
8

Chapter 2

Primitive Recursion

Recall the skeptical attitude regarding foundations that followed the paradoxes
in analysis and set theory. “Finitists” urged a “back-to-basics” approach based
on such elementary constructions that one could be confident nothing would go
wrong. The primitive recursive functions are a simple collection of intuitively
computable functions that many finitists could be comfortable with. They in-
terest us because they will serve as our “springboard” into the general theory
of computable functions.

2.1 Basic functions

2.1.1 Zero function

o(x) = 0.

2.1.2 Successor

s(x) = x + 1.

2.1.3 Projection

(picking out an argument): pi
k(x1, . . . , xk) = xi.

Next we consider effective ways of building new functions out of old ones.
Note that these are operations on functions, not numbers.

9

10 CHAPTER 2. PRIMITIVE RECURSION

2.2 Basic operations on functions

2.2.1 Composition

If f has arity m and each gi has arity k then C(f, g1, . . . , gm) denotes the unique
k-ary function h such that for each k-ary ~x:

h(~x) = f(g1(~x), ..., gm(~x)).

2.2.2 Primitive Recursion

If f has arity k+2 and g has arity k, then R(g, f) denotes the unique (k+1)-ary
function h such that for each k-ary ~y:

h(0, ~y) = g(~y);
h(x + 1, ~y) = f(h(x, ~y), x, ~y).

In order to cover the (awkward) case in which y is empty (so g is 0-ary), we
adopt the convention that the constant n is a 0-ary constant function:

n() = n.

Then in the case of unary primitive recursion:

h(0) = n();
h(x + 1) = f(h(x), x);

we may write h = R(n, f), where n = n() is understood to be a 0-ary function
and hence R is the same operation on functions as in the case of arities greater
than 1. Note that this convention extends to composition. If the component
functions are 0-ary, C(f, n1, . . . , nk) = f(n1, . . . , nk). If the outer function is
0-ary n, then C(n) = n.

2.3 The set of primitive recursive functions

Prim = the least set X such that:

1. The 0-ary functions are all in X,

2. The basic functions are in X, and

3. X is closed under C and R.

Notice that we are already looking at closing a collection under some operations.
Obviously the basic functions are not closed under composition or primitive
recursion. So we are looking at a hierarchy of some sort.

2.4. PRIMITIVE RECURSIVE DERIVATIONS 11

2.4 Primitive Recursive Derivations

Each function f in Prim can be defined from the basic functions using operators
C and R. We may think of the basic functions invoked as leaves in a tree whose
non-terminal nodes are labelled with C and R. Nodes labelled by C may have
any number of daughters and nodes labelled by R always have two daughters.
We may think of this tree as a program for computing the function so defined.
We will do several proofs by induction on the depth of this tree. This is similar
to doing inductive proofs in logic on the depth of embedding of the logical
connectives in a formula.

2.5 Primitive Recursive Relations

A relation R(x) is primitive recursive just in case its characteristic function χR

is primitive recursive:

χR(x) = 1 if R(x),
χR(x) = 0 if ¬R(x).

We will simplify notation by letting the relation stand for its own character-
istic function when no confusion results.

χR(x) = R(x).

2.6 A Stockpile of Primitive
Recursive Functions

This looks like a pretty simple programming language. But only a few primitive
recursions are required to produce most functions you would ever care about.
It is a beautiful thing to see how explosively it happens (cf. Cutland, p. 36).

2.6.1 Constant functions

ci(x) = i.

Observe that

c0(x) = 0;
cn+1(x) = s(cn(x))

= C(s, cn)(x).

Hence:

c0(x) = 0;
cn+1(x) = C(s, cn)(x).

12 CHAPTER 2. PRIMITIVE RECURSION

Notice, this is a recursive definition of a family of primitive recursive func-
tions ci(x), not a primitive recursive definition of a single primitive recursive
function c(i, x). In the lingo, a definition that puts a parameter into the argu-
ment list of a function is said to be uniform in that parameter. Thus, c(i, x) is
uniform in i, whereas ci(x) is not.

