egg unfolds through a sequence of steps into a well-
formed whole called, appropriately enough, an organism. If the sole
source of this order is what Jacques Monod called “chance caught on
the wing,” the fruit of one fortuitous accident after another and selec-
tion sifting, then we are indeed improbable. Our lapse from paradise—
Copernicus to Newton in celestial mechanics, to Darwin in biology, and
to Carnot and the second law of thermodynamics—leaves us spinning
around an average star at the edge of a humdrum galaxy, lucky beyond
reckoning to have emerged as living forms,

How different is humanity’s stance, if it proves true that life crystal-
lizes almost inevitably in sufficiently complex mixtures of molecules,
that life may be an expected emergent property of matter and energy.
We start to find hints of a natural home for ourselves in the €Osmos.

We have seen that the origin of collective autocatalysis, the origin of life
itself, comes because of what I call “order for free”—self-organization
that arises naturally. But I believe that this order for free, which has un-
dergirded the origin of life itself, has also undergirded the order in or-
ganisms as they have evolved and has even undergirded the very capac-
ity to evolve itself.
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If life emerged as collectively autocatalytic systems swirling in some
soup, then our history only starts there. It had best not end abruptly for
lack of the ability to evolve. The central motor of evolution, Darwin
taught us, requires self-reproduction and heritable variation. Once
these occur, natural selection will cull the fitter from the less fit. Most
biologists hold that DNA or RNA as a stable store of genetic informa-
tion is essential to adaptive evolution. Yet if life began with collective
autocatalysis and later learned to incorporate DNA and the genetic
code, we are faced with explaining how such autocatalytic sets could
undergo heritable variation and natural selection without yet harboring
a genome. If we required the magic of template replication and the fur-
ther magic of genetic coding for proteins, the chicken-and-egg problem
becomes too horrendous to contemplate. Evolution cannot proceed
without these mechanisms, and we cannot have these mechanisms with-
out evolution to tinker them together. In continuing our search for a
theory of we the expected, we are led to ask this question: Is there a way
that an autocatalytic set could evolve without all the complications of a
genome?

My colleagues Richard Bagley and Doyne Farmer have hinted at how
this might happen. We have already seen in Chapter 3 that once an au-
tocatalytic set is enclosed in a spatial compartment of some sort—say, a
coascervate or a bilipid membrane vesicle—the self-sustaining meta-
bolic processes can actually increase the number of copies of each type
of molecule in the system. In principle, when the total has doubled, the
compartmentalized system can “divide” into two daughters. Self-repro-
duction can occur. As I noted, in experiments such compartmental sys-
tems do tend to divide spontaneously into two daughters as their vol-
umes increase. But if daughter “cells” were always identical to the
parent “cell,” no heritable variation could occur.

Richard and Doyne found a natural way that variation and evolution
in such systems can occur. (Richard did this work as part of his doctoral
dissertation at the University of California, San Diego, with Stanley
Miller as one of his examiners.) They proposed that a random, uncat-
alyzed reaction will occasionally occur as an autocatalytic net goes

about its business. These spontaneous fluctuations will tend to give rise
to molecules that are not members of the set. Such novel molecules can
be thought of as a kind of penumbra of molecular species, a chemical
haze surrounding the autocatalytic set. By absorbing some of these new
molecular species into itself, the set would become altered. If one of
these new molecules helped catalyze its own formation, it would be-
come a full-fledged member of the network. A new loop would be
added to the metabolism. Or if the molecular interloper inhibited a pre-
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viously occurring reaction, then an old loop might be eliminated fr
the set. Either way, heritable variation was evidently possible. If the NM
mc# were a more efficient network—one better able to m:m.SE itself
amid a harsh environment—then these mutations would be rewarded
the altered web crowding out its weaker competitors. Hees
.Hb short, there is reason to believe that autocatalytic sets can evoly.
g&rwcﬁ a genome. This is not the kind of evolution we are accustom M
to H.r:.;csm about. There is no separate DNA-like structure carrvin y
netic information. Biologists divide cells and organisms into ﬁww -
type (the genetic information) and the phenotype (the enz Bmmm m% om
other ?,o.ﬁmmbmv as well as the organs and morphology, that Bmﬂm u ﬁw
body). With autocatalytic sets, there is no separation wumgmos o:%” ‘
and wvo:oa.%m. The system serves as its own genome. Zm<mm5m~mmm MMM
capacity to incorporate novel molecular species, and perhaps m:BmEHm
oEm.u. molecular forms, promises to generate a population of self-repro-
ducing chemical networks with different characteristics. Darwin 8:@
that such systems will evolve by natural selection. . o
H.s fact, such self-reproducing, compartmentalized protocells and
their daughters will inevitably form a complex ecosystem. Each prot
cell reproduces with heritable variations; in addition .omow will ﬁ%bm M -
absorb and excrete molecular species selectively in mmm environment mm
do contemporary bacteria. In short, a molecule created in one HoHoMumz
can be transported to other protocells. That molecule may bn%Boﬂm or
boison reactions in the second protocell. Not only does metabolic lif
vn.mE whole and complex; but all the panoply of mutualism and com :
tition that we think of as an ecosystem springs forth from the ve Wm-
ginning, 1.26 story of such ecosystems at all scales is the story not %MH M :
of evolution, but of coevolution. We have all made our worlds to mﬂrmmwﬂ
moH_m:mHomﬂ 4 billion years. The story of order for free continues W this
Mwm .mo ar and organismic coevolution, as will be shown in later chap-
But o<o.chos requires more than simply the ability to change, to
dergo heritable variation. To engage in the Darwinian saga, a m&: .
tem must first be able to strike an internal compromise mmgmgmﬂwwm-
leability and stability. To survive in a variable environment, it must m-
ng.n, to be sure, but not so stable that it remains moHQaM static Zow
can it be so unstable that the slightest internal chemical mcnmc.ma
causes Hr.m whole teetering structure to collapse. We have only to 805
sider again the now familiar concepts of deterministic chaos Hov\m re "
ate the ?,o.EmB. Recall the famous butterfly in Rio, whose msmw mm-
wing flapping, or even languid stirring, can m_ﬂmm the émm%mm :M
Chicago. In chaotic systems, tiny changes in initial conditions can lead
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to profound disturbances. From éwmﬁ. we have said so far, thno is sw
reason to believe that our autocatalytic sets would not be hypersensi
tive, chaotic, doomed from the start. A tiny change in H_mm nomnmn.ﬂm-
tions of the internal metabolism vmn&mmo some Eo_.moan noms a neig w
boring cell is absorbed might be amplified so B&rﬁv\ that sﬁ_mm%mgm“m
would fly apart. The autocatalytic sets I am proposing wo Hrm:\mw
to coordinate the behaviors of some ﬁwocmmbmm. of B&mn&mm“c awn mmm
that could potentially flourish in systems of this complexity boggles the
Bmmm.o potential for chaos is not merely ﬁ.rmonwﬂ.m@_. O.Hrmm B.owonw_wm
can bind to the enzymes in our own cells, H.b?gc:m o EnnmmMSm t M:
activity. Enzymes can be “turned on” or “turned off TM other Bozm-
cules in the reaction network. It is now well known ﬁrm.ﬁ in BOMHH cells,
such molecular feedback can NM,\M imw to o.oBmM_ox chemical oscillations
in ti e. The potential for chaos is real.
- WWHMMMWMWM nvomnéwwﬁ life began when Eo_mn&om spontaneously
joined to form autocatalytic metabolisms, we will vm<m to find a source
of molecular order, a source of the fundamental H.EQD& roBMon»ma
that buffers cells against voﬁﬁ_uwmosm, a compromise Hrmﬁ woul : ow
the protocell networks to undergo slight mcﬁzmﬁo:m without co M@M
ing. How, without a genome, éocE such order arise? It mucmﬁ mo%n Mm y
emerge from the collective dynamics of the network, the QmoH %Sm
behavior of the coupled molecules. It must v.m another case of or. er for
free. As we are about to see, astonishingly simple rules, or nwbmﬁ\&mﬁm,
suffice to ensure that unexpected and profound dynamical order

