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True Belief Knowledge?,” Analysis, 23 (1963),
121-123 and Clark, “Knowledge and Grounds:
A Comment on Mr. Gettier’s Paper,” Analysis, 24
(1963), 46-48. '

5. Cf. “How Belief Is Based on Inference,”
The Journal of Philosophy, LXI (1964), $53-360.

6. See note 3.

Clark Glymour

RELEVANT EVIDENCE

Scientists often claim that an experiment or
observation tests certain hypotheses within a
complex theory but not others. Relativity
theorists, for example, are unanimous in the
Judgment that measurements of the gravita-
tional red shift do not test the field equa-
tions of general relativity; psychoanalysts
sometimes complain that experimental tests
of Freudian theory are at best tests of rather
peripheral hypotheses; astronomers do not
regard observations of the positions of a sin-
gle planet as a test of Kepler’s third law,
even though' those observations may test
Kepler’s first and second laws. Observations
are regarded as relevant to some hypotheses
in a theory but not relevant to others in that
same theory. There is another kind of scien-
tific judgment that may or may not be
related to such judgments of relevance:
deter; ainations of the accuracy of the pre-
dictior s of some theories are not held to
provid : tests of those theories, or, at least,
positive results are not held to support or
confirm the theories in question. There are,
for example, special relativistic theories of
gravity that predict the same phenomena as
does general relativity, yet the theories are

regarded as mere curiosities.!
Prima facie, such judgments either may
be conventional and properly explaine
ical-factors thie
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may have an underlying rationale and so
may be explained as applications of general
principles of scientific inference. At least
with regard to the first kind of judgments,
that 1s, those which are explicitly judgments
of relevance, three different philosophical
views are common: (1) the hypothetico-
deductive method provides an obvious and
well-understood rationale for such discrimi-
nations; (2) one or another system of induc-
tive logic provides a rationale for such
discriminations; and (3) there is no rationale
for the judgments in question, and they
must really be entirely the result of con-
vention.? All three opinions are, I believe,
quite wrong; there are principles that
explain and provide a rationale for scientific
Judgments of relevance, but they are not
exactly hypothetico-deductive principles
nor are they principles of a probabilistic
kind. The principles that provide a rationale
for judgments of relevance also provide a
partial rationale for other central features
of scientific method; notably, they also
explain why some theories are not sup-
ported by determinations of the accuracy of
predictions derived from them. One con-
sequence is that, although theories may be
underdetermined by all possible evidence of
a specified kind, they need not be so radi-
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writers, including myself,? have thought.
Consider the first of the above positions:
One might suppose that some hypotheses in

a theory are, in conjunction with initial con-




ditions, essential to the deduction of a sen-
tence that is decidable by experiment or
observation. Such hypotheses would then be
tested by the appropriate experiments or
observations whereas other hypotheses in
the theory—those not essential to the
deduction—would not be so tested. An
account of this kind is satisfactory only if the
notion of an “essential” hypothesis can be
made precise; and there are good reasons to
believe that such a clarification is not trivial
and perhaps not even possible, for the diffi-
culties in making precise the notion of
essential hypotheses are exactly those which
meet any attempt to provide a criterion of
cognitive significance of the kind long
sought by the positivists. The positivists pro-
posed to divide the predicates of a theory
into two disjoint classes, one of which would
comprise the “observation terms” of the the-
ory. A sentence in the language of the the-
ory was to be deemed significant if it was
testable, and testability was to be defined sol-
ely in terms of the consequence relation
holding between, on the one hand, sen-
tences, or classes of sentences, in the
language of the theory, and, on the other
hand, sentences whose only nonlogical
terms were observational. Every attempt to
provide such a criterion has failed, and the
catalogue of failures is familiar.* But if we
could specify in precise logical terms what 1t
is for a hypothesis, in conjunction with ini-
tial conditions, to be essential to the deduc-
tion of an experimentally decidable
sentence, then taking the observation terms
to be those nonlogical terms occurring in
the experimentally decidable sentence or in
the statement of initial conditions, we would
have an account of testability of the kind the
positivists required. We must expect that all
the technical sorts of objections that told
against empiricist criteria of cognitive sig-
nificance would tell against any attempt to
give a hypothetico-deductive account of
epistemic relevance. Some of those who
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~tradition saw this connection fairly clearly
and drew very strong holist conclusions
from the failure of significance criteria.
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David Kaplan® reports that when Carnap
was presented with a class of counter-exam-
ples (devised by Kaplan) to his last attempt
at a significance criterion, “he reflected that
he had been quite wrong for about 30 years,
and that his critics who had been arguing
that theories must be accepted or rejected as
a whole (he mentioned at least Quine and
Hempel) were very likely correct.” And
Hempel, at the end of his negative review of
attempts at empiricist significance criteria,
proposed that theories be evaluated in
terms of their clarity and precision, and by
such holist canons as simplicity, explanatory
and predictive power, and the extent to
which they have, as a whole, been confirmed
by experience.

Which brings us to the second position.
Hempel’s own qualitative theory of con-
firmation® has the property that, if ¢ is an
evidence statement and p any sentence, con-
sistent with e, that is not a logical conse-
quence of a sentence all of whose nonlogical
terms occur in e, then e confirms neither p
nor the negation of p. But most of the evi-
dence for complex theories is stated in
terms that use only fragments of the
vocabularies of the theories. For example,
the positions of the planets on the celestial
sphere supports Kepler’s laws, but this evi-
dence is stated in terms of times, ascensions,
and declinations: the notions of a period of
an orbit, a mean distance from the sun, and
so on, do not occur in the statement of such
evidence. Accordingly, despite the fact that
his intent was to give an account of epis-
temic relevance,” Hempel's theory cannot
explain why such evidence provides support
for the theory as a whole or for particular
hypotheses within the theory. Quantitative
theories of confirmation using logical mea-
sure functions—Carnap’s m* for example—
do better, but they share some of the limita-
tions of Hempel’s system; for example, if a
hypothesis and an evidence statement share

