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Abstract

It seems that a fixed bias toward simplicity should help one find the truth,
since scientific theorizing is guided by such a bias. But it also seems that a fixed
bias toward simplicity cannot indicate or point at the truth, since an indicator
has to be sensitive to what it indicates. I argue that both views are correct. It
is demonstrated, for a broad range of cases, that the Ockham strategy of favoring
the simplest hypothesis, together with the strategy of never dropping the simplest
hypothesis until it is no longer simplest, uniquely minimizes reversals of opinion
and the times at which the reversals occur prior to convergence to the truth. Thus,
simplicity guides one down the straightest path to the truth, even though that path
may involve twists and turns along the way. The proof does not appeal to prior
probabilities biased toward simplicity. Instead, it is based upon minimization of
worst-case cost bounds over complexity classes of possibilities.

1 The Simplicity Puzzle

There are infinitely many alternative hypotheses consistent with any finite amount of
experience, so how is one entitled to choose among them? Scientists boldly respond with
appeals to “Ockham’s razor”, which selects the “simplest” hypothesis among them,
where simplicity is a vague family of virtues including unity, testability, uniformity
of nature, minimal causal entanglement, and minimal ontological commitment. The
debate over “scientific realism” in the philosophy of science hinges on the propriety of
this response. Scientific realists view simplicity as a legitimate reason for belief and
anti-realists do not. More recently, the question has spread to computer science, where
the widespread adoption of simplicity-biased learning and data-mining software makes
it all the more unavoidable (Mitchell 1997).

Scientific realists infer from the rhetorical force of simplicity arguments that the
simpler theory is better “confirmed” and, hence, that belief in the simpler theory is
better justified (Glymour 1980). Anti-realists (Van Fraassen 1981) concede the rhetor-
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ical force of simplicity arguments, but wonder why they should be so compelling.1

Presumably, epistemic justification is supposed to direct one toward the truth and
away from error. But how could simplicity do any such thing? If you already know
that the truth is simple or probably simple, then Ockham’s razor is unnecessary, and if
you don’t already know that the truth is simple or probably simple, then how could a
fixed bias toward simplicity steer you toward the true theory? For a fixed bias can no
more indicate the truth than a compass whose needle is stuck can indicate direction.

There are answers in the literature, but only irrelevant or circular ones. The most
familiar and intuitive argument for realism is that it would be a “miracle” if a complex,
disunified theory with many free parameters were true when a unified theory accounts
for the same data. But the alleged miracle is only a miracle with respect to one’s
personal, prior probabilities. At the level of theories, one is urged to be even-handed,
so that both the simple theory and its complex competitor carry non-zero prior prob-
ability. Then since the complex theory has more free parameters to tweak than the
simple theory has, each particular setting of its parameters has lower prior probability
than does each of the parameter settings of the simple theory. So the miracle argument
amounts to an a priori bias in favor of simple parameter settings over complex param-
eter settings. But that is just how a Bayesian agent implements Ockham’s razor; the
question under consideration is why one should implement it, so far as finding the true
theory is concerned (cf. Kelly and Glymour 2004).

Another standard argument is that simple explanations are “better” and that one is
entitled, somehow, to infer the “best” explanation (Harman 1965). But even assuming
that the simplest explanation is best, that sounds like wishful thinking (Van Fraassen
1981), for one may like strong explanations, but that doesn’t make them true. The
same objection applies to the view that simplicity is just one virtue among many (Kuhn
1970). An apparently more promising idea is that simple or unified theories compatible
with the data are more severely tested or probed by the data and, hence, are better
“corroborated” (Popper 1968) or “confirmed” (Glymour 1980). But if the truth isn’t
simple, then the truth is less testable than falsehood, so why should one presume that
the truth is simple? Either considerations like testability and explanatory power are
irrelevant to the question at hand or one must assume, circularly, that the world is
simple in order to explain why one is entitled to prefer more testable theories.

Another idea (Sklar 1977) is that if a simple theory is false, future data will lead
to its retraction, so that a simplicity-biased, rational agent will converge to the truth
in the limit of inquiry. But the question at hand is not merely how to overcome one’s
simplicity bias. If Ockham’s razor is truly helpful, as opposed to merely being a defea-
sible impediment, it should facilitate truth-finding better than competing biases. But
since other biases would also be over-ruled by experience eventually, mere convergence

1Van Fraassen focuses on the problem of theories that are not distinguished even by all the evidence
that might ever be collected. There is no question of simplicity guiding you to the truth in such cases,
since no method based only on observations possibly could. On the other hand, it is almost always the
case that simple and complex theories that disagree about some future observations are compatible
with the current data and the simpler one is preferred (e.g., in routine curve-fitting). I focus exclusively
on this ubiquitous, local problem of simplicity rather than on the hopelessly global one.
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to the truth does not explain why simplicity is a better bias than any other, so this
approach is irrelevant to the realism debate.

Perhaps the most interesting of the standard arguments in favor of simplicity is
based upon the concept of “overfitting” (Forster and Sober 1994). The idea is that
predicting the future by means of an equation with too many free parameters compared
to the size of the sample is more likely to produce a prediction far from the true
value. But that argument has more to do with the size of the sample than with the
nature of reality, for the same argument against overfitting still favors use of a simple
theory for prediction from small samples even when you know that the true theory
is very complex. So although this argument is sound and compelling, so far as using
an equation for predictive purposes is concerned, it is also irrelevant to the question
at hand, which concerns finding the true theory rather than using a false theory for
predictive purposes.

Taking stock of the standard answers, it appears that the anti-realist’s objection is
insuperable, for it can only be met by showing how a fixed simplicity bias helps one
find the truth even when the truth is complex. That sounds hopeless, for in complex
worlds simplicity points in the wrong direction. Nonetheless, it is demonstrated below
that simplicity is the best possible advice for a truth-seeker to follow, in a certain sense,
no matter how complex the truth might be.

2 The Freeway to the Truth

It is no fault of simplicity that it fails to point out or indicate the true theory, since
nothing possibly could. General theories or models can always be overturned in the
future by the discovery of subtle effects missed earlier even by the most diligent probing.
So science is not an uneventful voyage along a compass course to the truth. It is more
like an impromptu road trip through the mountains, with numerous hairpin twists and
detours along the way. Taking this more appropriate metaphor seriously is the key to
the simplicity puzzle.

Suppose that, on your way to a distant city, you exit the freeway for a rest stop
and become lost in the neighboring town. If you ask for directions, you will be told the
shortest route back to the freeway entrance ramp even before you say which city you
are headed to, because the freeway is the best route to anywhere a stranger might wish
to go (figure 1). That remains true even if the shortest route to the entrance ramp
takes you west for a few miles when your ultimate destination is east.

Suppose that you disregard the local resident’s advice. You find yourself on small
dirt tracks headed nowhere and, after enough of this, you make a U-turn and head back
toward the entrance ramp. Your hubris is rewarded by the addition of one gratuitous
course reversal to your route before you even begin the real journey on the freeway,
with all of its unavoidable curves through the mountains. So even if directions to the
freeway take you directly away from your ultimate goal at first, you ought to follow
them.

The journey to the truth likewise occasions reversals and detours: revolutions or
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Figure 1: entrance ramp

revisions in which one theory is retracted and replaced by another and the textbooks are
rewritten accordingly (Kuhn 1970). Some retractions are unavoidable in principle given
that one finds the truth at all, since accepting a general theory always occasions a risk of
being surprised by an unanticipated anomaly later. In that case, retracting the theory
is not merely excusable but virtuous— the alternative would be dogmatic commitment
to error for eternity, as Popper (1968) emphasized. But gratuitous reversals in the
course of inquiry are another matter entirely: it would be better to avoid them.2

Suppose that you violate Ockham’s razor by selecting a theory more complex than
experience requires. Then the simple experience up to now can be extended for eternity
with equally uniform, simple experience, devoid of “effects” whose detection would
indicate the need to postulate more causes or free parameters. If you refuse ever to
retract to a simple hypothesis, you never arrive at the truth at all, so you have to
take the bait, eventually, and fall back to the simplest theory. Now you are essentially
where you would have been had you never violated Ockham’s razor, except that you
have already retracted once; and you are still subject to the future appearance of any
number of subtle empirical effects that could not be detected at current sample sizes
or using current instrumentation. Each such effect may occur sufficiently late to result
in an unavoidable retraction. So you are stuck with an extra retraction at the outset
added to all of these. Therefore, always presuming that the world is simple keeps you
on the straightest path to the truth even though the truth may be arbitrarily complex!
So both the realist and the anti-realist are right, since simplicity keeps one on the the
straightest path to the truth, but the straightest path may point in the wrong direction
for the time being and for any finite number of times in the future as well, assuming
that you converge to the truth at all.

