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4 Part I Theories

uum) and Brownian motion—both involve the
explanation of observable effects in terms of
molecular causes.

Professor Putnam rejects the positivist con-
ception of thebretical terms according to
which their meaning is given by their relation
to the observational terms of the theory. On
his approach the relation between the terms
and the world are determined by the history of
theorizing about that kind of thing. He is par-
ticularly concerned to reject the conclusions
of Feyerabend.and others that distinct theories
have no point of contact because their
expressions mean different things. Putnam
rejects this conclusion, which he describes as
“idealist,” meaning that it construes the world
as our creation, in favor of the realism accord-
ing to which our theories may well talk about
unobservable items even when the theories
are radically wrong about their nature.

Professor Fine is dissatisfied with both real-
ist and anti-realist positions. He is in agree-
ment with the rejection of a Feyerabend
position which regards truth as dependent
upon theory; moreover, he finds van
Fraassen’s position unnatural, depending as it
does on an expectation that science give an
unequivocal and noncircular answer to what
is observable but then uniformly suspend
belief beyond that point. Fine’s own “‘natural
ontological attitude” does not, in his words,
depend on interpreting science providing any
philosophical interpretation of what science is
doing. Whether this solves the problems or
merely refuses to face them is a question we
leave to the reader.

One apparent consequence of the positivist
view of theories is that the meaning of the-
oretical terms is given via their relations in the
axioms to observational terms. This leads to
the conclusion that if the theory is changed,
the meanings of the theoretical terms must
also change, a conclusion that has seemed to
many critics to create difficulties. Professor
Paul Feyerabend has been one of the leading
critics of the logical empiricist view that
observational laws are deduced from theories.
He claims that this presupposes that the laws
and the theories never have conflicting
empirical consequences and that the meaning

of the terms in the laws does not change when
the new theory is formulated. Feyerabend
calls these two conditions the ‘““consistency
condition” and ‘““the condition of meaning
invariance,” and he argues that neither is
actually satisfied by scientific practice. He
also argues that it would be unreasonable for
the scientist to confine himself or herself to the
formulation of theories that satisfy these con-
ditions. Therefore, Feyerabend concludes that
the logical empiricists were mistaken and that
we should view new theories not as covering
laws for earlier laws and theories but as
attempts to replace these earlier laws with
which they conflict.

One way of avoiding the problems which
seem to follow from the change of meaning
attendant on the change of theory is to argue
that the reference of scientific terms does not
change because it is determined by the causal
history of the use of the term and by facts,
perhaps as yet unknown, about the world.
Professor Shapere discusses a version of this
approach and argues that it is no better than
the empiricist approach it is intended to sup-
plant.

His main argument is that the causal history
approach would commit scientists eventually
to a dogmatic identification of a particular set
of properties as the ultimate definition of a
term, and thus would replace the apparent rel-
ativism of the earlier meaning change
approach with an unacceptable dogmatism.
His own solution to the problems, which he
sketches at the end of his essay, is to argue
that there is a continuity of reasons underlying
the changes of meaning and that these con-
tinuities unite the apparently disparate discus-
sions that occur over a period of time.

Professor Laudan argues against two dog-
mas that he believes have been widely
accepted in discussions of theory change and
theory evaluation. The first is that scientific
progress requires that all problems solved by a
previous theory must also be solved by any
subsequent theory if we are to progress. The
second is that to evaluate two rival theories
we must be able to translate fully statements of
the two theories into a neutral third language.
Laudan argues that both of these dogmas are

false; he cites numerous historical examples
of theories which were accepted as successors
and as constituting scientific progress even
though they did not solve all of the problems
solved by the theory they supplanted. With
regard to evaluation, he points out that if we
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can simply count the number of problems
solved by rival theories, the we would be able
to compare their problem-solving abilities
without either an exact matching of problems
or a translation of the theories.

The Classical Approach

Rudolf Carnap

THEORIES AS PARTIALLY
INTERPRETED FORMAL SYSTEMS

23. PHYSICAL CALCULI AND THEIR
INTERPRETATIONS

The method described with respect to
geometry can be applied likewise to any
other part of physics: We can first construct
a calculus and then lay down the interpreta-
tion intended in the form of semantical
rules, yielding a physical theory as an inter-
preted system with factual content. The cus-
tomary formulation of a physical calculus is
such that it presupposes a logico—mathe-
matical calculus as its basis, e.g., a calculus of
real numbers in any of the forms discussed
above (818). To this basic calculus are added
the specific primitive signs and the axioms,
i.e., specific primitive sentences, of the phys-
ical calculus in question.

