
54



Chapter 7

Recursive and
Semi-Recursive Relations

(Rogers chapter 5, Cutland Chapters 6, 7.)

The characteristic function χR for a k-ary relation R
is a function f : Nk → [0, 1] such that for all x,

R(x) ⇒ f(x) = 1 ∧ ¬R(x) ⇒ f(x) = 0

A verifying function for a relation R
is a partial function f : Nk → [0, 1] such that

R(x) ⇐⇒ φ(x) ≈ 1

A refuting function for a relation R
is a partial function f : Nk → [0, 1] such that

¬R(x) ⇐⇒ φ(x) ≈ 1

A computably decidable or recursive relation
is a relation whose characteristic function is total recursive.

A computably verifiable or semi-recursive relation
is a relation with a partial recursive verifying function.

A computably refutable or co-semi-recursive relation
is a relation with a partial recursive refuting function.

The “computably decidable, verifiable, refutable” notation is not standard,
but is much closer to the truth than the standard “recursive, semi-recursive”
notation.

55



56 CHAPTER 7. RECURSIVE AND SEMI-RECURSIVE RELATIONS

Examples

• computationally decidable: Gödel numbers of valid formulas in a
propositional language.

• computationally verifiable: Gödel numbers of valid formulas in the
language of arithmetic.

• computationally refutable: first-order consistency in the language
of arithmetic.

• none of the above: the complete theory of arithmetic.

7.1 Arity and Clutter Reduction

From now on, we will drop the arity parameter when working with unary func-
tions.

φn = φ1
n

We can handle k-ary functions and relations by using a k-ary coding function.

φk
n(~x) ≈ φm(〈~x〉)

R(~x) ≈ S(〈~x〉)

Exercise 7.1 Show that there is an effective conversion from index n to index
m and conversely. That is, there exist total recursive f, g such that for all k-ary
~x,

φk
n(~x) ≈ φf(n)(〈~x〉)

φk
g(n)(~x) ≈ φn(〈~x〉)

Big hint: use the universal construction to set up the application of an index to
a coded sequence of arguments like this:

ψ(i, ~x) ≈ ((µz) U(i, (z)0, (z)1, 〈〈~x〉〉))1

Apply the s-m-n theorem and see what you get. For the other side, apply the
universal construction in a manner that eliminates coding brackets instead of
adding them. All the exercises will be like this. Get in the habit of casting for
the “right” application of the universal construction and then applying s-m-n to
the index position.

7.2 Alternate Characterizations of Verifiability

The following results and concepts must become second nature to you. Here is
some standard, but curious notation:

Wn = dom(φn)

En = rng(φn)



7.2. ALTERNATE CHARACTERIZATIONS OF VERIFIABILITY 57

Proposition 7.1 R is formally verifiable ⇐⇒ there exists an n, such that for
all x,

R(~x) ⇐⇒ Wn(〈~x〉)

Exercise 7.2 Prove it. Hint: Use a µ operator to produce infinite loops in the
right places and conversely, use sg to cut outputs higher than 1 down to 1.

You know from set theory that

• A set is enumerable just in case there exists a bijection from N to the set
(i.e., an enumeration).

• A set is denumerable just in case it is enumerable or finite. This is equiv-
alent to the existence of a surjection from N to the set.

What if we “motorize” the concept of enumerability, requiring that the enu-
meration be a total recursive function? Then we arrive at the concept of a
recursively enumerable set:

S is recursively enumerable (r.e.) ⇐⇒ S = ∅

∨ ∃ total recursive f (S = rng(f))

The following result says that this amounts to the same thing as computable
verifiability.

Proposition 7.2 (The fundamental theorem of r.e. sets)

S is r.e. ⇐⇒ there exists an n such that S = Wn

Proof. Suppose that S is r.e. If S = ∅, then S = dom(∅). But ∅ =
the function
defined by (µz)(x 6= x), and hence is partial recursive. Now suppose that S 6= ∅
We must show that S = rng(f), where f is total recursive. Define:

ψ(x) = (µz)(f(z) = x)

This is partial recursive since f is recursive. And S = dom(ψ).
Conversely, suppose that S = Ww = dom(φn). If S = ∅, then we are done.