no nonlogical vocabulary, then the second gen-
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Several contemporary accounts of scien-
tific inference suppose it to proceed by the
formation of conditional probabilities by
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means of Bayes’s theorem in the theory of
probability. That is, it is assumed that there
are prior probabilities assigned to all
hypotheses in question, and the new or pos-
terior probability of (or degree of belief in) a
hypothesis 2 on new evidence ¢ is just the
conditional probability of % on ¢ (and what-
ever old evidence there may be). Richard
Jeffrey has generalized this strategy so that
it need not be assumed that the evidence
statement, ¢, is certain.8 A test that results in
evidence ¢ is taken to be relevant to hypoth-
esis i if and only if the posterior probability
of A, that is, its conditional probability on e,
is different from the prior probability of 4.
Analyses of this sort may perhaps be made
consistent with the sorts of judgments of rel-
evance described at the outset, but I think
we should doubt that they explain such
judgments or provide a rationale for them.
In order to determine the conditional prob-
ability of 2 on ¢ by Bayes’s rule we must
know the prior probabilities of ~ and of e,
and we must know the conditional proba-
bility of ¢ on 4. Frequentists maintain that
such prior probabilities are objective fre-
quencies; more particularly, Reichenbach
proposed that the prior probability of a the-
ory or hypothesis be taken as the frequency
of success in a suitable reference class of the-
ories of the same kind as the theory in ques-
tion. He gave, unfortunately, no account of
how the success of past theories might, with-
out circularity, be determined, nor did he
indicate with any concrete examples just
how the required groupings might be
effected. Reichenbach himself seems to
have understood his account as a proposal
for future practice: “Should we some day
reach a stage in which we have as many sta-
tistics on theories as we have today on cases
of disease and subsequent death ... the
choice of the reference class for the proba—
bility of theories would seem as natural as

that of the reference class for the probability
_of _death ”9 Whatever the merite_or Jdiffi.
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culties with the proposal, one thing is clear:
it cannot provide a rationale for those

detailed judgments of relevance which sci-
entists now make and have long been mak-
ing, nor can it explain the great agreement
scientists in the same field show about such
matters. For we simply do not have statistics
of the kind Reichenbach envisioned, nor do
we have any idea of what their values would
be or even of how to collect them.

Subjective probability theorists, who
regard the probabilities of hypotheses as
measures of our degrees of belief in them,
are not affected by such criticism. But of
course, on a strict subjectivist view, the
assignments of prior probabilities are quite
arbitrary so long as they accord with the
requirements of the theory of probability.
If, then, judgments of relevance are to be
explained ultimately in terms of prior prob-
ability distributions, and those distributions
are without rationale, the judgments of rele-
vance will also be without rationale.!® The
bare subjectivist account seems to be a ver-
sion of the third position above: judgments
of relevance are conventional.

The conventionalist view would presum-
ably attribute the agreement about rele-
vance to such factors as the education of
graduate students: young scientists are told
by old scientists what is relevant to what. All
relativity texts say that certain experiments
do not test certain hypotheses because that
was what all relativity textbook writers were
taught. There are two difficulties: these sup-
positions do not explain how judgments of
relevance came to be established in the first
place, and they do not explain how it is that,
with very little controversy, judgments of
relevance are made in new cases. The latter
fact, especially, suggests that, if scientific
education determines scientific Judgments
about the relevance of evidence to theory, it
must do so by teaching, explicitly or tacitly,
principles and not merely cases. On the
other hand, the conventionalist view has for
its support the fundamental consideration
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would warrant the discrimination in ques-
tion. I shall try to remove that support.
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It is widely thought that, save in exceptional
circumstances, universal hypotheses are
supported or confirmed by their positive
instances. If the hypothesis contains anoma-
lous predicates—"grue,” for example—then
it wil fail to be confirmed by positive
instances, and, likewise, if the hypothesis is
entailed by some well-confirmed theory,
and a positive instance of the hypothesis is
inconsistent * with that theory, then the
instance may serve to reduce our reasons to
believe the hypothesis. But, barring circum-
stances such as these, we expect that univer-
sal hypotheses will be confirmed by their
positive instances, and, in particular, we
expect that a quantitative hypothesis stated
as an equation will be confirmed by a set of
values for the magnitudes!! occurring in
the hypothesis if the set is a solution to the
equation. Now the trouble is that our
experiments, observations, and measure-
ments do not appear to provide us with
positive instances of the hypotheses of our
theories; in the quantitative case, for exam-
ple, the magnitudes we determine by
experiment or observation are generally not
those, or not all of those, which occur in our
theories concerning the phenomena
observed.

Scientists seem to know very well how to
get values of magnitudes occurring in their
theories from values of magnitudes deter-
mined experimentally. Their strategy is to
use hypotheses of the very theory to be
tested to compute values of other magni-
tudes from experimentally determined
magnitudes. To take a very simple example,
suppose our theory consists of the single
hypothesis that, for any sample of gas, so
long as no gas is added to or removed from
the sample, the product of the pressure and
volume of the gas is proportional to the tem-
perature of the gas. In other terms, under
the given conditions
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where % is an undetermined constant. Sup-
pose further that we have means for mea-
suring P, V, and 7T, but no means for
measuring k. Then the hypothesis may be
tested by obtaining two sets of values for P,
V, and T, using the first set of values
together with the very hypothesis to be
tested to determine a value for &

and using the value k thus obtained together
with the second set of values for P, V, and T
either to instantiate or to contradict the
hypothesis.