2.6.2 Addition

I am going to go through this example in complete detail, showing the heuristic
procedure for arriving at a primitive recursive derivation of a function.

Sensible way to define it:

y + 0 = y;
y + (x + 1) = (y + x) + 1.

Rewrite + and successor in prefix notation:

+(0, y) = y;
+(x + 1, y) = s(+(x, y)).

This is not the required form for primitive recursion. We need a unary
function g(y) on the right hand side of the base case and a ternary function
f(+(x, y), x, y) on the right hand side in the inductive case. Compose in pro-
jections to get the argument lists in the required form:

+(0, y) = p1
1(y);

+(x + 1, y) = s(p1
3(+(x, y), x, y)).

Now be painfully literal about composition being an operator on a fixed list
of arguments to arrive at the required form for primitive recursion:

+(0, y) = p1
1(y);

+(x + 1, y) = C(s, p1
3)(+(x, y), x, y)).

Now apply the primitive recursion operator:

+ = R(p1
1, C(s, p1

3)).

I’ll let you verify that the following derivations work:

2.6.3 Multiplication

· = R(o, C(+, p1
3))

= R(o, C(R(p1
1, C(s, p1

3)), p
1
3, p

3
3)).

2.6. A STOCKPILE OF PRIMITIVE RECURSIVE FUNCTIONS 13

2.6.4 Exponentiation

How many nested primitive recursions occur in the following derivation?

Exp = R(c1, C(·, p1
3))

= R(C(s, o), C(R(0, C(R(p1
1, C(s, p1

3)), p
1
3)), p

1
3, p

3
3)).

2.6.5 Decrement

Dec(x) = 0 if x = 0 and Dec(x) = x − 1 otherwise. We get this by a sneaky
application of R.

Dec(0) = 0
Dec(x + 1) = x;

= p2
2(Dec(x), x).

Thus, in light of the convention that constants are 0-ary primitive recursive
functions:

Dec = R(0, p2
2).

2.6.6 Cutoff Subtraction

This is just like addition, except that successor is replaced with decrement.

y−̇0 = y;
y−̇(x + 1) = Dec(y−̇x).

Hence:

−̇ = R(p1
1, C(Dec, p1

3))
= R(p1

1, C(R(0, p2
2), p

1
3)).

2.6.7 Factorial

0! = 1;
(x + 1)! = x! · (x + 1),

so
! = R(1, C(·, p1

2, C(s, p2
2)).

I think we have all seen enough of official derivations. From now on I will just
write the obvious recurrence equations.

2.6.8 Signature

sg(0) = 0;
sg(x + 1) = 1

14 CHAPTER 2. PRIMITIVE RECURSION

2.6.9 Reverse signature

sg(0) = 1;
sg(x + 1) = 0.

2.6.10 Identity

χ=(x, y) = sg((x−̇y) + (y−̇x)).

2.6.11 Ordering

χ>(x, y) = sg(x−̇y).

2.6.12 Min

min(x, y) = x−̇(x−̇y).

2.6.13 Max

max(x, y) = x + (y−̇x).

2.6.14 Absolute difference

|x− y| = (x−̇y) + (y−̇x).

2.6.15 Remainder when x is divided by y

Incrementing the numerator x increments the remainder until the remainder is
incremented up to y, when the remainder drops to 0 because another factor of y
can be taken out of x. The following program implements this idea by using sg
to add 1 if incrementing the previous remainder doesn’t climb all the way up to
y (i.e., if the difference |x− (rm(x, y)+1)| is nonzero) and 0 otherwise. Observe
that in the case of division by 0, this condition is always met for nonzero y, so
x/0 = x. This causes no harm since we never actually use the function in this
case, so we can conventionally define division by 0 to be whatever we want.

rm(0, y) = 0;
rm(x + 1, y) = (rm(x, y) + 1) · sg(|y − (rm(x, y) + 1)|).

Do you see how to get the messy composition into the required form f(rm(x, y), x, y)?