emerges spontaneously.

The Wellsprings of Homeostasis

Allow me a simple, highly useful, Ewmmxmmop Let us imagine &mﬁvmﬂ%._
enzyme has only two states of activity—on or n.vmv .mbm can switch m.
tween them. So at each moment, each enzyme is either active or Mwn ;
tive. This idealization, like all Emmr.w.mmosmv is EQ&F false. Hsm reality,
enzymes show graded catalytic activities. Most mEﬁv_& the rate % H» BMM
tion depends on enzyme and substrate concentrations. Zm<ow.ﬁ e nmmv%
hibition or activation of enzymes by Bo_mn&mm.UEQBM to m:Mm. onmH e
enzyme or changing the enzyme in other ways is common an &H_m often
associated with a sharp change in enzyme activity. In mmﬁ.&no:, ow me
to think of the substrates or products of reactions as either present or

absent. This, too, is literally false. But often the concentrations of sub

strates and products in complex reaction networks can change vety

D
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swiftly from high to low. The “on—off” “present-absent” idealization is
very useful, for we are going to consider networks with thousands of
model enzymes, substrates, and products.

The point in using idealizations in science is that they help capture
the main issues. Later one must show that the issues so captured are not
altered by removing the idealizations. Thus in physics, analysis of the
gas laws was based on models of gas molecules as hard elastic spheres,
The idealization captured the main features necessary to create statisti-
cal mechanics. In Chapter 3, we presented molecules and their reac-
tions as buttons and threads. Now let us change metaphors and think of
a metabolic network of enzymes, substrates, and products as a network
of lightbulbs connected by wires, an electrical circuit. A molecule cat-
alyzing the formation of another molecule can be thought of as one
bulb turning on another. But molecules can also inhibit each other’s for-
mation. Think of this as one bulb turning another bulb off.

One way to get such a network to behave in an orderly manner
would be to design it with great care and craft. But we have proposed
that autocatalytic metabolisms arose in the primal waters spontaneously,
built from a random conglomeration of whatever happened to be
around. One would think that such 2 haphazard concoction of thou-
sands of molecular species would most likely behave in a manner that
was disorderly and unstable. In fact, the opposite is true: order arises
spontaneously, order for free. To return to our metaphor, although we
wire our bulbs together at random, they do not necessarily blink on and
off randomly like the twinkling lights of a vast forest of berserk Christ-
mas trees. Given the right conditions, they settle into coherent, repeat-
ing patterns.

To see why order emerges spontaneously, I have to introduce some of

the concepts mathematicians use to think about dynamical systems. If

we think of our autocatalytic set as an electrical network, then it can as-
_ sume a vast number of possible states, All the bulbs might be off, all
might be on, and in between these two extremes can be myriad combji-

nations. Imagine a network that consists of 100 nodes, each of which
can be in one of two possible states, either on or off; the number of pos-
sible configurations is 2!%. For our autocatalytic metabolism, with per-
haps 1,000 kinds of molecules, the number of possibilities is even
vaster: 24, This range of possible behaviors is called a state space. We
can think of it as the mathematica] universe in which the system is free

0 roam.
~ To make these notions concrete, consider a simple network consist-

ing of just three light bulbs—1, 2, and 3—each of which receives “in-

from the other two. (Figure 4.14). The arrows show <which «o.
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Figure 4.1 A Boolean net. (a) The wiring diagram in a Boolean network w&%
three binary elements, each an input to the S&m\ two. (b) H\uw N.WooNgx Q&M of
(a) rewritten to show for all (2°) = 8 states at time T, the QQN.SQ assumed by
each element at the next moment, T + 1. Read from left to ng this \mmmww
shows the successor state for each state. (c) The state transition m&m\s or wm??
ior field,” of the autonomous Boolean network of (a) and (b), obtained by s QSM
ing state transitions to successor states connected by arrows. (d) Effects of mutat-

ing the rule of element 2 from OR to AND.

the signals flow; thus arrows point to bulb 1 from bulbs 2 and 3, signify
ing that bulb 1 receives inputs from bulbs 2 and 3.