2Retractions have been studied extensively in computational learning theory. For a review cf. (Jain
et al. 1999). The first version of the U-turn argument, albeit restricted to problems in which at most
k marbles may be seen, is presented in (Schulte 1999). An infinite ordinal version of the argument,
based loosely on ideas in (Freivalds and Smith 1993) is presented in (Kelly 2002), but that idea still
can’t handle the marble counting problem described below.
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3 Illustration: Counting Marbles

Suppose that you are studying a marble-emitting device that occasionally emits a
marble (a new empirical effect). Your job is to determine how many marbles it will
ever emit (how many free parameters the true theory has). You know nothing about
when the marbles will be emitted (empirical effects may be arbitrarily small and hard to
notice) but you do know on general grounds that at most finitely many marbles will be
emitted (every theory under consideration has at most finitely many free parameters).
Call the situation just described the counting problem.

In this simplistic setting, it seems that when exactly k marbles have been seen
so far, k is the simplest answer compatible with experience. First, k posits the fewest
entities among all answers compatible with experience, which accords with the standard
formulation of Ockham’s razor. Second, k is satisfied by the most uniform (i.e., eternally
marble-free) course of future experience, for alternative answers involve discrete “kinks”
in experience (i.e., each time another marble is seen). Third, k has the fewest free
parameters (for answer k+k′ leaves the appearance time of each of the extra k′ posited
marbles unspecified). Fourth, k is the best explanation of the data, since k + k′ leaves
each of the k′ appearance times unexplained.3 Fifth, k is most testable, for if k is false,
it is refuted, eventually, but answer k +k′ is false but never strictly refuted if the truth
is less than k + k′.

A strategy for solving the counting problem examines the current marble history
at each stage and returns either a natural number k indicating its guess at the total
number of marbles or the skeptical response ‘?’, which indicates a refusal to guess.
Such a strategy solves the counting problem in the limit if and only if it converges, on
increasing data, to the true count k, no matter what the true k happens to be and no
matter when the k marbles happen to appear.

Now suppose that you solve the counting problem in the convergent sense just
defined. Suppose, further, that no marbles have appeared yet, so the Ockham answer
is 0, but you violate Ockham’s razor by guessing some k greater than 0 (figure 2).
Everything you have seen is consistent with the possibility of never seeing any marbles.
Since you converge to the truth, it follows that if the truth is 0, you must eventually
converge to 0, so you retract k and revise to 0 at some point. Now it is possible for
you to see a marble followed by no more marbles. Since you converge to the truth, you
retract 0 eventually and replace it with 1, and so forth. So each answer k is satisfied by
a world compatible with the problem’s background assumptions in which you retract
k + 1 times. But had you always produced the Ockham answer at each stage, you
would have retracted at most k times in an arbitrary world satisfying answer k. So
your worst-case retractions are worse than the Ockham strategy’s over each answer.
Your initial retraction is analogous to the initial U-turn back to the entrance ramp
being added to all the course reversals encountered on one’s journey home after getting
on the freeway.

3One might object that if the k marbles have appeared at each stage so far, then one would expect
them to continue appearing forever, but that violates the background assumption that they will stop
appearing eventually.
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Figure 2: U-turn

Another natural consequence of the U-turn argument is that, after having selected
answer 0, you should never retract it until it ceases to be simplest. Call this property
stalwartness. For suppose that no marbles have been seen and that you follow Ockham’s
advice by choosing answer 0. Suppose, later, that you retract this answer in spite of
the fact that no marble has been observed (for general, skeptical reasons, perhaps).
Then if you converge to the truth, this initial retraction gets added to all the others
you perform, regardless of which answer is true. So your worst-case retraction bound
in answer k is k + 1, whereas a stalwart Ockham strategy can converge to the truth
with just k retractions in answer k.

As simple as it is, the preceding logic has applications to real scientific questions.
For example, consider the case of finding the polynomial degree of the true law, as-
suming that the law is polynomial. It is plausible to assume that larger samples or
improvements in instrumentation allow one to progressively narrow in on the true
value of the dependent variable y for any specified rational value of the independent
variable x over some closed, bounded interval as time progresses. Any finite number of
such observations for a linear law is compatible with the discovery of a small quadratic
effect later. Then any finite amount of such data for a quadratic law is compatible with
the discovery of a small cubic effect later, etc.4 The occasional appearances of these
arbitrarily small (i.e., arbitrarily late), higher-order effects are analogous to the occa-
sional appearances of marbles and polynomial degree k is analogous to seeing exactly
k marbles for eternity.

4 Iterating the Argument

To this point, the U-turn argument has been applied only in cases in which no marble
(anomaly) has yet been detected. But suppose that a marble appears after you say

4Popper (1968) had a similar idea, except that he assumed exact measurements and counted the
number of distinct measurements required to refute a given curve. In science, the observations are
never exact and the logic is as I have described.
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0 but you stubbornly retain the answer 0 (figure 3). Suppose, further, that when the

retraction 
total

1 2 2

2

0

Figure 3: Ockham violator who is efficient ex ante

second marble appears you violate Ockham’s razor by producing 3. Thereafter, you
follow Ockham’s advice. The U-turn logic rehearsed above does not distinguish your
performance from that of the natural strategy that just counts the current marbles,
for although guessing 3 opens you to the risk of retracting back to 2 later, that extra
retraction is concealed by the retraction you saved by not retracting 0 to 1 earlier. So
you converge to the truth and match the Ockham strategy’s performance in terms of
overall, worst-case retractions within each answer.

The preceding analysis is carried out at the onset of inquiry (i.e., ex ante). The
situation changes if your efficiency is assessed ex post, at the moment you first violate
Ockham’s razor by over-counting; e.g., by saying 3 upon seeing the last entry in input
sequence e = (e0, . . . , en) in which only two marbles are presented. At that very
moment, the input data e are already fixed, as is the sequence b = (B0, . . . , Bn−1) of
answers you chose at each stage along e− = (e0, . . . , en−1). So only worlds that present
e and only strategies that produce b along e− should count when your efficiency is
assessed at the moment e has been presented.

Now the U-turn argument rules out over-counting even after some marbles have
been seen (figure 4). For suppose that you over-count for the first time at the end of

“2”
“0” “3” “2”“0” “2” “2”

“2”

“3”

“2”
“2” “2”

“3”

“2”“0”“0”

you

hybrid

“4”

e-

e

Figure 4: inefficiency exposed ex post

e. Consider the hybrid strategy σ that agrees with you along e− and that returns the
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current count thereafter. Strategy σ converges to the right answer (by counting up
to it). Like you, strategy σ saves a retraction by not noticing the first marble (which
appears in e−), but σ produces the current count k at the end of e rather than the
over-count you produce. Moreover, σ never retracts again if the truth is k and, in
general, retracts at most k′ times after the end of e if the truth is k + k′. But if you
converge to the truth, you eventually retract your over-count at e to k if the truth is
k (the initial U-turn back to the freeway to the truth) and then retract k to k + 1 if
another marble is presented thereafter, etc., so you retract k′ + 1 times after the end
of e in answer k + k′ (the initial U-turn gets added to the k inevitable hairpins along
the freeway to destination k + k′). Since σ acts just like you along e−, both you and σ
retract the same number of times (say r) along e−. Since e is your first over-count, you
retract at e, so you retract r + 1 times along e, so your worst-case bound over answer
k + k′ is r + k′ + 2. Even if σ retracts at e, the worst-case retraction bound for σ over
answer k + k′ is at most r + k′ + 1. So if you over-count for the first time at e, then
for each answer k + k′, your worst-case retraction bound over k + k′ exceeds that of σ.
So you are strongly beaten by σ at e, in the sense that σ agrees with you along e− and
over each answer k compatible with e, your worst-case bound over worlds compatible
with e in answer k is worse than that of σ. If σ does as well as you in each answer k
and worse in some answer, then say that you are weakly beaten by σ at e.

The same argument works at each e at which you (a) fail to repeat the answer you
produced at the immediately preceding stage e− and (b) choose any answer other than
the current count. For in that case you retract at e, do no better than the hybrid
method along e−, and do worse in the worst case after e (due to having to retract
back to k if no more marbles are seen after e). Say that a lagged Ockham strategy is
a strategy that only violates Ockham’s razor by retaining the answer it selected at the
preceding stage. So an arbitrary solution is strongly beaten at each violation of the
lagged Ockham property.

By a similar argument, if you solve the problem then you are strongly beaten by
the hybrid strategy σ at an arbitrary e at which you fail to be stalwart. For if you are
not stalwart at e, you drop the answer B you selected at e− even though B is Ockham
at e, so your stalwart clone σ also produces B at e− (because it is a clone) and does
not drop B at e (by stalwartness). Then, as before, σ retracts no more than you after
e in each answer compatible with e, so σ beats you at e.

