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un is at or near one of the solstices, its apparent motion with respect to
he stars is very nearly parallel to the celestial equator. In addition, it is
moving on a part of the sphere where the lines of longitude are somewhat
loser together than they are at the equator. As a result the net eastward
motion of the sun is somewhat more than 1° of celestial longitude per day,
nd the celestial sphere must therefore turn westward through slightly
nore than 361° in order to carry the sun from maximum elevation to
maximum elevation. At the equinoxes the situation is quite different. There
the lines of celestial longitude have their maximum spacing on the sphere.
urthermore, the sun’s constant total motion is to the northeast or southeast
ather than due east, and it therefore does not move eastward as much as
® a day. As a result the celestial sphere need not rotate through quite 361°
o return the sun to maximum elevation. This effect, considered alone, makes
he apparent solar day longest at the solstices and shortest at the equinoxes.
. In order to correct for these two irregularities modern civilizations have
dopted 2 time scale known as mean solar time, whose fundamental time
unit is the average length of the apparent solar day. On this time scale the
tars do, by definition, move perfectly regularly, completing their diurnal
circles in just 23 hours 56 minutes 4.081 seconds. But the scale that makes
he stars regular makes the sun irregular. For example, the sun’s maximum
levation rarely occurs at local noon, mean solar time. The time kept by
sundials, the only instruments that directly measure apparent solar time,
“does not pass at the same rate as the time kept by our watches or announced
by time signals on the radio, During December and January, when both
the effects discussed above act to shorten the apparent solar day, the interval
“between successive maximum elevations of the sun is very nearly 0.5 minute
less than the mean solar day. Furthermore, the effect of this small discrep-
_ancy is cumulative — apparent time runs slower than mean time for many
‘days in a row — so that at one season of the year the sun reaches maximum
‘elevation (apparent noon) almost 20 minutes before mean solar noon. At
_other seasons apparent time runs faster than mean time, and over the years
.the two stay together. But they are rarely together during any one day. In
“order to keep accurate time by the sun it is therefore necessary to correct
‘the sundial by using a table, or a diagram like the one shown in Figure 53.
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TECHNICAL APPENDIX

1. Correcting Solar Time

In the central chapters of this book we have assumed that if t
apparent solar day is defined as the time interval between one local noon
and the next; then the time required by the stars to complete their diurnal.
circles is invariably just 4 minutes (rmore accurately 3 minutes 56 seconds
shorter than this solar day. But as noted in a footnote to Chapter 1, this
not quite the case, If the intervals between successive Iocal noons dre p
fectly regular, then the stars must move at an irregular rate. Conversely, if
the stars complete successive diurnal circles in equal intervals of time, then
the lengths of successive solar days must vary. This fact was recognized in
antiquity, at least by the time of Ptolemy and very probably before. To
understand it let us assume, as the ancients did, that the apparent motion
of the stars is perfectly regular, so that the stars provide a fundamental time
scale. We shall then discover two distinct reasons why the intervals betwee
the instants when the sun achieves its maximum daily elevation must vary

The first cause of the irregularity of apparent solar time is the variation
in the rate at which the sun seems to move through the zodiacal constell
tions. As we discovered in Chapter 2, the sun moves more rapidly along
: the ecliptic from autumnal to vernal equinox than from vernal to autumnal
_,“,_ In its daily race with the stars the sun therefore scems to lose ground mor
% rapidly in winter than in summer, so that if time is measured by the stars
the sun must take longer to regain maximum elevation during the winte
than it requires in summertime. It follows that the apparent solar day should
be longest in midwinter and shortest in midsummer, and this would be th
case if another cause of irregularity did not intervene.
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The second source of the apparent solar day’s variability is the angle a +3 .._.....hm-mnzﬁ 28! ] B ﬁvmon_._zﬂ =
which the ecliptic intersects the equator on the celestial sphere. To under +io| A ./ - SUN SLow
stand its effect look again at Figure 13, Chapter 1, and imagine that equally m *5 J,/ i \\H.W.J )
spaced lines of celestial longitude are drawn on the sphere, just as lines o z° NV 7
longitude are drawn on any terrestrial globe. For the sake of simplicity e ‘ 2T/
assume in addition that the sun’s apparent motion along the ecliptic is per ““” rh\ y,

fectly regular and at the rate of 1° along the great circle per day. It then
turns out that, because. the ecliptic is tilted with respect to the equator, the