In addition to denoting the wiring &mmﬂmm.r we H.Hm& to know how
each lightbulb responds to the signals it receives. Since each bulb an
have only two values, on and off, which we can represent as .H and 0,
then it is easy to see that there are four possible input patterns it can re-
ceive from its two neighbors. Both inputs can be off (00), one or ?a
other input can be on (01 or 10), or both inputs can Vm on (11). GmBM
this information, we can construct a rule table specifying éroﬂr.om eac
bulb will be active (1) or inactive (0) for each of these four possible sig-
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nals. For example, bulb 1 might be active only if both of its inputs were
active the moment before. In the language of Boolean algebra (named
in honor of George Boole, the inventor of mathematical logic in the
nineteenth century), bulb 1 is an AND gate: bulbs 2 4zd 3 must be active
before it will light. Or we could choose instead for the bulb to be gov-
erned by the Boolean OR function: bulb 1 will be active the next mo-
ment if bulb 2 or bulb 3 or both were active the moment before.

To complete the specification of what I will now call a Boolean net-
work, I will assign to each lightbulb one of the possible Boolean func-
tions. Say I assign the AND function to bulb 1 and the OR function to
bulbs 2 and 3 (Figure 4.14). At each tick of the clock, each bulb exam-
ines the activities of its two inputs and adopts the state 1 or 0 specified
by its Boolean function. The result is a kaleidoscopic blinking as pattern
after pattern unfolds.

Figure 4.15 shows the eight possible states that the network can as-
sume, from (000) to (111). Read along vertical columns, the right half of
Figure 4.15 specifies the Boolean rule governing each lightbulb. But
read from left to right, Figure 4.1% shows, for each current state at time
T, the next state of the entire network one moment later, at T + 1,
when all lightbulbs simultaneously adopt their new activities, 1 or 0.

Now we are in a position to begin to understand the behavior of this
little network. As we can see, the system can be in a finite number of
states, here eight. If started in one state, over time the system will flow
through some sequence of states. This sequence is called a trajectory
(Figure 4.1¢). Since there is a finite number of states, the system must
eventually hit a state it has previously encountered. Then the trajectory
will repeat. Since the system is deterministic, it will cycle forever around
a recurrent loop of states called a state cycle.

Depending on the initial state in which we start our network—the
pattern of on and off bulbs—it will follow various trajectories, falling at
some point into an ever repeating state cycle (Figure 4.1¢). The simplest
possible behavior would occur if the network fell immediately into a
state cycle consisting of a single pattern of 1s and 0s, A system started in
such a state never changes; it is said to be stuck in a cycle of length 1.
Alternatively, the length of the state cycle could conceivably be the total
number of states in state space. A system caught in such a cycle will re-
peat, one after another, every pattern it is capable of displaying. For our
three-bulb system, this would result in a steady twinkling as the system
passed through its eight possible states. Since the number of states is so
small, we could soon detect the pattern of its blinking. Now imagine a
larger network, with 1,000 bulbs and thus 21990 possible states. If the
network were on a state cycle passing through every one of this hyperas-

J
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tronomical number of states, and if it took a mere trillionth of a second
per state transition, we could never in the lifetime of the universe see
the system complete its orbit.

So the first thing to appreciate about Boolean networks is this: any
such network will settle down to a state cycle, but the number of states
on such a recurrent pattern might be tiny—as small as a single steady
state—or so hyperastronomical that numbers are meaningless. If a sys-
tem falls into a small state cycle, it will behave in an orderly manner. But
if the state cycle is too vast, the system will behave in a manner that is
essentially unpredictable. The state spaces through which molecular
networks with only a few thousand kinds of molecules can roam are be-
yond our common reckoning. For our autocatalytic networks to be ot-
derly, they must avoid veering off on seemingly endless tangents and
must settle down into small state cycles—a repertoire of stable behav-
iors.

To gain insight into how likely it is that autocatalytic sets would be
stable enough to endure, we must ask these questions: How does one
make orderly networks with short state cycles? Is the creation of tiny
state cycles difficult, meaning that it is something of a miracle that sta-
ble autocatalytic metabolisms emerged? Or does it happen naturally? Is
it part of order for free?

To answer these questions we need to understand the concept of an
attractor. More than one trajectory can flow into the same state cycle.
Start a network with any of these different initial patterns and, after
churning through a sequence of states, it will settle into the same state
cycle, the same pattern of blinking. In the language of dynamical sys-
tems, the state cycle is an attractor and the collection of trajectories that
flow into it is called the basin of attraction. We can roughly think of an
attractor as a lake, and the basin of attraction as the water drainage
flowing into that lake.

Just as a mountainous region may harbor many lakes, a Boolean net-
work may harbor many state cycles, each draining its own basin of at-
traction. The little network in Figures 4.1a~c has three state cycles. The
first state cycle has the single steady state (000), which drains no basin
of trajectories. It is an isolated steady state. It can be reached only if we
start the network there. The second state cycle has two states, (001) and
(010). The network oscillates between these two. No other states drain
into this attractor. Launch the network with one of these two patterns
and it will remain in the cycle, blinking back and forth between the two
states. The third state cycle consists of the steady state (111). This at-
tractor lies in a basin of attraction draining four other states. Start the
network with any one of these patterns and it will quickly flow to the

steady state and freeze up, displaying three lighted bulbs.
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G:m.ﬂ. the right conditions, these attractors can be the source of
o&m.H in .mem dynamical systems. Since the system follows trajectori
.Emﬁ :.SSSE% flow into attractors, tiny attractors will “trap” %M s mﬁmMM
into tiny subregions of its state space. Among the vast range of OmeE
_umrmSoHM the system settles into an orderly few. The attractors, w mamzm

