M CHAPTER 4

| Bayesian Versus Non-
Bayesian Approaches

In this chapter we shall consider how, by attributing positive
_ probabilities to hypotheses in the manner described in Chapter
- 2, one can account for many of the characteristic features of
- scientific practice, particularly as they relate to deterministic
- theories.

B a THE BAYESIAN NOTION OF CONFIRMATION

Information gathered in the course of observation is often con-
 sidered to have a bearing on the acceptability of a theory or
_ hypothesis (we use the terms interchangeably), either by con-

firming it or by disconfirming it. Such information may either
derive from casual observation or, more commonly, from ex-
periments deliberately contrived in the hope of obtaining rel-
_evant evidence. The idea that evidence may count for or against
a theory, or be neutral towards it, is a central feature of sci-
entific inference, and the Bayesian account will clearly need to
start with a suitable interpretation of these concepts.
Fortunately, there is a suitable and very natural interpre-
tation, for if P(h) measures your belief in a hypothesis when
you do not know the evidence e, and P(h | e)isthe corresponding
easure when you do, e surely confirms 4 when the latter
exceeds the former. So we shall take the following as our
definitions:

e confirms or supports /4 when P(h |e) > P(h)
e disconfirms or undermines % when P(% le) < P(h)

e is neutral with respect to 4 when P(% le) = P(h)

’:One might reasonably take P(h le)— P(h) as measuring the
degree of ¢’s support for A, though other measures have been
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suggested (e.g., Good, 1950). Disagreements on this score will
not be controversial in this book. We shall refer, in the usual
way, to P(h) as ‘the prior probability of b’ and to P(h|e) as
h’s ‘posterior probability’ relative to, or in the light of, e. The
reasons for this terminology are obvious, but it ought to be
noted that the terms have a meaning only in relation to evi-
dence: as Lindley (1970, p. 38) put it, “Poday’s posterior dis-
tribution is tomorrow’s prior”. It should be remembered too
that all the probabilities are evaluated in relation to accepted

background knowledge.

@ b THE APPLICATION OF BAYES’S THEOREM

Bayes’s Theorem relates the posterior probability of a hypoth-
esis, P(h | e), to the terms P(h), P(e|h), and P(e). Hence, know-
ing the values of these last three terms, it is possible to deter-
mine whether e confirms h, and, more importantly, to calculate
Phle). In practice, of course, the various probabilities may
only be known rather imprecisely; we shall have more to say
about this practical aspect of the question later.

The dependence of the posterior probability on the three
terms referred to above is reflected in three striking phenomena
of scientific inference. First, other things being equal, the ex-
tent to which evidence e confirms a hypothesis h increases with
the likelihood of i on e, that is to say, with P(e | h). At one
extreme, where e refutes h, P(e | h) = 0; hence, disconfirmation
is at a maximum. The greatest confirmation is produced, for a
given P(e), when Pe|h) =1, which will be met in practice
when h logically entails e. Statistical hypotheses, which will
be dealt with in parts III and IV of this book, are more sub-
stantially confirmed the higher the value of Pe | h).

Secondly, the posterior probability of a hypothesis depends
on its prior probability, a dependence sometimes discernible in
scientific attitudes to ad hoc hypotheses and in frequently ex-
pressed preferences for the simpler of two hypotheses. As we
shall see, scientists always discriminate, in advance of any
experimentation, between theories they regard as more Or less
credible and, so, worthy of attention and others.

Thirdly, the power of e to confirm h depends on P(e), that
is to say, on the probability of e when it is not assumed that b
is true (which, of course, is not the same as assuming h to be
false). This dependenceis reflected in the scientific intuition that
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the more surprising the evidence, the i
, greater its confirmi
power. I:Iowever, P(e) = P(e| h)P(h) + P(e| ~h)P(~h), :smvlslri
, :?glrl?ﬂ}? C?az)tgr 2, (slectic‘m e, so that really, the posterior
ity o epends on the thr i iti
e, o Ple |~ ee basic quantities P(h),
We shall deal in greater detail with
' . : each of th
inductive reasoning in the course of this chapter. ese facets of

B ¢ FALSIFYING HYPOTHESES

A characteristic pattern of scientific inference is the refutation
of a theory, when one of the theory’s empirical consequences
h?.s been shou.rn to be false in an experiment. As we saw, this
km_d of reasoning, with its straightforward and unimpeacl:lable
: loglcal. st.ructure, exercised such an influence on Popper that h
" made it into the centrepiece of his scientific philosophy' °
. Alth.ough .the Bayesian approach was not conceived 'specif-
ically with this aspect of scientific reasoning in view, it has a
?eady e:':planation for it. The explanation relies on the’fact that
if, relative to background knowledge, a hypothesis % entails
~ consequence e, then (relative to the same background knowla}
edge) P(h | ~e) = 0. Interpreted in the Bayesian fashion, this
means tha!; h is maximally disconfirmed when it is ref’uted
Moreov’er, it can be shown that, as we should expect, once .
- thfaory is refuted, no further evidence can confirm it un,less 1;hfa1
. evidence or some part of the background assumpti’ons are re-
- voked. (.Th'ls is simply proved: if 2 entails e, then 2 & ~e i
f:ontradlctlon, so P(h & ~e) = 0, whence P, ;z |e) = 0. And isfal
is some further datum, then since 2 & ~e & f is also ‘a contr !
diction, the same argument shows that P(h | ~e &) = 0.) ”

B d CHECKING A CONSEQUENCE

i[::ga;riard method of .mvest.igating a deterministic hypothesis
o of‘g o;t some of its 19g1cal consequences, relative to some
ock of acl ground theories, and check whether they are true
'ﬁrmecib or ?séa.nc?, the Geperal Theory of Relativity was con-
i medb y es a;l lishing that hght is deflected when it passes near
B ,,as the theory predicts. It is easy to show, by means
ayes’s Theorem, why and under what circumstances a th
ry is confirmed by its consequences. ”
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If » entails e, then, as may be simply shown, P(e |h) = 1.

P(h) )
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asserts that

0 < P(e) < 1, and if P(h) >

P(h)
Phle.&e, ... &e,) “Ple, &e, .. -&e,)

Now
P(el&eg...&en) =P(el)P(ez&...&en‘e1)

and
Ple, & ... &e,|ed = Ple,|e)Ples & ... &e.|er&es)

Thus, in general,
&...&e,) =
Pley&ee, Ple)Ples|e1) .. . Ple.| e & .. . &eny)
Hence,

Phle, &e, &...&e,) P

“Ple)Pesler) .. Pleles&. . &ens)

d
Provided P(h) > 0, the term P(e, | e1.8.z . & e,,_l)lr(;lu:tst:;e
to 1. If it did not, the posterior probabflillty ofll; g;m; . 23 o
in ich isi ible (Jeffreys, , bp. 43—44).
point exceed 1, which is imposs : L BD s
i i t continue to test a hyp
This explains why one would no ue t ypothest®
i i detailed information o
indefinitely, though without more d T valves
:ndividual’s belief-structure, in particular regarding th !
:)rfl’(}’l;: dIu: ;: ° &e,_,), one could not predict the precise point
n 1 e n—1/
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beyond which further predictions of the hypothesis were suf-
ficiently probable not to be worth examining.

Specific categories of a theory’s consequences also have a
restricted capacity to confirm (Urbach, 1981). Suppose 4 is the

theory under discussion and that 4, is a substantial restriction

of that theory. A substantial restriction of Newton’s theory
might, for example, express the idea that freely falling bodies
near the earth descend with a constant acceleration or that the
period and length of a pendulum are related by the familiar
formula. Since k entails k., P(h) < P(h,) (see Chapter 2, section
e), and if &, is much less speculative than its progenitor, it will
often be significantly more probable.

Now consider a series of predictions derived from 4, but
which also follow from 4,. These may then confirm both theo-
ries, their posterior probabilities being given by Bayes’s Theo-
rem, thus:

B P(h)
" Ple,&e, ...&e,)

Phle, &e, ... &e,)
and

_ P(h,)
Ph.le,&e, ... &e,) " Ple,&e, ...&e,)

Combining these two equations to eliminate the common de-
nominator, one obtains

P(h)
P(h,)
Since the maximum value of the last probability term in

this equatien is 1, it follows that however many predictions of
h, are verified, the main theory, &, can never acquire a posterior

Phle &e, ... &e,) = X Ph, |e, &e, ...&e,).

probability in excess of IJI—)% Hence, the type of evidence char-

' acterised by entailment from A, may well be limited in its ca-
_Pacity to confirm 4. This explains the phenomenon that repe-
titions of an experiment often confirm a general theory only to
limited extent, for the predictions verified by means of a given
ind of experiment (that is, an experiment designed to a spec-
ed pattern) do normally follow from and confirm a much re-
tricted version of the predicting theory.

When an experiment’s capacity to generate confirming ev-
ence has been exhausted through repetition, further support
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is contested by Popperians, who rule it out as an unacceptable
deviation from a purely deductive pattern of reasoning. But in
so doing, they appear to rule out any explanation for the fact,
attested by every scientist, that by repeating some experiment,
one eventually (usually quickly) exhausts its capacity to con-
firm a given hypothesis. Alan Musgrave (1975), however,
thought the fact could be explained non-inductively, in a man-
ner compatible with Popperian principles. He claimed that af-
ter a certain number of repetitions of an experiment, the sci-
_ entist would form a generalisation to the effect that whenever
. the experiment is performed, it yields a similar result. Mus-
- grave then suggested that the generalisation would be entered
_into ‘background knowledge’. Relative to this newly aug-
- mented background knowledge, the experiment is certain to
~produce a similar result on its next performance. Musgrave
_ then appealed to the principle that evidence confirms a hy-
_ pothesis in proportion to the difference between its probability
_ relative to the hypothesis together with background knowledge
 and its probability relative to background knowledge alone.