Figure 53. A graph of the equation of time, indicating the annual variation of
net eastward motion of the sun varies from one day to the next. When th

the difference between mean and apparent solar time.
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The preceding discussion of time employs the apparent motion of the
stars as its staridard of regularity. Clearly this cheice of standard is arbitrary,
at least from a logical viewpoint. Logically we might equally well have
chosen the sun’s apparent motion as our standard of regularity and shown
that on the corresponding time scale the stars move at a continually varying
rate. But the choice of the sun as a standard of regularity would be im-
mensely inconvenient to both science and civil life. The diagram of Figure

| 53 would have to be applied to clocks and watches rather than to sundials.
Astronomers and physicists would be forced to describe the earth’s axial
rotation as occurring at a constantly varying rate. The stellar standard avoids
these awkwardnesses. It is well adapted to all civil and most scientific
functions.

Yet it has not turned out fo be quite adequate for science, at least not
for scientific thecry; the time scale implicit in Newton’s Laws of Motion does
not quite correspond to the stellar standard. From Newton’s Laws, as they
are now understood, it is possible to show that the earth’s axial rotation i
being gradually slowed by effects like tidal friction and that, as a result, the
apparent stellar motions are very gradually slowing down, Either the Laws
or the stellar standard must therefore be adjusted, and considerations of
scientific convenience suggest the search for a new standard. To date the
theoretical inadequacy of the stellar standard is without practical signifi
cance. But it has an immense importance to science, and it has therefore’
led scientists to a renewed search, which continues actively today, for a
clock that will conform to the time scale of scientific theory more accuratel
than the celestial machine itself,

The precessional motion seems to have been noticed first by the Hellen-
distic astronomer Hipparchus during the second century 8.C., and, though not
“widely known at first, it was discussed by a number of subsequent astrono-
mers, including Ptolemy. Most of Ptolemy’s Moslem successors described
some form of the effect, and by adding a ninth sphere to the ancient system
“they succeeded in explaiing it physically. Their most popular explanation
s indicated diagramatically in Figure 54b, which shows the three outermost
‘spheres of the set; N and § are the north and south celestial poles, and the
‘exterior sphere rotates westward about them, once every 23 hours 56
‘minutes, as the sphere of the stars had rotated in the older system. The next
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Figure 54. The precession of the equinoxes. Diagram (a) shows the circle on
the celestial sphere around which the celestial pole moves once in every 26,000
years. The center of the circle is the pole of the ecliptic, and all points on the circle
e just 23%° from this center. Diagram (b) shows how the Moslems explained
precession with the aid of a ninth sphere, the outer sphere in the drawing, This
inth sphere rotates once every 23 hours 56 minutes, as the sphere of the stars had
rotated in the older eight-sphere systems. The eighth sphere, on which the stars are
et, rotates about #ts own poles once in 26,000 years, thus slowly changing the
josition of the celestial pole among the stars. Inside the eighth sphere is the
phere of Saturn, which encloses the remaining planetary spheres as in the older

2. Precession of the Equinoxes

A second technical simplification introduced in the body of thi
book -was the neglect of the precession of the equinoxes. This is the effec
mentioned briefly in Chapter 1, that results in a slow motion of the celes
pole through the stars, If we had been concerned only with naked-ey
observations made during the lifetime of a single astronomer, our simplifi
cation would have been entirely appropriate — naked-eye observations can
not disclose its inaccuracy unless they are made at widely separated points
in time. But observations made, for example, two centuries apart show that
while the stars themselves retain constant relative positions, the celestial
pole about which they move gradually shifts its position among them at'
rate just over 0.5° per century. Observations repeated over far longer period
disclose the pattern of this precessional motion; as the centuries pass th
pole of the heavens moves gradually through the stars in a circle, completin
one revolution every 26,000 years. The center of this circle is the pole of th
ecliptic — the point at which a diameter perpendicular to the plane of
ecliptic intersects the celestial sphere —and the radius of the circle is just
23%°, the same as the angle in which the celestial equator intersects
ecliptic on the sphere of the stars (Figure 54a).

