B CHAPTER #

| Objections to the Subjective
Bayesian Theory

B a INTRODUCTION

In the preceding chapters we have developed the theory of
subjective or personalistic Bayesianism as a theory of inductive
inference. We have shown that it offers a highly satisfactory
explanation of standard methodological lore in the domains of
both statistical and deterministic science; and we have also
argued at length that all the alternative accounts of inductive
inference—like Popper’sor Fisher’s—achieve theirexplanatory
goals, where they achieve them at all, only at the cost of quite
arbitrary stipulations. However, the subjective Bayesian the-
ory itself has been the object of much critical attention, to such
an extent, in fact, that it is still regarded in some influential
quarters as vitiated by hopeless difficulties. These difficulties,
in our view, stem from misunderstanding and confusion, and
in this final chapter we shall do our best to dispel both.

Ofthe standard criticisms some—due largely to Popper and
his followers—are answered relatively simply and quickly, and
we shall deal with these first, We shall then consider an ob-
Jection, due to Clark Glymour, which points to an apparently
insuperable problem in explaining within any Bayesian theory
how a hypothesis can be supported by data already known at
the time the hypothesis was proposed. We often do want to say
that hypotheses may be so supported: it is, after all, something
of a commonplace that Einstein’s General Theory of Relativity
was supported by the value already accepted at the time of the
seconds of arc through which Mercury’s perihelion annually
Precesses; and the reader can no doubt think of many other

- examples. Glymour’s objection, however, is precisely that the

- Bayesian theory is incapable of explaining how any data can

support a theory proposed after the data became known.
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We shall argue that Glymour’s objection is false: the Baye-
sian theory can explain how data already known can support
theories. However, the successful rebuttal of Glymour’s objec-
tion appears to bring another in its train. This is that the
Bayesian is incapable of discriminating, in his assessment of
the support of a hypothesis by evidence, between evidence ob-
tained independently of that hypothesis and evidence the hy-
pothesis was deliberately constructed to explain. Then, runs
the objection, and it seems prima facie a very powerful one,
the Bayesian theory must be incorrect since quite clearly there
should be no support of the hypothesis by the evidence in the
second case. We shall show that despite its apparent plausi-
bility, this last claim is incorrect, and that on the contrary there
are many well-known examples of scientific theories drawing
support from data which they were constructed to explain.
Moreover, it turns out that the Bayesian approach reproduces
exactly the sorts of informal reasoning actually employed in
cases like these.

Though they come last, the remaining three objections have
been the most influential. One, which has dominated the dis-
cussion for practically the whole of the present century, is that
a subjective, degree-of-belief interpretation of the probabilities
in Bayes’s Theorem is inadequate precisely because it would
make science a purely subjective affair. How then, it is objected,
can the subjectivist explain the widespread agreement that
science is correctly opposed to superstition in its claims on our
credence because and only because it is based on objectively
justifiable canons of inference, not on what people, perhaps
whimsically, actually do believe and the extent to which they
believe it? We shall argue that this objection rests on a confu-
sion, and that a Bayesian reconstruction of the procedures of
inductive inference poses no threat whatever to the objectivity
of the scientific enterprise. ,

The next objection concerns the principle of conditionalis-
ation, that is to say the principle that if P(h | e) is your condi
tional probability of 2 on e, and you learn e (but nothing stron
ger), then consequent upon this information, your degree o
beliefin £ is, if you are consistent, equal to P(% | e). A frequent]
made charge is that the use of this principle commits the Bayes
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Glymour attempts to argue a variant of Popper’s objection,
but this too is easily repulsed. Glymour claims that since the
observable consequences of scientific theories are at least as
probable as the theories themselves, then in a Bayesian account
one is unable to account for our entertaining theories at all:

On the probabiliist view, it seems, they are a gratuitous risk. The
natural answer is that theorles have some special function that
their collection of observable consequences cannot serve; the
function most frequently suggested is explanation.... [But]
whatever explanatory power may be, we should certainly ex-
pect that goodness of explanation will go hand in hand with
warrant for belief, yet If theories explain and their observational
consequences do not, the Bayesian must deny the linkage.

{Glymour, 1980, pp. 84--85)

The Bayesian certainly does want to justify the quest for the-
ories in terms of a desire for explanation that a congeries of
observational laws cannot by itself provide; but he would also,
for very good reason, deny the linkage Glymour alleges between
explanatory power and warrant for belief. Indeed, counter-
examples to the claim that any such linkage exists are only too
easy to find: a tautology, to take an obvious one, has maximal
warrant for belief and minimal explanatory power. This does
not, of course, imply that what we take to be good explanations
do not tend to have correspondingly high probabilities on the
available evidence. They do. But Glymour’s premiss makes the
additional claim that an increase in “warrant for belief” should
imply an increase in explanatory power. That premiss is clearly
false, and Glymour’s objection collapses.
It is odd that Glymour and the Popperians should converge -
in charging Bayesians with an implicit denial of the value o
deep explanatory theories but take as their points of departure
opposed positions: Glymour thinks that good explanatory the.
ories by that token justify a correspondingly large claim to
belief, and the Popperians assert that such theories merit the
lowest possible degree of belief. Whatever their starting points,

tion; and thege dem

) y .wm S

ands can i
, despite Popper’s solemn agsey-

”&”nm e may consij
H ’ 81st of. But Po ) P
Carnap’s so-called nobﬂ.sczgv%.mwm thesis is untrue. Even in

