
Chapter 12

Relative Computability
and Turing Reduction

Many-one reducibility is an interesting relation because it preserves recursive-
ness, r.e.-ness and co-r.e.-ness. These features are bought at a price. For exam-
ple, the following properties are strange:

Exercise 12.1 Prove that

1. there are exactly 3 recursive M -degrees.

2. K does not M -reduce K.

These curiosities reflect the fact that M -reduction amounts to a very restrictive
way to use a given decision procedure as a subroutine; namely, one may only
compose another routine inside of it:

Q(x) = P (f(x))

Thus, M -reduction does not allow for composition outside:

K(x) = sg(K(x))

12.1 Relative Computability

Such considerations suggest a notion of reducibility based on an unrestricted
notion of subroutine. This is usually done with Turing machines that are allowed
to ask arbitrary questions about a given set A and to use the results in their
computations as they please. We can do essentially the same thing in Kleene’s
klean formulation of the theory by simply adding the characteristic function of
A to the stock of basic functions and assigning it all indices of length 6.

91

92 CHAPTER 12. RELATIVE COMPUTABILITY

k = 0 ⇒ φk
A,x = x

k > 0 ∧

lh(x) = 0 ⇒ φk
A,x = C(o, p1

k)

lh(x) = 1 ⇒ φk
A,x = C(s, p1

k)

lh(x) = 2 ⇒ φk
A,x = p

min((x)0,k)
k

lh(x) = 3 ⇒ φk
A,x = C(φlh((x)1)

(x)0
, φk

((x)1)0
, . . . , φk

((x)1)lh((x)1)−̇1
)

lh(x) = 4 ⇒ φk
A,x = R(φk−̇1

(x)0
, φk+1

(x)1
)

lh(x) = 5 ⇒ φk
A,x = M(φk+1

(x)0
)

lh(x) = 6 ⇒ φk
A,x = C(χA, p

1
k)

lh(x) > 6 ⇒ φk
A,x = C(o, p1

k)

Now define

ψ is partial recursive in A ⇐⇒ ∃n, k (ψ = φk
A,n)

WA,n = dom(φ1
A,n)

EA,n = dom(φ1
A,n)

B is recursive in A ⇐⇒
the characteristic function of B is partial recursive in A

B is r.e. in A ⇐⇒
B = ∅ ∨ ∃ total f partial recursive in A such that B = rng(f)

Proposition 12.1 All our earlier results relativize to A in the natural way.

Exercise 12.2 Convince yourself of this by stating and sketching the proof of
the A-relativized universal theorem. Let UA denote the A-relativized Kleene uni-
versal predicate. Important: we will need the property that the “resource bound”
also bounds all the inputs for which values are queried in the computation.

12.2 Turing Reduction

We may now define a more powerful kind of reduction relation called Turing
reducibility (because it is usually defined using Turing machines as described
above). Turing equivalence and degrees can be defined as before.

A ≤ B ⇐⇒ A is recursive in B

12.2. TURING REDUCTION 93

Proposition 12.2

1. ≤ is a pre-order

2. ≤M ⊂ ≤

3. A ≤ A

4. B is recursive, then B ≤ A

5. recursiveness in A is preserved downward under ≤

6. r.e.-ness and co-r.e.-ness in A are not preserved downward under ≤

Exercise 12.3 Prove it. Note that the inclusion in 2 is proper!

The last clause of the proposition shows that Turing reduction is also some-
what strange, for we can no longer rely on Turing computability to preserve
one-sided notions of success. Can you think of a notion of reduction that does
not restrict the use of subroutines but that would preserve r.e.-ness?

The usual mathematical habits yield Turing-equivalence and Turing-degrees,
by proposition 12.2.1:

A ≡ B ⇐⇒ (A ≤ B ∧B ≤ A)

[A] = {B ⊆ N : A ≡ B}

[A] ≤ [B] ⇐⇒ A ≤ B

Turing degrees (or simply “degrees”) are conventionally denoted by bold-
faced letters: a,b, c . . .
Now define:

a is a Γ-degree ⇐⇒ a ∩ Γ 6= ∅
a is Γ-hard ⇐⇒ ∀b(b ≤ a)

a is Γ-complete ⇐⇒ (a ∩ Γ 6= ∅ ∧ ∀b(b ≤ a))

Important: an r.e. degree is also a co-r.e. degree and not every element of an
r.e. degree is r.e.

Corollary 12.3

1. There is a unique recursive degree. Call it 0.

2. [A]M ⊆ [A].

3. [K] is r.e.-complete.

