
Chapter 4

The Grzegorczyk Hierarchy

4.1 Reprise

The primitive recursive functions are defined as the closure of R and C over a
basic stock of functions. Both the logician’s diagonal argument and the double-
recursion diagonal arguments involve functions that can “simulate” n nested
primitive recursions when given an argument n. Intuitively, the situation is that
each primitive recursive function is allowed only finitely many nested primitive
recursions, so functions that require arbitrarily many (without bound) are not
primitive recursive.

This situation calls out for greater attention to which functions can be de-
fined with a given, fixed number of primitive recursion operations. In other
words, it makes sense to look at the hierarchy of increasing classes En defined
in terms of increasing numbers of primitive recursions, where each class is closed
under composition. Every primitive recursive function will be at some finite level
of the hierarchy:

Prim =
⋃

x
Ex

A natural idea would be to start with the basic functions closed under com-
position and then to add in successively more complex functions like addition,
multiplication, exponentiation, etc., closing under composition each time.

But composition is a little weak. Recall that some slow-growing functions like
cutoff subtraction required the R schema for their definitions even though they
don’t really use it to generate faster growth. We would like to distinguish growth-
generating applications of R from applications that don’t generate growth.

We can get around the difficulty by closing each class under bounded re-
cursion as well as composition. An application of R is bounded in a class of
functions if the function resulting from the application is bounded everywhere
by some other function already established to be in the class.

29



30 CHAPTER 4. THE GRZEGORCZYK HIERARCHY

Bounded Recursion An application of R to g, f is bounded just in case there
is a previously defined h such that for all ~x

R(g, f)(~x) ≤ h(~x)

For example, in the cases of decrementation and cutoff subtraction, we
have

Dec(x) < p1
1(x)

x−̇y < p1
2(x, y)

So both of these functions are definable by bounded recursion and com-
position from basic functions. Similarly for quotient, remainder, sg, sg,
min, and max.

4.2 The Grzegorczyk Hierarchy

We first introduce a “spine” {en|n ∈ N} of representative functions requiring
increasing numbers of primitive recursions for their definition. It doesn’t matter
that much which spine we choose, since the closure operations and bounded
recursion will smooth out the resulting classes, yielding invariance. We will
follow Rose’s development (pp. 31-36), keeping in mind that there are others.
Define:

e0(x, y) = x + y

e1(x) = x2 + 2
en+2(0) = 2

en+2(x + 1) = en+1(en+2(x))

Then define:

E0 = the least set X containing the basic functions
and closed under composition and bounded recursion

En+1 = the least set X containing the basic functions, en,
and closed under composition and bounded recursion

Then the indexed collection
{En|n ∈ N}

is called the Grzegorczyk hierarchy.
Note that by the third level the higher functions iterate the lower functions on
argument 2.



4.3. DOUBLE INDUCTION 31

Proposition 4.1 en+3(x) = (en+2)x(2).

Proof:

en+3(0) = 2
= (en+2)0(2)

en+3(x) = (en+2)x(2) ⇒ en+3(x + 1) = en+2(en+3(x))
= en+2((en+2)x(2))
= (en+2)x+1(2).

a

4.3 Double Induction

Many of the basic results about double recursion are proved by double induction.
As you know very well, induction is the schema:

[Φ(0) ∧ ∀x(Φ(x) → Φ(x + 1))] → ∀xΦ(x) (4.1)

What if we wish to prove that for all x, ∀yΨ(x, y)?
If we substitute the desired conclusion ∀yΨ(x, y) for Φ(x), then we obtain:

[∀yΨ(0, y) ∧ ∀x((∀yΨ(x, y)) → (∀yΨ(x + 1, y)))] → ∀x(∀yΨ(x, y)) (4.2)

To get the first conjunct of the antecedent of 3.1, it suffices (by induction) to
prove:

Ψ(0, 0) ∧ ∀y(Ψ(0, y) → Ψ(0, y + 1)) (4.3)

To get the second conjunct, we can use induction to get the universal quantifier
on y in the consequent, so it suffices to show:

∀x((∀yΨ(x, y)) →
[
Ψ(x + 1, 0) ∧ [Ψ(x + 1, y) → Ψ(x + 1, y + 1)]

]
(4.4)

Double Induction Schema
DI 1. Φ(0, 0)∧
DI 2. ∀y[(Φ(0, y) → Φ(0, y + 1))]∧
DI 3. ∀x((∀yΦ(x, y)) →

a. [Ψ(x + 1, 0)∧
b. [Ψ(x + 1, y) → Ψ(x + 1, y + 1)]] → ∀x∀yΨ(x, y)

The technique is illustrated by the following result which will be of use
shortly.