sphere, the middle one in the diagram, is the sphere that carries the stars
and it is joined to the outermost sphere by an axis which passes through the
oles of the ecliptic on the sphere of the stars and through two points 23%°
rom the poles on the outer sphere. This new sphere of the stars is whirled
und daily by the outermost sphere (this accounts for the diurnal stellar
cles). In addition it has a slow motion of its own, one rotation every
m..coo years, which gradually changes the relations between the individual
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stars and the celestial poles. The innermost of the three spheres is Saturn’s]
and it is drawn as a thick shell to allow space for the epicyclic components
of Saturn’s motion. By itself this thick sphere, connected to the sphere of
the stars by an axis through the poles of the ecliptic, accounts for Saturn’s
average circular motion through the stars. .
In the context of ancient and medieval astronomical thought this ninth-
sphere explanation of precession seems both simple and natural. In faet, it
compares relatively well with the Copernican explanation — a gradual conical
motion of the earth’s axis which, during the course of 26,000 years, is directed
successively to all the points on a circle of radius 23%° about the pole of the
ecliptic. Until Newton explained precession as a physical consequence of th
moon’s gravitational attraction for the equatorial bulge of the earth, both
Copernican and Ptolemaic astronomers required one extra and physically
superfluous motion in order to account for it.® Precession has, therefore, o
logical bearing upon the transition from an earth-centered to a sun-centeré
universe. .
Historically, however, the problem of explaining precession had a signi
cant role in inaugurating the Copernican Revolution. It helped to mak ropical year is the year of the seasons, and it is this that must be measured
Ptolemaic astronomy seem monstrous. The observational consequences .o ith precision before an accurate long-term calendar can be designed. Coper-
precession are very small even when observations extend over several ‘nicus’ concern with the calendar therefore led him to a serious study of
centuries, and a small error in the data can therefore result in a radica]: “precession, and thus to an intimate knowledge of that aspect of astronom
change in the description of the over-all phenomenon. Both Hipparchus an bout which Ptolemaic astronomers were in the greatest disagreement Hum
Ptolemy described precession in a way qualitatively equivalent to the on 15 the problem of precession which underlies Copernicus” remark that a.nrm
represented by Figure 54, but many of their contemporaries denied th “mathematicians . . . cannot even explain or observe the constant length of
existence of the effect entirely or else described it quite differently. Particu the seasonal year” (p. 187), and it is this remark which hea ds his List of
larly in the Moslem world a number of divergent descriptions of precessio otives for innovation.
were prevalent. There was no agreement about its rate —in fact, man
astronomers believed that the rate varied. In addition, there was an in
portant school which believed that even the direction of precession change
periodically, an effect known as trepidation. Brahe's observations were te
quired before astronomers could again recognize the true simplicity of t
phenomenon. Copernicus himself did not improve the situation in ‘th
slightest. Ie added exira circles to his system in order to account for ‘th
gradual change in the precessional rate and for other nonexistent effects. Bu
though Copernicus did not improve the account of precession given b
ancient and medieval astronomers, he was immensely concerned to do sp
and that concern provided an important impetus to astronomical reform