/_Hmmm“ See our discussion jn Chapter 3)

however, the charge of Glymour, Popper, et al. that Bayesian o5 Y
must in principle undervalue theories is patently false. Perha ) Mmm M“MM MMoWMBEEmm to a class of strictly zu?mumm”wﬂmg
a Woﬁ&% mubm_om.% will dispel any lingering moc.g.um g.ﬁw m Hintikka’s sys nmEm;w moBm:.x and, as we noted in Cha ﬂ.«r
remain. A jury has always at least two mutually inconsiste gn positive prior M ﬂ&:&ﬁ logic almost F<mamE.<w er

g probabilitieg as-

accused is not guilty and there is some alternative explanati Po )
PDer’s arguments for hig 5
€ro-probabil

of the known facts. They wish to determine which, relativ v esigned to show some thing considepal) : ity claim are really
Y less ambitious thap



262 PARTV: FINALE

the vastly overstrong thesis that there can be no consistent
assignment of a nonzero probability to a universal hypothesis;
what they aim at showing, as an examination of his text re-
veals, is that the so-called logical probability of a universal
hypotheses must be zero (Popper, 1959, p. 364; a critical ex-
amination of these arguments is to be found in Howson, 1973
and 1987). We have already (Chapter 3) discussed the thesis
that there is a genuine quantity, the logical probability of a
sentence a, and concluded that the assumption that there is
involves an unacceptably arbitrary, and hence most ‘unlogi-
cal’, degree of apriorism; and a uniform assignment of prob-
ability zero to non-tautological universal hypotheses is to our
mind no less arbitrary than any other assignment.
Nevertheless, Popper has called our attention to a matter
which deserves some comment, namely the fact of the apparent
claim to complete generality of much of science and the episodic
character of its history, successively punctuated by the demise
of great explanatory theories. In view of these facts, we should,
it seems, expect all current theory eventually to be overthrown
by some new data, new candidates to emerge, become refuted
in their turn, and so on ad infinitum. However, it is far from
clear that such bleak pessimism really is the lesson taught by
the history of science. The mere fact that succeeding extensions
_of the observational base of science have caused the demise of
many an explanatory theory does not demonstrate the appro-
priateness of total scepticism, nor does it even make it plau-
sible. If up till now I have failed to find the thimble, I do not
conclude, and certainly ought not to conclude, that further
| quest is hopeless. Of course, science is not hunt the thimble,
but this does not destroy the point of the analogy, which is that
a number of past failures to discover the truth does not by itself
imply that one will not one day be successful.

Pessimism on that particular score is certainly not some-
thing to which the practitioners of science themselves seem to
subscribe. They are not discouraged by the record of others’
failures: there is a great deal of biographical and anecdotal
evidence which suggests that, on the contrary, some of the most
illustrious of scientists not merely invest positive levels of con-
fidence in their theories but, at any rate initially, are frequently
prey to the wildest optimism. Watson and Crick quickly were
totally convinced that they had discovered the structure of the
DNA molecule, to take a well-documented example. This may
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who insisted on behavioural criteria for determining degrees
of belief. From the point of view of someone attempting to elicit
his or her own strength of belief, on the other hand, introspec-
tive thought-experiments, like the one we ourselves invoked,

are quite unexceptionable.

B d PROBABILISTIC INDUCTION IS IMPOSSIBLE

This dramatic claim is made by Popper and David Miller (1983),
who also supply what purports to be a rigorous proof of it. Their
argument is as follows. According to Bayesian theories of sup-
port or confirmation, whether they are subjectively based or
not, evidence e supports hypothesis h if and only if
P(h | e) > P(h). Suppose that h entails e, modulo background
information including initial conditions and so forth. Then it
is easy to see that e supports A if and only if P(h) > 0 and
P(e) < 1. Suppose that these latter conditions are satisfied also,
5o that A is (it seems) supported by e. Popper and Miller dem-
onstrate that if in addition P(h) < P(e), then ~e V h is counter-
supported by e, in the sense that its posterior probability rel-
ative to e is less than its prior probability (the proof of their
result is very straightforward and we shall leave it to the reader
to check if they so wish).

This simple theorem of the probability calculus is given a
dramatic significance by Popper and Miller. For they claim that
~e V h represents the excess content of & overe, and interpret
their result as stating that that excess content is always
counter-supported by e. But e may well support h itself; as we
saw, it does if & entails e. The Bayesian finds nothing in itself
troubling in this breach of what Hempel called the Consequence
Condition (that if e confirms A it confirms every consequence

of h); he just thinks that the Consequence Condition is false.