In the example the very hypothesis to be
tested was used to determine, from experi-
ment, a value for a quantity occurring in i,
and the determination was very simple.
Cases of this kind abound in scientific liter-
ature,!? but in general the situation is con-
siderably more complicated. Typically, the
theory in question will contain a great many
hypotheses, and a given experiment or col-
lection of experiments may fail to measure
values of more than one quantity in the the-
ory. To determine a value for one of the
latter quantities the use of several hypoth-
eses in the theory may be required, and the
determination may proceed through the
computation of values for intermediate
quantities, or combinations of such. Such a
determination or computation may be rep-
resented by a finite graph. The initial, or
zero-level, nodes of the graph will be experi-
mentally determined quantities; n-level
nodes will be quantities or combinations of
quantities such that, for each n-level node,
some hypothesis of the theory determines a
unique value of that node from suitable val-
ues of all the (n—1)-level nodes with which it
is connected. The graph will have a single
maximal element, and that element will be a
single_quantity. We permit_that_two._con-

PV = kT

nected or unconnected nodes may corre-
spond to the same quantity or combination
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of quantities. I will call such a graph a com-
putation.

The graph associated with the computa-
tion of the constant in the ideal-gas law is
obvious, but it may not be clear what hap-
pens in a more complicated case. Let us con-
sider a theory developed in a recent
psychological paper;!? since our considera-
tions are almost entirely structural, ‘we need
not concern ourselves with much of the
detail regarding the interpretation—which
happens to be complicated—of the quan-
tities occurring in the theory. The theory
consists of the following set of linear equa-
tons, together with their consequences
(with respect to real algebra):

(1) A, = E,

(2) B, =G, + Gy, + E
(3) Ay = E; + E,

(4) By = G, + G,

b)) Ay =G, + E|

(6) By = Gy + E,

The As and Bs are supposed to be quantities
that we know how to estimate experimen-
tally. Suppose then that.we do an experi-
ment that gives us values for the quantities
Ay, By, A, and Bg. Naturally we could use
equation (1) to compute a value for E,
immediately from the experimental value of
Ay. But it is also possible to compute a value
for E| from the values of B, A5, and B, in
the following way:

As we have seen, a given set of data may
permit the computation of a value for a
quantity in more than one way. If the data
are consistent with the theory, then these
different computations must agree in the
value they determine for the computed
quantity, but, if the data are inconsistent
with the theory, then different computa-
tions of the same quantity may give dif-
ferent results. Further, and most important,
what quantities in a theory may be com-
puted from a given set of initial data
depends both on the initial data and on the
structure of the theory. In the example
above we supposed given values for A}, B,
Ag, and Bj. These permit us to compute val-
ues for £, and for G,, but, as the authors of
the paper from which we have taken the
equations put it, “two of the parameters, G,
and E,, occur only together in the expecta-
tions with the same coefficients, and are
therefore inseparable. We can therefore
estimate only G|, E, and (G, + E,)” (ibid.,
317). That is, we cannot, with this theory,
get values of G, and of E, with these data.
Similar things happen with other sets of
possible initial values. If we have values of
Ay, By, Ay, By only, then we cannot compute
values for G, or for G,. If, initially, we have
values for A,, By, A5, By only, then we can-
not compute values for any of the quantities
that appear on the right-hand side of the
preceding equations.

It is clear, then, I hope, how scientists
may use hypotheses in their theories for the
determination of values of quantities that
are not in fact measured or estimated by
standard statistical methods. The examples
already given suffice, I believe, to show that
the strategy is in fact used explicitly in some
cases. The question is, to what end is this
strategy used? More particularly, if experi-
ment permits the computation of values for
all quantities occurring in a hypothesis, and
these values accord with the hypothesis,
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port or confirm the hypothesis? The answer
cannot always be affirmative. Consider the
example just discussed; suppose we deter-



mine A, by experiment and use the hypoth-
esis:

(1) Ay = E,

to compute a value for E,. We then have
values for both A; and E,, and these values
are in accord with hypothesis (1) and
provide a positive instance of that hypoth-
esis. But clearly it would be wrong to think
that this instance provides any support for
the hypothesis. Intuitively, the difficulty is
that the value of E, has been determined in
such a way that, no matter what the value of
A, it could not possibly fail to provide a
positive instance of the hypothesis. To test a
hypothesis we must do something that could
result in presumptive evidence against the
hypothesis. So a plausible necessary con-
dition for a set I of values of quantities to
test hypothesis /& with respect to theory T is
that there exist computations (using hypoth-
eses in T & h) from I of values for the quan-
tities occurring in %, and there exist a set J of
possible values for the same initial quantities
such that the same computations from J
result in a negative instance of A~—that 1s, the
values of the quantities occurring in £ which
are computed from ] must contradict h.
Actually, it is not necessary that all the quan-
tities occurring in 4 be computable from the
initial data, for some of them may occur vac-
uously. For example, to test an equation of
the form

ax®> +y) + bx —ay =0

we do not require a value for y. The quantty
y is vacuous in the equation because, given
any value v of x for which there exists a
value u of y such that (v, u) is a solution to
the equation, then (v, 2) is also a solution for
all possible values, z, of y. The generalization
to cases with more quantities is obvious.
There is another useful condition which,

for many theories, is equivalent to that just
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where X is some functional form, and where
it is understood that two hypotheses are
equivalent if every set of values which is a
solution of one is a solution of the other and
vice versa. Suppose further that a value for
every quantity occurring in the hypothesis
can be computed (by using hypotheses of a
given theory T) from a set of values for
experimentally determined quantities E,
... E,. Now, for any quantity Q, occurring
in the hypothesis, the computation for Q;
specifies Q; as a single-valued function of the
quantities whose nodes are immediately
connected to the Q; node in the graph of the
computation. Similarly, the quantities at the
nth-level nodes are, each of them, specified
as single-valued functions of the quantities
at the (n — 1)-level nodes with which they
are connected. Thus, ultimately, by compos-
ing all these functions, Q; itself is specified as
a single-valued function fi(E, . . . E,) of the
experimentally determined quantities E,
... E,. Replacing each Q; in the hypothesis
by fi(E; . . . E;) we obtain the equation