~ (That is, in Popper’s notation, confirmation is proportional to
 Pe|h&b) - Pl | b), where b is background knowledge.) Mus-
_ grave then inferred that even if the experiment did produce
- the expected result when next performed, the hypothesis would

_ receive no new confirmation. Watkins (1984, p. 297) more re-
_ cently concurred with this account.

, although it seems

of Bayesian reason-
ing, there is no basis in the Popperian methodology for confir-
mation to depend on the probability of the evidence; Popper
. simply invoked the principle ad hoc. Seco

ndly, Musgrave’s sug-
estion takes no account of the fact that a given experimental

esult may be generalised in infinitely many ways. This is a
ubstantial objection since, clearly, different generalisations
give rise to different expectations about the outcomes of future
_experiments, Musgrave’s account is incomplete without some
rule to specify in each case the appropriate generalisation that
should be formulated and adopted. Finally, the decision to des-

gnate the generalisation background knowledge, with the con-
i ther theories and on our
ture conduct regarding, for example, whether to repeat cer-
i experiments, is comprehensible only if we have invested
me confidence in the theory. But then Musgrave’s account
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tacitly calls on the same kind of inductive considerations as it
was designed to circumvent, so its aim is defeated.

B e THE PROBABILITY OF THE EVIDENCE

The degree to which A is confirmed by e depends, according to
Bayesian theory, on the extent to which P(e | h) exceeds P(e),
that is, on how much more probable e is relative to the hy-
pothesis and background assumptions than it is relative just
to background assumptions. Another way of putting this is to
say that confirmation is correlated with how much more prob-
able the evidence is if the hypothesis is true than if it is false,
This is obvious from Bayes’s Theorem when it is reformulated

as follows:

P(hle) Plel|h) _ 1
P(h) Pl Ple|~h) , ..
P(h) + pem W

These facts are reflected in the everyday experience that
information that is particularly unexpected or surprising un-
less some hypothesis is assumed to be true, supports that hy-
pothesis with particular force. Thus, if a soothsayer predicts
that you will meet a dark stranger sometime and you do in
fact, your faith in his powers of precognition would not be much
enhanced: you would probably continue to think his predictions
were just the result of guesswork. However, if the prediction
also gave the correct number of hairs on the head of that
stranger, your previous scepticism would no doubt be severely
shaken.

Cox (1961, p. 92) illustrated this point with an incident in
Macbeth. The three witches, using their special brand of divi-
nation, predicted to Macbeth that he would soon become both
Thane of Cawdor and King of Scotland. He finds both these
prognostications almost impossible to believe:

By Sinel's death, | know | am Thane of Glamis,

But how of Cawdor?
The Thane of Cawdor lives, a prosperous gentleman,
And to be King stands not within the prospect of belief,

No more than to be Cawdor.

But a short time later he learns that the Thane of Cawdor
prospered no longer and was in fact dead and that he, Macbeth,
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and known as the Paradox of Confirmation or sometimes as
the Ravens Paradox. It was called a paradox because its prem-
isses were regarded as extremely plausible, despite their coun-
terintuitive, or in some versions contradictory, implications,
and the reference to ravens stems from the paradigm hypoth-
esis (‘All ravens are black’) which is frequently used to ex-
pound the problem. The difficulty arises from three assump-
tions about confirmation. They are as follows:

1. Hypotheses of the form ‘All R’s are B’ are con-

firmed by the evidence of something that is both R
and B. For example, ‘All ravens are black’ is con-
firmed by a black raven. (Hempel called this Nicod’s
condition, after the philosopher, Jean Nicod.)

2. Logically equivalent hypotheses are confirmed by the
same evidence. (This is the Equivalence condition.)

3. Evidence of some object not being R does not confirm
‘All R’s are B’

We shall describe an object that is both black and a raven

‘with the term RB. Similarly, a non-black, non-raven will be

_denoted RB. A contradiction arises for the following reasons:

RB confirms ‘All R’s are B’, on account of the Nicod condition.

~ According to the Equivalence condition, it also confirms ‘All
~ non-B’s are non-R’s’, since the two hypotheses are logically
_ equivalent. But contradicting this, the third condition implies
that RB does not confirm ‘All non-B’s are non-R’s’.

The contradiction may be avoided by revoking the third

condition. (We shall note later another reason for not holding

n to it.) However, although the remaining conditions are com-
atible, they have a consequence which many philosophers
ave regarded as blatantly false, namely that a non-black, non-
aven (say, a red herring or a white shoe) can confirm the
ypothesis that all ravens are black. (The argument is this:
All non-B’s are non-R’ is equivalent to ‘All R’s are PB’; ac-
ding to the Nicod condition, the first is confirmed by RB;
ce, by the Equivalence condition, so is the second.)
If non-black, non-ravens support the raven hypothesis, this
ms to imply the paradoxical result that one could investigate
1at and other generalisations of a similar form just as well by
erving white paper and red ink from the comfort of one’s
ting desk as by studying ravens on the wing. However, this
uld be a non sequitur. For the fact that RB and RB both
nfirm a hypothesis does not imply that they do so with equal
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force. Once it is recognised that confirmation is a matter of
degree, the conclusion is no longer so counterintuitive, because
it is compatible with RB confirming ‘All R’s are B’, but to a
minuscule and negligible degree.

In fact, this is what Bayesians have maintained. In the
particular case of the hypothesis of the ravens, Mackie (1963)
argued that since non-black, non-ravens form such a numerous
class compared with black ravens, it is almost (but not abso-
lutely) certain that a random object about which we know noth-
ing will turn out to be neither black nor a raven, but relatively
unlikely that it will be a black raven. Hence, for a Bayesian,
both kinds of object confirm ‘All ravens are black’, but non-
black, non-ravens do so only minutely.

Although the Nicod and Equivalence conditions are not
undermined by their implication that the raven hypothesis is
confirmed by non-ravens, there are nevertheless good reasons
for rejecting the Nicod condition. (The Equivalence condition
seems incontestable.) As Good (1961) first demonstrated, ‘All
R’s are B’ is not necessarily confirmed by an RB and, contrary
to Nicod, could even be disconfirmed by such an instance. Con-
sider the following example of this effect, which we have taken,
with some modification, from Swinburne (1971): ‘All grass-
hoppers are located outside the county of Yorkshire’. The ob-
servation of a grasshopper just beyond the county border is an
instance of this generalisation and, according to Nicod, con-
firms it. But it might be more reasonably argued that since
there are no border controls restricting the movement of grass-
hoppers, the observation of one on the edge of the county
increases the probability that others have actually entered, and
hence undermines the hypothesis. In Bayesian terms, this is

a case where the probability of some datum is reduced by a
hypothesis (that is, P(e | h) < P(e)) which is therefore discon-
firmed (in other words, P(h | e) < P(h)).

The grasshopper example also provides an instance where
a datum of the type RB confirms a generalisation of the form
‘All R’s are B’. Imagine that an object which looks for all the
world like a grasshopper were found hopping about just outside
Yorkshire and that it turned out to be some other sort of insect.
The discovery that the object was not a grasshopper would be
relatively unlikely unless the grasshopper hypothesis were true
(hence, P(e) < P(e | h)); thus it would confirm that hypothesis.
If the deceptively grasshopper-like object were within the
county boundary, the same conclusion would follow, though the
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degree of confirmation would be greater. This shows that ‘All
ﬁ’s are ti, may also be confirmed by a datum of the type RB.
ence, the impression that non-R’ '
N Y R’s never confirm such hypoth-
It is sometimes maintained that ‘All ra ’
would be differently confirmed if a known rave;’lev%zril;'eevzlz‘?l(;lfi
to be black than if an object were first observed to be black and
later found to be a raven. For instance, Horwich, who denoted
Phe first datum R*B and the second RB*, argued tl,lat the former
is the more powerfully confirming instance, on the alleged
grounfls that only it subjects the hypothesis to the risk of fal-
.siﬁcat.lon, for the raven could have turned out to be non-black
in which case the hypothesis would have been refuted. By con:
trgst,fHoiﬁlcltl)lsaiI:i, tgle latter does not jeopardise the. hypoth-
esis, for the black object i i i i
esls, Tor e black o (J)r no{ﬁs. compatible with the hypothesis
This argument, however, is specious. Th i
an object that enquiry reveals to bI:a a black raevzgssg::?:ll:sgf
lut_ely no risk of refutation to the hypothesis, however the en-
quiry was c9nducted. The only difference between R*B and RB*
is in the point at which one learns that the hypothesis has not
bfael} ref}lted. This does not seem to us a sufficient reason to
dlstl.ngulsh the two data from the point of view of their con-
ﬁrmn.lg power. To do so would appear to depart from normal
practlce,.fo-r scientists do not as a rule attach any importance
to the distinction. (For a fuller discussion of this point, th
readgr is refeirred to Chapter 11, section g.) e
ur conclusions are, first, that the suppos i
~ consequences of Nicod’s condition and tthEqicilwll};izizzdg:rﬁai‘}
-~ tion are not problematic, and, secondly, that there are separate
~ reasons for rejecting Nicod’s condition, which, moreover, ¢
. form to Bayesian principles. ’ $o

W g THE DESIGN OF EXPERIMENTS

- Not every experiment is e i

qually worth doing and because of
!; 1:ho.z1 expense that experiments often necessitate, both in labour
_ ?}ileirlg egu1p.men1(;1, careful attention is frequently devoted to

esign, in order to ensure th ill yield i i

oo, at they will yield information
, thWh?t'ls a Well-dfesigned experiment? The natural answer
; at it is an experiment which stands a good chance of pro-
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ducing a decisive or, at least, an almost decisive result. Th.e
experiment should be decisive in the sense tha.t one hypothesis
becomes certainly true or at least almost certantﬂy true, or that
as many as possible of the initially most plausible hypothese.s
become (almost) certainly not true. This allows for the possi-
bility that a poorly constructed experiment may, unexpecjcedly,
produce decisive evidence, while a w‘ell-de.s1‘gned experiment
may yield an outcome which is quite indecisive. .