Thus, for instance, a calculus of mechan-
ics of mass points can be constructed. Some
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predicates and functors (i.e., signs for func-
tions) are taken as specific primitive signs,
and the fundamental laws of mechanics as
axioms. Then semantical rules are laid
down stating that the primitive signs desig-
nate, say, the class of material particles, the
three spatial coordinates of a particle x at
the time ¢, the mass of a particle x, the class
of forces acting on a particle x or at a space
point s at the time {. (As we shall see later
[§24], the interpretation can also be given
indirectly, i.e., by semantical rules, not for
the primitive signs, but for certain defined
signs of the calculus. This procedure must
be chosen if the semantical rules are to refer
only to observable properties.) By the inter-
pretation, the theorems of the calculus of
mechanics become physical laws, i.e., uni-
versal statements describing certain features
of events; they constitute physical mechan-
ics as a theory with factual content which
can be tested by observations. The relation
of this theory to the calculus of mechanics is
entirely analogous to the relation of physical
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to mathematical geometry. The customary
division into theoretical and experimental
physics corresponds roughly to the distinc-
tion between calgulus and interpreted sys-
tem. The work jf theoretical physics consists
mainly in constructing calculi and carrying
out deductions within them; this is essen-
tially mathematical work. In experimental
physics interpretations are made and theo-
ries are tested by experiments.

In order to show by an example how a
deduction is carried out with the help of a
physical calculus, we will discuss a calculus
which can be interpreted as a theory of ther-
mic expansion. To the primitive signs may
belong the predicates “Sol” and “Fe”, and
the functors “lg”, “te”, and “th.” Among the
axioms may be Al and A2. (Here, x, § and
the letter with subscripts are real number
variables; the parentheses do not contain
explanations as in former examples, but are
used as in algebra and for the arguments of
functors.)

Al. Foreveryx,ty,ty, 0}, 15, Ty, T,, B [if [xis a Sol
and lg (x, t;) = [, and Ig(x, &) = {2 and te(x,
;) = T, and te(x, t,) = T, and th(x) = B]
thenly =1} X (1 + B X (T, — T))].

A2. For every x, if [x is a Sol and x is a Fe] then
th(x) = 0.000012.

The customary interpretation, i.e., that for
whose sake the calculus is constructed, is
given by the following semantical rules.
lg(x,t) designates the length in centimeters
of the body x at the time ¢ (defined by the
statement of a method of measurement);
te(x, f) designates the absolute temperature
in centigrades of x at the time ¢ (likewise
defined by a method of measurement); th(x)
designates the coefficient of thermic expan-
sion for the body x; Sol designates the class
of solid bodies; Fe the class of iron bodies.
By this interpretation, Al and A2 become
physical laws. Al is the law of thermic

Derivation D,:
. ¢is a Sol.
. c¢is a Fe.
Premases

CUk N~

expansion in quantitative form, A2 the
statement of the coefficient of thermic
expansion for iron. As A2 shows, a state-
ment of a physical constant for a certain
substance is also a universal sentence. Fur-
ther, we add semantical rules for two signs
occurring in the subsequent example: The
name ¢ designates the thing at such and
such a place in our laboratory; the numer-
ical variable ¢ as time coordinate designates
the time-point ¢ seconds after August 17,
1938, 10:00 A.Mm.

Now we will analyze an example of a deri-
vation within the calculus indicated. This
derivation D, is, when interpreted by the
rules mentioned, the deduction of a predic-
tion from premises giving the results of
observations. The construction of the deri-
vation D, is however entirely independent
of any interpretation. It makes use only of
the rules of the calculus, namely, the phys-
ical calculus indicated together with a cal-
culus of real numbers as basic calculus. We
have discussed, but not written down, a sim-
ilar derivation D; (§19), which, however,
made use only of the mathematical calculus.
Therefore the physical laws used had to be
taken in D, as premises. But here in D, they
belong to the axioms of the calculus (A1 and
A2, occurring as [6] and [10]: Any axiom or
theorem proved in a physical calculus may
be used within any derivation in that cal-
culus without belonging to the premisses of
the derivation, in exactly the same way in
which a proved theorem is used within a
derivation in a logical or mathematical cal-
culus, e.g., in the first example of a deriva-
tion in §19 sentence (7), and in D, (§19) the
sentences which in D, are called (7) and
(13). Therefore only singular sentences (not
containing variables) occur as premisses in
Dy. (For the distinction between premisses
and axioms see the remark at the end of
§19.)

te(c, 0) = 300.
te(c, 600) =
lg(c, 0) = 1,000.

350.

Proved mathem.