. Copernicus’ day an adequate account of precession was the principal pre-
requisite for the most pressing problem of practical astronomy, the reform of
the Julian calendar,
~~ To discover the effect of precession upon the design of calendars, return
--once more to Figure 54, As the diagram shows, the position of the ecliptic
upon the sphere of the stars is fixed once and for all. But though the chang-
“ing positions of the celestial poles do not affect the ecliptic, they do change
~the position of the celestial equator and therefore of the equinoxes, the
‘points at which the ecliptic and the celestial equator intersect. During the
. precessional period, 26,000 years, each of the equinoxes moves slowly and
steadily around the ecliptic at the rate of about 1%° per century, Therefore,
the length of time required by the sun to move once around the ecliptic
(the so-called sidereal year) is not quite the same as the length of time it
_requires to move on the ecliptic from vernal equinox to vernal equinox (the
“tropical year). The latter, which is more than 20 minutes shorter than the
former, is vastly more difficult to measure, because it refers the sun’s motion
to an imaginary and moving point rather than to a fixed star. But the

3. Phases of the Moon and Eclipses

. Because it is identical with the modern explanation, the ancients’
account of the cause of the moon’s phases played no role in the Copernican
Revolution, and it could therefore be omitted from the ealier chapters of
this book. But the phases of the moon play a direct role in the ancient
measurements of the dimensions of the universe, and these measurements,
as we have repeatedly noted, helped make the ancient two-sphere universe
seem concrete and real to scientists and nonscientists alike, Besides, the
ancient explanation of phases, as well as the correlated explanation of
eclipses, provides an important additional illustration of the scientific ade-
quacy of the ancient world view.

- The explanation with which we are concerned was well known in Greece
by the end of the fourth century B.C., though it may have originated con-
siderably earlier. With the acceptance of the two-sphere universe came the
arger and less well documented assumption that all the celestial wanderers
were spheres as well. In part this assumption derived from analogy to the
pherical shape of the earth and heavens, and in part from the conception
of the perfection of the spherical shape and its appropriateness to the perfect

aOoﬂﬁmo:mEBmm_m&muo:mmﬁnmmbmwﬁ.mBoaouSwnnosuﬁmoamumommﬂo
because w_m had already introduced one in another connection. He used an ann

conical motion to keep the earth’s axis parallel to itself throughout the year (Figur
31b), and he could therefore explain’ precession by giving this conical motion

period very very slightly less than a year. Bit Copernicus’ successors, who though
that a single orbital motion would keep the earth’s axis perpetually in alignm
did need an additional conical motion with a period of 26,000 years in orde
explain the changing position of the celestial pole.
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A westward rotation of the entire diagram, excepting the central earth,
accounts for the diurnal motion of the sun and moon, so that an observer at
@ sees the sun just setting and one at b sees it rising. Only the eastward
orbital motions of the sun and moon are motions with respect to the diagram.
When the moon is at position 1 in the diagram it rises with the sun, but,
since its dark side is pointed toward the earth, it can scarcely be seen by a
terrestrial observer. This is the position of new moon. Slightly more than a
week later the moon’s rapid orbital motion has carried it 90° east of the
uHoaq.Boﬁmm sun where it appears, relative to the sun, in position 2. It now
rises at noon and is near the zenith at sunset. Only half of the disk is clearly
visible from the earth, so that this is the position of frst quarter. After
another week or a bit more, the moon is full and rises as the sun sets {posi-
tion 8). Third quarter is shown at position 4, corresponding to a moon that
rises around midnight and is near the zenith at sunrise.

- The diagram used in deciphering the moon’s phases can also be used in
the explanation of eclipses: as the moon moves from position 2 to position 4,
it may pass through the earth’s shadow, in which case it grows dim and is
eclipsed. If the moon always appeared on the ecliptic, it would be eclipsed

heavens. More direct, though incomplete, evidence was provided by the
observed cross sections of the sun and moon. Now if the moon is a sphere,.
a distant sun can illuminate only one-half of its surface (Figure 552), and:
the fraction of this illuminated hemisphere visible to an observer will nee-
essarily vary with his position. An observer on the sun would see the entire
hemisphere at all times; an observer on the earth looking toward the .Bog.
when it lay between him and the sun would see none of the illuminated:
hemisphere whatsoever, It follows that the portion of the Soouvm. mcammo.m._
clearly visible to a terrestrial observer must depend upon the relative posi
tions of the sun, the moon, and the earth,