2.7. DERIVED PRIMITIVE RECURSIVE OPERATORS 15

2.6.16 Quotient

qt(x, y) = the greatest lower bound of y/x in the natural numbers, which is often
denoted dy/xe. The idea here is that we get a bigger quotient each time the
numerator is incremented to include another factor of y. This can be checked
by incrementing the previous remainder and checking whether the result is y.

qt(0, y) = 0;
qt(x + 1, y) = qt(x, y) + sg(|y − (rm(x, y) + 1)|).

2.6.17 Divisibility

x|y is the relation “x divides y evenly”.

x|y = sg(rm(x, y)).

Exercise 2.1 Provide full formal definitions (i.e., in terms of C, R, and the
basic functions only) for three of the functions listed from signature on.

2.7 Derived Primitive Recursive Operators

Wait a minute! The construction rules are tedious (think about using sg as
a conditional branch). Wouldn’t it be better to prove that Prim is closed
under more operators? Then we could use these as operators to construct more
primitive recursive functions in a more natural way instead of always putting
them into this clunky form. (That’s why closure laws are so desirable— if we find
more operators the collection is closed under, we have more ways of “reaching”
each element of the class from basic objects.). The collection Prim is closed
under each of the following operators:

2.7.1 Substitution of a constant

If f(x1, . . . , xi, . . . , xn) is primitive recursive,
then so is h(x1, . . . , xn) = g(x1, . . . , k, . . . , xn).
The idea is that we can compose in appropriate projections and a constant
function:

h(x1, . . . , xn) = g(p1
n(x1, . . . , xi, . . . , xn),

. . . , ck(pi
n(x1, . . . , xi, . . . , xn),

. . . , pn
n(x1, . . . , xi, . . . , xn)).

2.7.2 Sum

Let any indexed collection {fz|z ∈ N} be given. Think of∑
z≤x

fz(y) = h(x, y)

16 CHAPTER 2. PRIMITIVE RECURSION

as a function of x and y. Then we may think of it also as an x-ary
operation on the first x functions in the indexed set:∑

z≤x

fz(y) =
∑

x
(f0, . . . , fx)(y).

We can establish that operation
∑

z≤x preserves primitive recursiveness
as follows: ∑

z<0

fz(y) = 0;∑
z<x+1

fz(y) =
∑
z<x

fz(y) + fx(y).

2.7.3 Bounded Sum

The preceding construction is non-uniform in x. There is also a uniform version
of bounded summation on a single function. Think of

g(x, y) =
∑
z<x

f(z, y)

as a function of x and y.∑
z<0

f(z, y) = 0;

∑
z<x+1

f(z, y) =

[∑
z<x

f(z, y)

]
+ f(x, y).

2.7.4 Product

Similar to the sum case. ∏
z<0

fz(y) = 1;∏
z<x+1

fz(y) =
∏
z<x

fz(y) · fx(y).

2.7.5 Bounded Product

Similar to bounded sum.∏
z<0

f(z, y) = 1;

∏
z<x+1

f(z, y) =

[∏
z<x

f(z, y)

]
· f(x, y).

2.8. LOGICAL OPERATORS 17

2.7.6 Definition by Cases

Let the Pi be mutually exclusive and exhaustive primitive recursive relations.

∑
z<k+1

gz(x) · Pz(x) =

g1(x) if P1(x);
g2(x) if P2(x);

...
gk(x) if Pk(x).

2.8 Logical Operators

2.8.1 Conjunction

P (x) ∧Q(x) = P (x) ·Q(x).

2.8.2 Negation

¬P (x) = sg(P (x)).

2.8.3 Disjunction

P (x) ∨Q(x) = ¬(¬P (x) ∧ ¬Q(x));
= max(P (x), Q(x)).

2.8.4 Conditional

P (x) → Q(x) = ¬P (x) ∨Q(x).

2.8.5 Biconditional

P (x) ↔ Q(x) = P (x) → Q(x) ∧Q(x) → P (x).

2.8.6 Bounded Universal quantifier

∀z<xP (x, ~y) =
∏
z<x

P (z, ~y).

2.8.7 Bounded Existential quantifier

∃z<xP (x, ~y) =
∑
z<x

P (z, ~y).