Proof 1 comes from proposition 12.2.4.
2 and 3 come from proposition 12.2.2.a

94 CHAPTER 12. RELATIVE COMPUTABILITY

12.3 The Jump Operation

The co-halting problem is just the counter-diagonal of the table

T [x, y] = Wx(y)

That is,

K(x) = sg(T [x, x])
= sg(Wx(x))

We could do the same thing for the table of sets r.e. in A:

K(x) = sg(WA,x(x))

Then we know (by exactly the same argument) that KA(x) is not r.e. in A, so
K is not recursive in A. The usual notation is:

A′ = KA = {x|φA,x(x)↓}

a′ = [A′], for some A ∈ a

In our new notation, we have:
0′ = [K]

The following records that jumps are essentially like the halting problem.

Proposition 12.4

1. A
′
is not r.e. in A.

2. A′ is not recursive in A.

3. A′ is r.e. in A.

4. A′ is A-r.e.M -complete.

5. A is recursive ⇒ A′ ≡ K.

6. A ≤ B ⇒ A′ ≤ B′.

Proof. 1, 2. Already shown.
3. Using the A-universal construction, define A-partial recursive

φ1
A,z(x) ≈ (µy) UA(x, (y)0, (y)1, 〈x〉)

Then A′ = WA,z.
4. Relativize the proof that K is r.e.-complete (with respect to M -reduction)
and apply proposition 12.2.2.
5. Replace each occurrence of the characteristic function of A in the derivation
tree with a program that computes it.

12.4. INCOMPLETE DEGREES (POST’S PROBLEM) 95

6. Suppose A ≤ B.
So let φB,z = χA.
By the argument for part 3, A′ is r.e. in A in virtue of

ψ(x) ≈ (µy) UA(x, (y)0, (y)1, 〈x〉)

In the derivation tree for ψ, we may replace each occurrence of χA with φB,z.
Hence, A′ is B-r.e.
By part 4, B′ is B-r.e. complete.
So A′ ≤ B′. a

12.4 Incomplete Degrees (Post’s Problem)

Say that a is an incomplete r.e. degree ⇐⇒

• a is r.e.

• a is not r.e. complete

• a is not recursive

Simple sets determine incomplete r.e.M -degrees as we have seen, but Turing
degrees are coarser (since Turing reducibility is more lenient) so it doesn’t follow
that simple sets determine incomplete r.e. degrees. The worry is justified.

Proposition 12.5 Every r.e. degree (e.g., the complete one) contains a simple
set.

Exercise 12.4 Prove it. Big hint:
Suppose B is r.e., but not recursive.
Construct a total recursive, bijective f such that B = rng(f).
Define

A(x) ⇐⇒ ∃y>x(f(y) < f(x))

A is r.e. by the projection theorem. Show:

1. A ≡ B

2. A is simple

More hints: To establish simplicity, assume that the required properties are false
and then use f to decide A.

Thus, a new technique is required to construct an incomplete r.e. Turing
degree.

It suffices to find two non-recursive r.e. degrees such that neither is Turing
reducible to the other, for an r.e.-complete degree is comparable with every
r.e. degree.

The construction of such a degree was called Post’s problem. The solution
was discovered independently by Friedburg and Muchnik. The proof is called

96 CHAPTER 12. RELATIVE COMPUTABILITY

a “priority argument”. The priority technique was applied to a number of
problems in degree theory, leading to a renaissance in recursion theory in the
1960’s and 1970’s.

Proposition 12.6 (Friedburg-Muchnik 1956) There exist r.e. degrees a,b
such that neither a ≤ b nor b ≤ a.

Idea. (following Soare’s theorem 2.1): Here’s the intuitive idea. An even re-
quirement is a statement of form:

even(z) ∧ χA 6= φB, z
2

An odd requirement is a statement of form:

odd(z) ∧ χB 6= φA, z−1
2

Clearly, satisfying all the requirements would make A and B Turing irreducible
to one another.

Even requirement z can be satisfied by adding to A a witness x on which
φB, z

2
halts with 0 or never adding x to A if φB, z

2
halts with 0. Odd requirement

z can be satisfied by adding to B a witness x on which φA, z−1
2

halts with 0 or
never adding x to A if φA, z−1

2
halts with 0.

We can therefore use halting with 0 as an effective sign to add the witness
to the appropriate set and rest smugly until the condition arises.

The trouble is that requirements we thought were “passively” satisfied may
halt with 0 later. Such a requirement is said to require attention. Then we have
to add the witness to the appropriate set to keep the requirement satisfied.

But this may screw up other computations witnessing other requirements,
since these computations depend on the sets in question. We say that these
requirements are injured.

To make progress, we have to protect more and more witnessing compu-
tations from injury. We do this by enumerating the requirements (a priori
ranking) and protect higher priority witnessing computations from lower prior-
ity requirements by requiring that witnesses for fresh requirements be selected
beyond a protective wall we build around the members of the sets queried in
computations of higher priority.