So suppose S 6= ∅. So there is at least one k such that S(k). Now we need
to produce a total recursive enumeration of S. We can’t assume that Ww is
infinite, so perhaps at some point we run out of new things to enumerate. We
must therefore continue to output some previously enumerated number until a
new element of Ww is detected.

f(0) = k

f(n+ 1) =
{

(n)2 if ∀z ≤ n ((n)2 6= f(z) ∧ U(w, (n)0, (n)1, 〈(n)2〉))
f(n) otherwise.

This is a course of values recursion over partial recursive constructions and
hence is partial recursive. a



58 CHAPTER 7. RECURSIVE AND SEMI-RECURSIVE RELATIONS

Corollary 7.3 The sequence

W0,W1, . . . ,Wn, . . .

is an enumeration of the computably verifiable sets.

The corollary is central to the theory of computability. It provides a way
of using our effective numbering of Part to number the verifiable sets without
having to do it again from scratch. According to the following result, there is
an equivalent, effectively intercompilable enumeration based on ranges instead
of domains.

Proposition 7.4 Effective conversions between domains and ranges.

∃ total recursive f ∀n Wn = Ef(n)

∃ total recursive g ∀n Wg(n) = En

Exercise 7.3 Prove it. Hint: use the s-m-n theorem over a universal dove-
tailing construction analogous to the one given in the preceding exercise. Good
practice in doing things the elegant, formally valid way!

Corollary 7.5 The sequence

E0, E1, . . . , En, . . .

is also an enumeration of the computably verifiable sets.

Recall that the primitive recursive relations are closed under bounded ex-
istential quantification. The computably verifiable relations are closed under
full existential quantification over N. And every partial recursive relation re-
sults from an unbounded existential quantification over a (primitive) recursive
relation.

Proposition 7.6 The Projection Theorem S is computably verifiable ⇐⇒
∃ elementary [r.e.] R such that for all x

S(x) ⇐⇒ ∃y R(x, y)

Proof. Let S be computably verifiable. By the fundamental theorem of
r.e. sets, ∃n(S = Wn). Thus, for all x,

S(x) ⇐⇒ Wn(x)
⇐⇒ φn(x) ↓
⇐⇒ ∃z U(n, (z)0, (z)1, 〈x〉)



7.3. THE HALTING PROBLEM 59

Recall that U is elementary. Conversely, suppose

S(x) ⇐⇒ ∃z R(z, x)

where R is r.e. So for some n, R(〈z, x〉) = Wn(〈z, x〉). Define

ψ(x) ≈ (µw) U(n, (w)0, (w)1, 〈(w)2, x〉)

This is partial recursive, so for some m,

φm = ψ

Now

Wm(x) ⇐⇒ φm(x) ↓
⇐⇒ ψ(x) ↓
⇐⇒ (µw) U(n, (w)0, (w)1, 〈(w)2, x〉) ↓
⇐⇒ ∃w U(n, (w)0, (w)1, 〈(w)2, x〉)
⇐⇒ ∃z φn(〈z, x〉) ↓
⇐⇒ ∃z Wn(〈z, x〉)
⇐⇒ ∃z R(z, x)
⇐⇒ S(x)

So S is r.e.a

Corollary 7.7 (Summary) The following are equivalent:

S is computably verifiable

S is r.e.