18 CHAPTER 2. PRIMITIVE RECURSION

2.8.8 Bounded Minimization

g(x, y) = minz≤x[f(z, y) = 0];
= “the least z ≤ x such that f(x, y) = 0”.

By this we mean that if no root of f is found up to the bound, we return the
bound to keep the function total. If the value returned under search bound n is
strictly less than n, then a root of f was found, so we don’t increment when the
search bound is raised to n + 1. If the value returned under search bound n is
identical to n, then either we (coincidentally) found a root at the last minute,
or we stopped because we hit the bound. So we have to check, further, if the
bound is a root in that case. Thus, we increment just in case the previous search
hit the bound and the bound is not a root.

minz≤0(f(z, ~y) = 0 = 0;
minz≤x+1(f(z, ~y) = 0) = minz≤x(f(z, ~y) = 0) +

+[minz≤x(f(z, ~y) = 0) = x ∧ f(x, ~y) > 0];
minz≤x(P (z, ~y)) = minz≤xsg(χP (z, ~y)).

2.8.9 Bounded Maximization

maxz≤x (P (x, ~y)) = x−̇minz≤x

(
P (x−̇z, ~y)

)
.

2.8.10 Iteration

f0(y) = y;
fx+1(y) = f(fx(y)).

Exercise 2.2 Show that for each primitive recursive function there is a mono-
tone primitive recursive function that is everywhere greater.

Exercise 2.3

1. Prove closure of Prim under any one of the operators.

2. Provide full formal definitions for any three of the logical operators.

2.9 Some Number Theoretical Constructions

With our new operations we are on Easy Street. The Prime number predicate
is programmed just by writing its logical definition! How’s that for a handy
computer language?

2.9.1 Primality

Prime(x) ⇐⇒ 1 < x ∧ ∀z<x(z = 1 ∨ ¬(z|x)).

2.10. GÖDEL NUMBERING FINITE SEQUENCES 19

2.9.2 The first prime after x

This one uses Euclid’s theorem that there exists at least one prime p such that
for any x, x < p ≤ x! + 1. Why is that? Well, x! + 1 has some prime factor
≤ x!+1 by the uniqueness and existence of prime factorizations (the fundamental
theorem of arithmetic). But x! + 1 has no factor ≤ x, since each such divisor
leaves remainder 1. Hence, x! + 1 has a prime factor x < p ≤ x! + 1.

h(x) = minz≤x!+1(Prime(z) ∧ x < z).

2.9.3 The xth prime

p(0) = 2;
p(x + 1) = h(p(x)).

2.9.4 Exponent of the xth prime in the prime factorization
of y

How do we know it’s unique? How do we know the search bound is high enough?
(Show by induction that 2y > y. 2 is the lowest possible prime factor of y, so
we’re safe.)

[y]x = maxz<y(p(x)z|y).

2.10 Gödel Numbering Finite Sequences

Let ~x be an n-ary sequence. Define

2.10.1 The Gödel coding of ~x

For each number n ≥ 1, the prime factorization of n is a finite product of form

Πi≤kp(i)ki .

We know from the fundamental theorem of arithmetic that the prime factoriza-
tion exists and is unique, for each number n ≥ 1. Think of the prime factoriza-
tion of n as encoding a finite sequence as follows:

1. The first prime whose exponent is zero in the prime factorization deter-
mines the length of the coded sequence.

2. The exponents of earlier prime factors are one greater than the item in
the corresponding position in the coded sequence.

There is just one flaw: zero encodes no sequence since each prime factorization
is a product and the empty product is 1. So we will take n to encode a sequence
just in case the prime factorization of n + 1 encodes the sequence according to
the preceding scheme. Now 0 codes () because 0 + 1 = Πi≤0p(i)0.

20 CHAPTER 2. PRIMITIVE RECURSION

Hence 5 encodes (0, 0) because 5+1 = 6 = 20+130+1, but so does 12 because
12 = 20+130+15070+1 because the “halt sign” (a 0 exponent) occurs in position
2.