Four relative positions of the sun and moon at four equally spaced
periods during the lunar month are shown in Figure 55b, which portrays
the earth-centered orbits of the sun and moon in the plane of the ecliptic
(Since only relative positions are significant in discussions of the .Eoouu
phases, the diagram can readily be adapted to a sun-centered universe.)

mnm m_mm_ nw = _-w_Mﬂ._. each time it reached position 3, but, since it continnally wanders north and
—= south, the full moon, earth, and sun rarely lie on a straight line. Full moon

~ must le close to the ecliptic for a lunar eclipse, and this cannot happen

(a) ore than twice a year and seldom happens that often. Solar eclipses occur

whenever the moon, at position 1, casts its shadow on the earth, and this
happens relatively frequently, at least twice a year. Yet solar eclipses are
rarely seen by terrestrial observers. The moon’s shadow on the earth is
extremely small, and an observer must be in the shadow to see the eclipse.
Besides, the moon rarely blocks off more than a small fraction of the sun’s
disk. Therefore, an observer at any one location can seldom see even a partial
sclipse of the sun and may never see a total one. For him it will be 5 rare,
triking, and sometimes terrifying phenomenon.

6 MOON '

4. Ancient Measurements of the Unjverse

One of the most interesting technical applications of ancient
stronomy was its use in the determination of cosmological distances and
izes which could not be measured directly, that is, by ordinary measuring
ticks. These distance measurements illustrate the world view’s fruitfulness
with greater immediacy than most of its other applications, because the
athematical operations upon which they depend lose all physical signifi-
ance unless certain essential elements in the conceptual scheme are true.
or example, whether the earth is a flat disk or a sphere, the stars do appear
0 move in diurnal circles, and techniques that describe this apparent motion
re therefore useful whatever their conceptual basis. But only if the earth

eally a sphere can it be said to have a circumference that can be deter-
rined from the observations of the skies discussed below.

EasTwaRD
MOTION OF PLANETS
WESTWARD
DIURNAL MOTION
OF HEAVENS

THROUGH HEAVENS

(b)

Figure 55. The ancient (and modem) explanation of the Hoou,.m pha
Diagram (a) indicates that only half of the surface of a sphere is E:HE.mn.mn
the rays of the distant sun. Diagram {(b) shows the portion of this illuminate
hemisphere visible to a terrestrial observer for various relative positions of the su
earth, and moon. Position 1 is new moon; 2 is the waxing half moon; 3, full
moon; and 4, the waning half moon.




274 THE COPERNICAN REVOLUTION. " TECHNICAL APPENDIX 275

and moon at the earth when the moon is exactly half full (Figure 57).
Since the moon can be half full only if the angle EMS subtended by the
- earth and the sun at the moon is exactly a right angle, the size of MES
‘must completely determine the shape of the right triangle whose vertices
-.are the moon, the earth, and the sun. Aristarchus’ measurement gave
- MES = 87°, which corresponded to a triangle in which ES:EM::19:1. Ac-

The first reference to measurements of the earth’s circumference appears
in Aristotle’s writings, so that such measurements were probably made
by the middle of the fourth century B.c. But we know only the results of |
these earliest measurements, not the method employed; the first measure- :
ment of which we have a relatively complete, though second-hand, account
is the one made by Eratosthenes, the librarian of the great manuscript col-
lection at Alexandria, during the third century B.c. Eratosthenes measured

the angle ¢ (Figure 56) between the rays of the noon sun and a vertical z_oozz
PARALLEL RAYS EARTH SuN
FROM SUN £ oS

Figure 57. Aristarchus’ measurement of the relative distances from the earth
‘o the moon and the sun. When the moon is exactly half full, the angle EMS
must be just 90°, Therefore a measurement of the angle MES will determine the

-ratio of EM to ES, that is, the ratio of the moon’s distance from the earth to that
-of the sun.