The considerations that are pertinent to thg design of ef-
ficient experiments can be appreciated by referring to Baye?S’s
Theorem. Suppose n rival hypotheses, A, ..., h,, are bgmg
entertained and that these are regarded as the only serious
contenders for the truth, in the sense that their tota} probal?ﬂ-lty
is 1 or close to 1. We are, as we said, interested in acquiring
decisive evidence, that is, the kind of evidencg, e, which makeg
P(h;|e) approach 1 for some h; or which br11.1gs as many as
possible of the terms P(h; |e) close to 0. Consider now an ex-
periment, one of whose possible outcomes, ¢, would have the
effect of massively confirming or disconfirming one of the hy-
potheses. Such evidence would be decisive in our sense. Clearly,
the larger P(e), the greater the probability of achieving a de-
cisive result and, hence, the better the experlfnen‘F.

However, a slightly odd fact emerges at this p01'nt. In order
to confirm a hypothesis strongly, one requires evidence e f9r
which P(e) is low, relative to P(e | k). On the other hand, in
order for the experiment to be worth doing at al}, P( e)' should
be moderately high. Therefore, two separate considerations de-
termine how well designed an experiment is, and these fre-

1y pull in opposite directions.
quer\%’gefl decidirf)gp which experiment to perform, one must also
take at least three other factors into account: the cost of the
experiment; the morality of carrying it out; and thfa vglue, both
theoretical and practical, of the hypothesgs one is interested
in. Bayes’s Theorem, of course, implies nothing about how these
separate factors should be balanced.

B h THE DUHEM PROBLEM

h.4 The Problem . ‘ ,
The so-called Duhem (or Duhem-Quine) prob}em is a prob eI;ll
for theories of science of the type associated with Popper, whic!
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. emphasise the power of certain evidence to refute a hypothesis.
- According to Popper’sinfluential views, the characteristic of a the-
ory which makes it ‘scientific’ is its falsifiability: “Statements
or systems of statements, in order to be ranked as scientific,
must be capable of conflicting with possible, or conceivable, ob-
servations” (Popper, 1963, p. 39). And, claiming to apply this
- criterion, Popper (1963, ch. 1) judged Einstein’s gravitational
_ theory to be scientific and Freud’s psychology, unscientific.
There is a strong flavour of commendation about the term
scientific which has proved extremely misleading. For a theory
which is scientific in Popper’s sense is not necessarily true, or
even probably true or so much as close to the truth, nor can it
~ be said definitely that it is likely to lead to the truth. In fact,
- there seems to be no conceptual connection between a theory’s
. capacity to pass Popper’s test of scientificness and its having
_ dny epistemic or inductive value. There is little alternative,
~then, so far as we can see, to regarding Popper’s demarcation
- between scientific and unscientific statements as part of a the-
ory about the content and character of what is usually termed
“science, not as having any normative significance.
Yet as a contribution to understanding the methods of sci-
_ ence, Popper’s ideas bear little fruit. His central claim was that
scientific theories are falsifiable by “possible, or conceivable,
- observations”. This poses a difficulty, for an observation can !
~only falsify a theory (that is, conclusively demonstrate its fals-
_ ity) if it is itself conclusively certain. But observations cannot
be conclusively certain. For instance, the statement “The hand
_on this dial is pointing to the numeral 6’ is clearly fallible—it
_ is unlikely, but possible, that the person reporting it missaw
~ the position of the hand. The same is true of introspective
_ perceptual reports, such as ‘In my visual field there is now a
__silvery crescent against a dark blue background’. It has recently
been maintained (Watkins, 1984, pp. 79 and 248) that this and
imilar statements “may rightly be regarded by their authors
vhen they make them as infallibly true”. But this is not so, for
t is possible, though not probable, that the introspector has
misremembered and mistaken the shape he usually describes
as a crescent or the sensation he usually receives on reporting
@ blue image. These and other sources of error ensure that
Introspective reports are not exempt from the rule that non-
analytic statements are fallible.
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Of course,
tioned, if asserted under approp

never be seriously doubted. That is, a

false, they have a force and immediacy
they are ‘morally certain’, to use the
if observation statements are merely in
a theory is regarded as
rests ultimately on a su

is falsifiable, for none could be conclu
by empirical observations. In practice
to a refutation woul
that clashes with almost certain
certainly false.

A second objection to
the one upon which we shall focus

is that it describes as unscientific mos
e's greatest achievements. This is

are usually deemed scienc

THEORIES

the kinds of observation statement we have men-
riate circumstances, would

lthough they could be
that carries conviction;
traditional phrase. But
dubitable, then whether

refuted by observational data or not
bjective feeling of certainty. The fact
e so strong and uncofitroversial may
but cannot undo it. Hence, no theory

sively shown to be false
the closest one could gst

d be arriving at the conclusion that a theory
ly true observations is almost

Popper’s falsifiability criterion, and
for its more general interest,

t of those theories which

tHe chief aspect of the well-known criticisms advanced by Po-
lanyi, Kuhn, and Lakatos, amongst others. They have pointed

out that, as
many notable theorie
would generally be re
if those statements we
Newton’s laws or from the kin
depend not only on those theor
theories. Hence, if such predic
by logic to infer that the main theory
lie with one or more of the auxiliary

of science has many occasions when a

to a false prediction and where that
not blamed for the failur
more of the auxiliary assumptions us
was taken to be the culprit. The pro

hem’s investigations was which of the severa

involved in deriving a false predicti

had already been established by Duhem (1905),
s of science are not falsifiable by what
garded as observation statements, even
re infallibly true. Predictions drawn from
etic theory of gases turn out to
ies but also on certain auxiliary
tions fail, one is not compelled

is false, for the fault may
assumptions. The history
n important theory led
theory, nevertheless, was

e. In such cases we find that one or

ed to derive the prediction
blem that arose from Du-
1 distinct theories
on should be regarded as

the false element or elements in the assumptions.

h.2 Lakatos’s and Kuhn’s Treatm
Duhem Probliem

Lakatos examined in detail the way

ent of the

that scientists react 10
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anomalies; indeed, he made it a ce
;ﬁiﬁisfoﬁi ilis ‘;methodology ofngz?llﬁii?iszgxia;lie
ran - Lakatos c aimed that scienti :
significant k,l’nd usually proceeds in wllﬁlctr;zeca:lclgc? f“f-}; mos}f
frolgr?r:;lmeg LA l;esearch_ programme takes the form of : ?:rc
ral o ”ar core” theory, together with an associated “ oc.
.tlve belt qf aux.lhary assumptions. The function of th p;‘ o
is to.co.mbme W.lth the hard core in order to draw out . at?er
pre(h-ctlons, whlch can then be checked by ex er? e
?uxﬂlary assumptions are described as protectivz bement. e
inga resear-ch pr.'ogramme’s lifetime they, not the e
ory, are revised if a prediction is shown to be fals penirel the.
Lal;iatos suggested Newtonian physics as an e‘;am 1
r?searq programme, the three laws of mechanics and fhe T
o gravitation constituting the hard core, while vario , !aW
. t};:;;e;s, asgumptlons about the number and positiounssocl))ft lti?l
glso ; » and so forth, he included in the protective belt o
2 escribed a set of heuristic rules by which th. et
proglzilllll:,le f(‘iealt with anomalies and advanced into re;elv'ssazirc}l
i fmous hry of it prins i e
’ metr ribed and was pr i
};ili)slz‘:i?;é ]tBOOtl'l Lakatos and Kuhn were impressic;) 2?12?82?
gutists tend t}gl'we 'the benefit of the doubt to some, especiall
iy horis hen tes et o and
ver whole areas of scientific researih.a Ifgrlil;:lc?sl}sd Eftﬁiﬁgg

a:niillfe:di;antage in tl}at it describes scientific research pro
“ﬁon- o8 In ::;n}t; f}itlalﬂf‘:r}lld that it analyses their modez o%
tion; eft his corr i i
lgin aliomewhat vague in compari:(fgondmg notion of a par-
;i eatI?Isealllsci (;)u’;llinefi criteria of success for a research pro-
ally f:reat thee h;rda:o::e :V: :hpe'rfe(:ﬂy (o timate to system-
e innocent partyi i
ided the research ey Toads. 2 bon
arch programme occasionally le ,
ful novel predictions or to successful or “nzn—zgsh?c”s::;-

ations of existing data
s of g . Lakatos called such programmes

(T]:]efc‘)srgllssﬂﬁgﬁq folslﬁcaﬂoni.sf [which Lakatos counted himself
oienl (;r;i wronglwn‘h a group of brilliant scientists
ot o ;m everything they can into thelr favourite re-
S aoren me (‘conceptual framework’, if you wish) with
ard core. As long as thelr genius—and luck—en-