X(F(E, . Epy o filEy - ER)

in which the only quantities are those
experimentally determined. We shall say
that this equation represents the hypothesis
for this set of computations. For example, if
the hypothesis is (1) above, that is,

A, = E,

and the only computation is that of E, illus-
trated previously, then the representative of
the hypothesis for this computation is

Now the following is obvious: If the repre-
sentative of a hypothesis for a set of com-
putations holds identically, that is, if every

set of possible values for the quanuties
occurring in the representative is a solution

of the representative, then the computa-

tions cannot test the hypothesis, because the
necessary condition given before will not




334  Relevant Evidence

obtain. Something more is true. If the func-
tional form X of the hypothesis, and the
functions f;, are composed of operators that
determine unique values for all possible sets
of values of the quantities they operate on,
then the hypothesis will be tested by a set of
computations from initial data if the equa-
tion representing the hypothesis is not an
identity. ,

We have, in effect, an account of theory
testing, and one that naturally evolves from
a few elementary observations: ceteris par-
tbus, hypotheses are supported by positive
instances,  disconfirmed by negative;
instances, whether positive or negative, of a
hypothesis in a theory are got by using the
hypotheses of that theory itself (or, con-
ceivably, some other) to make computations
from values got from experiment, observa-
tion, or independent theoretical considera-
tions; the computations must be carried out
in such a way as to admit the possibility that
the resulting instance of the hypothesis
tested will be negative. Hypotheses, on this
account, are not generally tested or sup-
ported or confirmed absolutely, but only rel-
ative to a theory. The general idea is certainly
not new. Herman Weyl,}* for example,
seems to have had it:

The requirements which emerge from our
discussion for a correct theory of the course of
the world may be formulated as follows:

1. Concordance. The definite value which a
quantity occurring in the theory assumes in a cer-
tain individual case will be determined from the
empirical data on the basis of the theoretically
posited connections. Every such determination has to
yield the same result . . . Not infrequently a (rela-
tively) direct observation of the quantity in ques-
tion . . . is compared with a computation on the

basis of other observations. . . .
' 2. It must in principle always be possible to
determine on the basis of observational data the
definite value which a quantity occurring in the
theory will have in a given individual case. This
expresses the postulate that the theory in its

firmed by observation statements if the
hypotheses, or instances of them, could be
deduced from premises consisting of the
observation statements and certain special
hypotheses. The special hypotheses—bilat-
eral reduction sentences—were in effect
allegedly privileged hypotheses of a theory;
privileged in being immune from disconfir-
mation and in being analytic. But the appeal
to analytic truth is quite independent of the
main idea, namely, to confirm hypotheses
by deducing instances of them by means of
other hypotheses in the same theory.

III

Before turning to the questions with which
we began, some objections to this account of
theory testing need to be considered.

One objection is that the foregoing
account is an account of testing for quan-
titative theories only; it does not seem to
apply to qualitative theories or to theories
construed as deductively closed, axiomatiza-
ble sets of first-order sentences. But the
account 1s straightforwardly extended to
first-order theories, and thereby to
qualitative theories if the logical form of
their hypotheses is known.

By a “quantity” we will mean an open
atomic formula. By a “value” for a quantity
we will mean an atomic sentence or its nega-
tion containing the same predicate constant
as the quantity. It certainly must be allowed
that, if initial data I (that is, a set of values
for quantities) and theory T are consistent,
then I disconfirms 4 with respect to T if T
and [ together entail ~A but T alone does
not. Conversely, if T and I are consistent
and T and [ entail ~ but T alone does not,
then I must count as confirming A with
respect to 7. The more typical and more
complicated cases arise when T and [
together neither entail nor refute & unless T
does so alone. For these cases we may give a
quasi-Hempelian analysis:
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redundant parts (121/2).

Again, in “Testability and Meaning”!® Car-
nap proposed to regard hypotheses as con-
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I confirms A with respect to T if

(1) T and I are consistent with each
other and with 4.
(1) There exists a set, call it S, of values
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for quantities such that there are
computations from / of the values in
S and, further, such that S entails the
development (in Hempel’s sense!6)
of h for the individual constants
occurring in members of S.

(1) .- There exists a set | of possible values
for the initial quantities such that the
same computations (as in ii) from J
given values of the quantities in S
that entail the development of the
negation of A.

I disconfirms £ if I confirms the negation of
h.

I should like briefly to note some features
of this account. If I is inconsistent with T,
then I neither confirms nor disconfirms any
hypothesis with respect to T but in that case
I may nonetheless confirm or disconfirm
various hypotheses with respect to sub-theo-
ries of T. Hempel’s consistency and equiv-
alence conditions are satisfied so long as the
theory is kept fixed. The same initial data
may, however, confirm inconsistent hypoth-
eses with respect to different theories.
Because of condition iii, Hempel's special
consequence condition is not satisfied, and
neither, of course, is the converse con-
sequence condition.

On Hempel’s theory, ~R(a) confirms
both Vx~Rx and Vx(Rx D Bx), but, on the
account just given, it does not, because no
value of R(x) will, by itself, entail the
development of the negation of the second
hypothesis, and so condition iii is not met.
The “paradox” of the ravens arises in the
new account just as in Hempel’s, but it is at
least confined: if initial data Ra,Ba confirm a
hypothesis of universal conditional form
with respect to theory 7, it is not always the
case that ~Ra,~Ba also confirm that
hypothesis with respect to T. For example, if
the hypothesis is Vx(Cx D Dx) and the theory
is Vx(Rx ) Cx) & ‘v’x(Dx = Bx) then the ﬁrst
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hypothesis, but ~Ra,~Ba does not confirm
the hypothesis.