Each requirement is injured only by requirements of higher priority. There
are only finitely many of these. So each requirement is injured only finitely
often. In the limit, every requirement is satisfied.

Since we never had to decide which way the requirements are satisfied, the
sets constructed by adding witnesses are r.e.

This is called a priority or finite injury argument.
Proof: we need to construct r.e. sets A,B such that both are r.e. and neither

is Turing-reducible to the other. We construct A,B in stages:

A(x) ⇐⇒ ∃n (An(x))

B(x) ⇐⇒ ∃n (Bn(x))

12.4. INCOMPLETE DEGREES (POST’S PROBLEM) 97

Each stage results from possibly adding something new.

An(x) ⇐⇒ ∃m≤n (add-to-A(m,x))

Bn(x) ⇐⇒ ∃m≤n (add-to-B(m,x))

We begin the construction by searching for the highest priority requirement
that needs attention, if any.

attend-to(n) =
µz ≤ n

(even(z) ∧ wall(n, z
2) = 0 ∧ UAn

(z
2 , n, 0, 〈try(

z
2 , n)〉))

∨(odd(z) ∧ wall(n, z−1
2) = 0 ∧ UAn(z−1

2 , n, 0, 〈try(z−1
2 , n)〉))

(Seek the highest priority requirement whose protective wall
is retracted and whose program has halted in the required
number of steps with output 0.)

if there is one
n+ 1 otherwise.

wall(0, z) = 0
wall(n+ 1, z) =

wall(n, z) if z < attend-to(n) ∨ attend-to(n) > n
(keep protecting higher-priority witnesses;
do nothing if nothing is attended to)
n+ 1 if z = attend-to(n)
(establish wall protecting currently attended to requirement)
0 if z > attend-to(n)
(drop protection on injured requirements indicating that
they may again require attention)

Keep old witnesses unless a higher priority requirement gets attention.
Then increment lower priority witnesses to a safe place.

try(0, z) = 〈0, z〉
try(n+ 1, z) =

try(n, z) if z ≤ attend-to(n) ∨ attend-to(n) > n
(keep high priority witnesses)
(µw) (w, 1) = z ∧ ¬An(w) ∧ ¬Bn(w) ∧ ∀k < z(wall(n, z) < z otherwise.
(injured witnesses should be selected so as
not to disturb higher priority requirements).

add-to-A(n, x) ⇐⇒ even(attend-to(n)) ∧ attend-to(n) ≤ n ∧ x = try(n, attend-to(n))

add-to-B(n, x) ⇐⇒ odd(attend-to(n)) ∧ attend-to(n) ≤ n ∧ x = try(n, attend-to(n))

98 CHAPTER 12. RELATIVE COMPUTABILITY

Fact a all the component functions are total recursive, so by the projection
theorem A and B are r.e.

Fact b every requirement is injured only finitely often.

Fact c after it stops being injured, each requirement is eventually satisfied.

Hence, A and B are Turing-incomparable. a

12.5 A Taste of Degree Theory

Define:
A is low ⇐⇒ A′ ≡ K

Proposition 12.7 A is low ⇒ A is not r.e.-complete.

Proof: suppose A is r.e.-complete.
So A ≡ K.
So A′ ≡ K ′.
K ′ is not reducible to K by proposition 12.4.2 above.
So A′ is not reducible to K.
So A is not low. a

Define the join operation on sets and degrees as follows:

(A+B)(x) = (A((x)0) ∧ (x)1 = 0) ∨ (B((x)0) ∧ (x)1 = 1)

a ∪ b = [A+B], for a(A),b(B)

Proposition 12.8 The meet operation is the greatest lower bound operation
corresponding to the Turing reducibility order.
Thus, Turing degrees form an upper-semilattice under join.

Proof: in fact, A,B are both M -reducible to A + B, by means of the M -
reductions (x)0 and (x)1.
For minimality, suppose that S also Turing-reduces both A and B.
Then A+B is reducible to S as well:
for a given x, (x)1 tells you whether to feed (x)0 through the reduction of A or
the reduction of B. a

The importance of the low degrees is that they generate all the r.e. degrees
when we close under join.

Proposition 12.9 (Sacks’ splitting theorem 1963)
For each r.e. a > 0, there are incomparable, low r.e. degrees b, c such that
a = b ∪ c.

12.5. A TASTE OF DEGREE THEORY 99

The r.e. degrees have many entertaining properties including the following:

Lachlan 1966 There is a minimal pair of r.e. degree above 0.

Sacks 1964 The r.e. degrees are densely ordered.

Shoenfield Every countable partial order can be embedded in the r.e. degrees
in a manner that preserves sups.
(e.g., each countable ordinal is embeddable.)

Yates 1966 Every incomplete r.e. degree is incomparable with some other
r.e. degree.

