
106



Chapter 14

Cubbyhole Mathematics

The arithmetical hierarchy provides us with lots of cubbyholes. Recursion theory
seeks understanding of objects by putting them in the right holes. For when we
do so, we know what the “main part” of the problem is. Problems within the
class will be computationally trivial variants of one another.

Here are some examples. Some of them are familiar from chapter 6.

Tot(x) ⇐⇒ Ww = N

Null(x) ⇐⇒ Ww = ∅
Inf (x) ⇐⇒ Ww is infinite
Fin(x) ⇐⇒ Ww is finite
Cof(x) ⇐⇒ Ww is co-finite
Onto(x) ⇐⇒ Ex = N

Simp(x) ⇐⇒ Ww is simple
Creative(x) ⇐⇒ Wx is productive
Subset(x) ⇐⇒ W(x)0 ⊆W(x)1

Psubset(x) ⇐⇒ W(x)0 ⊂W(x)1

Ident(x) ⇐⇒ W(x)0 = W(x)1

Rec(x) ⇐⇒ Ww is recursive
Comp(x) ⇐⇒ Ww ≡ K

107



108 CHAPTER 14. CUBBYHOLE MATHEMATICS

14.1 Upper Bounds

Upper bounds are easily found by the Tarski-Kuratowski algorithm:

1. Define the relation in terms of the Kleene predicate.

2. Put the definition into prenex normal form.

(a) First eliminate arrows using conjunctions, disjunctions and nega-
tions.

(b) Then drive in all negations using DeMorgan’s rules.

(c) Then rename quantified variables so that they are all distinct in order
to prevent clashes when the quantifiers are exported.

(d) Then export quantifiers to the front of the formula in the most advan-
tageous way (i.e., interleave them to minimize alternations without
permuting the order of any quantifiers that were already nested.

3. The first quantifier determines whether the complexity class is Σ or Π.

4. The number of blocks of quantifiers of the same type determines the sub-
script.

14.1.1 Examples

Tot(x) ⇐⇒ Wx = N

⇐⇒ ∀z Wx(z)

⇐⇒ ∀z ∃w U(x, (w)0, (w)1, 〈z〉)

⇐⇒ ∀∃R with R recursive.

So Π2(Tot).

Fin(x) ⇐⇒ Wx is finite

⇐⇒ ∃y ∀z≤y Wx(z)

⇐⇒ ∃y ∀z≤y φx(z) ↑

⇐⇒ ∃y ∀z≤y ∀w ¬U(x, (w)0, (w)1, 〈z〉)

⇐⇒ ∃∀R with R recursive.

So Σ2(Fin).

These were automatic! Let’s do one that requires a little bit of shuffling.



14.2. LOWER BOUNDS 109

Ident(x) ⇐⇒ W(x)0 = W(x)1

⇐⇒ ∀z (W(x)0(z) ↔W(x)1(z))

⇐⇒ ∀z
(
(W(x)0(z) ∧W(x)1(z)) ∨ (W(x)0(z) ∧W(x)1(z))

)
⇐⇒ ∀z

[
(∃w U((x)0, (w)0, (w)1, 〈z〉)

∧∃w U((x)1, (w)0, (w)1, 〈z〉))

∨ (∀w ¬U((x)0, (w)0, (w)1, 〈z〉)

∧∀w ¬U((x)1, (w)0, (w)1, 〈z〉))
]

⇐⇒ ∀
(
(∃ ∧ ∃) ∨ (∀ ∧ ∀)

)
(notice, the lead ∃ makes it most

efficient to put all the ∃ quantifiers first).

⇐⇒ ∀∀∀∃∃

So Π2(Ident).

Here is a more complicated one that makes use of work already done.

Simp(x) ⇐⇒ Wx is simple

⇐⇒ Wx is infinite ∧ ∀y (Wy is infinite →Wx ∩Wy 6= ∅

⇐⇒ Inf(x) ∧ ∀y (Inf(y) → ∀z (Wx(z) ∨Wy(z)))

⇐⇒ Inf(x) ∧ ∀y
[
¬Inf(y) ∨ ∀z

(∀w ¬U(x, (w)0, (w)1, 〈z〉) ∨ ∀w ¬U(y, (w)0, (w)1, 〈z〉))
]

⇐⇒ ∀∃ ∧ ∀(¬∀∃ ∨ ∀(∀ ∨ ∀))

⇐⇒ ∀∃ ∧ ∀(∃∀ ∨ ∀(∀ ∨ ∀))

⇐⇒ ∀∃ ∧ ∀(∃∀ ∨ ∀∀∀))

⇐⇒ ∀∃ ∧ ∀(∃∀∀∀∀)

⇐⇒ ∀∃ ∧ ∀∃∀∀∀∀

⇐⇒ ∀∀∃∃∀∀∀∀

⇐⇒ ∃∀∃

So Π3(Simp).