There is no question of this coding being primitive recursive, since it is
polyadic (it takes arbitrary, finite numbers of arguments) and no primitive re-
cursive function is polyadic. But we can primitive recursively decode such code
numbers as follows.

To decode a number n as a sequence, we have to remember to subtract one
from each exponent in the prime factorization of n + 1. The standard notation
for the xth position in the sequence coded by the following:

2.10.2 Decoding

(y)x = the item occurring in the xth position in the sequence coded by y

To keep the function total, we take the first position to be position 0.

(y)x = [y + 1]x−̇1.

2.10.3 Length of decoded sequence

(number of consecutive prime factors of x)
Using the convention that every position in the sequence corresponds to a prime
factor, we can simply search for the first non-factor of the code number. Since
we count prime factors starting with 0, this corresponds to the length of the
coded sequence.

lh(x) = minz≤x¬(p(z)|x).

Now define n is a Gödel number of ~x just in case ~x = ((n)0, . . . , (n)lh(n)).
There will be infinitely many Gödel numbers for each finite sequence, but each
such number codes a unique sequence due to the existence and uniqueness of
prime factorizations (the fundamental theorem of arithmetic).

It will sometimes be useful to choose the least such Gödel number for a
sequence. That is given by

〈x0, . . . , xn〉 = Πi≤np(i)xi+1.

Then we have
(〈x0, . . . , xn〉)i = xi,

for each i ≤ n.

Exercise 2.4 Bijective Binary Sequence Encoding
Define the binary primitive recursive function

〈x, y〉 =
1
2
[(x + y)(x + y + 1)] + x.

2.11. FANCY RECURSION 21

1. This coding is evidently primitive recursive. Show that it is a bijection
N2 7→ N. Hint: this is just a polynomial expression for the obvious enu-
meration procedure. Think of the pairs as being presented in an N × N
array with 〈0, 0〉 at the upper left. Given 〈x, y〉, recover the code number
by counting pairs, starting at 〈0, 0〉, along diagonals, from the upper right
to the lower left.

2. Show that

1
2
[
(x + y)(x + y + 1)

]
=

∑
t≤x+y

t

= the number of pairs 〈z, w〉 occuring in
diagonals to the upper left of 〈x, y〉.

3. Show that x = the number of pairs remaining to be counted to the upper
right of 〈x, y〉.

4. Show that the decoding functions are also primitive recursive.

5. Use the preceding results and codings to produce n-ary primitive recursive
encodings and decodings.

2.11 Fancy Recursion

One reason codings are nice is that they give us new and more elegant forms of
recursion for free. The basic idea is that the coding allows primitive recursion
to simulate the fancy form of recursion by looking at successive code numbers
of the current “computational state” of the fancy form of recursion.

Exercise 2.5 Course of Values Recursion (Péter)
Suppose that s1(x), . . . , sk(x) ≤ x.
Then CV R(g, f, s1, . . . , sk) is the unique function h such that:

h(0, y) = g(y)
h(n + 1, y) = f(h(s1(n), y), . . . , h(sk(n), y), n, y).

Use the Gödel coding to show that the set Prim is closed under the CV R oper-
ator.

Exercise 2.6 Fibonacci Sequence
Show that the following function is primitive recursive:

f(0) = 1;
f(1) = 1;

f(x + 2) = f(x) + f(x + 1).

22 CHAPTER 2. PRIMITIVE RECURSION

Exercise 2.7 Simultaneous Recursion (Péter)
SRi(g1, . . . , gk, f1, . . . , fk) is the unique function hi such that:

hi(0, y) = gi(y);
hi(n + 1, y) = fi(h1(n, y), . . . , hk(n, y), n, y).

Notice that k is constant. Use the k-ary sequence encoding of exercise 1 to show
that Prim is closed under the SR operator.

Exercise 2.8 Recursion with Parameter Substitution
PS(g, f, s) is the unique h such that:

h(0, y) = g(y);
h(n + 1, y) = f(h(n, s(n, y)), n, y).

Show that Prim is closed under the PS operator.
Hint: Trace the computation of h(3, y). You will find that you end up needing
to know the values of the successive compositions:

y

s(2, y)
s(1, s(2, y))

s(0, s(1, s(2, y)))
etc.