What does, or ought to trouble him, however, is the explanation

of this breach which Popper and Miller provide. For on their

interpretation of their formal result, the support e appears to.

give h is really just the self-support e gives e which is, after all
a part of the content of 4. Indeed, if we measure the support
S(h,e) of h by e by the simple difference P(h|e) — P(h), then i
is not difficult to show that S(h.e) = S(~eV h,e) + S(e,e) whe
h entails e. All support, conclude Popper and Miller, is really,
therefore, self-, or what they call deductive, support (since
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But Popper and Miller also employ a numerical measure ONS TO THE SUBJECTIVE BAYESIAN THEORY 267
ct of content, ct(h) being defined as P(~h), where P is what
they call a “logical” probability function. And this measure,
which is widely endorsed, has the property, as the reader can
easily check, that ct( ¢) + ct(~e VvV h) = ct( h), whereh t-e, which
would seem to reinforce their claim that e and ~eV h do ex-
haust the content of A. Hintikka, who discusses the properties
of this measure, anticipates Popper and Miller in concluding
| that ~e V h is correctly identified as the excess content of h
over e (1968, p. 313). But we should not be at all impressed by
M this additivity property of ct: all it really means is that cf is
too coarse-grained to ‘notice’ that consequences additional to
those of e and ~eVh separately are created on conjoining e
with ~e V A, a fact which is symptomatic of its quite general
inability to register the additional content created by the con-

junction of two logically independent statements.
Let us briefly justify this last remark. It is easy to show

that
ct(a) + ct(b) — ctla Vv b) = ct(a & b).

!

Suppose that m is a measure on the set of sets of sentences of
the language from which a and b are drawn, and suppose that
we identify ct(c) with mCn(c), where Cn(c) is the set of conse-
quences of the sentence c: in other words, suppose that we
regard ct as measuring consequence classes. Cn(a V b) is equal

to the intersection of Cn(a) and Cn(b), and it follows that ct
he net increase of consequences cre-
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But clearly, P*a) = ; if and only if P¥a) = P*~a); and the
probability calculus tells us that we can substitute equivalent
statements, whence we obtain
2) Pa,|PHa) = P¥(~a)) = 3.
However, we can also instantiate (1) thus:
(3) P(a,| PXa) = P¥(~a)) = P¥(~a)
and combining (2) and (3) we infer that P*~a
odd since no factual premise of any kind has been employed in

the derivation. While this result may not have the form of an
outright contradiction, it very quickly leads to one. For we can
repeat the reasoning above with the two substitution instances
P¥a) =% and P*a) = 2P*~a) instead of P*a) = i and
P¥a) = P¥~a) respectively, whence we infer that P¥a) =
and this is in explicit contradiction to P¥a) = ;.

Were Miller’s derivation formally sound, the consequences
for the Bayesian theory of statistical inference would be little
short of disastrous; for the Principal Principle provides, as we

i saw in Chapter 9, the means of evaluating the likelihood terms
| P(e | h) in Bayes’s Theorem. Without the principle, Bayes’s
1 Theorem would merely contain three undetermined terms,
P(h), P(e), and P(e | h), where these are either probabilities or
§ probability densities, and would yield no information at all
| about the value of the posterior probability or probability-den-

2
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/%c,_,;, b where n is the sample size, and (4,); is a family of alternative
! | hypotheses about the value of the physical probability distri-

) bution, indexed by a parameter i characterising this distribu-
tion, over a sample space one of whose outcomes is e,.
\ But, as we also noted in Chapter 9, odds different from
3 $uﬂ * Nthose based on the Principal Principle are demonstrably unfair,
\ e;% d this tells us that something must be wrong with Miller’s
\ tlever inconsistency proof. The question is, what? It is certainly
\Woﬁ very easy to spot his error, and a considerable number of
L % eminent people have disagreed amongst themselves as to where
b the error lies. Jeffrey (1970) lists, accompanied by his own, the
contemporary analyses of the paradox, though what we believe
to be the correct solution was not found until 1979. It is ex-
pounded in Howson and Oddie (1979), and we shall reproduce

it briefly now.
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But whether there is as much epistemic warrant for the
data in 1915 about the magnitude of Mercury’s perihelion ad-
vance as there is about the number of heads we have just
observed in a sample of a hundred tosses of a coin is beside the
point. About some data we may be more tentative, about other
data less. The Bayesian theory we are proposing is a theory of
inference from data; we say nothing about whether it is correct
to accept the data, or even whether your commitment to the
data is absolute. It may not be, and you may be foolish to repose
in it the confidence you actually do. The Bayesian theory of
support is a theory of how the acceptance as true of some evi-
dential statement affects your belief in some hypothesis. How
you came to accept the truth of the evidence, and whether you
are correct in accepting it as true, are matters which, from the
point of view of the theory, are simply irrelevant. Glymour’s
disquisition on the frailty of much scientific data is therefore,
however valuable in its own right, beside the point of evaluating
the adequacy of the Bayesian theory of inference.

The same is true of his subsequent discussion of the lack
of any general means of computing these degrees of belief. He
considers and rejects several candidates, and concludes that it
may not be some “old result that confirms a new theory, but
rather the new discovery that the new theory entails (and thus
explains) the old [result]” (Glymour, 1980, p. 92). This obser-
vation prompts Glymour to propose a new, quasi-Bayesian cri-
terion for old evidence e to be taken as confirming a new theory

h, namely that
8) Plh|e& (hte)>Ph|e)