Being strongly beaten is no sin if every solution is beaten. To clinch the U-turn
argument, each stalwart, lagged Ockham solution σ (e.g., the strategy that always
returns the current count) is efficient at each e in the sense that over each answer
compatible with e, solution σ does as well in worst-case retraction performance as an
arbitrary solution σ′ agreeing with σ along e−. For let e be given and let σ′ be just
like σ along e−. Then both σ and σ′ retract the same number of times r along e− and
both produce the current count k at e−. If σ retracts at e, then since σ is stalwart,
it follows that a marble was presented at e and σ produces the current count k + 1 at
e. So if no more marbles are ever presented, σ′ also has to retract to k + 1 eventually
in order to converge to the truth. So σ′ achieves no better retraction bound than σ in
answer k + 1. Finally, σ retracts no more than k′ times after e in answer k + k′ and
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σ′ can be forced to retract at least k′ times after e in answer k + k′ by presenting each
of the remaining k marbles and waiting until σ′ converges to the current count. So σ
does at least as well as σ′ in answer k + k′.

So the following has been shown.

Proposition 1 Let σ solve the counting problem. Then for each finite input sequence
e:

1. if σ violates either the lagged Ockham property or stalwartness at e then σ is
strongly beaten in terms of retractions at e;

2. if σ satisfies stalwartness and the lagged Ockham property at e, then σ is efficient
in terms of retractions at e.

It is clear from the definitions that being strongly beaten implies being weakly beaten
which implies inefficiency, so it follows that:

Corollary 1 Let σ be a solution to the counting problem and let the cost be retractions.
Then the following are equivalent:

1. σ is efficient at each e;

2. σ is weakly beaten at no e;

3. σ is strongly beaten at no e;

4. σ is stalwart and has the lagged Ockham property at each e.

So the set of all solutions to the counting problem is neatly partitioned into the efficient
solutions and the strongly beaten solutions, where the former are precisely the stalwart,
lagged Ockham solutions. That is hardly obvious from the definitions of efficiency
and beating, themselves. It reflects a substantive interaction between the criteria of
evaluation and convergence to the truth.

Say that a method is a constraint on strategies, so the stalwart, lagged Ockham
property is a method. Since violating this method results in being beaten at each
violation, it follows that no matter what you did in the past, following the stalwart,
lagged Ockham method will always look better at each stage (in terms of worst-case
retractions) than violating it (given that you aim to converge to the truth). Thus,
one may say that the stalwart, lagged Ockham method is stably retraction efficient for
agents who wish to converge to the truth in a retraction-efficient manner. Stability
is crucial for explaining the history of science, for it has frequently occurred that a
complex theory is selected because the simple theory has not yet been conceived or
has been rejected on spurious grounds (e.g., Ptolemaic astronomy vs. Copernican
astronomy or wave optics vs. Newtonian optics). If Ockham’s razor is to explain the
subsequent revision to the simpler theory, the rationale for preferring simpler theories
must survive past violations.

The preceding results respond to an additional anti-realist challenge. Suppose that
you have already seen n−1 marbles at awkward, distant intervals and that after seeing
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each marble you came to believe, eventually, that you had seen all the marbles there
are. The “negative induction” argument against realism (Laudan 1981) recommends
the conclusion that one more marble will appear, since you were fooled each time
before. But that policy would risk a gratuitous retraction, according to the preceding
argument. So the realist wins, no matter how many times Ockham’s razor led to
disaster in the past!5

5 Timed Retractions

Retraction efficiency does not prohibit a solution from hanging onto its previous answer
in spite of the appearance of new marbles, since no retraction is incurred thereby.
Mere consistency with experience rules out under-counting, so consistency together
with retraction efficiency entails that one never return a value other than the correct
count. But that response is not sufficiently general, for suppose that the question is
modified so that if the true number of marbles is even, all you have to say is “even”.6

When the first marble is seen, the right answer seems to be 1 rather than “even”, but
the lagged Ockham property together with consistency does not imply this conclusion,
for “even” is consistent with any possible experience.

Here is a more general and unified explanation. Suppose that you hang on to answer
“even” to save a retraction when the first marble is seen. Nature can withhold further
marbles until you converge to answer 1. The obvious Ockham strategy would drop
“even” immediately and would eventually gain enough confidence to say 1 later, so
if the answer is 1, both you and the Ockham strategy retract once, but you retract
later than the Ockham strategy. That is worse, for one’s state after the retraction is
more enlightened than one’s state prior to it (think of the Newtonians before and after
they lost their faith that an ether drift would be detected) and needlessly delaying a
retraction allows more subsidiary conclusions to accumulate that must be flushed when
it finally occurs.

So instead of simply counting retractions, let the cost of inquiry in a given world
w be represented by a possibly empty, finite sequence of ascending natural numbers
(r1, . . . , rk) such that the strategy retracts exactly k times in w and for each i from 1
to k, the strategy retracts at moment ri. It is necessary to rank such cost sequences.
It would be unfortunate if Ockham’s razor were to depend upon some fussy weighting
of time against overall retractions so that, say, (9) > (1, 2). Happily, it suffices in
the following argument to restrict attention to weak Pareto dominance with respect
to overall retractions and the times of occurrence thereof, which yields only a partial
order over cost sequences. Accordingly, if c, c′ are both cost vectors, let c ≤ c′ if and
only if there exists a sub-sequence d of c′ whose length matches that of c such that
the successive entries in d are at least as great as the corresponding entries in c. Then

5On the other hand, enough surprises might push one to rethink the problem by adding the answer
“infinitely many marbles will appear”. The U-turn argument concerns only the problem as presented,
not other possible problems one might take one’s self to be solving instead.

6Worst-case bounds must still be taken over total marble counts rather than over answer “even”.
The general theory of simplicity developed below works the same way.
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define c < c′ if and only if c ≤ c′ but c′ 6≤ c. For example:

(1, 3, 8) < (1, 5, 9) < (1, 2, 5, 9).

Refer to the cost concept just defined as timed retractions.
Next, consider bounds on sets of timed retraction cost sequences. Recall that ω is

the least ordinal upper bound on the natural numbers. A potential timed retraction
bound is the result of substituting ω from some point onward in a cost sequence: e.g.,
(1, 2, ω, ω). If S is a set of cost sequences and b is a potential bound, then b bounds S
(written S ≤ g) if and only if for each c in S, c ≤ b. Thus, (1, ω) bounds the set of all
sequences (1, k) such that k is an arbitrary natural number.

Finally, say that a strategy is Ockham just in case it never chooses an answer other
than the current count (or possibly ‘?’). Then one obtains the following, strengthened
result.

Proposition 2 Let a solution to the counting problem be given. Then:

1. if the solution violates either the Ockham property or stalwartness at e, then the
solution is strongly beaten in terms of timed retractions at e;

2. if the solution satisfies stalwartness and the Ockham property at e, then the so-
lution is efficient in terms of timed retractions at e.

Proof. Suppose that you over or under count at e, which presents exactly k marbles.
As before, let hybrid strategy σ be just like you along e− and then always return
the current count from e onward. Consider answer k + k′, where k′ is an arbitrary
natural number. Suppose that you retract at e if σ does. Then the cost sequence for
σ along e is no worse than yours, which is, say, (c1, . . . , cr). Then since σ retracts
at most once for each of the additional marbles that appear after e in answer k + k′,
the worst-case cost bound for σ over answer k + k′ is at most (c1, . . . , cr, ω, . . . , ω),
with k′ repetitions of ω. Nature can withhold marbles after e until you eventually
retract your answer (say, at stage i) in preparation for convergence to k. Furthermore,
after you converge to k, nature can continue to withhold marbles until you say k an
arbitrary number of times before presenting another marble. Eventually, you drop k
in preparation for convergence to k + 1, etc. So your bound in answer k + k′ is at least
(c1, . . . , cr, i, ω, . . . , ω), with k′ repetitions of ω. That is worse than the bound for σ
because the bound for σ is a proper sub-sequence of your bound.

Now suppose that you don’t retract at e but σ does. Then let your cost through
e be (c1, . . . , cr), in which case the cost of σ through e is (c1, . . . , cr, i), where i is the
length of e. Then since σ retracts at least once, for each of the additional marbles that
appear after e in answer k +k′, the worst-case cost bound for σ over answer k +k′ is at
most (c1, . . . , cr, i, ω, . . . , ω), with k′ repetitions of ω. But since you do not produce k
at the end of e, nature can withhold marbles until (say, at stage i′ > i) you retract your
answer at e in preparation for convergence to k. Then nature can exact one retraction
out of you, arbitrarily late, for each of the k′ marbles that appears after e in answer
k + k′. Hence, your worst case bound is at least (c1, . . . , cr, i

′, ω, . . . , ω), where i′ > i.
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So your bound is worse than that of σ. The beating argument for stalwartness and the
efficiency argument for stalwart, Ockham solutions are similar.7 a

So when retraction delays are taken into account, every solution is either efficient,
stalwart, and Ockham or strongly beaten. Again, there is no middle ground.