32 CHAPTER 4. THE GRZEGORCZYK HIERARCHY

Proposition 4.2 for all n ≥ 1,

1. en(x) ≥ x + 1

2. en(x + 1) > en(x)

3. en+1(x) ≥ en(x)

4. (en)k(x) ≤ en+1(x + k).

Proof. 1. By double induction. Note: to fit the problem into the double
induction schema, we rewrite the formula as

en+1(x) ≥ x + 1

DI 1, 2:

e0+1(x) = x2 + 2

≥ x + 1.

DI 3:
suppose ∀x(en+1(x) ≥ x + 1).
DI 3.a:
en+2(0) = 2

≥ 0 + 1.

DI 3.b:
suppose en+2(x) ≥ x + 1. Then
en+2(x + 1) = en+1(en+2(x))

≥ en+2(x) + 1
≥ x + 2.

a

Exercise 4.1 Prove the remaining clauses of the proposition. The strict in-
equality in 4.2.2 will be used below, so I mean it.

4.4 The Elementary Functions (Kalmar)

The collection of elementary functions is defined by:

E = E3

It is often repeated that almost all number theoretical functions that arise in
practice are elementary. This isn’t surprising when one considers that composed
exponentials (222...

or 2 to the 2 to the 2... to the xth power) are all elementary.
The elementary functions have many alternative characterizations.

• One can use exponentiation instead of e2.



4.5. BOUNDING FUNCTIONS IN THE GRZEGORCZYK CLASSES 33

• One can add cutoff subtraction and exponentiation and trade bounded
recursion for bounded minimization.

• Or one can add addition and cutoff subtraction and replace bounded re-
cursion with bounded sum and product.

Exercise 4.2 Show that the elementary functions are closed under bounded si-
multaneous recursion. Hint: first show that the exponential function 2x is in
E. Then use this to show that the Gödel coding and decoding is elementary
by checking all the functions involved in its derivation tree. The crux of this
argument is to show by induction that addition and multiplication are bounded
by compositions of exponentiation. Then use the coding to obtain an elementary
reduction to bounded recursion.

4.5 Bounding functions in
the Grzegorczyk classes

We will now construct bounds on the functions in the classes En. The first result
says that functions in E0 can’t achieve more than to add a fixed amount to a
given input. This makes sense, because compositions of successor and projection
can only add a fixed amount to some argument and bounded recursion can’t
grow faster than that.

There is a weakness in this approach to negative results: characteristic func-
tions that run way beyond primitive recursive in complexity don’t grow at all.
For example, diag(x) = sg(f1

x(x)). This is a non-primitive recursive function
since it differs from each unary primitive recursive function in at least one place.
But it doesn’t grow at all. Growth is only a symptom of complexity.

Proposition 4.3 Each f in E0 satisfies for n-ary ~x:

∃i≤n ∃k ∀~x (f(~x) ≤ xi + k)

Proof. By induction on depth of E0 derivation trees.
Base case:

z(x) ≤ x

s(x) ≤ x + 1
pi

k(~x) ≤ xi

Inductive Case:
Suppose h = R(g, f), h is bounded by e, and that g, f , e are in E0. Then by
the induction hypothesis, e satisfies the proposition. So h does as well (let i and
k be the same as for e).



34 CHAPTER 4. THE GRZEGORCZYK HIERARCHY

Suppose h = C(f, g1, . . . , gk), and that f, g1, . . . , gk are in E0. By the inductive
hypothesis, for each i < k,

∃ j(i) ∀~y (gi(~y) ≤ yj(i) + bi)

∃m ∀~x (f(~x) ≤ xm + c)

Then for each y,

f(g1(y), . . . , gk(y)) < gm(y) + c

< yj(m) + bm + c

= yj(m) + d

.
a

Notice that in the preceding proof, the only interesting case is composition.
That is because only composition is allowed to build growth rates, since prim-
itive recursion is bounded. The next result says that each function in E1 is
everywhere bounded by a linear function of the same arguments, which is also
not surprising, since compositions of additions yield linear functions.