X 3
MMMMM MMQMM WMMMMSMW% attractors are a prerequisite for the order for

But tiny attractors are not enough. For a dynamical system, such as
an mcﬁonmﬁm@ﬁn net, to be orderly, it must exhibit homeostasis: vﬁrmﬁ is, it
must be resistant to small perturbations. Attractors are ﬁrm :EBmS
source of homeostasis as well, ensuring that a system is stable. In laroe
networks, any state cycle typically drains an enormous vmmws. Bmm
states moﬁ into the attractor, Moreover, the states within that vm,&b nmw
vw very similar to the states on the state cycle to which they drain. Wh
is Hr.a Important? Suppose we arbitrarily choose a single :mr&&.v msw
flip it to the opposite state. All or most such perturbations leave the sys-
tem in the same basin of attraction. So the system will return to Ww
same state cycle from which it was perturbed! That is the essence om
homeostatic MSVEQ. State cycle 3 in Figure 4.1¢ is stable in this way; if
ww.m Mmgo_,‘w wm in this v.mmmsv flipping the activity of any single :mrﬁvwv
v Hrmmmwdmw“o&www.nﬁmm Impact on its behavior, for the system will return

wE. roB.mOmﬂmnn stability does not always arise. State cycle 1, by con-
trast, is an isolated steady state and is unstable to the slightest mﬂwﬁvm-
tion. After any such flip, the system is shoved into a different basin of

m_M:mMmo:. It can’t come home again. If the network had the property
that all attractors were unstable in this way, we can imagine that slight
perturbations (the flapping of the butterfly’s
bump the system out of attractors and send it veering off on an endless

b

hever repeating journey through state
: space. e
chaotic. P The system would be

wings) would persistently

If we are to believe that life began with the spontaneous generation of

mzmogm&&o nets, then we had better hope that they were homeostati

,Hm it natural that certain kinds of large networks will exhibit homeost N
sis? Is homeostasis hard to create, making the emergence of stable w-
works vastly unlikely? Or can it, too, be part of order for free? o

) Mqorwa we need are laws describing which kinds of networks are likely
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gadzillions of states in state space, one might have mmmwmrosm. of mﬁﬁ«wn.
tors. If there are vast numbers of attractors, m:&. the system might be lo-
cated on any one of them, that does not sound like order.

Collectively autocatalytic sets presumably evolved, and ooEmM%MEQ
organisms do evolve, by mutations that @mﬁ.bmﬁnb&% change t m_ EHM
tional connections among the molecular species in ﬁ.ro system. Will suc
permanent mutational changes cause an autocatalytic system to n.ozmwmo
into chaotic twinkling through its space of B&mn:._mm, poisoning its own
capacity to catalyze its own reproduction? Will minor Bcﬂmﬁomom <M5m-
tions typically cause catastrophic changes? H.b the language o - Boolean
networks, another way to perturb a network is to vomamwmb&.% mutate
its wiring diagram, changing the inputs or the Boolean m:bnﬁwosmmom\m;-
ing when a bulb is on or off. In Figure 4.14, I show the result of ¢ mﬂm,
ing the rule governing lightbulb 2 from OR to AND. As you can see, ﬁ__m
causes the network to assume a new dynamical form. m.oBm state cycles
remain, but others are changed. New basins of attraction will steer the

into different patterns. .

mexwwwb supposed %Mﬂ living systems evolve by mutations .ﬁrmﬁ Q:MM
small modifications in the properties of the organism. Is this mmmnw

property of minor changes hard to achieve? O.H. is it, t0o, vmﬁm o_m oH_omH
for free? A pure Darwinist might argue ﬁrmﬁ. this kind Om.mmmom ul sta r.-
ity could arise only after a seties of m<oFmo:mQ.memEbgﬁ? %Qw _m nis
begs the question. We are trying to explain the origin of the very a HQ
to evolve! However life started, with nude er.nmcbm RNA B.owmnc mM
or with collectively autocatalytic sets, this mﬁ.mvEQ cannot be _Bwommw
from outside by natural selection. It must arise from within as a condi-

i lution itself. . .

QOMM MMMMQ properties we need, I believe, all the order we HSEM.Q m:m@
spontancously. We next must show how order m.oH free supp SM ﬁra
small ordered attractors we need, the homeostasis we 5@.@9 and the
graceful stability we need. Order for mmmo,. utterly natural, if previously
mostly unknown, will change our view of life.

The Requirements for Order

We have seen that Boolean networks can exhibit profound order, bu
Boolean networks can also exhibit profound nv.mom. Oonmmncmﬂa& Wi
seek the conditions under which orderly dynamics can emerge in suc
systems. I will now present the results of mv.ocﬁ 30 years of work.

The main results are simple to summarize: two mnmﬁcﬂ.om of the wa
networks are constructed can control whether .&Q are in an ordere
et s s oo whoace transition resime between these
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“on the edge of chaos.” One feature is simply how many “inputs” con-
trol any lightbulb. If each bulb is controlled by only one or two other
lightbulbs, if the network is “sparsely connected,” then the system ex-
hibits stunning order. If each bulb is controlled by many other light-
bulbs, then the network is chaotic. So “tuning” the connectivity of a
network tunes whether one finds order or chaos. The second feature
that controls the emergence of order or chaos is simple biases in the
control rules themselves. Some control rules, the AND and OR Boolean
functions we talked about, tend to create orderly dynamics. Other con-
trol rules create chaos.

The way I and others have done this work is pretty straightforward.
One way to ask what kinds of lightbulb networks exhibit order of chaos
is to construct very specific networks and study them. But this would
leave us with a vast number of very specific networks to study—another
of our hyperastronomical numbers, big beyond meaning. The approach
I have taken asks whether networks of certain general kinds exhibit
order or chaos. To answer this question, the natural approach is to care-
fully define the “kind” of networks in question, and then use computers
to simulate large numbers of networks drawn at random from the pool.
Then, like a pollster, we can build up a portrait of the typical, or
generic, behaviors of members of the class.