Corollary 2 Let σ be a solution to the counting problem and let the cost be timed
retractions. Then the following are equivalent:8

1. σ is efficient at each e;

2. σ is weakly beaten at no e;

3. σ is strongly beaten at no e;

4. σ is stalwart and Ockham at each e.

6 Generalizing the Argument

In order to argue, in general, that Ockham’s razor is necessary for minimizing timed
retractions, one must say, in general, what Ockham’s razor amounts to. That may seem
like a tall order compared to counting marbles. First, simplicity has such manifold
characteristics— e.g., uniformity, unity, testability, and reduction of free parameters,
causes, or ontological commitments— that one wonders if there is a single notion that
underlies them all. Second, it seems that some aspects of simplicity are a mere matter
of description. For example, if one describes inputs as marbles or non-marbles, then
marble-free worlds are most uniform. But if an “n-ble” is a marble at each time other
than n, when it is a non-marble, then uniformly marble-free experience is not uniformly
n-ble free experience. Nor can one complain that the definition of n-ble is strange, since
marbles are n-bles at each stage but n, when they are non-n-bles (Goodman 1983).
So with respect to the syntactic complexity of definitions, the situation is entirely
symmetrical. These sorts of observations have led to widespread skepticism about the
prospects for a general, unified, objective account of simplicity. But the skepticism is
premature, for in the marble counting problem, the question at hand concerns marbles
rather than n-bles and simplicity may depend upon the structure of the problem one is
trying to solve. Indeed, if simplicity is to have anything to do with efficiency, it must
somehow reflect the structure of the problem one is trying to solve.

In the marble counting problem, answers positing more marbles are more complex.
Presumably, then, worlds that present more marbles are more complex, assuming that
simpler answers are answers satisfied by simpler worlds. One might plausibly say
that each marble is an anomaly relative to the counting problem, since the previously
simplest (best) explanation is no longer simplest after the marble appears. Some insight
is gained into the nature of anomalies by characterizing the occurrence of a marble
entirely in terms of the structure of the marble counting problem, itself.9

7In any event, more general arguments are provided in the appendix for propositions 5 and 7 below.
8Corollary 2 is an instance of corollary 3 below.
9For a critique of this idea and a response, cf. (Chart 2000) and (Schulte 2000b).
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One structural feature of the marble counting problem is that, prior to seeing a third
marble, nature can force an arbitrary solution to the problem to produce successive
answers 2, 3, 4, . . . by presenting no marbles until the solution converges to 2, one marble
followed by no more until the method converges to 3, and so forth. But after seeing
the third marble, nature can only force the solution to produce successive answers
3, 4, 5, . . .. So as a working hypothesis, it seems that an anomaly occurs when the
sequence of answers nature can force is truncated (from the front). This might be
expressed by saying that an anomaly occurs when nature uses up an opportunity to
force the scientist to change her mind or, more colorfully, when nature leads the scientist
one exit further down the freeway to the truth.

Nature may be capable of taking more than one step down the freeway at a time
(e.g., modify the marble counting problem so that several marbles can be emitted at
one time), in which case nature takes two steps down the forcible path (0, 1, 2, . . .)
when two marbles are presented at one time, for after these marbles are seen, only
(2, 3, 4, . . .) is forcible.

Also, there may be more than one freeway to the truth, in which case there may be
several simplest answers to select among. For example (figure 5), modify the counting

rumble ! equa lly s imple
worldsanomaly

Figure 5: nature chooses a path without stepping down it

problem so that marbles come in two colors, white and black, and you have to deter-
mine (i, j), where i is the total number of white marbles and j is the total number of
black. If no marbles have been seen so far, then patterns of form ((0, 0), (1, 0), . . .) and
((0, 0), (0, 1), . . .) are forcible. Suppose you now hear a rumble in the machine, which
guarantees that another marble is coming, but you don’t see the color. Now (0, 0) is no
longer forcible (the rumble can’t be “taken back”) so only patterns of form ((1, 0), . . .)
and ((0, 1), . . .) are forcible. That is a step by nature down both possible paths, so the
rumble constitutes an anomaly. Suppose that the announced marble is black. Now only
patterns of form ((0, 1), . . .) are forcible. No step is taken down path ((0, 1)), however,
so seeing the black marble after hearing the noise is not an anomaly— intuitively, the
anticipated marble has to have some color or other. The same is true if a black marble
is seen. So no world in which just one more marble is seen presents any anomalies
after the sound, so all such worlds are maximally simple in light of the sound. Hence,
answers (1, 0) and (0, 1) are both simplest after the sound, whereas answers that en-
tail more than one marble are more complex than necessary. That is intuitive, since
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Ockham’s razor seems to govern number rather than color in this example.10

As it is usually formulated, Ockham’s razor requires that one never presume a more
complex hypothesis than necessary, which allows for selection among simplest answers
when the noise is heard: e.g., (3, 3) over (2, 4). Answers positing extra marbles— e.g.,
(3, 4000) are plausibly ruled out. But there is still something odd about guessing one
color rather than another before seeing what the color is: after the noise, it seems that
one should simply wait to see what color the announced marble happens to be. Indeed,
the problem’s future structure is entirely symmetrical with respect to color, so there
could be no efficiency advantage in favoring one color over another until one sees which
color it is. Say that a method has the symmetry property at a given stage if it does
not choose among simplest hypotheses at that stage.

In the counting problem, worst-case cost bounds were assessed over possible answers
to the question. In the general theory presented below, worst-case bounds are assessed
over complexity classes of worlds. One reason for this is to “break up” coarse answers
sufficiently to recover the U-turn argument. For example, recall the problem in which
you must count the marbles if the total count is odd and must return “even” if the total
count is even. In this problem, Ockham violators are not necessarily strongly beaten
because the retractions of an arbitrary solution are unbounded in answer “even”, both
in terms of retractions and in terms of timed retractions. In the general theory, the
answer “even” is partitioned into anomaly complexity classes corresponding to each
possible even count and retractions are bounded over these complexity classes so that
the strong beating arguments rehearsed earlier for the counting problem can be lifted to
this coarser problem. This agrees with standard practice in the theory of computational
complexity, in which one examines an algorithm’s worst-case resource consumption over
sets of inputs of equal size (Garey and Johnson 1979).

7 Empirical Simplicity Defined

It remains to state the preceding ideas with mathematical precision. An empirical
problem is a pair (K, Π), where K is a set of infinite sequences of inputs and Π partitions
K. Elements of K are called worlds and cells in Π are called potential answers. A
scientific strategy is a mapping from finite sequences of inputs to answers in Π (or to
‘?’, signalling a refusal to choose). A solution is a strategy that converges to the true
answer in each world in K. Let Ke denote the set of all elements of K that extend
finite input sequence e and let Πe denote the set of all answers A in Π such that A is
compatible with e (i.e., such that Ke shares an element with A). Finally, say that e is
compatible with K just in case some world in K extends e.

All of the following definitions are relative to a given problem (K, Π), which is
suppressed to avoid clutter. Say that an answer pattern is a finite sequence of answers

10That is because color does not lead to unavoidable retractions in the example under discussion.
If each white marble could spontaneously change color, just once, from white to black at an arbitrary
time after being emitted, then white would be simpler than black. The same is true if a continuum of
gray-tones between white and black is possible and marbles never get brighter. Then Ockham should
say “presume no more darkness than necessary”.
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in which no answer occurs immediately after itself. Let g be an answer pattern. The
g-forcing game given finite input sequence e compatible with K is played between the
scientist and nature as follows. The scientist plays an answer (or ‘?’), nature plays an
input, and so forth, forever.11 In the limit, the two players produce an infinite play
sequence p, of which pN is the infinite subsequence played by nature and pS is the
infinite subsequence played by the scientist. Let i be the length of e and let pS − i
denote the result of deleting the first i entries from the beginning of pS . Then nature
wins the game if and only if pn is in Ke and either pN does not converge to the answer
true in pN or g is a subsequence of pS − i.

Strategies for the scientist have already been defined. A strategy for nature maps
finite sequences of answers (or ‘?’) to inputs. A strategy for the scientist paired with a
strategy for nature determines a play sequence. A strategy is winning for a player if it
wins against an arbitrary strategy for the other player. Say that g is forcible given e if
and only if nature has a winning strategy in the g-forcing game given e. The g-forcing
game is determined just in case one player or the other has a winning strategy. The
assumption of determinacy for forcing games is so useful formally that I will restrict
attention to such problems.

Restriction 1 (determinacy of forcing games) The following results are restricted
to problems such that for each pattern g, the g-forcing game is determined.

The restriction turns out not to matter in typical applications, for D. Martin’s Borel
determinacy theorem (1975) has the following consequence:

Proposition 3 (determinacy of Borel forcing games) If (K, Π) is solvable and if
K is a Borel set and e is a finite input sequence, then for all answer patterns g, the
g-forcing game in (K, Π) is determined given e.