Proposition 4.4 Each f ∈ E1 satisfies:

∃ linear h ∀~x (f(~x) ≤ h(~x))

Proof. By induction on depth of E1 derivation trees. a

Exercise 4.3 Prove it. Don’t forget to add e0 to the base case!

The next result says that each function in E2 is bounded by a polynomial
function. That’s not surprising either since compositions of linear functions and
squared functions yield polynomial functions.

Proposition 4.5 Each f in E2 satisfies:

∃ polynomial p
∀~x (f(~x) ≤ p(~x))

Proof. By induction on depth of E2 derivation trees. a

Exercise 4.4 Prove it.

Finally, each of the successive classes En+3 is bounded by iterates of its
generating function en+1.

Proposition 4.6 Each f in En+3 satisfies:

∀x1, . . . , xn ∃k (f(x1, . . . , xn) ≤ (en+2)k(max(x1, . . . , xn)))



4.5. BOUNDING FUNCTIONS IN THE GRZEGORCZYK CLASSES 35

Proof. By induction on depth of En+3 derivation trees. Recall:

e0(x, y) = x + y

e1(x) = x2 + 2
en+2(0) = 2

en+2(x + 1) = en+1(en+2(x))

Base case: Observe that

e2(0) = 2
e2(x + 1) = e1(e2(x))

= e2(x)2 + 2

Since en+1(x) ≥ en(x), by proposition 4.2.2, it suffices in the base case to show
that all the basic functions are bounded by e2. This we do by induction on x.
o(x) = 0

< 2
= e2(0). Apply proposition 4.2.2.

s(0) = 1
< 2
= e2(0)

s(x) = x + 1 ≤ e2(x) ⇒ s(x + 1) = x + 1 + 1
≤ e2(x) + 1
< e2(x)2 + 2
= e2(x)
≤ e2(x + 1) by proposition 4.2.2.

max(~x) = 0 ⇒ pi
k(~x) = 0

< 2
= e2(max(~x))

max(~x) = n ∧max(~y) = n + 1 ∧ pi
k(~x) ≤ e2(n) ⇒ pi

k(~y) ≤ n + 1
≤ e2(n) + 1
< e2(n)2 + 2
= e2(n + 1)
= e2(max(~y))

Inductive case: we now deal with functions in En+3 that are built up by C or
R. Suppose h = R(g, f), h is bounded by e, and that g, f, e are in En+3. Then
by the induction hypothesis, e satisfies the proposition. So h does as well (let i
and k be the same as for e).
Suppose h = C(f, g1, . . . , gk), and that f, g1, . . . , gk are in En+3. By the induc-
tion hypothesis, for each i ≤ k,

∃ j(i) ∀~y (gi(~y) ≤ (en+2)(max(~y))j(i))

∃m ∀~x ((en+2)(max(~x))m)



36 CHAPTER 4. THE GRZEGORCZYK HIERARCHY

Then for each y,

f(g1(~y), . . . , gk(~y)) < (en+2)m(max(g(~y)) by second hypothesis.
< (en+2)m(en+2)max(j(1),...,j(k))(max(~y))

by first hypothesis and proposition 4.2.2.
< (en+2)m+max(j(1),...,j(k)) a

Proposition 4.7 If f ∈ En then the iteration fy ∈ En+1.

Proof. The iteration of addition of a constant is bounded by a linear function,
yielding the case for n = 0. Similarly, the iteration of a linear function is a
polynomial function, yielding the n = 1 case. Let f ∈ En+1. We will consider
the case of binary f , with iteration on x. When n > 1, we have by proposition
4.6 above, there is an m such that

f(x, y) ≤ (en−1)m(max(x, y))

Now by induction, we show:

fz(x, y) ≤ (en−1)mz(max(x, y)) (?) (4.5)

Base case:

f0(x, y) = x

≤ max(x, y)
= (en−1)0(max(x, y))

Inductive case: Now suppose that for all x, y,

fz(x, y) < (en−1)mz(max(x, y))

Then:

fz+1(x, y) = fz(f(x, y), y) by the definition of iteration.
≤ fz((en−1)m(max(x, y)), y) by IH & prop. 4.2.2.
≤ (en−1)mz(max((en−1)m(max(x, y)), y)) by IH.
≤ (en−1)m(z+1)(max(x, y)) by prop. 4.2.2.