ECRIES CHAPTER 4: BAYESIAN VERSUS NON-BAYESIAN APPROACHES 97
Q6  PART Il BAYESIAN INDUCTION: DETERMINISTIC TH

i e ‘progressively’, while
m to expand their programm \
:ﬂtc):lz;;h ?o its hard core, they are allowed to do it. (Lakatos,

1970, p. 187)

i ly produced
other hand, the programme pers1stept
glslnngictions, or if its explgna:tl(()s‘?ewste}fzﬁlzk;tgilifhidr}:;:é

it « ing”.
Lakf:\tOS ciltllzdn:)ttiocrllei?:a?fociess.) Lakatos empl‘oyed these
::;gzgtitgus terms even though he never Cslu(;‘:_ceeded H; lsu:Isl'zla?I; N
ir inti i 1 and disapproval,
o ﬂﬁell‘ 1;:11? 12;5 lﬁzseoit?:r?;g;:d the attempf; ansi settled
e o S?nodest claim that, as a matter of historical f:act,
o e m'oze rogrammes have usually beep well regarded by
ggfxfgﬁg wll)lile degenerating ones were distrusted and even-
' tuauyh('ir(;pls):;3 (tlaim has, it seems to us, some truth _to it, as
'dT ::zdafor example, by the case studies in the llzlsttory o§
ecionce i ’luded in Howson (1976). But although Laka 08 an
SClenC?(il nr(lztiﬁed and described an important a§pect of_ sc1ent1.ﬁc
g lhe rovided no rationale or explanation for it. For in-
monke I?ykgtos was never able to explain why a research pro-
o ’aoccasional predictive or explanatory success could
B pen: Ste for numerous failures, nor could he spec?fy how
:Z;gfegs:h successes are needed to conve}x;t alfiegene:%f:(r)xg I;l:d
i i . {They should occu .
graimme info 8 DroBess e oagh the methodology of seiontfc
thena;'chepsr%i)gzlammes ,points to some of t}_le factors relevant to
re'Sentiﬁc change, it provides no explgnatlon. b orios are
% Lakatos was also unable to explain why some theor1 X
ised to the status of the hard core of a researchhprogravrvnhrir;e
and defended by a protective belt of hypot ?ses,‘ :
i left to their own devices. From Lakatos’s vsfmtu}%;,
others 2?éethink that the question is decided })y the imen‘;:; s
o Couh'm (Lakatos called it a “methodological ﬁat ). U tféc
irlllilr:t:l,ylthis suggests that itis a perfectly cta}\lr;o;ll;crzal i(c)inof ¢
ice hatever as .
practlcehto iet ;ﬁ:ﬁ: yoihjso I‘;illewcentral pattern 'of a paradlg:,
I;IS; if)c blgl;xlirall err;pirical difficulties on auxiliary theories.

N as .
This is far from being the case. entertained by others that a mo

Suppose a theory, ¢, and an auxiliary hypothesis, a, to-
~ gether imply an empirical consequence, which is shown to be

false by the observation of the outcome e, Let us assume that
. while the combination ¢ & q is refuted by e, the two components
- taken separately are not refuted. We wish to consider the sep-
_arate effects wrought on the probabilities of ¢ and ¢ by the
_ adverse evidence e. The comparisons of interest here are be-
 tween P(t | ¢) and P(t) and between P(a|e) and P(a). The con-

 ditional probabilities can be expressed using Bayes’s Theorem,
 as follows: v

Ple| P v
Relo = TEHO g - BeloPe)

 In order to evaluate the posterior probabilities of ¢ and of
g, one must first determine the values of the various terms on
_ theright-hand sides of these equations. Before doing this, it is
orth noting that these expressions convey no expectation that
refutation of t & a Jjointly considered will in general have a
ymmetrical effect on the separate probabilities of ¢ and of q,
or any reason why the degree of asymmetry may not be very
a;rge in some cases. Also, the expressions allow one to discern
the factors that determine which hypothesis suffers most in
the refutation. In particular, the probability of changes very
e if Ple | t) ~ P(e), while that of g is reduced substantially
ust in case Ple | a) is substantially less than P(e).
A historical example might best illustrate how a theory
at produces a false prediction may still remain very probable;
e shall, in fact, use an example that Lakatos (1970, pp. 138~
,and 1968, pp. 174—175) drew heavily on. In 1815, William
ut, a medical practitioner and chemist, advanced the hy-
esis that the atomic weights of all the elements are whole-
umber multiples of the atomic weight of hydrogen, the un-

h.3 The Duhem Problem Solved by queslanslin;;:er(liswﬁh
T.he questions left unanswered by Lgkatos arc;1 an g
the help of Bayes’s Theorem, as Dorl'hng (1?79)91-181 s; o e
i bilities of sev
hall consider how the proba
Zliesred when, as a group, they have been refuted.

ogen, did not match Prout’s hypothesis exactly. However,
deviations from a perfect fit failed to convince Prout that
ypothesis was wrong; he instead took the view that there

CE———
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were faults in the methods that had been used to measure the
relative weights of atoms. Thomas Thomson drew a similar
conclusion. Indeed, both he and Prout went so far as to adjust
several reported atomic weights in order to bring them into
line with Prout’s hypothesis. For instance, instead of accepting
0.829 as the atomic weight (expressed as a proportion of the
weight of an atom of oxygen) of the element boron, which was
the experimentally reported value, Thomson (1818, p. 340) pre-
ferred 0.875 “because it is a multiple of 0.125, which all the
atoms seem to be”. (Thomson erroneously took 0.125 as the
atomic weight of hydrogen, relative to that of oxygen.) Simi-
larly, Prout adjusted the measured atomic weight of chlorine,
which (relative to hydrogen) was 35.83, to 36.

Thomsorn’s and Prout’s reasoning can be explained as fol-
lows: Prout’s hypothesis ¢, together with an appropriate as-
sumption a asserting the accuracy (within specified limits) of
the measuring technique, the purity of the chemicals employed,
and so forth, implies that the measured atomic weight of chlo-
rine (relative to hydrogen) is & whole number. Suppose, as was
the case in 1815, that chlorine’s measured atomic weight was
35.83, and call this the evidence e. It seems that chemists of
the early nineteenth century, such as Prout and Thomson, were
fairly certain about the truth of ¢, but less so of a, though more
sure that a is true than that it is false. Contemporary near-
certainty about the truth of Prout’s hypothesis is witnessed by
the chemist J. S. Stas. He reported (1860, p. 42) that “In Eng-
land the hypothesis of Dr Prout was almost universally ac-
cepted as absolute truth”, and he confessed that when he
started researching into the matter, he himself had “had an
almost absolute confidence in the exactness of Prout’s principle”
(1860, p. 44). (Stas’s confidence eventually faded after many
years’ experimental study, and by 1860 he had “reached the
complete conviction, the entire certainty, as far as certainty
can be attained on such a subject that Prout’s law . . . is nothing
but an illusion”, 1860, p. 45.) It is less easy to ascertain how
confident Prout and his contemporaries were in the methods
by which atomic weights were measured, but it is unlikely that
this confidence was very great, in view of the many clear
sources of error and the failure of independent measurements
generally to produce identical results. On the other hand, chem-
ists of the time must have felt that their methods for deter-
mining atomic weights were more likely to be accurate than
not, otherwise they would not have used them. For these rea-

;(;;s:”v:: ;onjecgué'eg that P(a) was of the order of 0.6 and that
round 0.9, and these are the fi '
. gures we sh
with. It ghould be stressed that these numbers ails tilisv:ork
- shall a}tlsmgn to otfler probabilities are intended chiefly to ilh:v ;
1;ra;:1e1 ow Bayes.s Theorem resolves Duhem’s problem; ne\sr:
. e.rthe essl,nwe believe them to be sufficiently accurate to ;:hrow
 ligl ut1 on the progress of Prout’s hypothesis. As we shall see, the
. results we (?btaln are not very sensitive to variations i ’ th
assuImeddpnor probabilities. e
; n order to evaluate the posterior ili

probabilies of ¢

-one must fix the values of the terms P(e | ¢), Ple | a) :1111((11 ;fec)l’

~ These can be expressed, using the Th
 (Chapter 2, section ), as fo l%ows; eorem on Total Probability

P(e) = Ple | )P(t) + Ple | ~t)P(~t)
" Ple|t) =Ple&alt) + P& ~alt)
=Pe|t&a)Pa|t) + Ple|t & ~a)P(~a |t)
= Ple |t &a)P(a) + Ple|t & ~a)P(~a)

Since ¢ & a, in combination, i
: s n, is
_is zero. Hence: refuted by e, the term Ple [ ¢ & o)

Ple|t) = Ple|t & ~a)P(~a).

,I; e&;hvc:’\:;l(ll1 al‘)’e ;l(ﬁled that in deriving the last equation but
dé i e fo owec-l Dorling in assuming that ¢ and a a
e é)(lart; in%; that is, that Pla|t) = P(a) and henclc‘ee
el = (1 a).l Th.ls seems to accord with many 1’1istoricai
pace and 1= clearly right in the present case. By parallel rea-

g to that employed above, we may derive the results: :

| Ple|a) = Ple| ~t & a)P(~t)
Ple|~t) = Ple| ~t & a)P(a) + Ple| ~t & ~a)P(~a).