Since unsolvable problems are irrelevant to the results that follow, it suffices for deter-
minacy of forcing games to assume that K is Borel. That is weaker than saying that
K can be stated with some arbitrary number of quantifiers over observable predicates,
which covers just about any empirical problem one might encounter in practice.12 The
antecedent of the proposition is not a necessary condition for the consequent, so the
scope of the following results is broader still.

Say that answer pattern g is backwards-maximally forcible at e if and only if g is
forcible given e and for each forcible answer pattern g′ given e, if g is a sub-sequence of
g′ then g is an initial segment of g. Let ∆e denote the set of all answer patterns that
are backwards-maximally forcible at e. The backwards-maximality property is crucial
to the results that follow. The point is to eliminate gaps from the sequences in ∆e. For

11Cf. (Kechris 1991) for a general introduction to the pivotal role of infinite games in descriptive set
theory.

12A typical sort of K (e.g., for marble counting and for inferring polynomial degree) says that there
exists a stage such that for each later stage, no further empirical effects are encountered. That involves
only two quantifiers, so the restriction is easily satisfied.
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example, in the marble counting problem, if e presents no marbles, then ∆e looks like:

()
(0)
(0, 1)
(0, 1, 2)
(0, 1, 2, 3)
...

whereas the forcible sequences include all of the gappy sub-sequences of these, such as
(4, 7, 9).

It is not necessarily the case that each forcible pattern b at e can be extended to a
backwards-maximally forcible pattering at e. For example, suppose that tomorrow you
may see any number of marbles and that any of the marbles may disappear at any time
thereafter. At the outset, each finite, descending sequence of marble counts is forcible,
so each forcible pattern can be extended at the beginning to a forcible pattern. The
following formal development is simplified by, frankly, ignoring such problems.

Restriction 2 (well-foundedness of forcibility) If pattern b is forcible at e, then
there exists pattern b′ of which b is a sub-pattern such that b′ is in ∆e.

One would expect that if (A,B, C) is in ∆e, then there should be further experience
e′ such that (B,C) is in ∆e; but that is not necessarily the case.13 It simplifies the
following theory to ignore those cases as well. Let ∗ denote concatenation.

Restriction 3 (graceful decrementation) If A ∗ B ∗ c is in ∆e, then there exists
proper extension e′ of e compatible with K such that B ∗ c is in ∆e′ and exactly one
anomaly occurs along e′ properly after the end of e.

If g is an answer pattern, let g ∗ ∆e denote the set of all g ∗ g′ such that g′ is an
element of ∆e. An anomaly occurs at finite, non-empty input sequence e compatible
with K if and only if there exists a non-empty, finite answer pattern A ∗ g such that:

1. A ∗ g ∗∆e ⊆ ∆e− ;

2. no g′ in ∆e begins with answer A.

Suppose that two marbles are seen simultaneously at stage e in the counting problem.
This anomaly is represented in figure (figure 6). The fact that answer pattern A ∗ g
is non-empty ensures that nature moves down some path in ∆e. Thus, seeing a black
marble is not an anomaly after the noise that announces it.

13Suppose that you have to determine the total number of marbles and the time of the last marble
if there happens to be an odd number of marbles. If no marbles appear in e yet, then we have that for
each n, (0, 2, 4, . . . 2n) is in ∆e. But upon seeing the first marble at stage k in e′, ((1, k), 2, 4, . . . 2n) is
in ∆e′ .
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(0, 1)
(0, 1, 2)
(0, 1, 2, 3)
(0, 1, 2, 3, 4)...

()
(2)
(2, 3)
(2, 3, 4)...

()
(0)
(0, 1)
(0, 1, 2)
(0, 1, 2, 3)
(0, 1, 2, 3, 4)...

(0, 1) * = 

e e_

Figure 6: simultaneous observation of two marbles

If w is a world in K, then let c(w, e) denote the number of anomalies that occur
along w properly after e. If A is an answer, let c(A, e) denote the least c(w, e) such
that w is in Ke ∩ A. Call c(w, e) the conditional anomaly complexity of w (or of A)
given e, and similarly for c(A, e). Then let unconditional anomaly complexity be given
by c(w) = c(w, ()) and c(A) = c(A, ()), where () is the empty input sequence.

Marbles are still anomalies in the marble-counting problem, but the preceding def-
initions don’t see the marbles; they see only the structural “shadow” each marble
occurrence casts against the branching topology of the marble counting problem. Each
marble occurrence is an anomaly even if one gets to say “even” rather than the true
count when the true count is even. The noise announcing a marble is anomalous, but
seeing a marble after the noise is not. Seeing two marbles after the noise is anomalous,
however. If several marbles are visible and some of them might disappear permanently
at any time, then disappearances of marbles count as anomalies and simple worlds
have more marbles than complex ones. Refutations of lower polynomial degrees and
the discovery that a linear function depends upon an independent variable also count as
anomalies in the corresponding problems (assuming that the data consist of ever-tighter
open intervals around the dependent variable).

8 Ockham’s Razor, Symmetry, and Stalwartness

Answer A is simplest at e if and only if

c(A, e) = min
B∈Πe

c(B, e).14

A method satisfies Ockham’s razor at e just in case the answer output by the method
at e is ‘?’ or is simplest at e. Symmetry at e requires that the method output at e
either ‘?’ or the unique answer that minimizes c(A, e). Stalwartness at e requires that
if the scientist’s output A at e− is uniquely simplest at e, then the scientist produces
A also at e.

Ockham’s razor may be defined in terms of simplicity rather than complexity, us-
ing a standard rescaling trick familiar from information theory. Define conditional

14In light of lemma 7 in the appendix, this condition is equivalent to c(A, e) = 0.
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simplicity as:
s(A, e) = exp(−c(A, e)).

This definition reveals an interesting connection between Ockham’s razor and Bayesian
updating, for it follows immediately from the definition of c(A, e) that:

c(A, e) = c(A ∩Ke)− c(Ke).

Applying the definition of s(A, e) to both sides of the preceding equation yields:

s(A, e) =
s(A ∩Ke)

s(Ke)
,

which is the usual definition of Bayesian updating. Then Ockham’s razor requires
that one choose the uniquely simplest hypothesis, where simplicity degree is updated
by conditionalization. Nothing about coherence or probability has been presupposed,
however, so Bayesians who seek Ockham’s razor in prior probabilities updated by con-
ditioning put the arbitrary cart before the essential horse.

9 Symmetrical Solvability

Not every problem has a symmetrical solution. For example, suppose that the problem
is to say not only how many marbles appear, but when each of them appears. In
this problem, every answer compatible with e is simplest at e, since only patterns of
unit length are forcible. That may seem counterintuitive, since particle counts are
analogous to free parameters and times of appearance are analogous to settings of
those parameters, so it would seem that answers involving more free parameters are
more complex. But it must be kept in mind that the same possibilities could be
parameterized in different ways, and simplicity depends upon which parametrization
the question asks about. If the problem is to count marbles, then worlds with more
marbles are more complex, whenever the marbles arrive. If it is to count n-bles, then
worlds with more n-bles are more complex, regardless of when the marbles arrive. If
the problem is to identify particular worlds, the parametric structure of the problem
disappears and complexity is flattened. Such examples are excluded from consideration
by the following restriction.

Restriction 4 (symmetrical solvability) Only problems with symmetrical solutions
are considered in the results that follow.

In typical applications, restriction 4 can be sidestepped by coarsening or refining the
question in a manner that disambiguates the intended parametrization. It is also worth
mentioning that restrictions 2 and 4 are logically independent given restriction 1.15

15The problem of identifying individual worlds in which at most finitely many marbles occur satisfies
the determinacy assumption (restriction 1) and the well-foundedness assumption (restriction 2) but
not the symmetrical-solvability assumption (restriction 4), whereas the disappearing marble example
described earlier satisfies restrictions 1 and 4 but not restriction 2, for a symmetrical solution could
simply wait until tomorrow to see how many marbles there are and could then guess the current number
of marbles at each stage.
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10 Efficiency Defined

Let Ce(n) denote the set of all worlds in Ke such that c(w, e) = n. Refer to Ce(n)
as the nth anomaly complexity class at e.16 Complexity classes depend only on the
structure of the problem to be solved, so they are not mere matters of description.