Although I think that most of the fea
tures of the foregoing account for first-
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order theories are plausible enough, I shall
not defend them now. There are a variety of
ways in which the general strategy I have
outlined in the previous section might be
extended to formalized theories, and the
quasi-Hempelian account just given is only
one of them. One can, for example, try to
preserve the consequence condition by
replacing i1 with a radically weaker con-
dition, e.g.,

(i1*) If A has a representative for the set
of computations in 11, the represen-
tative is not a valid formula.

but then one will have to allow that ~Ra
confirms Vx(Rx D Bx). Again, it is straight-
forward to adapt the general strategy to a
Popperian viewpoint, so that hypotheses of
universal form may be tested but hypoth-
eses of existential or mixed form never are.
The point is that the account can be
extended to formalized theories, and the
extension need not be much less plausible—
I think not any less plausible at all—than
accounts of confirmation that are confined
o “observation” statements.

A serious difficulty, urged by Professor
Hempel, is this: typically, the hypotheses of
a theory of themselves determine nothing
about experimental or observational data;
something definite about experimental out-
comes can be inferred from the theory—or
values of theoretical quantities can be infer-
red from the .data—only if special,
empirically untested, assumptions are
made. Hempel calls such assumptions
“qualifying clauses” or “provisos.” One
example, alleged by several writers, is that
no observable consequences about the
motions of heavenly bodies follow from
Newton’s three laws and the law of universal
gravitation unless one makes some assump-
tion about what forces are acting, e.g., that
only grav1tat10nal forces act between the

”
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There may indeed be many cases in
which a theory can be applied to a system
only if it is-assumed that the system has
some property of a kind that i1s not deter-
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mined experimentally; even when that is so,
however, one must still be able to say what
hypotheses in the theory are tested by the
experimental results on the supposition that
the qualifying clause is met, and our account
proposes an answer to that question. Of
course, one wants to know something more
about when it is reasonable to assume that
qualifying clauses are satisfied, and what
role they may play in the assessment of a
whole theory, but that is beyond our scope
at present.

It is not clear to me how often such
qualifying clauses are really essential. Con-
sider Newton again. In book 111 of the Prin-
cipia Newton uses his first two laws to
deduce from Kepler’s laws that there is a
centripetal force acting on the planets in
inverse proportion to the square of their
distances from the sun. He further shows,
using terrestrial experiments and the third
law, that this centripetal force between two
bodies must be proportional to the product
of their masses. Now, as deductivists like
Duhem!7 have insisted, these deductions do
not result in an instance of the gravitational-
force law because that law requires that the
gravitational force acting between any two
bodies be proportional to the product of the
masses and inversely proportional to the
square of the distance between them; but
the total gravitational force acting on any
planet must be the sum of the forces due to
the sun and to the other bodies in the solar
system, and hence the total gravitational
force acting on a planet ought not to be
inversely proportional to the square of its
distance from the sun. Newton’s conclusions
are inconsistent with his law. Duhem’s objec-
tion fails entirely, however, if we recognize
that Kepler’s laws need not be taken as
strictly correct initial data, but rather as very
good approximations subject to whatever
errors there may be in the observations of
planetary positions and times. The question

puted result due to error in the initial data.
Such a determination in turn, requires,
besides some idea of the error of the obser-
vations, an estimate of the relative masses of
the planets to the sun. For any planet with a
satellite, the ratio of the planet’s mass to the
sun’s can be estimated from data indepen-
dent of those used to compute the circum-
solar force; Newton is thus able to argue
without circularity that the gravitational
interaction of the planets is very small in
comparison with the solar force.!®

In effect, the method of testing described
in this paper is Newton’s method, save that
in Newton’s case the matter is complicated
by the use of empirical laws as initial data
and the use of approximations. Not only
Newton, but Newtonian scientists of the
eighteenth and nineteenth  centuries
claimed to deduce their laws from the phe-
nomena. Perhaps they overstated their case,
but they had, nonetheless, a case to state.
The scorn heaped on their method by
Duhem is undeserved.

Another objection is that the account s,
after all, just the old hypothetico-deductive
account. For, if a set of initial data confirms
a hypothesis with respect to a theory accord-
ing to the preceding account, then surely
there is a valid deduction of some of the
propositions in the initial data set from
premises consisting of the rest of the propo-
sitions in the initial data set, the hypothesis
tested, and the theorems of the theory that
are used in the computations. Further, if the
data disconfirm the hypothesis, the negation
of some proposition in the initial data set
must be deducible in an analogous way. And
surely H-D theorists would agree that in
some contexts only some particular hypoth-
esis or hypotheses from among all those
which might appear in such deductions are
in fact tested.

It is true, I think, that any test can be
converted into a deductive argument in the

then becomes whether the planctary pertur-

bations are sufficiently small that the devia-
tion in the total force acting on a planet
from that calculated by Newton using Kep-
ler’s laws is less than the error of the com-

way suggested; but the Converse isTot true:
Not all deductions of singular statements
from putative laws and initial conditions can
be transformed into tests. For example, sup-

pose hypothesis & is tested by data I with



respect to theory T. For each predicate
occurring in A or in T but not occurring in 1,
choose two new, distinct predicates, and
replace each occurrence of each predicate,
P say, by the disjunction of the two new
predicates associated with P. Then & is

changed into a new hypothesis 2*, and T is -

changed into a new theory T#, and, further,
if there is a valid deduction of a proposition

in I from the rest of I, 4, and theorems of T,

then, by the substitution theorem, there is
also a valid deduction of that proposition in
I from the rest of I, #*, and T*. But, in gen-
eral, I will not test 2* with respect to T*.
‘That is exactly as it should be, for no scien-
tist would take evidence to support a theory
like T* when another like T was available.
The H-D method has us deduce singular
statements from laws; the new procedure, in
effect, has us deduce instances of laws from
singular statements and other laws. The two
are not the same. I have no doubt that H-D
advocates agree that sometimes data test
certain hypotheses and not others; what I
doubt is that their principles afford any
explanation of those judgments.