Provided the following terms are fixed, which we have done

a tentative way, to be justi
a te , justified i
bilities of ¢ and of a can be detell?rlr.leijlzlzitily’ the posterior prob-

Ple|~t&a) = 0.01
Ple|~t & ~a) = 0.01
Ple|t& ~a) = 0.02.

e first of these gives the ili
of t probability of the evidence i g
ypothesm is not true but if the method of atomic v::iglir;lltlags
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nt is accurate. Such probabilities were explicitly con-
:;1;:11':313 by some nineteenth cent}lry chemists, ar}d thfay typi-
cally took a theory of random ass1gn?nent of atomic weights ag
the alternative to Prout’s hypothesis (e.g., Mallet, 1880); we
shall follow this. Suppose it had been established for certain
that the atomic weight of chlorine lay betwegn 35 and 5'36‘3,'(The
final results we obtain respecting the posterior }.)I‘Obablht%es. of
¢ and a are, incidentally, not affected by the W}dth of this in-
terval.) The random-allocation theory would assign equal prob-
abilities to the atomic weight of an ele.ment lymg in any 0.01-
wide interval. Hence, on the assurpptlor.l that a is t.rue, .bu’qt
false, the probability that the atomic weight of chlor{ne lies in
the interval 35.825 to 35.835 is 0.01. We have‘asmgned the
same value to Ple | ~t & ~a) on the ground§ that if @ were false
because, say, some of the chemicals were impure or the mea-
suring techniques faulty, then, still assuming t to be false, one
would not expect atomic weights to be;:?lasei t.cr):::gr;irssany par-
i f the interval between agjacent 1 :
tlcul\?l?l)lzljeoset the probability Ple | t & ~a) rathgr hlg.h.er, at
0.02. The reason for this is that a}though some 1mpur1tﬁei1 n}
the chemicals and some degree of inaccuracy in the Ipet 0 oh
measurement were moderately likely in the early. nme(;:ee}?t'
century, chemists certainly would npt have, conmd}e;re. their
techniques entirely haphazard. ’I_‘hus 1.f Prout’s hypothesis werg
true, but the measuring techmqug imperfect, .the measu;;et
atomic weights would have been likely to dev.lat‘e so;rlllew1 a
from integral values; but the greater the delatlzn, i esii
likely, on these assumptions, so the prqbablllty 0 alrcl1 a ozr;) ‘
weight lying in any part of the ;35—36 interval wou ! no "
distributed uniformly over the interval, but would edm(?tﬁ
concentrated around the whole numbers: Let us pz:(l)fzge :v\lN h
the figures we have assumed for the crucial probabilities.

thus obtain:

Ple| ~t) = 0.01 x 0.6 + 0.01 x 0.4 = 0.01
Ple|t) = 0.02 x 0.4 = 0.008
Plela) = 0.01 x 0.1 = 0.001

Ple) = 0.008 x 0.9 + 0.01 x 0.1 = 0.0082

*As a matter of fact, it is not the particular values .taken by the three
probability terms that are important, but their relative values. Thus we

would arrive at the same posterior probabilities forl o and ¢ with the weaker
assumptions that Ple | ~t & a) = Ple | ~¢t & ~a) = Y, Ple|t & ~a).
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_ Finally, Bayes’s Theorem enables us to derive the posterior
~ probabilities in which we were interested:

P(t|e) = 0.878 (Recall that P(z) = 0.9)
P(a|e) = 0.073 (Recall that P(a) = 0.6)

These striking results show that evidence of the kind we
~ have described may have a sharply asymmetric effect on the
 probabilities of ¢ and of a. The initial probabilities we assumed
_ seem appropriate for chemists such as Prout and Thomson,
'~ and if they are correct, the results deduced from Bayes’s Theo-
_ rem explain why those chemists regarded Prout’s hypothesis
“as being more or less undisturbed when certain atomic-weight
~ measurements diverged from integral values, and why they
felt entitled to adjust those measurements to the nearest whole
number. Fortunately, these results are relatively insensitive
to changes in our assumptions, so their accuracy is not a vital
matter as far as our explanation is concerned. For example, if
one took the initial probability of Prout’s hypothesis (2) to be
0.7, instead of 0.9, keeping the other assignments, we find that
P(t|e) = 0.65, while P(a |e) = 0.21. Thus, as before, after the
efutation, Prout’s hypothesis is still more likely to be true than
alse, and the auxiliary assumptions are still much more likely
to be false than true. Other substantial variations in the initial
robabilities produce similar results, though with so many fac-
tors at work, it is difficult to state concisely the conditions upon
which these results depend without just pointing to the equa-
ions above. Thus Bayes’s Theorem provides a model to account
or the kind of scientific reasoning that gave rise to the Duhem
roblem. And the example of Prout’s hypothesis, as well as
thers that Dorling (1979 and 1982) has described, show, in
view, that the Bayesian model is essentially correct. By
trast, non-probabilistic theories seem to lack entirely the
sources that could deal with Duhem’s problem.
* A fact that emerges when slightly different values are as-
umed for the various probabilities in the Prout’s hypothesis
xample is that one or other of the theories may actually become
re probable after the conjunction ¢ & a has been refuted. For
nstance, when P(e | t & ~a) equals 0.05, the other probabilities
g assigned the same values as before, the posterior prob-
ity of £ is 0.91, which exceeds its prior probability. This may
m bizarre but, as Dorling (1982) has argued, it is not so odd
en one bears in mind that the refuting evidence normally
tains a good deal more information than is required mere-
0 disprove ¢ & a and that this extra information may be
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al, such confirmation occurs when
easily shown to be equivalent to the
In other words, when evidence is
e of having a higher probability)
han if it is not, then that theory

confirmatory. In gener
P(e) < P(e|t), which is

condition P(e | t) > P(e| ~1).
easier to explain (in the sens
if a given hypothesis is true t
is confirmed by the evidence.

B | GOOD DATA, BAD DATA, AND DATA TOO GOOD 10

BE TRUE

Good data. The marginal influence which we have seen an
anomalous observation may exert on the probability of a theory
is to be contrasted with the dramatic effect that a confirmation
can have. For instance, if the measured atomic weight of chlo-
rine had been a whole number, in line with Prout’s hypothesis,
so that now P(e | ¢ & a) is one instead of zero, and if the prob-
abilities we assigned were kept, the probability of the hypoth-
esis would have shot up from a prior of 0.9 to 0.998. And, even
more dramatically, if the prior probability of ¢ had been 0.7,
its posterior probability would have risen to 0.99. The existence

of this asymmetry between anomalous and confirming in-

stances was highlighted with particular vigour by Lakatos, who

regarded it as being of the greatest significance in science and
as one of the characteristic features of a research programme;
Lakatos maintained that a scientist involved in such a pro-
gramme typically “forges ahead with almost complete disregard
of ‘refutations’”, provided he is occasionally rewarded with
successful predictions (1970, p. 137): he is “encouraged by Na-
ture’s YES, but not discouraged by its NO” (1970, p. 135). As
we have indicated, we believe there to be much truth in Lak-
atos’s observations; however, t
without explanation into his methodology,
has a simple and plausible explanatory model.

Bad data. An interesting fa
analysis is that a successful prediction derived from a com

nation of two theories, say ¢ and a, does not always redoun
to the credit of ¢, even if the pr

is small; indeed, it can even un
this by referring again to the examp

dermine it. We may illustra!
le of Prout’s hypothest

hey are merely incorporated
while the Bayesian

ct that emerges from the Bayesian
bi-

jor probability of the evidence
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Data are sometimes said to be ‘too

good to be true’ when they seem to fit a favoured hypothesis
more perfectly than it is reasonable to expect. For instance,
suppose all the atomic weights listed in Prout’s paper had been

h a result almost looks as if it was

whole numbers, exactly. Suc
and it is just for this reason that it fails

designed to impress,

to. We may analyse this response as follows. Let e be the evi-

dence of, say, 20 atomic-weight measurements, each a perfect
garded precise atomic

whole number. No one could have re
weights measured at the time as absolutely reliable. The most

natural view would have been that such measurements are
subject to experimental error and, hence, that they would give

a certain spread of results about the true value. On this as-
o', it is extremely unlikely that

sumption, which we shall label

numerous independent atomic-weight measurements would all

produce whole numbers, even if Prout’s hypothesis were true.

So Ple|t&a') is extremely small and, clearly, Ple| ~t &a')

would be no larger. No s many possible alternatives, one

of the more plausible (though initially it might not be very
he experiments were consciou

plausible) being that t sly or un-
consciously rigged in favour of Prout’s hypothesis. If this were

the only significant alternative (and so, In effect, equivalent to
~a'),Ple|t & ~a') would be very high, aswould Ple | ~t & ~a').
1t follows from the equations on pages 99-100 above that

Data too good to be true.

wa' ha

~a')P(~a') and

Ple|t) ~Ple|t&
NP(~a')

Ple|~t) ~Ple| ~t&~a

and, hence,

Ple)=Ple|t& ~a')P(~a')P(t) +

Ple|~t& ~a')P(~a')P(~1).

Now, presumably the rigging o
numbers, if it took place, would p
effectively whether ¢ was true or not; in othe

Ple|t & ~a') = Ple | ~t & ~a');

r words,

hence
Ple) ~Ple|t & ~a')P(~a').

Therefore,
 Ple|pP) _Ple|t& ~a’)P(~a')P(t) _
P(tle) = —pr) ~  Ple|t&~a)P(~a’) P

£ the results to produce whole
roduce whole numbers equally
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ment. We shall refer again to Fisher's case against Mendel in

the next chapter.