Let σ be a solution to (K, Π) and let e be compatible with K. Let the worst-case
timed retractions over Ce(i) be the supremum of the timed retraction costs incurred by
σ over worlds in Ce(i). As mentioned above, the idea is to examine worst-case bounds
over anomaly complexity classes rather than over answers. Accordingly, define:

1. solution σ is efficient at e with respect to a given cost if and only if for each
solution σ′ that agrees with σ along e− and for each n, the worst case cost bound
of σ over Ce(n) is less than or equal to that of σ′;

2. solution σ is strongly beaten at e with respect to a given cost if and only if there
exists solution σ′ that agrees with σ along e− such that for each n such that
Ce(n) is non-empty, the worst case cost bound of σ over Ce(n) is greater than
that of σ′;

3. solution σ is weakly beaten at e with respect to a given cost if and only if there
exists solution σ′ that agrees with σ along e− such that for each n, the worst case
cost bound of σ′ over Ce(n) is less than or equal to that of σ and there exists n
such that the worst-case cost bound of σ′ over Ce(n) is less than that of σ.

Notice that there is no imposed bias or weighting, probabilistic or otherwise, in favor
of lower complexity classes or simple worlds in the preceding definitions. There are
just dominance relations over worst-case bounds on structurally motivated complexity
classes. That is as it must be if the efficiency argument for Ockham’s razor is to avoid
the narrow circularity of standard, Bayesian explanations.

11 Nested Problems

The marble counting problem and the problem of finding the true polynomial degree of
a curve both have the attractive feature that there exists a uniquely simplest answer for
each possible evidential circumstance e. But there may be more than one maximally
simple answer, as in the black and white marble counting problem when the noise is
heard. Accordingly, say that a problem is nested if there exists a uniquely simplest
answer at each e compatible with K. Nested problems allow for branching paths, but
have the property that there is a uniquely simplest answer at each stage of inquiry, as
in the two-color counting problem when no noise is heard prior to seeing the marble.
In that case, nature can choose which color to present at each stage, but the current
count is always the uniquely simplest answer. Standard sorts of scientific questions
have this structure, such as finding the true form of a polynomial equation or finding
the set of all independent variables a linear equation depends upon (given the input

16The complexity classes are actually sets (subsets of K).
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model assumed in the polynomial degree problem discussed earlier). The inference of
conservation laws in particle physics provides another example (cf. Schulte 2000a).

12 The Main Results

For brevity, these assumptions govern all the results that follow. All proofs are pre-
sented in the appendix.

1. (K,Π) is a problem satisfying restrictions 1-4;

2. the cost under consideration is timed retractions;

3. e is a finite input sequence compatible with K.

The main result is that, in general, every deviation from Ockham’s razor incurs a
strong beating. Hence, the argument for Ockham’s razor is stable, in the sense that
you always have a motive to return to Ockham’s fold no matter how prodigal you have
been in the past.

Proposition 4 (efficiency stably implies Ockham’s razor) If solution σ violates
Ockham’s razor at e, then σ is strongly beaten in terms of timed retractions at e.

The same is true of stalwartness.

Proposition 5 (efficiency stably implies stalwartness) If solution σ violates stal-
wartness at e, then σ is strongly beaten in terms of timed retractions at e.

Symmetry is a stronger principle than Ockham’s razor and its general vindication is
correspondingly weaker: violating symmetry results in a weak beating at the first
violation rather than a strong beating at each violation.17

Proposition 6 (efficiency implies symmetry) If solution σ violates symmetry at
e, then σ is weakly beaten at the first moment e′ along e at which symmetry is violated.

17For example, suppose at e that a curtain will be opened tomorrow that reveals either a marble
emitter or nothing at all. The question is whether there is an emitter behind the curtain and if so, how
many marbles it will emit. The no-emitter world and the marble-free emitter world are both simplest
in this example, so symmetry requires that one suspend judgment between the corresponding answers
until the curtain is opened. Suppose that you flout symmetry and guess that you are in the marble-free
emitter world. Had you refrained from choosing, you would have had no retractions in complexity class
Ce(0), but you have incurred at least one retraction in class Ce(0), so you are weakly beaten (every
solution, including you, retracts at least k times after e in the worst case in class Ce(k)). You are not
strongly beaten, however, because you do as well as possible in each class Ce(k) such that k exceeds
zero. Regarding stability, suppose in the preceding example that e′ is later than e but the curtain
has still not parted, and you are wondering whether to retract back to ‘?’ as the symmetry principle
demands. Since your current answer is still simplest, that amounts to a violation of the stalwartness
principle, which has already been shown to imply a strong beating. Hence, you would have a stronger
motive to hang on to your answer than to retract it prior to the opening of the curtain.
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Again, being beaten is no sin if every solution is beaten. To clinch the argument,
stalwart, symmetrical (and, hence, Ockham) solutions are efficient. That amounts
to an existence proof, given that the problem is symmetrically-solvable, since every
symmetrically solvable problem is solvable by a stalwart, symmetrical method.18 The
efficiency is also stable if the problem under consideration is nested.

Proposition 7 (symmetry and stalwartness imply efficiency)

1. If the problem is nested and σ is a stalwart, Ockham solution from e onward,
then σ is efficient at e.

2. If σ is a stalwart, symmetrical (and, hence, Ockham) solution at every stage,
then σ is efficient at every stage.

In nested problems, all solutions are partitioned into the strongly beaten ones and the
stalwart Ockham ones. This duplicates the situation in the counting problem.

Corollary 3 If the problem is nested and σ is a solution, then the following statements
are equivalent:

1. σ is efficient at each e;

2. σ is weakly beaten at no e;

3. σ is strongly beaten at no e;

4. σ is stalwart and Ockham at each e.

More generally, the possibility of weakly beaten, non-symmetrical methods must be
allowed.

Corollary 4 If σ is a solution, then the following statements are equivalent.

1. σ is efficient at each e;

2. σ is weakly beaten at no e;

3. σ is stalwart and symmetrical (and, hence, Ockham) at each e.

13 Conclusion and Prospects

A very general, structural theory of simplicity and of Ockham’s razor has been pre-
sented, according to which Ockham’s razor does not point at the truth but, keeps one
on the most direct route thereto. Indeed, choosing only the uniquely simplest hypoth-
esis compatible with experience and hanging onto it until its uniquely simple status is

18For a symmetrical solution converges to the uniquely simplest answer in each world and is not
prevented from doing so by hanging onto a uniquely simplest answer until it is no longer uniquely
simplest.
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undermined is demonstrably equivalent to minimizing timed retractions prior to con-
vergence to the truth. This result provides a relevant, non-circular connection between
simplicity and finding the true theory. No standard, alternative account of simplicity
does so.

The results suggest that the scientific realism debate is not a genuine debate. The
anti-realist is correct that simplicity cannot function as a magical divining rod for truth.
The realist is correct that simplicity, nonetheless, provides the best possible advice for
finding the truth, because it keeps one on the straightest possible path thereto. The
results also provide some solace for scientists who employ off-the-shelf data-mining
procedures that employ a wired-in prior bias toward simplicity. Such methods really
are more efficient at finding the truth, even though they cannot be said to divine or point
at the truth.19 Finally, the results reverse the common impression that convergence
considerations impose no constraints on the course of inquiry in the short run. It has
been demonstrated that timed retraction efficiency leaves just one choice open to a
convergent scientist: how long to wait for evidence to accumulate before leaping to the
uniquely simplest hypothesis in light of the data. Which answer to choose and when
to drop it are both uniquely determined.

Like all new ideas, the proposed account of Ockham’s razor suggests a range of
potential improvements and generalizations. (1) Efficiency with respect to total number
of erroneous answers produced prior to convergence is equivalent to the symmetry
principle and, hence, entails Ockham’s razor. The same is true if efficiency is defined in
terms of weak Pareto-dominance with respect to timed retractions and errors jointly.
Other combinations of costs can be considered. (2) Penalizing total retracted content
rather than just retractions yields the intuitive result that one should only retract to
“one black or one white” when the noise announcing a new marble is heard. (3) It
remains to apply the preceding ideas with equal rigor and generality to statistical and
causal inference (cf. Kelly and Glymour 2004 for some preliminary ideas). (4) It also
remains to explore realistic recommendations when finding the Ockham hypothesis is
computationally infeasible (cf. Kelly 2004 for more preliminary ideas). (6) Finally, the
symmetrical solvability and well-foundedness restrictions can and should be weakened.
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15 Appendix

In the following results, (K, Π) is assumed to be an empirical problem satisfying restric-
tions 1-4, and e, e′ range over finite input sequences. Also, let ω[k] denote the sequence
(ω, . . . , ω) in which ordinal ω is repeated exactly k times.

Proof of proposition 3. Let p be a play sequence in the g-forcing game in prob-
lem (K, Π) at e. Let pS be the sub-sequence consisting of the scientist’s plays, and let
pN be the corresponding sub-sequence for nature. Let W be the winning condition for
nature. In light of Martin’s (1975) theorem, it suffices to show that W is a Borel set.
Then p ∈ W if and only if:

1. pN ∈ Ke and

2. (a) ¬((∃n)(∀m ≥ n) pS(m) 6= ‘?’ and pN ∈ pS(m)) or

(b) g is a sub-sequence of pS .