These can be obtained by a “backwards” recursion – or rather a forwards recur-
sion that goes backwards in time!

S(0, n, y) = y;
S(t + 1, n, y) = s(n−̇t, S(t, n, y)).

Then we have:

S(0, 3, y) = y

S(1, 3, y) = s(2, y)
S(2, 3, y) = s(1, s(2, y))
S(3, 3, y) = s(0, s(1, s(2, y)))

etc.

Now write a recursion that applies f to the right values of S.

Exercise 2.9 Let f(x) = ggg . . . ghs . . . sss(x), with x iterations of the g’s and
the s’s. Show that f is primitive recursive. Hint: use PS.

2.12. BREAKING THE PRIMITIVE RECURSION BARRIER 23

2.12 Breaking the Primitive Recursion Barrier

We have lots of examples of recursion operations that yield nothing new. This
may lull you into assuming that every kind of recursion can be massaged into
primitive recursion by means of suitable codings. But that would be a mis-
take, for there is an intuitively effective recursion operator that generates non-
primitive recursive functions.

2.12.1 Double recursion

R(g1, g2, g3, g4) is the unique h such that:

h(0, y, z) = g1(y, z);
h(x + 1, 0, z) = g2(h(x, c, z), x, z);

h(x + 1, y + 1, z) = g4(h(x + 1, y, z), h(g3(h(x + 1, y, z), x, y, z), x, z), x, y, z).

Double recursion allows one to apply a variable number of primitive recursions
depending on the value of x. To see this, observe that:

• For a given value of x, the third clause decrements y down to 0.

• When y reaches 0, you hit the second clause, which decrements x to x− 1
and restarts the primitive recursion with y set to some fixed constant c.

• Finally, when x is decremented down to 0, we hit the first clause, which
is the base case.

Since double recursion can simulate arbitrary numbers of primitive recursions, it
is fairly intuitive that a double recursive function ought to be able to grow faster
than any given primitive recursive function. If the function uses n primitive re-
cursions at stage n, then for each number of primitive recursions, after some
time it does something that would require at least one more primitive recur-
sion. The proof of this claim will wait a bit until we introduce the Grzegorczyk
hierarchy.

2.12.2 The Ackermann function (1928)

The Ackermann function is historically the first example of an intuitively effec-
tive function that is not primitive recursive. (cf. Rogers, p. 8). The Ackermann
function grows so fast that some skeptical finitistic mathematicians have denied
that it is computable (or that it even exists). This sounds crazy until one con-
siders that the exact values for small arguments can only be defined (in a book
length definition) by the function itself! The Ackerman function may be defined
as follows:

1. a(0, 0, z) = z;

2. a(0, y + 1, z) = a(0, y, z) + 1;

24 CHAPTER 2. PRIMITIVE RECURSION

3. a(1, 0, z) = 0;

4. a(x + 2, 0, z) = 1;

5. a(x + 1, y + 1, z) = a(x, a(x + 1, y, z), z).

Exercise 2.10 The Ackermann function is more intuitive than it looks at first.
This will be apparent after you do the following.

1. Show that the Ackermann function really does result from applying DR to
primitive recursive functions. Don’t let all those clauses scare you!

2. Find simple primitive recursive definitions of each of the functions gi(x, y) =
a(i, x, y). Prove that you are correct.

3. Relate this fact to the point made about uniformity when we introduced
bounded sums as an operator.

4. What are g0, g1, and g2?

2.12.3 The Péter Function

The Péter function is also not primitive recursive. It is a simplified version of
Ackermann’s function and is called the Ackermann function in Cutland (p. 46).

p(0, y) = y + 1
p(x + 1, 0) = p(x, 1);

p(x + 1, y + 1) = p(x, p(x + 1, y)).

2.13 Even Fancier Recursion

One can generalize the idea of double recursion by adding recursive variables and
piling on new recursion conditions. So while double recursion does a variable
number of nested primitive recursions, triple recursion allows for a variable
number of double recursions, and so forth. Each time we get something new.