∃n S = En

∃n S = Wn

∃ elementary (recursive, r.e.) R such that ∀x(S(x) ↔ ∃y R(x, y))

7.3 The Halting Problem

What can we do with the Wn notation? Well, by Corollary 7.7, we have a nice,
effective enumeration of the computationally verifiable sets. Thus, we can form
a two-dimensional table of zeros and ones as follows:

T [n,m] = χWn
(m)

Thus, each row of the table is the characteristic function of a computably verifi-
able set and the characteristic function of each computably verifiable set occurs



60 CHAPTER 7. RECURSIVE AND SEMI-RECURSIVE RELATIONS

at least once in the table (infinitely often, actually).
Now define the set K whose characteristic function is the diagonal of the table:

χk(n) = T [n, n]
= χWn

(n)

Then the characteristic function of K (or ¬K, the complement of K) is the
counter-diagonal of the table:

χK(n) = sg(T [n, n])
= sg(χWn

(n))

Evidently, K is not a computably verifiable set, since its characteristic function
is concocted to differ from each row of the table along the diagonal. Thus:

Proposition 7.8 K is not r.e.

Notice that the proof of proposition 7.8 is almost the same as Cantor’s ar-
gument that the power set of N is not enumerable. The difference is that in
Cantor’s argument, we know that the diagonal’s characteristic function yields
a subset of N so the enumeration assumption is rejected. In this case, we
know from the fundamental theorem of r.e. sets that the effective enumera-
tion W0,W1,W2, . . . exists, so the diagonal characteristic function yields a non-
r.e. set.

Unwinding the definition of K we have:

K(n) ⇐⇒ χWn
(n) = 1

⇐⇒ Wn(n)
⇐⇒ n ∈ dom(φn)
⇐⇒ φn(n) ↓

Thus, K is the set of all indices that return an output or “halt” when given
themselves as input. For this reason, K is called the halting problem.

7.4 Alternate Characterizations
of the Recursive Sets

Decision intuitively requires that one be able to verify whether yes and verify
whether no.

Proposition 7.9 S is recursive ⇐⇒ S, S are both r.e.

Exercise 7.4 Prove it. Hint: One way is immediate using results proved above.
The other requires a nice dovetailing construction, because you don’t want to
commit a suki by focusing on S forever before checking S. But you can count
on one or the other halting because each number is either in S or S.



7.5. CLOSURE LAWS 61

Corollary 7.10 K, K are not recursive.

The next result is very interesting because it links the straightforwardly
epistemological concept of decidability with the function theoretic concept of
monotonicity. The idea is that you can use a monotone enumeration to decide
the set: once you see a bigger thing than what you are looking for, you know
you won’t ever find what you are looking for. Conversely, if you can decide a set,
then you can make sure that nothing smaller than x will have to be added to
the enumeration before you add x. Compare this with the fundamental theorem
for r.e. sets. In that case, you can’t.

Proposition 7.11 S is recursive ⇐⇒ S is finite
∧ ∃ monotone, total recursive f (S = rng(f))

Proof: Suppose S is recursive. If S is finite, we are done. So suppose that
S is infinite. Define

f(0) = (µx) (χS(x) = 1)
f(n+ 1) = (µx) (χS(x) = 1 ∧ ∀z≤n(f(n) 6= x))

Conversely, suppose that S is finite. Then a case definition (using one case per
element) yields a program for the characteristic function of S, so S is primitive
recursive, and hence recursive.

Finally, suppose that S is the range of monotone, total recursive f . . .. a

Exercise 7.5 Complete the proof. Hint: refer to the intuitive motivation above.

7.5 Closure Laws

These will be very important for hierarchy theory.

Proposition 7.12

1. The r.e. sets form a Boolean algebra that is also closed
under unbounded existential quantification.

2. The recursive sets form a Boolean algebra.

3. The recursive and r.e. relations are both closed
under Cartesian product ×.

Exercise 7.6 Prove it. Hint: For a Boolean algebra it suffices to show closure
under ∧, ¬. The conjunction case requires dovetailing in the r.e. case. And
doesn’t the ∃ case sound familiar?

Exercise 7.7 (optional) You already know how to show that the recursive sets
are not closed under ∃ and the r.e. sets are not closed under ∀. Try showing
these facts using only results on the table. Hint: express the halting problem
and its complement using quantifiers over the Kleene predicate.