Exercise 14.1 Do five more examples. Include Comp.

14.2 Lower Bounds

Lower bounds come by several techniques: diagonalization, reduction, or direct
completeness arguments. We have already seen two ways to do diagonalization



110 CHAPTER 14. CUBBYHOLE MATHEMATICS

in the last chapter, providing us with “seed” for reduction arguments. Let’s
begin with a direct completeness argument.

Proposition 14.1 Fin is Σ2-complete, Inf is Π2-complete.

Proof: suppose Σ2(P ). So for some recursive R, we have for each x,

P (x) ⇐⇒ ∃y ∀z R(〈x, y, z〉)

Define
ψ(x,w) = ∀y≤w ∃z R(〈x, y, z〉)

This is partial recursive by the projection theorem. Apply the s-m-n theorem
to obtain

φf(x)(w) ≈ ψ(x,w)

Hence,

P (x) ⇒ Wf(x) is total
⇒ Tot(x)
⇒ Inf (x)

P (x) ⇒ Wf(x) is finite
⇒ Fin(x) a

Notice that the reduction shows more than we intended. It projects P into
Tot and P into Fin. Following Soare, we may summarize this situation by the
notation:

(P, P )≤M (Fin, Tot)

When P stands for an arbitrary Σ2 set, we may abbreviate the situation by
writing

(Σ2,Π2)≤M (Fin, Tot)

Since Fin is in the complement of Tot, this reduction also establishes:

Corollary 14.2 Tot is Π2-complete.

Proposition 14.3 Subset is Π2-complete.

Exercise 14.2 Prove the upper bound by Tarski-Kuratowski computation. Prove
the lower bound by reduction of Tot or Inf .
Hint: make the “subset” index be for N and make the “superset” index depend
on the given number.

Exercise 14.3 Peg the complexity of Onto in the hierarchy.
No hints this time.



14.2. LOWER BOUNDS 111

At the next level of complexity lower bounds become more complex.

Proposition 14.4 (Σ3,Π3)≤M (Cof,Comp)≤M (Rec,Comp).

Corollary 14.5 Cof , Rec are Σ3-complete.

Proof: suppose Σ3(P ). So for some Σ3 set R, we have for each x,

P (x) ⇐⇒ ∃y R(〈x, y〉)

We have already shown that there exists a total recursive g such that

R(〈x, y〉) ⇐⇒ Wf(〈x,y〉) is infinite.

Hence

P (x) ⇐⇒ ∃y R(〈x, y〉))
⇐⇒ ∃y Wf(〈x,y〉) is infinite.

We need to construct total recursive f such that

P (x) ⇒Wg(x) is cofinite and

P (x) ⇒Wg(x) ≡ K

I sketch the construction, showing how to enumerate S = Wg(x) as a function
of x:

• We start out with an array of “pointers” on the natural numbers labelled
with the natural numbers.

• Let pointerx(y, s) be the number pointed to by the pointer labelled with
y at stage s.

• At stage s = 0, the yth pointer is initialized to point to number y: i.e.,
pointerx(y, 0) = y.

• At stage s+1: Check for each y ≤ s whether either of the following occur:

– K(y) halts in exactly s steps (this can happen only once) or

– ∃w≤s Wf(〈x,y〉)(w) halts in exactly s steps (this happens infinitely
often for some y just in case P (x)).

• For each such y, add pointerx(y, s) to S.

• Now move all pointers to the right, without permuting them, so that
positions already added to S are not pointed to, but without leaving any
other gaps.



112 CHAPTER 14. CUBBYHOLE MATHEMATICS

P (x) ⇒ ∃y Wf(〈x,y〉) is infinite
⇒ ∃y limspointerx(y, s) = w

⇒ S = Wg(x) is cofinite
⇒ Cof(g(x))

P (x) ⇒ ∀y Wf(〈x,y〉) is finite
⇒ ∀y limspointerx(y, s) is finite

Hence each terminal pointer position is missing from S.

Using the fact that each pointer bumps only finitely often, we can compute,
given S, the least stage s(y) such that

pointer(y, s(y)) = limspointerx(y, s)

In other words, s is recursive in S.