Iv

We still have to consider what the account of
theory testing can contribute to the ques-
tions with which we began. What grounds
can there be for claims to the effect that one
or another experiment has no bearing on
one or another hypothesis within a theory?
In general terms our answer is clear
enough: depending on the nature of the
experiment or observation and the struc-
ture of the theory in question, a given
hypothesis may or may not be tested accord-
ing to the scheme outlined in previous sec-
tions. In particular cases, detailing the
application of the scheme may be very com-
plex, and the psychoanalytic and relativity
examples mentioned at the outset are cer-
tainly too complex to discuss here.19 It is,
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of theory testing can explain the claim that
observations of a single planet do not, of
themselves, provide a test of Kepler’s third
law.
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Kepler’s first and second laws specify fea-
tures of the motion of any planetary body
moving about the sun. The third law,
however, relates features of the orbits of any
two bodies; specifically it claims that the
ratio of the periods of any two planets
equals the 3/2 power of the ratio of their
mean distances from the sun. The param-
eters that uniquely determine the Keplerian
orbit at any time can be estimated from sev-
eral observations of the planet on the celes-
tial sphere; in fact, three suitably chosen
observations suffice for the computations,2°
and a fourth observation of a single planet
permits a test of Kepler’s first and second
laws. But, however many observations we
may have of the location of a single planet
on the celestial sphere, those are not, by
assumption, observations of the location of
any other planet on the celestial sphere. To
test Kepler’s third law, we need estimates of
the periods and mean distances from the
sun of at least two planets. But from the
observations of one planet alone we cannot
compute, using Kepler’s laws and their con-
sequences, the parameters of the orbit of
any other planet. We can, of course, com-
pute under those circumstances the ratio of
the square of the period to the cube of the
mean distance from the sun for any planet
whatsoever, but only by using Kepler’s third
law itself. So, even if we count such a ratio as
one quantity, the representative of Kepler’s
third law (see p. 412 above) for the requisite
computations will be a trivial identity, and
hence the third law will not be tested.

The account of theory testing helps to
account for a good deal more about scien-
tific methodology. A standard meth-
odological principle is that a theory is better
supported by a variety of evidence than by a
narrow spectrum of evidence. The sub-
stance of the principle is, however, unclear
so long as we lack some account of what con-
stitutes relevant variety. One view, which I

SN

S TNUS K. S S 5 bWarssiae : FELG
BDEHEVE IS INCOTrTECtisthat what constitutes a

relevant variety of evidence for a theory is
entirely determined by what other theories
happen to be in competition with the first.21
On the contrary, if, as I have argued, a
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given piece of evidence may be evidence for
some hypothesis in a theory even while it is
irrelevant to other hypotheses in that the-
ory, then we surely want our pieces of evi-
dence to be various enough to provide tests

of as many different hypotheses in that the-.

ory as possible, regardless of what, in histor-
ical context, the competing theories may be.
There is a further complication. In assessing
a theory we are judging how well it is sup-
ported with respect to itself, and this reflex-
ive feature of theory testing makes for
certain difficulties. If a hypothesis is con-
firmed by observations and computations
using another hypothesis in the theory, then
it is always possible that the agreement
between hypothesis and evidence is spu-
rious: both the hypothesis tested and some
hypothesis used in the computations of the
test may be in error, but the errors in one
hypothesis may be exactly (or exactly
enough) compensated for by the errors in
the other. Conversely, a true hypothesis
may be disconfirmed by observations and
computations using other hypotheses in the
theory if one or more of the hypotheses
used in the computations are incorrect. The
only means available for guarding against
such errors is to have a variety of evidence,
so that as many hypotheses as possible are
tested in as many different ways as possible.
What makes one way of testing relevantly
different from another is that the hypoth-
eses used in the one computation are dif-
ferent from the hypotheses used in the
other computation. Part of what makes one
piece of evidence relevantly different from
another piece of evidence is that some test is
possible from the first that is not possible
from the second, or that in the two cases
there is some difference in the precision of
computed values of theoretical quantities.
Kepler’s laws again provide a simple
example. Kepler did not determine elliptical
_orbits for planets as simply the best fit for
the data; on the contrary, he gave a physical
argument for the area rule—his second
law—and used the area rule together with
the data to infer that the planetary orbits are
ellipses. Seventeenth-century astronomers

were able to confirm Kepler’s first law only
by using his second, and they were able to
confirm his second only by using his first.
Understandably, there remained considera-
ble disagreement and uncertainty as to
whether the two laws were correct, or
whether the errors in one were compen-
sated for by the errors in the other. Not
until the mvention of the micrometer and
Flamsteed’s observations of Jupiter and its
satellites, late in the seventeenth century,
was a confirmation of Kepler’s second law
obtained without any assumption con-
cerning the planet’s orbit.?2 I doubt that this
example is singular; quite the reverse: it
seems unlikely to me that the development
and testing of any complex modern theory
in physics or in chemistry can be understood
without some appreciation of the way a vari-
ety of evidence serves to separate hypoth-
eses.

At the outset it was observed that some
theories are regarded chiefly as curiosities
and rarely taken seriously, despite the fact
that they account for all the evidence
accounted for by some theory taken very
sertously and are not known to be irrecon-
cilable with any other phenomena. In many
cases this kind of scientific discrimination
can plausibly be explained as the result of
applying the principles of evidential rele-
vance that we are concerned to describe.