where the probability calculus is weakened appropriately, by
replacing the conditions on axioms 2 and 3 by ‘if it is known
that ¢ is a tautology then ..., and ‘if it is known that'a I ~b
then ...’ (we have modified Glymour’s notation in (8) slightly
and omitted explicit reference to background information). This
emendation of the classical theory is sympathetically endorsed
by Niiniluoto (1983), and is further examined by Garber (1983),
though the same idea seems first to have been proposed and
developed by 1. J. Good (starting with Good, 1948), who calls
the resulting notion of probability “dynamic”, or “evolving” Varia ;
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people recognise or are apprised of deductive relationships be-
tween hypothesis and evidence, they often draw conclusions
about levels of support in accordance with those determined
within the Bayesian theory by the same initial probabilities.
This means that Glymour’s non-classical condition (8) does
not after all make for a markedly, if at all, more realistic theory
of Bayesian inference. Nor is it necessary to introduce that

eis Fnoﬁw&ﬁ.mv

1
tha ) €, because of coyysg

confirmation condition (8), in the context of a weakened prob- redicte’ o was
ability calculus, in order to give an adequate Bayesian account MMMMMmmm m:?.uzm& it was b%ﬁ QMMNMNM”@W Mrm relevant circym.
of how old evidence can confirm new theories. On this account, aoBmM or z.zm rider wil] only become mwy: esigned to do so (the
recall, the probabilities which are used to determine support info 0 m.moSou.%v. Finally, suppose that W apparent when we
are relativised not to one’s total background information, but the MBmﬁou minus e, Ple’) is Jow A ¢ ative to background
uPport of 2 by e is congiders s Or4ing to our analysis,

to what that state of background information would be were
one not yet to know the data in question. While Glymour’s
objections to this proposal are, we have argued, unconvincing,
there remain two further objections which we must now
consider.

The first is that relativisation of all the probabilities to
what is strictly a fictitious state of background information is
simply ad hoc: it is a device which avoids the otherwise em-
barrassing necessity of setting P(e) and P(e | 2) equal to 1, but
it does so at the cost of being in conflict with core Bayesian
principles. But alittle reflection should convince the reader that
this charge is untrue. Core Bayesian principles simply state
the conditions—obedience to the probability calculus—for a set

of degrees of belief, relative to a stock of background infor- h . not much
jmation, to determine a corresponding set of odds which are not mMMﬂmwaM%memozw which seem o zmMMMM HMM : M.cm tan say. We
ampbell and Vipej S, 1or a conclusijop

demonstrably unfair. There is absolutely nothing in this which
: sserts that in computing levels of support, one’s subjective
W robabilities must define degrees of belief relative to the total-
ity of one’s current knowledge. On the contrary; as we pointed
out earlier, the support of 2 by e is gauged according to the
effect which a knowledge of e would now have on one’s degree
of belief in A, on the (counter-factual) supposition that one does
not yet know e.

The second objection occurs in a paper by Campbell and
Vinci (1983). Their argument is in essentials as follows. Sup-
pose first of all that 4 predicts, relative to suitable initial con
ditions, an event e, and the experiment designed to elicit e if . , . .
! h is true has not yet been performed. Suppose also that relative modate e’. The attenti Was not designed to accom-
, to current background information, P(e) is high. The experi- ‘
ment is duly performed and e is observed. The support of & by or not. Nothing in ¢

: in

luzéoq:mm
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count of whether h were deliberately constructed with the ex-

planation of e’ in mind or not.
We have already discussed in Chapter 4 the claim that a

hypothesis designed to fit some piece of data is not supported
by it to as great an extent as one which also fits the data but
accidentally, so to speak. We argued there that this claim was
false; and the Bayesian theory of support is certainly incon-

sistent with it. But there are arguments for the view, and these
both sound convincing and also number among their subscrib-
hilosophers of science. We

ers many if not most contemporary p.
shall examine these arguments now and show that their plau-

sibility vanishes on closer inspection.
Suppose that data e are employed as a constraint in con-

structing a deterministic hypothesis & in such a way that A is
made to entail e if suitable initial conditions are met. It seems
fairly clear that A is not under risk of falsification by e; and in
consequence of this fact it is argued that e cannot support A.
The argument is a popular one; thus Giere writes

were used In constructing the mode! and

were thus built into the resulting hypothesis ... then the fit be-
tween these facts and the hypothesis provides no evidence
that the hypothesis s true [since] these facts had no chance

of refuting the hypothesis. {1984, p. 161)

voices a substantially identical opin-

ion, as does Zahar, in a slightly more elaborate way (1983, p.
945). But the argument is quite fallacious. First, note that it
is simply false that any facthasa «“chance” of refuting anything.
If e is a factual statement and & a hypothesis, then e either
refutes h or it does not, and it does or does not whether h was

designed to explain or emb
a confusion of a random variable (in e
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2

us see what Redhead says. He commences by casting Giere’s
premise, that in seeking to explain e one is making the expla-
nation of e a necessary condition for any model to be enter-
tained, into the more explicitly Bayesian condition that the
desire to explain e acts as a “filter” upon the set of all hypoth-
eses, allowing a non-zero prior probability only to those which,
relative to a suitable set of auxiliary hypotheses and initial
conditions, call them a, entail e. It certainly follows from this
«filter” condition that P(e | h) = 1, since

MNU i NU i
et - A

where the sum is over all the mutually exclusive hypotheses
h; whose disjunction is equivalent, with probability 1, to ~h
(the disjunction may include what Shimony (1970) calls a “catch
all” hypothesis, simply equivalent to the negation of the dis-
junction of all the remaining h, and k). Redhead’s filter condi-
tion ensures that all the A; in the sum are such that

2P(h;) .
P(e | k) = 1, and hence that Pe|~h) = SP(h) ~ 1. But this,
of course, implies Giere’s conclusion, that A receives null sup-
port from e, since P(e | ~h) = Ple |A) = 1.