To decide whether K(y), check whether pointerx(y, s) ever bumped (prior to
stage s(y)) when nothing new came out of the Wf(〈x,y〉) simulation.

In other words, the convergence of the pointer, which is recoverable from S,
bounds the search through the reasons for adding y to S.

Hence, S = Wg(x) ≡ K, so Comp(g(x)).

Apply Church’s thesis!
So recursiveness is worse than finiteness or infinity, but is the same as co-

finiteness. Non-recursiveness is therefore the same as co-infinity.
How about Comp? The obvious Tarski-Kuratowski computation of Comp

takes us only down Σ4, unfortunately, so our previous reduction doesn’t lock in
the complexity of Comp. Yates showed that Comp is Σ4-complete. He proves
it via his “thickness” lemma, which is proved by an infinite injury argument.

Exercise 14.4 This is from Soare, ex. 3.8. Define

Ext(x) ⇐⇒ φx is extendable to a total recursive function

Show that Ext is Σ3-complete.
Hint: use the preceding technique. Instead of building an r.e. set, Wg(x), build a
partial recursive function φg(x). When Wf(〈x,y〉)(w) halts in exactly s steps, de-
fine φg(x)(pointerx(y, s)) to be some value (e.g., 0). Also, if φy(pointerx(y, s))
is observed to halt in s steps, define φg(x)(pointerx(y, s)) to have a value differ-
ent from φy(pointerx(y, s)). The resulting function is guaranteed to be partial
recursive. If some Wf(〈x,y〉) is infinite, the function will itself be total recursive.
If no Wf(〈x,y〉) is infinite, the function differs somewhere from each total recur-
sive function. (This takes some arguing: how do you know that the y pointer sits
around long enough to ensure that the constructed function differs from φy?)

14.3 Arithmetical Truth

Let A = the set of all Gödel numbers of true sentences of arithmetic.



14.3. ARITHMETICAL TRUTH 113

Gödel’s incompleteness construction shows only that A is productive. As we
have seen, productive sets are merely co-r.e.-hard (i.e., non-r.e. and non-co-r.e.-
incomplete. This is fairly weak, since it is consistent with A being co-r.e. If A
were co-r.e., there would be an effective refutation procedure for A, which would
tell us for each non-truth that it is false. A little thought reveals, however, that
this is false.

In fact, A is not even arithmetical (i.e., it diagonalizes the whole hierarchy).
We will see this as follows. Recall from the Gödel and uncomputability class
that Q is a weak, incomplete system of arithmetic.

A relation R(~x) is representable in Q just in case there exists a formula Φ(~x)
in the language of arithmetic such that for all b,

1. R(b) ⇒ Q ` Φ(b)

2. R(b) ⇒ Q ` ¬Φ(b)

The main lemma en route to Gödel’s incompleteness theorem is the repre-
sentation theorem, which we will not reprove here:

Proposition 14.6 (Gödel) Each recursive relation is representable in Q.

This implies that each r.e. predicate has a purely existential definition in the
language of Arithmetic.

Proposition 14.7 A is not arithmetical.

Proof: let Σn(P ). Then for some recursive relation R, we have

P (x) ⇐⇒ ∃y1 . . .∃yn R(x, y1, . . . , yn)

Using arithmetical representability, choose formula Φ representing R. Then:

P (x) ⇐⇒ ∃y1 . . .∃yn Φ(x, y1, . . . , yn)
⇐⇒ the sentence “∃y1 . . .∃yn Φ(x, y1, . . . , yn)” is true in arithmetic
⇐⇒ A(〈∃y1 . . .∃yn Φ(x, y1, . . . , yn)〉)

By Church’s thesis, there is a total recursive f such that for all x,

f(x) = 〈∃y1 . . .∃yn Φ(x, y1, . . . , yn)〉

Thus P≤MA.

Hence, for each n, 0(n+1)≤MA.

So by Post’s theorem, for each n, ¬Σn(A). a
We can say more than this. We know what S(n) means. What should the

limit jump S(ω) mean? It should somehow reduce all the preceding jumps. The
following notion will do:

S(ω)(x) ⇐⇒ S((x)1)((x)0)

Now we may state:



114 CHAPTER 14. CUBBYHOLE MATHEMATICS

Proposition 14.8 A ≡ 0(ω).

Proof: (Rogers Thm X, p. 318). a
A question for us later: if A is not arithmetical, then where does A live?