B | AD HOC HYPOTHESES . o
A lwe have seen, an important scientific theory which, 1:11. cgm_
bisnation with other assumptions, has made adfalsklglgr:h ;camn
may nevertheless emerge relatively unscathed, whi ux-

iliary hypotheses are largely discredited. (We are using such

i i to describe how hypotheses are
expressions in the normal way O o for abvious

i i g harmless me
recgwed’eI:rglaersilgfe?il:eini)babilistic notiong. Thus, a hypoth-
an Igllx(gt is unscathed by negative evidence is one Wﬁ‘lOS% pocsl.
::i*?or and prior probabilities are similar. On t?i };)t g; ezxilaﬁ
it is difficult to understand what opponents 0f o ci) riesybein

ch could have in mind when they t’alk o‘ e ories bel ng
?Izgzoied’ or ‘retained’, or ‘put forward' or ‘sadfr.e (()1 e
czliicatlc)ad’ ) When a set of auxiliary assumptions 111sm ;:;:;ES i v:hi:;
scienti think up new ass
2sts§1:;’ Eliéeﬁlasif f;z?)lrl';ngyexplain the previously anomalous

i j i sion
data. Sometimes these new assumptions give the impres

that their role is simply to ‘patc}} up’ the tggzry,tai\:ss’l,rtlsg(};
s Francis Bacon called them “frivolous distinc ! (i
(]:?;asek 1, aphorism Xxv). More recently they have been :}glge
‘a(c)lohoc’ hypotheses’, presumably becau}fe they v(\ilo;lvli((ii él;:ce ii‘;ﬁ
i i d to bring theory an
been introduced if the nee : R e
i he term is pejorative,
i d not arisen. However, t y-
g?:h]g:es falling into the ad hoc category are Vvery often dis
i ore or less worthless. ‘ .
mlsls?)et(lit Zsltrl?ough particular ad hoc theories are fairly easyriz
evaluate intuitively, there is controversy over w}ﬁata%ileted
criteria apply. Indeed, there is not even a ulllméexésahip othsses
. ’ i ied to .
tion of ‘ad hoc’ as that term 1s appue ses
%\?3 rslllrfal\(l)lnsee that the Bayesian approach clarifies tlhe qtrllzsg)en
First let us consider a few uncontroversial examples a

deal with some general accounts of ad hocness.
j.4 Some Examples of Ad Hoc Hypotheses

ja. Immanuel Velikov-
's theory of collective amngs In o
:1:3'3 kior:, :kgaring book called Worlds in Collision that attracte
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agreat deal of attention some years ago, put forward the theory
that the world has been subject, at various stages in its history,
to cosmic disasters produced by near collisions with massive
comets. One of these comets, which went on to make a distin-
guished career as the planet Venus, is supposed to have passed
close by the earth during the Israelites’ captivity in Egypt and
to have caused the various remarkable events of the time, such
as the ten plagues and the parting of the Red Sea. One of the
theory’s predictions, apparently, is that every group of people
in the world will have noticed these tremendous goings-on and
if they kept records at all, they would have recorded them.
However, many communities failed to note in their writings
anything out of the ordinary at that time, and Velikovsky,

remaining convinced by his main theory, put this exceptional
behaviour down to what he called a “collective amnesia”. He

argued that the cataclysms were so terrifying that whole peo-

ples behaved “as if [they had] obliterated impressions that

should be unforgettable”. There was a need, Velikovsky said,

to “uncover the vestiges” of these events, “a task not unlike

that of overcoming amnesia in a single person” (1950, p. 288).
Individual amnesia is the issue in the next example.

Dlanetics. Dianetics is a theory that purports to analyse the
causes of insanity and mental stress, which it sees as the ‘mis-
filing’ of information in inappropriate locations in the brain.
By refiling these ‘engrams’, it claims, sanity may be restored,
- composure enhanced, and, incidentally, the memory vastly im-
proved. Not surprisingly, the therapy is long and expensive,
and few people have been through it and borne out the theory’s
claims. One triumphant success, a young student, was, how-
ever, announced by the inventor of Dianetics, L. Ron Hubbard,
_ and in 1950 he exhibited this person to a large audience, claim-
~ ing that she had a “full and perfect recall of every moment of
her life”. However, questions from the floor (“What did you have
_ for breakfast on October 3, 1942?”; “What colour is Mr Hub-
bard’s tie?”, and the like) soon demonstrated that the hapless
~ girl had a most imperfect memory. Hubbard accounted for this
to what remained of the assembly by saying that when the girl
first appeared on the stage and was asked to come forward
“now”, the word “now” had frozen her in “present time” and
paralysed her ability to recall the past. (An account of the
Incident and of the history of Dianetics is given by Miller, 1987.)
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An example from psychology. Investigations into d?stribg.
tions of IQ show that different groups of people vary in their
average levels of measured intelligence. A nurr}ber of so-call_ed
environmentalists put a low score down pnmamly tq poor sqclal
and educational conditions. However, this explanation ran into
trouble when it was discovered that a large group of Eskimos,
leading a feckless, poor, and drunken_ems!;ence, scored very
highly on IQ tests. The distinguisl}ed biologist Peter Medawa.r
(1974), in an effort to deflect the difficulty away from t'he envi-
ronmentalist thesis, explained the observa1.;1on by saying thaEt
an “upbringing in an igloo gives just the right degree of cosi-
ness, security and mutual contact to conduce to a good perfor-
in intelligence tests.”

maI}i: éich of tﬁese examples, the theory WI}iCh replaced the
refuted one seems rather unsatisfactory. .It is not likely that
they would have been put forward except. in response fo a pal’-’.
ticular empirical anomaly, and this explains the label “ad hqc ,
which suggests that the theory was advanced for th.e spec1ﬁc
purpose of evading a difficulty. However, some theories of this
kind cannot be condemned so readily. For instance, an ad hoc
alteration which rescued Newtonian theory from a difficulty
led directly to the discovery of a new planet and was generally
deemed a great success.

The discovery of the planet Neptune. Newtonians tried un-
successfully to account for the motion of the pla}net Uranus,
but the difference between theory and observation exceeded
the admissible limits of experimental error. Two astronomers,
Adams and Leverrier, working independently, put forward a
new theory which postulated the existence of a prev1qusl¥ un-
thought-of planet and hence of a new source of gra\‘nta?uonal
attraction to act on Uranus. This theory was later vindicated
by careful telescopic observations and studies of old ast?onm}rll-
ical maps, which revealed the presence of a planet with the
anticipated characteristics. The planet'was l'ater called N(;Ii-
tune. (The fascinating story of this episode is told by W. M.
Smart, 1947.)

j.2 A Standard Account of Ad Hocness o

The salient features of the examples we are considering are
that a theory ¢, which we can call the main .theory, was com;
bined with an auxiliary hypothesis, a, to predict ¢, when in fac
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¢’ occurred, e’ being incompatible with e. And in order to retain
the main theory in its desired explanatory role, a new auxiliary,
a', was proposed which, with ¢, implies e’.
Two criteria of acceptability are often applied by philoso-
_ phersinsuch circumstances. The first is that ¢ & o’ should have
~ test implications that are independent of the evidence that
refuted ¢ & a. The second criterion is that some of these test
~ implications should be verified. Lakatos (1970, p- 175) called
_ theories that failed the first, ad hoc,, and those that did not
 satisfy the second, ad hoc,. Some philosophers maintain that
- a theory is acceptable only if it is non-ad hoc in both of these
- senses (for example, Popper, 1963, pp. 244—248), while others
emphasise only the first sense (for example, Hempel, 1966, p.
- 29). Our criticisms of this approach will not need to distinguish
~ between the two points of view.
The term ad hoc to describe hypotheses that do not meet
one or other of these conditions seems not to be an old one; its
_earliest occurrence in English that we know of was in 1936,
_in a critical review of a book of psychology. The reviewer,
‘W. J. H. Sprott, observed that

There is a susplcion of ‘ad-hoc-ness’ about the ‘explanations’
[of a certaln aspect of childish behaviour]. The whole polint Is
that such an account cannot be satisfactory until we can pre-
dict the child’s movements from a knowledge of the tensions,
vectors and valences which are operative, independent of our
knowledge of how the child actually behaved, So far we seem
reduced to Inventing valences, vectors and tensions from a

knowledge of the chlid's behaviour. {Sprott, 1936, p. 249; our
emphasis)

But although the term ad hoc is relatively new, the idea
goes back at least to Bacon, who criticized as a “frivolous dis-
tinction” the type of hypothesis that is “framed to the measure
~ of those particulars only from which it is derived”. Bacon argued
‘that a hypothesis ought to be “larger and wider” than the ob-
_ Servations that gave rise to it and, moreover, that it should
_lead to new particulars. According to this criterion, the first
_ three examples above seem to be unsatisfactory scientific de-
velopments, while the fourth does not, since the new-planet
theory was supported by evidence different from that which
led to the original refutation. According to this criterion, the
~ modification which Velikovsky brought to his theory would be
_ acceptable only if it were supported, for example, by contem-
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porary records of amnesia or by evidence of peculiar features
in the environment which we have reason to think are con-
ducive to mass forgetfulness. Medawar’s and Hubbard’s theo-

unsusceptible of any indepen-

ries are rather vague and seem
dent test, though one must acknowledge that a closer study of

those theories could reveal potential tests.