One obvious fault of Redhead’s assumption that, in setting
out to construct an explanation of e one is, in effect, assigning
a positive prior probability only to those hypotheses which en-
tail e relative to a, is that it is inconsistent. For a tautology
does not explain e, yet its probability must be one. Even if the
filtering is restricted to some partition {h;} (and it is not clear
that anyone determines such a partition is attempting to ex-
plain e), the condition that only those members have positive
probability which entail e is still far too strong. For it yields
exactly the same, null-support, result for hypotheses proposed
independently of the data e as it does for those deliberately
designed to explain e. Suppose h is designed to explain e, mod-
ulo a. It follows from the filter condition that P(e) equals 1,

since P(e) = Pe|h)P(h) + Ple| ~h)P(~h) = P(h) + P(~h) =
1. But since P(e) =1 it also must be the case that
P(e| ~h') = 1, where A’ is any hypothesis which entails e mod-

ulo a. It follows that P(h' | e) = P(h'),sothat A’ isnot supported

by e either. The unwelcome strength of Redhead’s filter con-
1. As we have

already pointed out, however, P(e) is not equal to unity just

dition stems from its implicitly making P(e) =

uniform prior probabili i
: . ility distributi
binomial parameter, then P(e bs

computed using the theo
3 - Hl
prior distribution is not zmsuwwoow O epropa

give a good approximation for
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ence to balls in a box can be dispensed with in evaluating the
significance of the example in (ii), incidentally, which is mod-
elled in a great variety of estimably scientific experiments.

It might be objected that in regarding the hypotheses in (i)
and (ii) as well supported by the data from which they were
calculated, we are relying on background information contain-
ing well-defined models of the experiment: the data, in fact,
merely perform the function of specifying parameters in those
underlying models which are themselves taken to be indepen-
dently very well-supported, to the point of their truth being
taken for granted. This is true, but not damaging. In evaluating
support we always and necessarily employ some background
information which we take pretty much or even completely for
granted. And this background information will always be anal-

ogous to a model with undetermined parameters, in that it will
leave open a (more-or-less indefinite) range of alternative hy-
potheses about the structure of some experimental process. Of
course, the data obtained from that experimental source will
by no means uniquely determine which hypothesis is correct,
given that background information; but then the data in (ii)
above failed to fix the parameter uniquely either. Of course,
also, cases of parameter fixing are very special examples of
data-determining hypotheses: the space of possibilities is
clearly defined, for one thing, with usually a simple mathe-
matical structure (it is often an interval of real numbers). But
these features do not at all affect the validity of our general
conclusion, which is that in appropriate circumstances some
data might both act as a constraint on the construction of hy-
potheses and simultaneously support those hypotheses; and
the appropriateness of the circumstances can be characterised,
albeit in general terms, as a function of the magnitude of the

- . Ple|~h)
likelihood ratio Pelh)

B h PREDICTION OR ACCOMMODATION?

There is a fairly ancient, many-sided debate about confirma-
tion, one side of which asserts that hypotheses constructed

deliberately to accommodate data e are never supported to the
same (positive) extent by e as hypotheses which independently
predict e. An extreme version of this view is that such data
never support the corresponding hypotheses. The burden of the
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supports of 2’ and h" is just the ratio of their prior probabilities.
However, h’ logically entails A, so that P(h') < P(h), and by
assumption P(h) < P(h"). Hence S(h',e) = S(h".e).

We said that the condition for that inequality, namely that

P(h) < P(h"), is not too atypical. It often happens, for example,
that one scientific theory predicts an effect e which serves only
to fix a parameter-value in a rival theory. We are tempted to
say that the first theory gets more support from e than does
the second, even if the latter also ‘predicts’ e in those circum-
stances once the parameter has been fixed. But it is important
to be clear about why we make this judgment. It is not because
independent prediction always confers more support than ac-
commodation, as an influential tradition commencing with Leib-
niz and including Whewell has claimed. Support depends on
prior probability, as the support-function S makes clear, and a
completely incredible theory will not in general be regarded as
being supported whatever it predicts, or how it did so (in the
limit we have a contradiction which predicts everything and is
supported by nothing, for example). We make the judgment
that the independently predicting theory A" usually gets more
support than the adjusted hypothesis &' precisely because h
and A" are rivals, and hence can be presumed to have compa-
rable prior probabilities. And if those probabilities are equal,
within the limits of imprecision which usually attends such
judgments, then the inequality above will be valid.