Some years ago Walter Thirring?? pub-
lished a special relativistic theory of gravita-
tion. Thirring’s theory supposes that space-
time has a flat metric m,,, like that of special
relativity and that gravitation is due to a ten-
sor field, ¥,,,, that has no effect on the met-
ric. Writing down equations for these
quantities, Thirring was able to show that
his theory accounts for many of the phe-
nomena that are usually taken to confirm
general relativity. His theory is almost uni-
versally regarded as a curiosity; such an
assessment_might _of course result from
mere prejudlce or from any of a variety of
obscurely motivated methodological opin-
ions, e.g., the view that a phenomenon con-
firms a theory only if the theory literally pre-
dicts the phenomenon. But I think the




account of relevant evidence developed in
the preceding sections best explains this
assessment, and also best explicates what
physicists typically say in justifying that
assessment. What they say is that Thirring’s
theory is defective because his metric, m,,,, is
not “observable.”2* A better word would be
‘determinable’, and, if we understand the
authors in that way, then the complaint
makes perfect sense. Free-falling particles
do not follow geodesics of Thirring’s metric,
M.» DOT do clocks measure time according
to it, nor rods distance. What, according to
the theory, such systems measure are geo-

" desics, time, distances, as determined by the

quantity:
nuv - fl/,'L(-Yl

where [ is a suitable function. By making
compensatory changes in ¢, , an infinite
variety of different flat metrics m,,, can be
made compatible with all data about rods,
clocks, test particles, etc. This is not Jjust
experimental uncertainty, or a failure to
obtain perfect accuracy in our measure-
ments. We noted earlier that, if in a theory a
quantity A is replaced throughout by an
algebraic combination of new quantities B,
C, D, then hypotheses formerly tested by
various initial data may be turned into
hypotheses not tested by those data, because
values for B, C, D cannot be computed even
approximately. That is in effect what hap-
pens in Thirring’s theory: the general rela-
tivistic metric, g,,,, which is determinable in
principle from the behavior of material
objects, is replaced by an algebraic combina-
tion—(v,, — f¥,.)—of new quantities. The
result is that values for the new quantities
cannot be computed from the relevant ini-
tial data, and so, although it might be possi-
ble to determine evidence against Thirring’s
theory, it is not possible to determine evi-
dence for its central hypotheses because they
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explanation of it, are not positively tested by
it. The principle is a good one.

Theories with quantities whose values
cannot be determined by the evidence are,
in an intuitive way, less simple than theories
without undeterminable quantities or with
fewer of them. Still, it is a mistake to see this
discrimination as no more than a manifesta-
tion of our preference for simple theories; I
think we do better to try to understand
whatever rational preference there may be
for simpler scientific hypotheses as deriva-
tive from our preference for better tested
theories, and the account presented here
provides at least a partial rationale for our
attachment to simplicity. Quine, for one,
seems to think differently:

Yet another principle that may be said to figure
as a tacit guide of science is that of sufficient
reason. A lingering trace of this venerable princi-
ple seems recognizable, at any rate, in the scien-
tist’s shunning of gratuitous singularities. If he
arrives at laws of dynamics that favor no one
frame of reference over others that are in motion
with respect to it, he forthwith regards the notion
of absolute rest and hence of absolute position as
untenable. This rejection is not, as one is tempted
to suppose, a rejection of the empirically
undefinable; empirically unexceptionable defini-
tions of rest are ready to hand, in the arbitrary
adoption of any of various specifiable frames of
reference. It is a rejection of the gratuitous. This
principle may, however, plausibly be subsumed
under the demand for simplicity, thanks to the
looseness of the latter idea.25

Though it is perfectly correct that we can
always make determinable an undetermina-
ble quantity in a theory merely by adding a
further hypothesis, that is not enough. For
it is not in the least obvious that we can
always add a hypothesis which will be tested
by the evidence available or which will not
be tested negatively either by the evidence
available or by evidence easily produced. In
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cannot be instantiated: ‘1'he physicsts” prin-
ciple is that we should prefer theories whose
hypotheses are positively tested by our evi-
dence to theories that, even though consis-

tent with our data and affording an
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~Newtorman teory thiere s 1o way to com-

pute which unaccelerated trajectories
through space-time are truly at rest with
respect to absolute space. One can easily add
to the theory untestable hypotheses about
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the rest frame—e.g., that the center of mass
of the universe is at rest; and one can easily
add hypotheses one has every reason to
believe false or at best contingently true—
e.g., that inertially moving cabbages are at
rest. Doing better is hard. Identification of
the rest frame with the reference system in
which particular physical systems—whether
cabbages or the Sun—are at rest Is
unsatisfactory, for such correlations cannot
be even approximate laws because the phys-
ical systems can be accelerated. The aether,
were there one, would perhaps have done
the job, but there is not one, and the impor-
tance of that fact in the history of physics
underscores the point: what theoretical
magnitudes we can determine depends on
what lawlike hypotheses are available to us,

and that, in turn, depends on what kinds of -

things there are.

There is another kind of case where
judgments often attributed to a taste for
simple things can at least partially be
attributed instead to a taste for well-tested
things. First a word about error. Suppose
the measurements that comprise some body
of evidence are subject to error and, though
the exact error of any measurement is
unknown, an upper bound to the error is
known. Then each measurement may be
regarded as determining an interval of pos-
sible values of the measured quantity, within
which the true value must lie. This 1s, I
believe, a typical circumstance in scientific
measurement. Computations of theoretical
quantities may proceed as before, but what
is determined from the data is a set of values
of any computed quantity. Again, a test of a
theoretical relation is understood as before,
but with the following complication: what 1s
required for an instance of a hypothesis s,
for each quantity in the hypothesis, a set of
values for that quantity such that there can
be drawn from the respective sets a collec-
tion of precise values—one for each _quan-

hypotheses about the functional form of the
relation between two quantities, X and 7,
which he can determine experimentally. We
assume that he has no well-established the-
ory to guide him, and we suppose his mea-
surements of X to be subject to some error
of known bound. If getting values for X and
for Y is difficult, costly, and tedious, our the-
orist will doubtless wish to draw his con-
clusions from but a few data points if that is
possible. Suppose he has six points and, to
within the tolerable error, they lie on a line:
our theorist claims that the relation between
X and Y is linear. Why does he think the
linear hypothesis better than some other
polynomial relation? In particular, the six
data points are perfectly consistent w1th the
hypothesis that

Y =ay, + a,X + aX? + azX3 + a,X* + as X3

and, because of the error, the coetficients of
quadratic and higher powers of X need not
be zero. Why the linear hypothesis rather
than the fifth-degree hypothesis? Can there
be any more to it than a taste for simple
things?