Condition pN ∈ Ke is Borel because K is assumed to be Borel and the condition of
extending e is clopen. Condition pS(m) 6= ‘?’ is clopen. Since (K,Π) is solvable, each
cell in Π is Σ0

2, since w is in answer A if and only if there exists a time such that for each
later time the solution converges to A. Hence, the condition that pN ∈ pS(m) is Σ0

2

Borel. Finally, the condition that g is a sub-sequence of pS is open. Borel conditions
are preserved under first-order quantification and Boolean connectives, so W is Borel. a

Proof of proposition 4. Let σ be a solution that violates Ockham’s razor at e
(which need not be the first violation). So σ(e) = A, where A is not a simplest an-
swer compatible with e. Let σ′ agree with σ along e and then produce the simplest
answer compatible with e′ if it exists and ‘?’ otherwise, for each e′ properly extending
e. Since (K, Π) is symmetrically solvable (restriction 4), σ′ solves (K, Π), because σ′

converges, in each world, to whatever the assumed symmetrical solution converges to
in that world. Let r be the timed retraction cost common to both methods σ and σ′

along e− (recall that r is a finite, ascending sequence of natural numbers).
Suppose that Ce(k) is non-empty. There exists a pattern B ∗ b of length at least

k + 1 in ∆e (by lemma 3). Since A is not a simplest answer, B 6= A (by lemma 5).
There exists w in B ∩ Ke along which B ∗ b remains forcible after e (by lemma 4).
Since σ is a solution, σ retracts A after e along w, say at e′ of length j. Now B ∗ b is
still forcible given e′, so there exists w′ in Ce′(k) along which σ can be made to repeat
each successive entry in B ∗ b an arbitrary number of times (by lemma 9). Since B ∗ b
is forcible at e′ and B ∗ b is in ∆e, no anomaly occurs along e′ after e (by lemma 1).
Hence, w′ is in Ce(k). So the worst-case timed retraction bound for σ over Ce(k) is at
least r∗j∗ω[k], where it will be recalled that ω[k] denotes the sequence (ω, . . . , ω), with
ω repeated k times and ∗ indicates concatenation. But since σ′ retracts after e only at
anomalies (by lemma 8), the worst-case timed retraction bound for σ′ over Ce(k) is at
most r ∗ i ∗ ω[k], where i < j is the length of e. Since r ∗ i ∗ ω[k] < r ∗ j ∗ ω[k] and Ck

is an arbitrary, non-empty complexity class, σ′ strongly beats σ at e in terms of timed
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retractions. a

Proof of proposition 5. Let σ be a solution that violates stalwartness at e (which
need not be the first violation). So for some answer A that is uniquely simplest at e,
σ(e−) = A but σ(e) 6= A. Let σ′ be a solution constructed as in the proof of proposition
4, and let r be the timed retraction cost incurred along e− by both σ and σ′. Let i
be the length of e. Then σ incurs timed retraction cost r ∗ i along e, but σ′ incurs
only r. Let Ce(k) be non-empty. So there exists a pattern b in ∆e of length at least
k +1 (by lemma 3). There exists w in Ce(k) along which σ can be made to repeat each
successive entry in b an arbitrary number of times (by lemma 9). So the worst-case
timed retraction bound for σ over Ce(k) is at least r∗i∗ω[k]. Since σ′(e−) = A and σ′ is
stalwart at e and A is simplest at e, σ′(e) = A, so the timed retraction cost of σ′ along
e is just r. Since σ′ retracts after e only at anomalies (by lemma 8), the worst-case
timed retraction bound for σ′ at e is at most r ∗ω[k]. Since r ∗ω[k] < r ∗ i∗ω[k] and Ck

is an arbitrary, non-empty complexity class, σ′ strongly beats σ at e in terms of timed
retractions. a

Proof of proposition 6. Suppose that σ is a solution that violates the symme-
try principle (somewhere). Then there exists finite input sequence e compatible with
K such that σ violates symmetry at e, but not at any proper sub-sequence of e. So
σ(e) = A, where A is not the uniquely simplest answer compatible with e. Let σ′, r,
and ω[k] be as in the proof of proposition 4.

Since A is not uniquely simplest at e, there exists world w in C0(e) such that w
satisfies some answer B 6= A (by lemma 7). Since σ is a solution, σ converges to B in
w, so there exists some e′ properly extending e and extended by w such that σ(e′) 6= A.
So the timed retractions of σ along e′ are at least r ∗ j, where j is the length of e′.
So the worst case timed retractions of σ over Ce(0) are at least r ∗ j. Let w′ be an
arbitrary element of Ce(0). Then σ′ never retracts in w after e (by lemma 8). It is
possible that σ′ retracts at e. So the worst case timed retractions of σ′ over Ce(0) are
less than or equal to r ∗ i, where i < j is the length of e. Observe that r ∗ i < r ∗ j.

Now consider non-empty complexity class Ce(k), for arbitrary k ≥ 0 and let w be
in Ce(k). Then there exists pattern b in ∆e of length at least k + 1 (by lemma 3).

Case A: σ retracts at e if σ′ does. Then the worst case timed retractions of both
methods along e are exactly the same, say r′, and the worst-case timed retraction bound
for σ′ over Ce(k) is no worse than r′ ∗ ω[k]. Also, there exists w′ in Ce(k) along which
σ produces the successive entries along b after e with arbitrarily many repetitions (by
lemma 9). Hence, the worst-case timed retractions of σ after e are at least as bad as
ω[k], so the worst-case timed retraction bound for σ over Ce(k) is at least r′ ∗ ω[k].
But since σ′ retracts after e only at anomalies (by lemma 8), the worst-case timed
retraction bound for σ′ over Ce(k) is at most r′ ∗ ω[k].

Case B: σ′ retracts at e and σ does not. Since e is the first symmetry violation
by σ and σ(e−) = σ(e), answer A = σ(e) is uniquely simplest at e− but not at e. So
there exists w in Ce(0)−A such that w is not in Ce−(0) (by lemma 7). So c(w, e) = 0
but c(w, e−) > 0. Hence, e is an anomaly. So there exists pattern B ∗ d such that
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no pattern in ∆e begins with B and B ∗ d ∗ ∆e ⊆ ∆e− . Since the uniquely simplest
hypothesis A at e− begins each forcible sequence in ∆e− (by lemma 6), B = A, so no
pattern in ∆e begins with A. So pattern b begins with some answer D 6= A. So there
exists world w′ ∈ D ∩ Ke such that for each e′ extending e and extended by w′, b is
forcible at e′ (by lemma 2). Since σ is a solution, σ converges to D in w′ and, hence,
retracts A at some e′ properly extending e and extended by w′. Let j be the length
of e′, so j > i, where i is the length of e. Then b is still forcible at e′, so there exists
w′′ in D ∩ Ce′(k) along which the successive entries in b are produced with arbitrary
repetitions (by lemma 9). Since b is still forcible at e′ and b is in ∆e, no anomalies
occur after e along e′ (by lemma 1), so w′′ is also in Ce(k). Hence, the worst-case timed
retraction bound for σ over Ce(k) is at least r ∗ j ∗ ω[k]. But since σ′ retracts after
e only at anomalies (by lemma 8), the worst-case timed retraction bound for σ′ over
Ce(k) is at most r ∗ i ∗ ω[k] < r ∗ j ∗ ω[k]. a

Proof of proposition 7.1. Let σ′ be a solution to a nested problem that is Ockham
and stalwart from e onward. Since the problem is nested, σ′ is also symmetrical from e
onward. Let σ agree with σ′ along e−. Suppose that Ce(k) is non-empty. There exists
a pattern b of length at least k + 1 in ∆e (by lemma 3).

Case A: σ retracts at e if σ does. Then let r denote the identical costs of σ and
σ′ along e. Since σ′ is symmetrical and stalwart from e onward, the worst-case timed
retraction bound for σ′ over Ce(0) is less than or equal to r ∗ω[k] (by lemma 8). There
exists w′ in Ce(k) along which σ can be made to repeat each successive entry in b an
arbitrary number of times (by lemma 9), so the worst-case timed retraction bound for
σ over Ce(0) is at least r ∗ ω[k].