These conclusions depend on the fact that the prior prob-
ability of A, the hypothesis with free parameters, determines
the maximum support which is gained by A’ from the data
which fixed the values of the parameters: as we saw,

P(h)[1 — P(e)]
4 <
Sh'e) = o)
nificance. For it tells us, among other things, that a conse-
quence of regarding the introduction of those parameters as
merely an ad hoc way of accommodating the data, then th
support of the resulting determinate hypothesis will certainl
be inconsiderable. The plausibility of the thesis that prediction:
always glean more support than accommodations rests, we sus
pect, on nothing more than invalidly generalising from thi;
special case in which the thesis is true (this point is mad
forcefully by Nickles, 1985, p. 200).
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curves to the data, in the pointed question (Edgeworth 1895, EORY 285
p. 511) “what weight should be attached to this correspondence
by one who does not perceive any theoretical reason for those
formulas”. Kepler fitted ellipses to Tycho’s data for planetary

explain how current em
Seems to entail not only
cessive acts of condition
Impossible task—hut

HMH.E& data affect current belief then
v € reconstruction of the agent’s suc-
1sation—g daunting if not Practically

orbits, but only after he had found independent reasons for mal i also the characterisatio h
that type of orbit. Nearer to home we find Kitcher castigating to o_“MWMM. MM.MQ msa.m we #mﬁw seen in Chapter wbam_ w Mmam of pri-
some sociobiologists’ parameter adjustment on the ground that neutral waowmm. Wﬁﬂumu lgnorance in terms of some vaJwM:wm

istributi olutely

; on is a pretty h

, But no . pretty hopeless task.

account Sowmmww. ﬁ.zm bmmm. worry us. There is nothing in th
change of beliof %wgs é?cr. commits us to the thesis that &Mw
fact, that ascoun, es m.:.mom via Bayesian conditionalisation,

from anythin ~_BE-9S% contradicts such a thesis, for apart
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word, simply %known’. Th genously: e is, for want of a better

practically ol d&?mwgom reader, aware of the fallibility of

e es of experi ’
admission as entailing a no legs QN%MMMMWF may regard this

“the model gives absolutely no insight into the reasons behind
the periodicity [the adjusted parameter] . . . the choice of a pe-
riodic function for the probability bears no relation to any psy-
chological mechanisms” (1985, p. 375). And so on.

B | THE PRINCIPLE OF CONDITIONALISATION, AND
BAYESIAN LEARNING

Somebody who has degrees of belief P(h), P(e), and P(h & e) in

the truth of the sentences A, e, and & & e thereby has, on of inductive inference We shall ealistic account
? ’ . : argu .,
so. wgﬁ.mwmn things first. We are vwovommbm bortly that this is not

pain of inconsistency, as we saw in Chapter 3, a degree of
belief P(h|e) in h, conditional on e’s being true, where
Ph &e)
P(h|e) Pl
of belief of this person, again on pain of inconsistency, in A
unconditionally becomes P'(h) = P(h | ). This is the Principle
of Conditionalisation whose validity we also proved in Chapter
8. It has, however, become a focus of critical attention in the
past few years, and its status disputed. Hacking, Kyburg, Levi,
and many others claim that the principle requires a justifica-
tion independent of that of the axioms of the probability cal-
culus, as we noted in Chapter 3; but we also observed there
that the claim is false. However, there are some apparent ob-
jections to the principle, and these we must examine now.
One objection is that the Principle of Conditionalisation is
the only mechanism in the Bayesian theory for learning by
experience. Since the prior probability distributions which en-
ter into the Bayes’s Theorem expression of P(h | e) themselves
reflect what van Fraassen (1980) calls “the deliverances of ex:
perience”, it would seem that they can achieve a Bayesian ex
planation only if they themselves are posterior probabilities
relative to some anterior reception of data and some yet prio
probabilities; and so on, until an ultimately prior distributio ‘ nmlm.m. should have ma
is reached, prior to all empirical experience, far back in the
history of the organism, at the dawn of its cognitive life. T

In wm.éﬁ.:mw a theory in which ga theory of inference;

If e does turn out to be true, then the degree

vm:ow.&maivzaob. g the provenance of the input

A more serious objection i
ect
taken as given. gmb%.uvn plo by the d
rassment for th,

them that nmu..<®

ata input e is sim

oo o%ov_m have regardeq this as an mEvMW

e rmw ian theory, because it hag seemed t
re 1s synonymous with ‘certain’ .




286 PART V: FINALE

case, is due to Richard Jeffrey. Jeffrey’s model for belief change
as a result of experiential inputs (“probability kinematics”) does
not involve the ascription of any probability at all, let alone
probability 1, to them. In the simplest possible case, we revise,
as a result of some experience, our personal probability of one
hypothesis A from P(h) to P'(h). How should this affect the
probabilities of the various other hypotheses we contemplate?
According to Jeffrey (1983, p. 169), if ¢ is any other hypothesis

then
(9) P'(a) = P(a|h)P'(h) + P(a|~h)P'(~h)

Clearly, if P'(h) = 1, then we obtain the ordinary rule of con-

ditionalisation, P'(a) = P(a | h), so that “conditionalisation is

a limiting case of the present more general method of assimi-
lating uncertain evidence, and the case of conditionalisation is
approximated more and more closely as the probability [of /]
approaches 1” (p. 171). The case where more than one hypoth-
esis has its probability exogenously altered is a straightforward
generalisation of (9) (ibid.).

Both the Principle of Conditionalisation and Jeffrey’s rule
emerge as special cases in the theory of belief change presented
in Williams. (1980), in which the posterior distribution P of
belief over a class of mutually exclusive hypotheses %, is de-
termined as that distribution which minimizes what Williams
and others call the information in P relative to a prior distri-
bution P?, subject to whatever constraints are imposed as a
consequence of some experiential input. Introduced by Hobson

(1971) as the unique quantity satisfying some intuitively plau-
sible desiderata for measures of relative information, the in-
formation in P relative to P?, I(P,P°), is defined to be equal to

.wﬁ\w«& .
Mw«wu_omﬁwc T vv.