cordingly, he reported that the sun was 19 times as far from the earth as the
Figure 56, FEratosthenes’ measurement of the earth’s circumference. 1f S [hoon mum._ that, smee the maon and the sun subtend the same angle at the

is due south of A on the earth’s surface, then the distance AS must be the sam earth (Figure 58), it was also 19 times as large.
fraction of the earth'’s circumference as the angle @ is of 360°. : Modern measurements, made by quite different techniques and with the
-aid of telescopes, indicate that Aristarchus’ ratio was too small by a factor of
more than twenty; the ratio ES:EM is very nearly 400:1, not 19:1. This
discrepancy arises from the measurement of the angle MES which should be
,.mmo 51, rather than 87°. In practice that measurement is very difficult, par-
ticularly with the instruments known to have been available to Aristarchus.
‘The precise centers of the sun and moon are very hard to determine; in addi-
tion it is difficult to be sure when the moon is just half full. Given. these
jproblems, Aristarchus seems to have chosen the smallest angle compatible
with his uncertain observations, presumably in order to keep the resulting
! ratio credible. Similar considerations must have motivated his successors, for,

gnomon located at Alexandria, A, on a day when the noon sun was directly
overhead at Syene, S, a second Egyptian city located 5000 stades due south
of Alexandria. This angle he found to be 1/50 of a full circle (or 7 1/5°)
Since all the rays striking the surface of the earth from the very distant sun
may be considered parallel, the angle a, which is the sun’s distance from
the zenith at Alexandria, is equal to the angle AOS subtended by S and A
at the center of the earth, O. Furthermore, since this angle is just 1/50 of a
circle, the distance from Alexandria to Syene must be 1/50 of the circum:
ference of the earth, and the total circumference must be 50 x (distance.
from Alexandria to Syene) = 50 x 5000 = 250,000 stades. Most moder
students believe that Eratosthenes’ figure is approximately 5 percent low
than the result given by modern measurement (24,000 miles), but unfor
tunately it is impossible to be sure. The length of the unit “stade” used b
Eratosthenes is unknown, and the known location of Alexandria and Syené:
cannot be used to define the umit, because both the “5000” and the “1/50"
used in the computation above have clearly been “rounded off” to make th
report easier to read, .

A second group of measurements was made during the second century
B.C. by Aristarchus of Samos, now more famous for his anticipation of the
Copernican system. He estimated the distance to and the sizes of the sui
and moon in terms of the angle MES subtended by the centers of the sun

MOON
_\No
EARTH |’

Figure 58. The large but distant sun and the smaller but nearby moon subtend
he same angle at the earth’s surface.
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discrepancy is too small to affect the result.) The ratio of the altitude to the
base of the smallest triangle must be the same as that of the largest, or,
* _ x+20R
2d 19d
Multiplying both sides of the equation by 384 ylelds a new equation:
19x = 2x 4 40R, so that x = 40R/17. In other words, the earth’s shadow
extends beyond the moon for a distance about 2% times the distance from
the earth to the moon,
Comparing the smallest of the triangles with the triangle of intermediate
size gives another equation, from which d may be determined. The frst
comparison gives:

though appreciably improved, estimates of the relative distances to the sun
and the moon remained too small throughout antiquity and the Middle Ages.

The preceding measurements yield only the ratios of astronomical dis-
tances, but by an immensely ingenious argument Aristarchus was able to
convert them to absolute magnitudes, that is, he was able to determine the
diameter of and distances to the sun and the moon in stades. His results
were derived from observations of a lunar eclipse of maximum duration, an
eclipse during which the moon lies squarely on the ecliptic and therefore
passes through the very center of the earth’s shadow. First he measured the
time that elapsed between the instant when the edge of the moon first
entered the shadow and the instant when the moon was totally obscured
for the first time. This figure he compared with the length of time during

which the moon was totally obscured, and he thus discovered that the' : 2. al‘_..m

period of total obscurity was approximately the same length as the period: : 2d D

required for the moon to enter into the earth’s shadow. He concluded that the ‘Substituting 40R/17 for x and multiplying both sides by 17/R yields:
breadth of the earth’s shadow in the region where it is crossed by the moon 20 40417

is very nearly twice the diameter of the moon itself. a4 - "

From the last equation, d = 20D/57 = 0.35D. That is, the diameter of the
‘moon is just greater than one-third the diameter of the earth, and since the
sun’s diameter is just 19 times the moorn’s, the sun must have just over 6%
times the diameter of the earth.