We might, for example, study the pool of networks with 1,000 bulbs
(we’ll call this variable N) and 20 inputs per bulb (the variable K).
Given N = 1000 and K = 20, a vast ensemble of networks can be built.
We sample this ensemble by randomly assigning to each of the 1,000
 bulbs 20 inputs and, again at random, one of the possible Boolean func-
tions. Then we can study the network’s behavior, counting the number
of attractors, the lengths of attractors, the stability of attractors to per-
turbations and mutations, and so forth. Throwing the dice again, we
can randomly wire another network with the same general characteris-
tics and study its behavior. Sample by sample, we build up a portrait of
a family of Boolean nets, and then we change the values of N and K and
build up another portrait.

After years of such experiments, networks with various parameters
become as familiar as old friends. Consider networks in which each
lightbulb receives input from only one other. In these K = 1 networks,
nothing very interesting happens. They quickly fall into very short state
cycles, so short that they often consist of but a single state, a single pat-
ern of illumination. Launch such a K = 1 network and it freezes up,
saying the same thing over and over for all time.

At the other end of the scale, consider networks in which K = N,
meaning that each lightbulb

4 .
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state cycles is the square root of the number of states. Consider the im-
plications. For a network with only 200 binary variables—bulbs that
can be on or off—there are 22%° or 10%° possible states. The length of the
state cycles is thus on the order of 10°° states. Start the network with
some arbitrary pattern of on-bulbs and off-bulbs, 1s and 0s, and it will
be pulled by an attractor into a repeating cycle, but a cycle so long as to
be all but fathomless. Suppose the network took a millionth of a second
to pass from state to state. Then the little network would require 10°°
millionths of a second to traverse its state cycle. This is equal to billions
of times the 15-billion-year history of the universe! So we could never
actually observe the fact that the system had “settled” onto its state
cycle attractor! We could never tell from the twinkling patterns of the
lightbulbs that the network was not just wandering randomly around in
its entire state space!

I hope this gives you pause. We are searching for laws that suffice to
yield orderly dynamics. Our Boolean networks are nonequilibrium,
open thermodynamic systems. Since a little network with only 200 light-
bulbs can twinkle away for an eternity without repeating a pattern,
order is in no way automatic in nonequilibrium, open thermodynamic

systems.

Such K = N networks do show signs of order, however. The number
of attractors in a network, the number of lakes, is only N/e, where e is
the basis of the natural logarithms, 2.71828. So a K = N network with
100,000 binary variables would harbor about 37,000 of these attractors.
Of course, 37,000 is a big number, but very very much smaller than

2100000 +he size of its state space.
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seek order without careful crafting. Recall our discussion in

MWM%SMH of n.mem thermodynamic systems in which the gas molecules
se from improbable configurations—clumped in one corner of

s
pread paralle] to one face of a box—toward homogeneous configura-

Suppose, then, that we perturb the network, flipping a bulb from off
tions. The improbable configurations constituted order. Here. in this

to on, or vice versa. In N = K networks, we get an extreme version of
the butterfly effect. Flip a bit, and the system almost certainly falls
under the sway of another attractor. But since there are 37,000 attrac-
tors with lengths up to 10°%% states, the tiny fluctuation will utterly
change the future evolution of the system. K = N networks are mas-
sively chaotic. No order for free in this family.

Even worse, try evolving such a network by randomly swapping the
Boolean rule of some lightbulb. You will alter half the state transition
in the network and scatter all the old basins of attraction and state cy
cles to the dustbin of network history. Small changes here cause massiv
changes in behavior. There are no graceful minor heritable variations
for selection to act on in this family.

Most Boolean networks are chaotic, and they are graceless with re
spect to minor mutations. Even networks in which K is much less than
N, K = 4 or K = 5, exhibit unpredictable, chaotic behavior similar t

that seen for K = N networks.

i e 4
o Mw nmo:&nosm“ they are not chaotic. The consequence is the ho
neostasis we seek. Once such a network is on an attractor, it will return

the same attractor with verv hj ili
; am ! ry high probability if it i
eostasis is free in this neck of the network éonm 1 s perturbed. Ho-

nw Mwwmmroﬂm r.owmm.moH small, graceful alteration in the behavior of
, ork. Basins and attractors change only slightly. Such systems
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jeve evolv-
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lection in Evolution, there are ways to tune networks %\h énozmmmzam
ceater than 2 so that they are also orderly, not nr.mOSO %f leagues
W rnard Derrida and Gerard Weisbuch, both solid-state physt = ot
ﬁﬁo Ecole Normale Supétieure in Paris, have shown that mm,wm
called P can be tweaked to make a chaotic network become orderly.

N = 1 net-
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The P parameter is very simple. Figure 4.2 shows Mﬁmo wwmwwm wumﬂnﬁ
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input lightbulbs, from (0000) to (1111). For the Boolean function
shown in Figure 4.24, half the responses of the regulated lightbulb are
1, and the other half are 0. For the Boolean function shown in Figure
4.2b, 15 of the responses are 0, and only a single input pattern gets a 1
response from the regulated bulb. The Boolean function in Figure 4.2¢
is similar to that in Figure 4.25, except that the preferred output re-
sponse is 1, not 0. Fifteen of the 16 input patterns lead to a 1 response.
Pis just a parameter that measures the bias away from half 1 and half 0
responses in a Boolean function. So P for the Boolean function in Fig-
ure 4.24 is 0.5, while P for the Boolean function in Figure 4.25 is 15/16,
or 0.9375, and P for the Boolean function in Figure 4.2¢ is also 15/16,
or 0.9375.
What Bernard and Gerard showed is, after the fact, pretty intuitive.
If different networks are built with increasing P biases, starting from the
no-bias value of 0.5 to the maximum value of 1.0, networks with P =
0.5 or only slightly greater than 0.5 are chaotic and networks with P
near 1.0 are orderly. This can be easily seen in the limit when their P pa-
rameter is 1.0. Then the bulbs in the network are of only two types. One
type responds with a 0 to any input pattern; the other responds with a 1
to any input pattern. So if you start the network in any state at all, the 0-
type bulbs respond with 0, the 1-type bulbs respond with 1, and the
network freezes into the corresponding pattern of 0 and 1 values and
remains at that steady state forever. So when the P parameter is maxi-
‘mum, networks are in an ordered regime. When the P parameter is 0.5,
etworks with many inputs per lightbulb are in a chaotic regime, twin-
kling away for an eternity. And, for any network, Bernard and Gerard
howed that there is a critical value of P where the network will switch
rom chaotic to ordered. This is the edge of chaos, to which we will re-
urn in a moment.
The summary is this: two parameters suffice to govern whether ran-
om Boolean lightbulb networks are ordered or chaotic. Sparsely con-
cted networks exhibit internal order; densely connected ones veer
to chaos; and networks with a single connection per element freeze
o mindlessly dull behavior. But density is not the only factor. If net-
rks have dense connections, tuning the P bias parameter drives net-
tks from the chaotic regime to the ordered regime.
These rules apply to networks of all sorts. In Chapter 5, I will show
it the genome itself can be thought of as a network in the ordered
ime. Thus some of the orderliness of the cell, long attributed to the
ing of Darwinian evolution, seems likely instead to arise from the
amics of the genomic network—another example of order for free.
n, I hope to persuade you that selection is not the sole source of
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order in the living world. The powerful spontaneous order we are dis-
cussing now is likely to have played a role not only in the emergence of
stable autocatalytic sets, but in the later evolution of life.