Iis intended to measure something like the probability-relevant
magnitude of the information whose acquisition changes P° to
P. Thus I is zero when P and P° are the same distribution (it
is always nonnegative), and it becomes large without bound if
P places an event close to 1 which P° places close to 0. It is

also not difficult to see that the function P minimizing I, subject

to the condition that for some statement a in the domain of P,

P(a) = 1, is such that P(h;) = P%h;| a) for every i. If instead

we take the constraint, as in the Jeffrey situation, merely to
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is infallible. All that the ascription of probability one to e en-
tails, in our and Levi’s view, is that the agent takes e to be true
in the light of his current experience. It does not follow that at
some future occasion he might not have equally compelling
reasons to regard e as false: e remains corrigible, in other words,
but may quite reasonably, given appropriate background data,
be currently assigned probability 1. Levi sums up the position

very nicely:

propositions accorded probability one are liable 10 be
false. . .. The ramifications of this approach do admittedly stand
in need of further examination. But the posttion is frankly falli-
bilistic. Empilrical propositions can justifiably be believed and,
indeed, admifted into evidence even though it is possible that

they are false. (1967, p. 209)

For these reasons, then, we feel that the fact of the falli-
bility of data poses no threat to the use of the rule of condi-
tionalisation. It is time to move on.

».ﬁwm, neither hm.ﬁpom nor his foll

to his ideal; nor is jt possible in pri owers are able to live up
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o Mv Mmmﬂ:_zo the laws of physics are the o]
sy ] ~_< remote regions of the univers
el Egmaﬂﬂu_mﬂ assumption. But it js mo
bo erent laws obtained a billio
o y arbitrary; it woulg be to import

act possess. %omo:xasﬁ 1977, o 54)

M j THE PROBLEM OF SUBJECTIVISM
Possibly the most serious of all objections made against the
subjective Bayesian theory is that it is simply too subjective.
Fisher, in his remark which we quoted in Chapter 3, section
¢, that results concerning the measurement of belief “are use-
less for scientific purposes”, summed up what many thought
and still think to be a crucial objection. Science is objective to
the extent that the procedures of inference in science are. But
if those procedures reflect purely personal beliefs to a greater
or lesser extent, as they appear to do if they are constrained
only to follow Bayes’s Theorem, with no condition other than
mere consistency being imposed on the forms of the priors, then
the inductive conclusions so generated will also reflect those
purely personal opinions. Echoing Fisher, E. T. Jaynes claims

that

the most elementary requirement of consistency demands that
two persons with the same relevant prior information should
assign the same prior probabilities. Personalistic doctrine makes
no attempt fo meet this requirement ... the notion of person-
alistic probabillity belongs to the field of psychology and has:
no place in applied statistics. Or, to state this more construc- , deducti .
tively, objectivity requires that a statistical analysis should make - the MMMNWMWMWMMM&m.me: Press it g

; might be more acey
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of deductively valid inferences from premisses whose truth-
values are exogenously given. Inductive logic—which is how we
regard the subjective Bayesian theory—is the theory of infer-
ence from some exogenously given data and prior distribution
of belief to a posterior distribution. Both logics assign categor-
ical status to certain distinguished types of statement (tautol-
ogies, for example, are necessarily true and necessarily have
probability 1). Most importantly, as far as the canons of infer-
ence are concerned, neither logic allows freedom to individual
discretion: both are quite impersonal and objective.

Moreover the subjective Bayesian theory does, as we have
seen, incorporate Jaynes’s requirement that “two persons with
the same relevant prior information” assign the same prior
probabilities, but it does so asymptotically, as their data gar-
nered from experience grow without bound. Even then, as we
point out in Chapter 11, it characteristically does not take all
that much sample data to diminish the different distributions
to the point where they are practically identical. Experience is
allowed to dominate prior beliefs, in other words, though in a
controlled way; disagreement is not eradicated at once, which

seems entirely natural, but its effect usually falls off quickly.
What more could anybody—reasonably—want?

This consequence of the Bayesian theory, namely the ten-
dency of experience to reduce disagreement, is usually brought
out as the sole line of defence against the charge of idiosyncratic
subjectivism. While it is important, indeed very important, it
is not the sole and should not even be the principal defence,
however. For the charge, as we have attempted to show, is
quite misconceived. It arises from a widespread failure to see
the subjective Bayesian theory for what it is, a theory of infer-
ence. And as such, it is unimpeachably objective: though its
subject matter, degrees of belief, is subjective, the rules of con-

sistency imposed on them are not at all.