Case B: σ′ retracts at e and σ does not. Since (K, Π) is nested, there exists a
uniquely simplest answer B at e. So every pattern in ∆e begins with B (by lemma 6),
so b begins with B. Let i be the length of e. Then since σ′ retracts only at anoma-
lies after e (by lemma 8), the worst-case timed retraction bound for σ′ over Ce(k) is
less than or equal to r ∗ i ∗ ω[k]. Since σ′ is stalwart at e and retracts at e, answer
A = σ′(e−) = σ(e−) is not uniquely simplest at e, so A 6= B. There exists w in B ∩Ke

along which b remains forcible after e (by lemma 4). Since σ is a solution, σ must
retract A in w after e, say by e′. Now b is still forcible given e′, so there exists w′ in
Ce′(k) along which σ can be made to repeat each successive entry in b an arbitrary
number of times (by lemma 9). Since b is forcible at e′, no anomaly occurs along e′

after e (by lemma 1). Hence, w′ is in Ce(k). So letting j > i be the length of e′, the
worst-case timed retraction bound for σ over Ce(k) is at least r ∗ j ∗ ω[k] > r ∗ i ∗ ω[k].
a

Proof of proposition 7.2. Let σ′ be a stalwart, symmetrical solution at every e.
Let σ agree with σ along e−. Now consider non-empty complexity class Ce(k), for
arbitrary k > 0 and let w be in Ce(k). Then there exists pattern b in ∆e of length at
least k + 1 (by lemma 3).

Case A: σ retracts at e if σ′ does. Follow the argument for case A in the proof of
proposition 6, observing that a stalwart, symmetrical solution retracts only at anoma-
lies (by lemma 8).
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Case B: σ′ retracts at e and σ does not. Since σ′ is always symmetrical and stalwart
and σ′ retracts at e, answer A = σ′(e−) = σ(e−) is uniquely simplest at e− but not at
e. Pick up from here in case B of the proof of proposition 6, again observing that a
stalwart, symmetrical solution retracts only at anomalies (by lemma 8). a

Proof of corollary 3. (1) implies (2) implies (3) by definition. (3) implies (4)
by propositions 4 and 5. (4) implies symmetry and stalwartness since the problem
is nested. Symmetry and stalwartness imply (1) by proposition 7.1. a

Proof of corollary 4. (1) implies (2) by definition. (2) implies (3) by propositions 6
and 5. (3) implies (1) by proposition 7.2. a
Lemma 1 (anomaly freedom) Let b be in ∆e and let b be forcible at e′ properly
extending e. Then for all e′′ properly extending e and extended by e′:

1. b is in ∆e′′ and

2. e′′ is not an anomaly.

Proof: Suppose that b is in ∆e and b is forcible at e′ properly extending e. Let e′′

properly extend e and be extended by e′. Then b is forcible at e′′ since b is still forcible
at e′. Suppose for contradiction that b is not in ∆e′′ . Then since b is forcible at e′′,
there exists b′ forcible at e′′ such that b is a sub-sequence of b′ but b is not an initial
segment of b′. But then b′ is forcible at e, so b is not in ∆e. Contradiction. So b is in
∆e′ . Again, let e′′ be an arbitrary input sequence properly extending e and extended
by e′. Then it has just been shown that b is in both ∆e′′ and ∆e′′− . Suppose that e′′ is
an anomaly. Then there exists A ∗ g such that A ∗ g ∗∆e′′ ⊆ ∆e′′− and no element of
∆e′′ begins with A. So A ∗ g ∗ b is in ∆e. But b does not begin with A, so b is not an
initial segment of A ∗ g ∗ b. Hence, b is not in ∆e. Contradiction. a
Lemma 2 (forcibility is asymptotic) Let A∗a be forcible given e. Then there exists
a world w in Ke ∩A extending e such that for each finite initial segment e′ of w, A ∗ a
is forcible given e′.

Proof. Suppose A ∗ b is forcible given e. Suppose for contradiction that the consequent
of the lemma is false. Then for each w in A ∩ Ke there exists e′ extending e and
extended by w such that A ∗ b is not forcible given e′. For each w in A ∩ Ke, let ew

be the shortest such e′. For each ew, A ∗ b is not forcible at ew, so since the forcing
games in (K, Π) are all determined (by restriction 1), there exists a solution σw for
(Kew , Πew) that never produces A ∗ b after ew. Let σ solve (K, Π) and let σ∗ be just
like σ except that control is shifted permanently to σw when ew is encountered. So σ∗

is a solution that never produces A ∗ b after seeing some ew. Let σ† be like σ∗ except
that σ† produces ‘?’ along each ew and at each e not extended by some ew such that σ
returns A at e. Then σ† is still a solution, since σ∗ converges to the truth over Ke ∩A
(the question marks eventually end in each w in Ke ∩A) and over Ke −A (σ does not
converge to A in any such world, so again, the question marks end eventually in each
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w in Ke −A). But σ† doesn’t produce A ∗ b after e along any e′ extending e. So A ∗ b
is not forcible given e. Contradiction. a
Lemma 3 (forcible pattern existence) Suppose that Ce(n) is non-empty. Then
there exists a finite pattern in ∆e of length at least n + 1.

Proof. Let w be in Ce(0). In the base case, nature can force the answer A true in w
from an arbitrary solution. For induction, suppose that w is in Ce(n + 1). Let e′ be
the first anomaly along w after e. So there are n anomalies occurring in w after e′. By
the induction hypothesis, there exists pattern a in ∆e′ of length at least n+1. Since e′

is an anomaly, there exists pattern A ∗ b such that A ∗ b ∗ a is a pattern in ∆e′− . Hence,
A ∗ b ∗ a has length at least n + 2. Since A ∗ b ∗ a is forcible at e′−, A ∗ b ∗ a is forcible at
e as well. So there exists some pattern d in ∆e of which A ∗ b ∗ a is a sub-pattern (by
restriction 2), so d has length at least n + 2. a
Lemma 4 (nature’s starting point) Let A ∗ a be in ∆e. Then there exists a world
w in Ce(0) ∩A such that for each finite initial segment e′ of w that extends e, A ∗ a is
in ∆e′.

Proof. Let A ∗ a be in ∆e. So A ∗ a is forcible given e. By lemma 2, there exists w in
Ke ∩ A such that A ∗ a is forcible along each initial segment of w extending e. Let e′

properly extend e and be extended by w. Then A∗a is in ∆e′ and e′ is not an anomaly
(by lemma 1). Hence, w is in Ce(0). a
Lemma 5 (simplest answer forcible first) Let answer A be the first entry in some
pattern in ∆e. Then A is a simplest answer.

Proof. Suppose that A ∗ b ∈ ∆e. Then there exists w in A ∩ Ce(0) (by lemma 4). So
c(A, e) = 0. a
Lemma 6 (uniquely simplest answer and forcibility) Let answer A be uniquely
simplest at e. Then each pattern in ∆e begins with A.

Proof. Suppose that for some answer B 6= A, pattern B ∗ a is in ∆e. Then by lemma
5, B is simplest at e. So A is not uniquely simplest. a
Lemma 7 (simple world existence) Let Ke be non-empty. Then there exists a
world w in Ce(0).

Proof. Suppose there exists w in Ke. If c(w, e) = 0, we are done. So suppose c(w, e) =
k > 0. Then (by lemma 3) there exists A ∗ a in ∆e of length k + 1. So there exists w′

in A ∩ Ce(0) (by lemma 4). a
Lemma 8 (simplest answer defeated only by anomalies) Let Ke be non-empty,
let e be non-empty, and let A be an answer in Π such that A is uniquely simplest at e−
and A is not uniquely simplest at e. Then e is an anomaly.
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Proof. Let Ke, e be non-empty. Then Ke− is non-empty, so by lemma 7, Ce−(0), Ce(0)
are non-empty. So since A is uniquely simplest at e− but not at e, we have Ce−(0) ⊆ A
but Ce(0) 6⊆ A. So there exists w in Ce(0)−Ce−(0). Hence, c(w, e−) > 0 and c(w, e) =
0, so e is an anomaly. a
Lemma 9 (forcing lemma) Let σ be a solution and let pattern a of length at least
k + 1 be in ∆e and let m be a natural number. Then there exists w in Ce(k) such that
after e, σ produces a0 successively for m times and then a1 successively for m, times,
. . . and finally ak successively for m times.

Proof. Let natural number m be given. In the base case, let pattern (A) be in ∆e.
Then there exists world w ∈ A ∩ Ce(0) such that (A) remains in w from e onward (by
lemma 4). Since A is true in w and σ is a solution, σ converges to A in w, so σ produces
A at least m times in succession after e in w.

For induction, let A∗a, be forcible at e, where a is a finite answer pattern of length
k + 1. There exists a world w in A ∩ Ke such that A ∗ a is in ∆e′ , for each finite,
initial segment e′ of w extending e (by lemma 4). Since σ is a solution, σ converges
to A in w. Nature can wait m steps after the onset of convergence until σ produces
A at least m times after e in w. Let e′ extend e such that a is in ∆e′ and exactly
one anomaly occurs along e′ after e (by restriction 3). So by the induction hypothesis,
there exists w′ in Ce(k) such that, after e, σ produces a0 successively for m times and
then a1 successively for m, times, . . . and finally ak successively for m times. Hence, σ
produces A successively for m times followed by a0 for m times, etc. Since exactly one
anomaly occurs along e′ after the end of e and k anomalies occur along w after e′, w′

is in Ce(k + 1). a
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