J.3 A Bayesian Account of Ad Hocness
We shall argue in the next subsection that the above account
misses the characteristic of ad hoc hypotheses that determines
whether they are well regarded or not by scientists. The quan-
tity which, accordingto the Bayesian, influences one’s evaluation
of a scientific development is the posterior probability of the
revised theory, and for the theory to be ‘acceptable’ in the
everyday sense of the term, this should be relatively high—at
any rate, it ought to exceed 0.5. If a theory is more probable
than 0.5, then it is more likely to be true than false, which
would seem to be a minimum condition for ‘acceptability’. On
this view, a’ will be judged adversely and pejoratively labelled
ad hoc, if P(a’ | ¢’ & b) = 0.5, where e' is the new evidence that
refuted the predecessor of @’ and b is any other relevant infor-
mation. In this account (which agrees with that given by Hor-
wich, 1982, pp. 105—108), there is no need for a' to be supported
by evidence independent of e'; all that is wanted is that it be
credible. Scientists are also interested in whether ¢ in the
presence of the newly-thought-up o’ provides a competent
explanation of the previously anomalous e’. It would do so
only if t&a’ was a sufficiently credible theory; since
Pt&a'|e &b) =P |e & b), this would be the case onlyifa’
were not ad hoc.
The Bayesian account explains the low esteem which ad
hoc hypotheses frequently command in the scientific commu-
nity. It also explains why people often respond with immediate
incredulity, indeed derision, to an ad hoc hypothesis. Isit likely
that their amusement comes from perceiving that the hypoth-
esis leads to no new predictions? We do not believe so. Finally,
the Bayesian account explains why the hypotheses are termed
ad hoc. For since an ad hoc hypothesis was originally improb-
able, it would not have been seriously entertained if €', the
evidence that undermined an earlier hypothesis, had not been
discovered, and the need to explain the new anomalous result

had not arisen.
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We turn now to a more general objection to the idea that
hypotheses are acceptable only if corroborated by independent
evidence. Imagine a scientist who performs an experiment and
observes e’, which because it implies the falsity of the prediction
e made by t & a, refutes that combination of theories. Suppose
a new theory, t & a’, is advanced, which is ad hoc in one or
other of the two senses that there is either no fresh evidence
for a' or no possibility of such evidence. The theory therefore
is unacceptable, according to the view we are considering. But
this cannot be so. For consider that only part of the observa-
tional evidence, namely ~e, is required for the refutation. Now
r scientist first contrived an experiment with
only two possible outcomes: either e or ~e. Having obtained
the latter, he revises his theory to ¢ & a', performs the orthodox
experiment, and observes e'. In cases where e’ is not implied
or made highly probable by ~e, according to the view we are
discussing, this new theory would be perfectly acceptable since
it is supported by evidence independent of that which refuted
its predecessor. But the two experimenters are in precisely the
same position as regards the available evidence, yet for the one
the theory is unacceptable, for the other it is not! This is a
most alarming consequence for any methodology, for it fails
spectacularly to reflect scientific reasoning and flies in the face
of common sense.

It is curious, too, that a methodology designed to provide
purely objective criteria should lead to the conclusion that the
epistemic value of a theory is so closely connected with the

state of mind of its inventor.

suppose anothe

}.5 The Notion of Independent Evidence

As we have explained, the non-inductivist, non-Bayesian ac-
count of ad hocness asserts that a theory consisting of the
combination ¢ & a is only replaced by ¢ & a’ in an acceptable
scientific fashion when a' is successfully tested by evidence
independent of that which refuted the first theory. This thesis
is often associated with another, rather similar, view, namely,
that no theory is acceptable unless it is supported by evidence
independent of that which prompted its initial proposal,
whether this also refuted a predecessor or not. We have shown
that neither of these views is either reasonable or compatible
with scientific practice, and, moreover, that they fail to deliver
the objective standards of theory-appraisal to which they as-

pire. (Howson, ]:984, addresses a number of other objections.)
3}1::0 l}:::lélim w11:ht the (rilon-Bayesian criterion of ad hocnesé
ave not nee ed to exploit in our criticism of it, is
!;hat. 1zhe notion of ‘independent’ evidence is left vagzeﬂ;nls
mtultlv'e. Moreover, there seems to be no way of interpreti
the E;otlon in a purely objective fashion. "
seems not to be the probabilistic sense of i
ts of independ
tha'lt is intended. .F_or-suppose P(e, | e;) < P(e;). This mgans :ﬁ::
e, is not probablllst}cally independent of e;. Nevertheless, if
f:r(le2 | lelé were sufficiently small, e, would (it is generally ;c-
ke owde E;d) support an appropriate theory, even if e, were
Hrea y known .and ha}d been counted in support of the theo
heimce, the notion of independence that is often employedriz;
{;) ﬂi?; ;(\)::lilx; lc)ax:;rlllott be the probabilistic notion. Another possi-
' e that e, is independent of e, just in cas i
en.t:la.lls the other.' But this would mean tlzlat if the tv:onl?iﬁl ?)If“
evidence were tI‘lV‘Ially distinct in, say, relating to different
Eﬁ?ﬁd&iﬁhﬂy difg'erent places, then they would be indepen
. 8 would mean that practically no th ,
ad hoc. For instance, Medawar’s far Tt e o
: nce, peculiar theory about th
iness of the Eskimo’s way of life wa, omae
sk 8 propounded in re
g)r some surprising IQ measurements that had been resgr(')tlszle
plizfiutr;ﬁ:bf!g;,l one could 11{nfer from the theory that IQ tests ap.
owing week to the same group of Eski ]
produce similar results. But althou is prodiction is 1o s
: g gh this prediction is logi
independent of the earlier reported results, it would nﬁltc:?g}-r

, nificantly improve the standing of Medawar’s theory.

What seems to be wanted of evi i
: evidence in the standard ac-
:;ﬁﬁfdﬁ;; 11; u1:;))1)15:;7ed.abhylzvof(;lhe:sis from ad hocness is tflata‘i:t
. orted by evidence that is diffe
which led to its predecessor’s d o e
_ ownfall. Indeed, the id
dependence and independence seem closely related to thi:z gg

~ similarity and diversit; .
T ¥, 80 we shal ; :
 considering these notions, 1 continue the discussion by

Evidence that is varied is often regarded as offering better

: }sll‘lnpg):gzzn?o 3slzyv1;3té}:lisis Ath?-ln an equally extensive volume of
| B . e. As Hempel put it, “the confirmati
a hypothesis depends not only on the quantity of the favol;'):bg

le;l};lfelt;ie available, but also on its variety: the greater the va-
ing {:) : }c:esgonge.r the ;‘esulting support” (1966, p. 34). Accord
_ ayesian, if two sets of data are en’tailed b i
othesis (or have similar probabilities relative to it) ang 0?1;1 zi'
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them confirms that hypothesis more than the other, this must
be due to a corresponding difference between the data in their
probabilities. In other words, the variety of evidence is amatter
of its probability. We shall explain.

Consider first some examples: the report of the rate at

which a stone falls to earth from a given height on a Tuesday
is similar to that relating to the stone’s fall on a Thursday,
say; it is very different, however, to a report of the trajectory
of a planet or one of the manner in which a given fluid rises in
a capillary tube; each of these reports, however, confirms New-
ton’s theory, though to varying degrees. The similar instances
in the above list have the characteristic that when one of them
is known, any other would thereby be anticipated with high
probability. This recalls Francis Bacon’s characterisation of
similarity in the context of inductive evidence. He spoke of
observations “with a promiscuous resemblance one to another,
insomuch that if you know one you know all” and was probably
the first to point out that it would be superfluous to cite more
than a small representative sample of such observations in
evidence (see Urbach, 1987, pp. 160~164). The idea of similarity
between items of evidence is expressed naturally in probabilis-
tic terms by saying that e and e, are similar if P(e, | e,) is higher
than P(e,) and one might add that the more the first probability
exceeds the second, the greater the similarity. This means that
e, would provide less support if e, had already been cited as
evidence than if it was cited by itself.

On the other hand, knowing that one of a pair of dissimilar
instances has occurred gives little or no guidance as to whether
the other will occur. For example, unless Newton’s, or some
comparable theory, had already been firmly established, a
knowledge of the rate of fall of a given object on some specific
occasion would not significantly affect one’s confidence that the
planet Venus, say, would appear in a particular position in the
sky on a designated day. Different pieces of evidence may also
have a mutually discrediting effect. An example of this might
be the observations of the same constant acceleration of heavy
bodies dropped at sea level and
objects released on different mountaintops. Both observations
would confirm Newton’s laws, but in circumstances where
laws are not already well established, the first set of observa-
tions might suggest that all o
top of a mountain or not) do so Wi

the unequal rates of fall of

those

bjects falling freely (whether on
ith the same acceleration. In
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other words, with different instan i
ei.ther close to or less than P(ea).csz" Sciﬁﬁealelzd ‘szll)efsa ,lfl? -
different from_ e ?n this sense does not impb,' t131at it s1}1, elll'ltg
any hypothes.ls. significantly; whether it does or not deppo ds
on 1t§ prol?abl.hty. The notion of similarity, as we havepel:1 ;
ac.t;er{sgt'i it, is reflexive, as it should be" that is, if Py
(dis)similar toe;, thene, is (dis)similar toe (tilisfoll : di cetly
from Bayes’s Theorem). ’ ows directly
Our characterisation of similarity and diversity in dat
f:losely resemble.s the one we gave earlier in relation to ex or
: unent§ (see s.ect%on d). They are not identical, however s? o
there is not?nn‘g in the earlier definitions to pre’clude the 1i nlze
of one particular experiment counting as a heterogeneozsu :
of c-lata. Fo? an experiment is defined simply in terms of ;o
. of mstrucj:mns. If' such instructions said, for example ?ﬁi::
glrowﬁa die, then 1f a six appears, measure the speed of: light
a ve;, asce?taln the position of the planet Mars, if ,
fouz.‘, ... one .mlght obtain varied data, all from the san,l Cen
g:;q;li(:;l: it is arlllatural to respond by saying that this confpf;;
nt really comprises a variety of different
demand a definition of ‘experiment’ in te e hormees,
neity of its outcomes rather than in term l'me polee homqge-
directions. Such a definition is no doubt posst o e
t is bound to be somewhat arbitra P0§SIble, ot fin fe?l
would, for instance, have to stipulate e)?; ?ln oo it
he outcomes of som oms e homogeneous
oy e et :x;i;i c;lf; :}:fratmns should be in order to