pear. But the connected cluster will not be buttons; it will be 4 giant

The Edge of Chaos

Living systems, from the collectively autocatalytic protocells we dis-
cussed in Chapter 3 to cells in your body to whole organisms, surely
must have networks that behave stably, that exhibit homeostasis and
graceful minor modifications when mutated. But cells and organisms
must not be too rigid in their behavior if they are to cope with a com-
plex environment. The protocell had best be able to respond to novel
molecules floating its way. The E. coli in your intestine copes with an
enormous variety of molecules by sending internal molecular signals
cascading among its enzymes and genes, triggering a variety of changes | T )

in enzyme and gene activities bent on protecting the cell from toxins, H “,MWSOHW color lightbulbs
metabolizing food, o1, occasionally, exchanging DNA with other cells. || osethatarefixed on or fixed off red.

How do cell networks achieve both stability and flexibility? The new
and very interesting hypothesis is that networks may accomplish this by
achieving a kind of poised state balanced on the edge of chaos.

We have already seen hints of an axis running from orderly behavior
to chaotic behavior in our lightbulb models. Sparsely connected net-
works, with K = 1 or K = 2, spontaneously exhibit powerful order,
Networks with higher numbers of inputs per lightbulb, K = 4 or more,
show chaotic behavior. So tuning the number of inputs per lightbulb—
hence the density of the web of connections among the bulbs—from
low to high tunes networks from orderly to chaotic behavior. In addi:'
tion, we saw that adjusting the P bias parameter from 0.5 to 1.0 als
tunes whether networks are in a chaotic or an ordered regime.

We should not be too surprised if some kind of sharp change in be
havior, some kind of phase transition from order to chaos, occurre
along this axis. In fact, in Chapter 3 we saw such a sharp change in be
havior in our toy model of the origin of life. Recall that we were con
necting buttons with threads and found that the size of the largest con
nected cluster suddenly jumped from small to huge when the ratio o
threads to buttons passed the magic value of 0.5. Below that value, onls
small connected clusters of buttons existed. Above that value, a giant
component composed of most of the buttons emerged. This is a pha
transition. :

A very similar kind of phase transition occurs in our lightbulb n
work models. Once again, a giant cluster of connected elements will a

initial state. As the network i j

: passes along its trajectory toward, then
| M”mcbmv its state cycle, two kinds of behavior might be seen at any light-
bulb. That lightbulb might twinkle on and off in some more or less

green ?Eum..mo a network in the chaotic regime has a vast sea of twin.
ng green lightbulbs and may have a few islands of frozen red bulbs
;Eﬁﬂsmgﬁg Suppose we simulate a lightbulb network in the o&@.&
gime, say N = 100,000 and K = 2, a vast tangle of a network with a
mplexity equal to your genome or fo a very large autocatalytic set
art the network in an initial state and follow it along its trajector 8..
;H.m a state QQ@ then around the state cycle. At first, most of the Mwmwm-
Ibs are twinkling on and off, and are colored green. But as the net-
rk converges onto its state cycle, then orbits the cycle, more and
e of the lightbulbs settle into fixed states of activity, mmon: on or
en off. So most of the lightbulbs are now colored 3&..

d now the magic. If you think of all the red lightbulbs, and ask
ether they are connected to one another, just as we asked Hm the but-

,» exists in Boolean networks in the ordered

ourse, not all .ﬂrm lightbulbs in our N = 100,000, K = 2 network
be frozen; typically, small and large clusters of e oo 1 1o ..
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bulbs continue to twinkle on and off. These twinkling clusters are col- m w 1 1228228228228228228228 1 ; , 13
ored green. It is just the twinkling patterns of the clusters of connected 8 8 wawawawmwwwwmwwmwwwww 811111} ! 1 11 11
green lightbulbs that constitute the cycling behavior of Boolean net- 13 12280302202208220228 1 1 R 91010 1 1 g g
works in the ordered regime. The lightbulbs in the giant frozen cluster 11 1 3 SWNWWMWWMWWMWMMSWNNM AR N 01 11 :
of red lightbulbs do not twinkle at all. ;1 1l 16} 1, 1220220028220 1 111 111 114
If we looked into a typical network with N = 100,000 and K = 2, we A §6 61 SNSNMWWNBWBWNNW - T r i1 :
would see a further important detail. The clusters of twinkling green 441 6 ¢ ¢ memwwmwwmwwm Tl1a1 g, 111 11 1
lightbulbs are not themselves all interconnected. Instead, they form in- 220 1 12 : § § 1220228228220 1 : 1 1 : s : RN
dependent twinkling clusters, like twinkling green islands in a vast sea wwmwwm A : wwwwwwmwwmmww 11 1T e : 1220
of frozen red lightbulbs. 1220110110 1 - i 1228228 1 1 1 1 3 g 11d 1220110 .
So a Boolean network in the chaotic regime, as presented earlier, has Ewmmﬂmmmﬁw L41az2 1 3 ;g A i 1 59 20110110