H k SIMPLICITY

What, though, it may be asked, about invoking a criterion of
simplicity as a method of constraining prior distributions—a
method which has the virtue both of being objective and of

conforming to actual scientific practice? How many times, after
all, have we read scientists’ claims that it was the great sim-
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But here we are obliged to correct a well-known claim of
Popper’s. According to him, if one takes the paucity-of-param-
eters analysis of simplicity, then it “contradicts the laws of the
calculus of probability” to assign greater prior probabilities to
the simpler of any two hypotheses (1959, p. 381, his italics).
This claim occurs in his discussion of Jeffreys and Wrinch’s
(1921) so-called simplicity ordering, according to which a pair
of rival hypotheses would be assigned probabilities in the way
Popper contends to be impossible (see also Jeffreys 1961, pp.
45-48 for his further development of the idea of a simplicity
ordering). But Popper’s claim is incorrect. There is no incon-
sistency at all in assigning a higher probability to a hypothesis
which asserts only that a trajectory is a curve of degree 2 than
to that which asserts only that it is of degree 3. Popper’s own
arguments for his false claim are in fact based on much more
than the probability calculus; they are based either on the
Classical Theory of probability, or on the principle that the
‘more easily testable’ a hypothesis is—and one which is sim-
pler, in this particular sense, is more easily testable—the lower

should be its prior probability. We have argued at length in
Chapter 3 that the use of the Classical Theory of probability
to generate prior probability distributions is quite arbitrary.
Popper’s ‘more easily testable = less a priori probable’ equa-
tion is equally arbitrary: there can be no grounds for assuming
that, because fewer independent observations are required to
test k; than A, h, is less likely to be true than A,. There is no
more reason to believe this than there is to believe (as Jeffreys
did) that &, is more likely to be true than 4, (for a fuller dis-
cussion of these issues see Hesse 1974, p. 226—227, and How-

son, 1973, 1987, and 1988).
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M | PEOPLE ARE NOT BAYESIANS
In their summary of an influential piece of empirical work
Kahneman and Tversky deliver themselves of the following
! judgment: ;
The view has been expressed . . . that man, by and large, follows

the correct Bayesian rule, but fails fo appreciate the full impact
of evidence [they cite W. Edwards 1968], and s therefore
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to err, and sometimes to err in very distinctive and persistent
Viations from Bayesian Precepts

ways. It is instructive to compare the situation described by
Kahneman and Tversky with a rather striking and very uni-
form result (one of the present authors has tested it himself
on a group of American freshman and sophomore students) of
an experiment, devised by P. C. Wason (1966) to test subjects’
performance of, on the face of it, a simple deductive task. Four
cards are placed flat on a table. Each card has an integer between
1 and 4 inclusive printed on one face and a letter on the other.

The uppermost faces of the cards are

® m coNcLusion

E K 4 7

and the subjects are asked to name those cards, and only those
cards, which need to be turned over in order to determine
whether the statement, ‘if a card has a vowel on one side,
then it has an even number on the other’, is true. Wason dis-
covered that the vast majority of his subjects indicated either
the pair of cards E and 4, or only the card 4. The correct answer

is, of course, the pair E and 7.
This empirical result has proved to be remarkably per-

sistent:
Time after ime our subjects fall into error. Even some profes-
sional logicians have been known to err in an embarrassing
fashion, and only the rare individual takes us by surprise and
gets it right. It is impossible 1o predict who he will be. This is all
very puzzling. .. (Wason and Johnson-Laird, 1972, p. 173)

Puzzled Wason and Johnson-Laird may be, but about one thing
they are certainly clear: these subjects did get the answer
wrong. Moreover, even the subjects themselves eventually
agreed on that. Now this observation has an obvious relevance
to Kahneman’s and Tversky’s dramatic claim, made in the light
of evidence anaologous to Wason’s, that we are not Bayesians.
Wason has shown, by this and other empirical studies, that we
are not consistently deductive logicians in practice. But he has
not shown, nor did he claim to have shown, that we are not
deductive logicians in some other important sense. For we our-
¥ selves nevertheless constructed those deductive standards and
consciously attempt to meet them, even though we sometimes
fail, and in some cases nearly always fail. By the same token,
it is not prejudicial to the conjecture that what we ourselves

veloped at about th
. ° € same time, ytijj;
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theory of probability itself, seemed at one time, in the early
years of this century, so intractable that many people, like
Fisher and Popper as we have seen, wrote off the account of
probability on which the programme was based. But they were
wrong: in the middle years of this century, shortly after Fisher
and Popper penned their obituaries, secure foundations were
finally laid. Von Neumann and Morgenstern put utility theory
on a consistent basis, and Ramsey and de Finetti realised that
an adequate theory of epistemic probability can dispense with
pseudo-objective principles like that of Indifference without giv-
ing up its claim to impose quite objective standards of consis-
tency in reasoning involving such probabilities. The probabil-
ities might be personal, but the constraints imposed on them
by the condition of consistency are certainly not—a distinc-
tion still not widely grasped even today, and whose failure
to be appreciated continues to vitiate so much contemporary
discussion.

We have written this book in an attempt to convince be-
lievers in ‘objective’ standards in science that there is nothing
subjective in the Bayesian theory as a theory of inference: its
canons of inductive reasoning are quite impartial and objective.
We want this simple truth to be more widely appreciated, and
not only this one. Equally, we want to demonstrate to those
same people that this is the only theory which is adequate to
the task of placing inductive inference on a sound foundation.
The rival claims of the other approaches we have examined in
the previous chapters are quite spurious and often do not with-
stand even a cursory inspection. We hope that we have been
at least partially successful in achieving these objectives: the
final judgment must, however, as always, be the reader’s.
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