A Popperian answer is that the simpler,
linear hypothesis can be falsified by fewer
data points than can the fifth-degree
hypothesis. This cannot be exactly the right
reason, for, given the six data points, the lin-
ear and fifth-degree hypothesis each
require the same number of additional data
points for a possible falsification, namely,
one. The reason for the preference, I sug-
gest, is straightforward: two data points per-
mit a computation of intervals of values for
the undetermined coefficients of the linear
hypothesis, and four more data points per-
mit four tests of that hypothesis; but the six
values of X and Y permit only a computation
of intervals of values of the constant coeffi-
cients in the fifth-degree hypothesis; they
do not permit any test of it. The theorist

tity—satisfying the hypothesis.” This

obvious generalization of our account when

error is present.
Suppose a

theorist is entertaining

1s the

shouid preter the linear hypothesis for the
straightforward reason that he has more
positive evidence for it than for any other
polynomial relation.
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There are two theses which have recently
gained such wide assent among empiricist
philosophers that they deserve to be
regarded as new dogmas of empiricism. I
have in mind the claim that our theories
may be underdetermined by all possible evi-
dence, and the further claim that each the-
ory is tested as a whole. Dogmas may of
course be true, and, with suitable qualifica-
tions, these dogmas are. I should like to con-
clude by saying something about the
qualifications.

For some theories, at some stages of their
development, a set of quantities can plausi-
bly be demarcated such that the evidence
for or against the theory in question consists
of values for these quantities for various sys-
tems. When such a demarcation can plausi-
bly be made, it not only makes sense to ask
whether the theory is uniquely determined
by all possible evidence of the relevant kind,
but, further, we can sometimes hope to get
an answer to this question. Of course an
answer, whether affirmative or negative,
says nothing about what sorts of under-
determination may occur if novel kinds of
evidence are discovered. For example, the
state of absolute rest is undeterminable in
Newtonian gravitational theory, but, had
the combination of Newtonian theory with
Maxwell’s electrodynamics proved correct,
optical experiments would have permitted a
determination of the rest frame.26 Again,
for certain models of general relativity, it
can be shown that no measurements of the
quantities peculiar to that theory suffice to
determine the global topology of space-
time,27 but, even if our universe is in fact
one of these topologically underdetermined
universes, it is still possible that other
branches of physics—plasma physics for
example—might provide evidence and the-
ory sufficient to determine a unique
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best theory that explains it. Conceivably, all
possible such evidence might fail to deter-
mine a unique theory for either of two kinds
of reasons. First, there might occur two or
more theories that are not intertranslatable
but all of whose hypotheses are tested
positively by the evidence so that every
methodological demand met by one theory
is met by the other. I know of no plausible
candidates for this kind of case, but I see no
reason why they should not exist. Second,
there might occur two or more theories that
differ only in hypotheses that cannot be
tested, and, for some reason or other, every
plausible theory accounting for the evidence
also contains such a hypothesis. There are a
great many examples of this kind of case,
and analyzing when this sort of underdeter-
mination arises is a standard problem in the
social sciences.?8

Demonstrating underdetermination is
sometimes possible, but it is not as easy as
some writers have supposed. Reichen-
bach,2® for example, argued that, even in
the context of classical physics, the theory of
the geometry of space is underdetermined;
for, given any geometry, we can suppose it
to be the true one and explain the coinci-
dence behavior of material bodies in terms
of this geometry and the action of a “univer-
sal force.” But, if one sets out actually to
write down such a theory, one quickly dis-
covers that it is obtainable only by dividing
the Euclidean metric of Newtonian theory
into two new quantities, just as Thirring
divided the metric field of general relativity
into two new quantities. The result is a the-
ory which, on the same evidence, is less well
tested than Newtonian theory. We cannot
demonstrate underdetermination by sub-
stituting for one or more predicates of a the-
ory a combination of new predicates, since
the result of the substitution is a theory less
well tested than the original.

Early in this century both Duhem and

1

If we confine consideration to a given
kind of evidence, we can inquire whether
evidence of that kind uniquely determines a
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a whole. Reductive programs, like Carnap’s
Aufbau, would have avoided holism had they
succeeded, but they did not succeed. Later,
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a number of philosophers, notably Carnap
and C. I. Lewis, tried to avoid holism by
putting analytic truth to work. They kept in
common some version of the claim that,
given a collection of analytic truths, or
truths by convention, each hypothesis in a
theory has its own, independent connec-
tions with experience. It is understandable
that a new romance with holism should be
the concomitant, of estrangement from the
distinction between analytic truths and syn-
thetic truths.

Part of what has been said or suggested
on behalf of holism is false, and part of it is
true. It is true that a great part of a theory
may be involved in the confirmation of any
of its hypotheses, and it is further true that
the assessment of any hypothesis in a theory
in the face of negative evidence requires the
assessment of all hypotheses in that theory.
It is false that a piece of evidence is evidence
indiscriminately for all hypotheses in a the-
ory or for none of them, and it is false as
well that theories must be accepted or
rejected as a whole. For positive evidence
may fail to provide any support for some
hypotheses in a theory—support, that is,
with respect to the theory itself—even while
confirming other hypotheses. And, if the
total evidence is of sufficient variety, evi-
dence inconsistent with a theory may still
leave us with a fragment that is best con-
firmed with respect to itself. If we are lucky,
in some axiomatizations of the theory we
may even be able to single out a particular
axiom that deserves the blame. A naive
holism that supposes theory to confront
experience as an unstructured, blockish
whole will inevitably be perplexed by the
power of scientific argument to distribute
praise and to distribute blame among our
beliefs.
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