Since D, the diameter of the earth, is known, the actual sizes of the sun
nd moon are given by the computation above. Their distances can be de-
termined by a small additional computation. Because both the sun and the
moon subtend an angle of 0.5° at the earth, each could be placed 720 times
on the circumference of a full (360°) circle with its center at the earth.
The distance of the moon from the earth must therefore be the radius of
4 circle whose eircumference is 720 times the moon’s diameter, now known,
and the sun’s distance must be just 19 times as great. Since the circum-
ference of a circle is 2 times its radius, the moon’s distance from the earth
must be just over 40 diameters of the earth and the distance to the sun
hould be approximately 764 earth diameters.

The methods employed in these computations are brilliant, typifying
the very best efforts of Greek scientists, but the numerical results, particu-
rly those concerning the sun, are uniformly inaceurate because of the initial
rror in the determination of the angular separation of the sun and the
half moon. Modern measurements give the moon’s diameter as just over

SUN

Figure 50, Aristarchus’ construction for computing the absolute distances to
the moon and sun in terms of the ohservations made during a lunar eclipse.

Figure 59 shows the astronomical configuration which Aristarchus
analyzed. In the diagram the moon is shown immediately after it has fully
entered the shadow of the earth. The diameter of the moon is d (an un-
known) and the diameter of the earth’s shadow at the moon is therefore 2d;
the diameter of the earth is D (known in stades from Eratosthenes’
measurement of the circumference of the earth); and the distance from t
moon to the earth is R/ (again an unknown to be determined). Finally, since
the sun’s diameter and distance from the earth are just 19 times the moon’
the diameter of the sun’s disk is just 194 and its distance from the earth s
just 19R. So Aristarchus’ problem, and ours, is to determine d and R, the
unknown distances, in terms of the earth’s diameter, I), a quantity whose
value in stades has zlready been determined.

The diagram shows immediately three similar triangles whose bases a
of length 2d, D, and 19d, and whose altitudes are respectively x (an un-
known}, x + R, and x 4 20R. (Actually the bases of the three triangles are
very slightly shorter than the diameters with which they have be
equated above, but if the triangles are extremely acute, as they are, thi
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sun was often recognized, all ancient and medieval estimates of this cos-
mological dimension remained vastly too small.

Because it depends only upon the relative positions of earth, moon,
and sun, Aristarchus’ techniques for determining size and distance can be
applied with equal accuracy or inaccuracy in the Ptolemaic and Copernican
universes. The ancient determinations of astronomical dimensions could,
therefore, have no direct role in the Copernican Revolution. But they did
have several indirect ones, all of which helped to strengthen the Ptolemaic
system. The possibility of making astronomical measurements illustrated the
great fruitfulness of the Aristotelian-Ptolemaic universe. In addition, the
results of the measurements helped to make the ancient cosmology seem
real by increasing the concreteness with which its structure was specified.
Finally, and most important, the measurement of the distance to the moon
provided an astronomical yardstick which, during the Middle Ages, was
used to provide an indirect measure of the size of the entire universe.

As indicated early in Chapter 3, medieval cosmologists often supposed
that each crystalline shell was just thick enough to contain the epicycle of
its planet and that the shells as a group nested so that they filled all of
space. Using these hypotheses mathematical astronomers were able to de-
termine the relative sizes and thicknesses of all the shells. These relative
dimensions were then converted to earth diameters, stades, or miles, by
using Aristarchus’ method of determining the distance to the moon’s sphere,
A typical set of the cosmological dimensions that resulted was included in
the original discussion. It indicates the detail with which the universe was
investigated and understood by pre-Copernican scientists.

‘in Sancti Thomas Aquingtis . . .
:Fide, 1886), p. 24. My translation.
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