k INFINITELY MANY THEORIES
WITH THE DATA ' COMPATIBLE

The Problem

ileo carried out many experiments on freel i i

d 0;1 bodies rolling down inclined planes in v{'lflil}lllii zigfi

ri;:lw l;)nlg they took to descend various distances. These
th(;rtl : _ed h1m1 to 2formulate the well-known law to the

at =ut + 3 gt ) wl}e?g s is the distance fallen by a

y . ing bosly, u is its initial downward velocity, g is a

ant, and ¢ is the time taken by the fall. Jeﬁ'reys’ (1961,

‘pointed out that Gali -
wing as his law:a alileo might also have advanced the
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s = ut+3gt2+ﬂt)(t—tl)(t—tz)...(t—t,,),
2

the times at which he carried
Whel'e. > tz’éﬁ;r;eil:;(si t;;?ipl;:}iz?: f is any fl.mctig)n of ¢ at all.f
%lllfulsnﬁ e?‘;;gys’s modiﬁcation stands for axll1 1n1{;n;1}tliae Sr;ugllzcei:i gs
i ileo’s theory. Although all thes
i?g?igt‘;ezn? aiiiﬁzg saxid mrgke different %ridg::})’rsl,ss itx)f;t
i interesting feature of Je or-
iﬁ?(lil(.; 6;1;1:;“;? ?xit:}:ﬁeisl that they all imply those data which
i is experiments. ' N
Gah};‘eﬁizaiusi g::(; ilo rec}))ncile with those non-}nlilictlgrl:ﬁ; zlfc)}r:e
robabilistic theories of scientific mt‘ethod. wh1l;: th(; d that the
probar lue of a theory is determined just by ATy
SCIentlﬁ(} V}? here that support is simply a fur_lctlon of P(e
Supp(_n‘t . as;‘;sions of P(e). These philosophical approaches
and,l:ln}f:wf':eto regard, the standard law of free falll1 and tlh;fi
:)v;glliar alternatives described by J ggfcegsasz ifi)g;; gogg; e
e the?esisrzl?gggrfl(;rf? iv(iet‘g which no scientist would
althou%t ; alline point emerges from a well-knom examplfe due
o Nel eé dman (1954). He noted that the evidence of very
o NelSOIzl Ooied green emeralds would normally sugge§t that
or lc;,: I‘;\re green. But he pointed out that thgt ev_1d((alnce
. emel:a ame relation to “All emeralds are green” as 1t oe”s
:;): 2rtsy}t;eif§ hypothesis he formulated as “Ali }T.mer.asld;rzze i%r;eis.
i ’ ition, something 1
A'ccordmg w a(il?ioglr)zz:vseg (:falt};f‘:aotime ¢, or blue and obserxizd
eltherlgzeerzhan +. If t denotes some time after the emera s
py it :l%l' the e'vidence were observed, then both the grt;ele(ril
e e -hypotheses imply that the obserw(ed emer.bl ]
e 16(111 eb gmzer?’p However, the hypotheses are 1ncompat1al ;;
Zl;f?fgringeigr their predictions about .the colour , :1; :;?:;ts "
looked at after the critical t}ilme(.) :;i g;t?ei ifef;‘ziis v
e z'hel(::zyr;l:‘}cliiegr;e th?more natural hypothesis, for ¢
el (r)neaany value, provided it is later than now.h sology
o 815: examples illustrate a general problem ft’c?r' mlet. nog gr &
that a theory which explains (in.the sensedo tmils £erely =
iating a certain probability with) some data 1s e e
ot of o infinite set of rival theories, each (?f whic e
ot aﬁ 1 istence of this infinite set of possible explana 1‘(1);ive,
?Jta ﬁ?l ge Ie'eexzximbered spelled ruin for any attempt at a posl
i ,

many
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solution to the problem of induction (see Chapter 1). The prob-
lem with which we are concerned here arises b

ecause, in prac-
tice, scientists discriminate between possible explanations and

typically pick out just one, or at any rate relatively few, as
meriting serious attention. An account of scientific method
ought to explain how and why they do this.

k.2 The Bayesian Approach to the Problem

This has not proved easy. For the Bayesian, the nature of the
problem, at least, is straightforward. Moreover, Bayesian the-
ory does not imply that every hypothesis similarly related to
the data is of equal merit. Suppose one were comparing two

theories in the light of the same evidence. Their relative pos-
terior probabilities are given by

P h1 , e = P (e l hl)P (h1)
P(h;|e)  Ple|hy)P(h,)"

If both theories imply the evidence, then Ple|h,) =
Ple|hy) = 1. And if, in addition, P(h, | e) exceeds P(h, |e), then
it follows that P(h, ) is larger than P(h,). More generally, if two
theories which explain the data equally well nevertheless have
different posterior probabilities, then they must have had dif-
ferent priors too. So theories such as the contrived alternatives
to Galileo’s law and Goodman’s grue-variants must, for some
reason, have lower prior probabilities, Indeed, this is clearly

 reflected in most people finding such hypotheses quite unbeliev-
able. The problem then is to discover the criteria and rationales

by which theories assume particular prior probabilities.

~ Sometimes there is a clear reason why a theory is judged

~_improbable. For instance, suppose the theory concerned a
_ 8Succession of events in the development of a society; it might
_ perhaps assert that the elasticity of demand for herring is a
_ constant or that all future British prime ministers’ surnames
__will start with the letter T. These theories, which of course
~_could be true, are however monstrously improbable. And the

~ reason for this is that the events they describe are influenced

humerous independent processes whose separate outcomes

e Improbable. The probability that all these processes will
I out to favour the hypotheses in question is therefore the

duct of many small probabilities, and so itself is very small
ideed (Urbach, 1987b). The question, of course, remains of
low the probabilities of the causal factors are estimated. This

——
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could be answered by reference to other probabilities, in which
case the question is just pushed one stage back, or else by some
different process that does not depend on probabilistic reason-
ing. For instance, the simplicity of a hypothesis has been
thought to have an influence on its initial probability. This and
other possible determinants of initial probabilities are dis-
cussed in Chapter 11.

It is worth mentioning here that the equation given above,
relating the posterior probabilities of two theories with their
prior probabilities, explains an important feature of inductive
reasoning. The scientist often prefers a theory which explains
the data imperfectly, in that P(e |hy) <1,toan alternative, h,,
which predicts them with complete accuracy. Thus, even Gal-
ileo’s data were not in precise conformity with his theory; nev-
ertheless he did not consider any more complicated function of
» and ¢ to be a better theory of free fall than his own, even
though it could have embraced the evidence he possessed more
perfectly. According to the above equation, this is because the
better explanatory power of the rival hypotheses was offset by
their inferior prior probabilities (see Jeffreys, 1961, p. 4).

B | CONCLUSION

Charles Darwin (1868, vol. 1, p. 8) said that “In scientific in-
vestigations it is permitted to invent any hypothesis, and if it
explains various large and independent classes of facts it rises
to the rank of a well-grounded theory”. This is, perhaps, an
exaggeration, for not any hypothesis would do; the hypothesis
must not be refuted, or substantially disconfirmed, nor should
it be intrinsically too implausible. With these provisos, Bayes-
ianism, we suggest, is just such a well-grounded hypothesis as
Darwin referred to. As we showed in Chapter 38, it arises from
natural and intuitively reasonable attitudes to risk and uncer-
tainty. It is neither refuted nor undermined by any of the phe-
nomena of scientific reasoning. On the contrary, as we have
seen, it explains a wide variety of them. So far we have con-
centrated chiefly on deterministic theories. We shall see in the
next and following chapters that the Bayesian approach is o
less successful when dealing with statistical reasoning.

WMPART II]
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Classical Inference
in Statistics

We showed in Chapter 4 how numerou,

: : : S aspec ienti
{:;:sg:llgﬁ :gltlhbe C;I'Iumm'ated by reference to ga;:s?sf';ﬁ;zsglc
ey e I;e dls;;ussmn therfz to deterministic theories As'
alady expls bet, owever, 's01entiﬁc theories are often .not
 dete evaluati(;n :f areh statistical or probabilistic in character

b such hypothesgs brings no special problemé
o emetoa 'at}'resmn ana.lys1s, the difference between the
o feter ,11113 ic lz:nd statistical hypotheses being reflected
e o Ple| which appears in Bayes’s Theorem. In the

o 3 gl tis term sl 1. When 1 i
e . > equal to the statisti -
- atl}lre(vivlllal;l:l ci: ccinlfb‘e?s on e, thl.S being an applicaticfx?lolf)'rtol?e
g,;:Iynductive reasopf'i rinciple, which is discussed in Chapter 9

'pyotheses yea ning a.bout' deterministic and probabilistic h .
o 1s then explained in a uniform fashion in the Baylefsiaz;

No such uniform treatmen

leading non t is afforded, however, by the

-Bayesian approaches. As a result, a distinct branch

stablished by dealing separ.

Ministic i i
hypotheses. This plan is justified since classical sta-