a sea of ever-changing green lightbulbs twinkling on and off, with per- 120110110 22§ 1 . ! 3 L4 e 4111 1202 2 wmﬂmﬂw
haps a few clusters of red lightbulbs that are frozen on or off. In con- 19 22 23 o2 ! wmmwmmw 11 1238 1 5 + 20 5 20 20 55 20 Sor1
trast, a Boolean network in the ordered regime has a vast giant cluster 22 88 22 22 1,1 1 1228 wmmmwwwwwm 11 g 11 g 115 2 22
U el 12 T

11 1

of red lightbulbs that are frozen either on or off, a giant red cluster, with
isolated islands of twinkling green bulbs. Your antennae should quiver.
The phase transition from order to chaos, as parameters such as the
number of inputs per lightbulb, K, or the bias parameter, P, are tuned,
occurs when the giant frozen red cluster forms, leaving isolated twin-
kling green islands behind.

A particularly easy way to see this is to make a very simple Boolean
network model on a square lattice. Here each lightbulb is connected to
its four neighbors: north, south, east, and west. Each lightbulb is con-
trolled by a Boolean function that tells it how to turn on or off depend-
ing on the current activities of its four inputs. Figure 4.3 shows such a
lattice network, studied by Derrida and Weisbuch. They tuned the P
bias parameter close enough to 1.0 so that the network is in the ordered
regime, let the network settle into its state cycle, and then recorded the

cycling period of each lightbulb. A lightbulb with a cycling period of
is therefore either frozen on or frozen off. In our mental picture, an
such lightbulb should be colored red. Other lightbulbs are twinklin
hence these should be colored green. As Figure 4.3 shows, the period
frozen lightbulbs form a giant connected component that spread
across the entire lattice, leaving behind a few small and large twinklin

Fi . )
h MMM.M&WW N%NMM Mox \MmM. In N\QMH two-dimensional lattice, each site (, lightbulb) is
upl €18r00rs and governed by 4 Bool, 7
o i S el Y @ Boolean function. Wheyn P the
| response by any single varigble i ;. M
iy Javer percotrion &€ variable, is increased above g criy.
, Pe, rozen component of lightbylh
; : : 8htoulbs, each fixed
’ MW:“M MWG& the lattice and legpes isolated islands of twinking NNN\NWM&\MM \W\MM
: QN.QWQ\&NMMNN M M&w 0 values, .m&m number at each point represents the cyclin
[orod of Nm\ ulb. Thus setes with 1 correspond to red lightbulbs frozen N.h
e QM or the off state. Sites with numbers greater than 1 are green, 114 §
,N.N,&h m@w\w SM\M MM& \o@&ﬂm\ Nwo\&m&%&\\o%x " islands in the seq of \Swm\wt “
ites. ~esmensional lattice is bent into a donys or tor. “alui
2 us, by “aluing”
&M M&mw to the bottom edge, and the lef; edge to the right edge H%\ et
180toulbs have four neighbors.) o Therdfore, al

clusters.
With Figure 4.3 in view, it is easy to explain the sensitivity to chan

in initial conditions in chaotic networks and the lack of sensitivity
such perturbations in ordered networks. If a single lightbulb is flippe
one can follow the cascading changes radiating from that perturbati
In the ordered regime, such as in Figure 4.3, those rippling chan
cannot penetrate the period-1 frozen red component. The giant froz
component is rather like a gigantic wall of constancy blocking off 1

€ regime, is the butterfly effect. Fl, i

: . - Flap your wings,
pert BOH.F or starling, briskly or languidly, and you will nbmwmm
‘, msmn of %mr%&vm from Alaska to Florida *
otocells and your cells early life and all Jife. | .
¢ : ells, ife, must
yet flexible behavior, What kinds of :mgo%mc%ﬁ anwwmww_m Mﬁw#
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mvm@m.n of the spontaneous order for free. In order to test this h
sis, wE Macready, a postdoctoral fellow, Emily Dickinson a nowwwwﬁm
Wﬂwﬂ”fw%oﬁr%& vamb. using computer simulations vﬁo “evolve”
e et nan _”Mmmy\ N m_wﬂmmﬂ and rm% m&.:wmm A&r one another. In
. , respon ¢ ”

rmwﬁvﬂv moas..mmm to the prior v»:ﬁ% of :mﬂ%&ﬂ mWMMWme %mmumg o
gwoﬁw it is playing. Our evo ving networks are free to B:Bﬂm% nOMMMnHH

cules, or interacting anything, are naturally capable of such ordered yet
flexible behavior? Is such behavior hard to achieve? Or might it, too, be
part of order for free? Now that we begin to understand order and
chaos in networks coupling hundreds of thousands of lightbulbs, an an-
swer, crisp and lovely, perhaps even true, suggests itself: perhaps net-
works just at the phase transition, just poised between order and chaos,
are best able to carry out ordered yet flexible behaviors.