That completes the induction. Observe, further, that

(en−1)mz(max(x, y)) ≤ (en)(max(x, y) + mz) by prop. 4.2.4. (??). (4.6)

So by chaining (?) with (??), we obtain

fz(x, y) ≤ (en)(max(x, y) + mz) (? ? ?) (4.7)

Now the iteration fz is defined by primitive recursion in terms of f .
By (? ? ?), this primitive recursion is bounded by en ∈ En+1.
So fz ∈ En+1. a



4.6. HIERARCHY THEOREM 37

4.6 Hierarchy Theorem

Proposition 4.8 En is a subset of En+1.

Proof sketch. By proposition 4.2.3, each generating function for a class is in all
the higher classes. Then all the closure conditions of the lower class are satisfied
by the higher class. a

Proposition 4.9 en ∈ En+1 − En.

Proof sketch. Recall:

e0(x, y) = x + y

e1(x) = x2 + 2
en+2(0) = 2

en+2(x + 1) = en+1(en+2(x))

The membership claims are all true by definition of En. The non-memberships
are established by induction on n.
Base cases:

• By proposition 4.3, e0 6∈ E0, since there is no constant bound on e0.

• By proposition 4.4, e1 6∈ E1, since e1 is not a linear function of x.

• By proposition 4.5, e2 6∈ E2, since e2 is not polynomial (its calculation
involves arbitrarily high exponents).

Inductive case: Suppose that en+2 6∈ En+2. Then by proposition 4.6,

∀k ∃x (en+2(x) > (en+1)k(x)

Now we show by induction on k that:

∀k ∃x (en+3(x) > (en+2)k(x)

Base Case: For k = 0, we have

en+3(0) = 2
> 0
= (en+2)0(0)

Inductive Case: Now suppose that for some x

en+3(x) > (en+2)k(x)

Then

en+3(x + 1) = en+2(en+3(x))

> en+2((en+2)k′
(x))

= (en+2)k′+1(x)

Observe that the inequality is by proposition 4.2.2. a



38 CHAPTER 4. THE GRZEGORCZYK HIERARCHY

Proposition 4.10
⋃

iEi = Prim.

Proof. The basic functions and composition are no problem because each En

has them. But none of the classes has primitive recursion, so we must show
that somehow the effect of primitive recursion results from taking the union of
the classes. So why would we think it’s true? Because the successive generating
functions provide increasing bounds so that each unbounded recursion becomes
bounded by some level. By proposition 4.7, the iteration fy of a function f in
En is in En+1. Then one proves (nontrivial) that all unary primitive recursive
functions can be defined by iteration and composition over some simple primitive
recursive functions (cf. Rose pp. 17-22). The idea, as usual, is to use an
encoding to allow the iteration to simulate unary primitive recursion. Then one
reduces n-ary primitive recursion to unary primitive recursion.

An easier way to prove this proposition is to do it directly by induction
on derivation complexity, bounding compositions and primitive recursions over
functions in one class by compositions of higher generating functions. This is
more direct, but then one doesn’t end up with nice results like proposition 4.8
along the way because the bounds are loose (e.g., jumping by 3). a

Proposition 4.11 The Péter function is not primitive recursive.

Proof: The Péter function p outgrows each en. Thus, by proposition 4.9, p is
not in any class En. By proposition 4.10, p is not primitive recursive. a

4.7 Onward and Upward

If you like this kind of thing, the Grzegorczyk hierarchy can be extended by
recursion on infinite ordinals to obtain classes corresponding to double recursion,
triple recursion, etc. See Rose for a systematic presentation. We are now going
to leave the world of pure recursion for the more elegant theory of the partial
recursive functions.