Here is a beautiful working hypothesis. Chris Langton at the Santa
Fe Institute has stressed this important possibility more than any other
scientist, and we can see intuitively that the edge of chaos might be an
attractive regime to coordinate complex behavior. Suppose one wished
to have a lattice of lightbulbs that coordinated the activities of two

widely separated lightbulb sites on the lattice; suppose the lattice were the ordered regime from the chaotic regime, h . . X
in the chaotic regime, with an unfrozen sea. Then minor perturbations ilar initial states tend to become Hom T . SHH © chaotic regime, sim-
of the activities of one lightbulb would unleash cascades of alterations || hence to diverge farther and mmﬁromw mmﬁm.mmzn v, mote dissimilar, and
in activities, which would propagate throughout the lattice and dramati- along its trajectory. This is just the v:WQmE Mmﬁm space, as wm.ov basses
cally undo any hoped-for coordination. Chaotic systems are too chaotic tial conditions. Small perturbations am E..W m o MEJ SERSIIVILY o inf-
to coordinate behavior between distant sites. The system cannot senda & regime, similar initia] states tend to vmWoB.m My:<9.mw me the ordered
reliable signal across the lattice. erging closer together as they flow along their ﬁo re similar, vﬁ.unw con-
Conversely, suppose the lattice is deep in the ordered regime. A . other expression of homeostasis Hummnznvmnwmnmmunmwwmwa _mﬁEmH
) y states

frozen red sea is spread across the lattice, leaving twinkling tiny green
islands. Suppose we wish to coordinate a series of actions by distant
sites. Alas, no signal can propagate across the frozen sea. The twinkling
unfrozen islands are functionally isolated from one another. No com-
plex coordination can occur. ‘What are the results? As the networks play thei .

But at the edge of chaos, the twinkling unfrozen islands are in ten het, trying to match one another’s i rmu:w\v atpnes vith one an.
drils of contact. Flipping any single lightbulb may send signals in small , imulation selects fitter mutant S&mﬁmml& 0 patterns, the computer
or large cascades of changes across the system to distant sites, so the be- at1s

Mwonmammw o.m a b.mgomn to determine its location on the order—chaos
" . mﬂﬁ in this measure, .:mgoma at the phase transition have the
broperty that nearby states neither diverge nor converge

haviors in time and across the webbed network might become coordi v questing is that the networks do ada t and i
nated. Yet since the system is at the edge of chaos, but not actually & olve, not to the very edge of chaos vs%ﬁo th :Mwnoﬁ mb.m that they
chaotic, the system will not veer into uncoordinated twitchings. Per- from the edge of chaos, It i as though © ordered fegime, not too
haps, just perhaps, such systems might be able to coordinate the kind , sime near the transition to chaos mmoamﬁrm Wom_ﬁo.b in the o&ﬂ.&
of complex behavior we associate with life. | : ; i 5 the best mixture of stability
To complete this part of the story, I will present evidence for an ide is far too early to assess the working hypothesi 1
that I will more fully develop in the next chapter: the reason comple e systems evolve to the edge of chaos mwwcam.mﬁ_m o noBE.mx mmmb-
systems exist on, or in the ordered regime near, the edge of chaos is , tiful. But it will be equally éosmonmb if it oo ot it will be
cause evolution takes them there. While autocatalytic networks a ptive systems evolve to a position moaméw%nﬁ%mm rue that complex
spontaneously and naturally because of the laws of complexity, perh . r the edge of chaos. Perhaps such a locati - Mo&m.n ed regime
natural selection then tunes their parameters, tweaking the dials fo , : but still flexible, will emerge s a WSMB ws the axis, ordered
and P, until they are in the ordered regime near this edge—the transi: plex adaptive systems in biology and beyond oF untversal feature of
tional region between order and chaos where complex behavior thrive , € turn to these beautiful possibilities in MdoH .m 1 .
After all, systems capable of complex behavior have a decided surviyll pters, for the hypothesis that complex m%mHMBmm Hw:mwsmﬁww_wm:% g\wwm
; - o the

advantage, and thus natural selection finds its role as the molder
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account for a very large number of features of ontogeny, that magnifi-
cent, ordered dance of development from fertilized egg to bird, fern,
bracken, flea, and tree. But caveats again, for at this stage a potential
universal law is best held as a fascinating working hypothesis.

In the meantime, we may begin to suspect, the exquisite power of
self-organization, which we begin to understand in our simple models
of enormous Boolean networks, may be the ultimate wellspring of dy-
namical order. The order in these open nonequilibrium thermodynamic
systems derives from the ordered regime; in turn, the order of the or-
dered regime derives from the fact that nearby states tend to converge.
The system therefore “squeezes” itself onto tiny attractors. Ultimately, it
is this self-squeezing into infinitesimal volumes of state space that con-
stitutes the order. And while I have called it order for free, meaning that
such order is natural and spontaneous, it is not “for free” thermody-
namically. Rather, in these open systems, the self-squeezing of the sys-
tem into tiny regions of state space is “paid for” thermodynamically by
exporting heat to the environment. No laws of thermodynamics are vio-
lated or even contested. What is new is that vast open thermodynamic
systems can spontaneously lie in the ordered regime. Such systems may
be the natural source of the order required for stable self-reproduction,
homeostasis, and graceful heritable variation.

If we, and past eons of scholars, have not begun to understand the
power of self-organization as a source of order, neither did Darwin. The ¢ the high blackn
order that emerges in enormous, randomly assembled, interlinked net- £ blackness o
works of binary variables is almost certainly merely the harbinger of ., Sur o
similar emergent order in whole varieties of complex systems. We may .| OWnontogeny Ho
be finding new foundations for the order that graces the living world. If &
so, what a change in our view of life and our place must await us. Selec- | Homo babsls
tion is not the sole source of order after all. Order vast, order ordained, 0 babilzs wondered
order for free. We may be at home in the universe in ways we have |
hardly begun to comprehend.

Chapter 5

The g%ma@w%

of Oseommbw
_ e
|

> M MMMMMwEmom Hw@ Cambrian .oxEommoP 550 million years ago, and
o robal Ms oHﬁﬁ € past 700 BHEQM years, multicelled OQmEmBmvrmﬁ
ystery no human mind yet comprehends: ontogeny.

m. >

| Begin, then, with the zygote. After fertilization
uman zygote undergoes rapid cleavage—cell dj
mall mass of cells, These cells migrate down th
nter the uterus. While migrating, the mass of ¢

o.m egg by sperm, the
visions that create 3
e fallopian tube and
ells hollows out, form-

ntal processes of on Primltive stage, we withess the two funda-
n; the second i ontogeny, or development: the first is cell differenti-
’ ond is morphogenesis. The zvoote is baoth 4 cimals - 11 1