On the basis of the interpretation given
before, the premisses are singular sentences
concerning the body ¢. They say that ¢ is a
solid body made of iron, that the tem-
perature of ¢ was at 10:00 A.M. 300° abs. and
at 10:10 A.M. 350° abs., and that the length
of ¢ at 10:00 A.Mm. was 1,000 cm. The con-
clusion says that the increase in the length of
¢ from 10:00 to 10:10 a.m. is 0.6 cm. Let us
suppose that our measurements have con-
firmed the premisses. Then the derivation
yields the conclusion as a prediction which
may be tested by another measurement.
Any physical theory, and likewise the
whole of physics, can in this way be pre-
sented in the form of an interpreted system,
consisting of a specific calculus (axiom sys-
tem) and a system of semantical rules for its
Interpretation; the axiom system is, tacitly
or explicitly, based upon a logico-mathe-
matical calculus with customary interpreta-
tion. It is, of course, logically possible to
apply the same method to any other branch
of science as well. But practically the situta-
tion is such that most of them seem at the
present time to be not yet developed to a
degree which would suggest this strict form
of presentation. There is an interesting and
successful attempt of an axiomatization of
certain parts of biology, especially genetics,
by Woodger (Vol. I, No. 10). Other scientific
fields which may expect to be accessible soon
to this method are perhaps chemistry, eco-
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Axiom Al 6. For every x, t;, &y, 1, Iy, T, Ty, B [if [x is a Sol and
lgx, t;) = 1, and Ig(x, t) = i, and te(x, ;) = T,
and te(x, t) = T, and th(x) = B] then [, = l %
(1 +p8x (T2 - Tl))]'

Proved mathem. 7. For every [}, loy T, To, Blly — I, =1, X B X (Ty —
theorem: T))ifandonlyifl, = I, x (1 + 8 X Ty ~ TH)I
6)(7) 8. For everyx, ¢, ... (asin [6]) ... [if [---] then ], — [,
=1, X B X (T, — T
(1)(3)(4)(8) 9. For every [}, Iy, B [if [th(c) = B and lg(c, 0) = l; and

Ig(c, 600) = )] thenl, — I, X B X (350 — 300)].
Axiom A2 10. For every x, if [x is a Sol and x is a Fe] then th(x) =
0.000012.
(1)(2)(10) 11. th(c) = 0.000012.
O)Y(11)(5) 12. For every I}, Iy, [if [lg(c, 0) = /, and Ig(c, 600) = lo]

then [, — [, = 1,000 x 0.000012 x (350 — 300)].

theorem: 13. 1,000 x 0.000012 x (350 — 300) = 0.6.
(12)(13) Conclusion:  14. lg(c, 600) —

lg(c, 0) = 0.6.

nomics, and some elementary parts of psy-
chology and social science.

Within a physical calculus the mathe-
matical and the physical theorems, i.e., C-
true formulas, are treated on a par. But
there is a fundamental difference between
the corresponding mathematical and the phys-
ical propositions of the physical theory, i.e.,
the system with customary interpretation.
This difference is often overlooked. That
physical theorems are sometimes mistaken
to be of the same nature as mathematical
theorems is perhaps due to several factors,
among them the fact that they contain
mathematical symbols and numerical
expressions and that they are often formu-
lated incompletely in the form of a mathe-
matical equation (e.g., Al simply in the
form of the last equation occurring in it). A
mathematical proposition may contain only
logical signs, e.g., “for everym,n,m + n = n
+ m,” or descriptive signs also, if the mathe-
matical calculus is applied in a descriptive
system. In the latter case the proposition,
although it contains signs not belonging to
the mathematical calculus, may still be
provable in this calculus, e.g., 1g(c) + lg(d)
= lg(d) + lg(x) (I3 designates length as
before). A physical proposition always con-
tains descriptive signs because otherwise it
could not have factual content; in addition,
it usually contains also logical signs. Thus
the difference between mathematical the-
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orems and physical theorems in the inter-
preted system does not depend upon the
kinds of signs occurring but rather on the
kind of truth of the theorems. The truth of
a mathematical fheorem, even if it contains
descriptive sighs, is not dependent upon any
facts concerning the designata of these
signs. We can determine its truth if we know
only the semantical rules: Hence it is L-true.
(In the example of the theorem just men-
tioned, we need not know the length of the
body ¢). The truth of a physical theorem, on
the other hand, depends upon the proper-
ties of the designata of the descriptive signs
occuring. In order to determine its truth, we
have to make observations concerning these
designata; the knowledge of the semantical
rules is not sufficient. (In the case of A2,
e.g., we have to carry out experiments with
solid iron bodies.) Therefore, a physical the-
orem, in contradistinction to a mathematical
theorem, has factual content.

24. ELEMENTARY AND ABSTRACT
TERMS

We find among the concepts of physics and
likewise among those of the whole of
empirical science—differences of abstract-
ness. Some are more elementary than oth-
ers, in the sense that we can apply them in
concrete cases on the basis of observations in
a more direct way than others. The others
are more abstract; in order to find out
whether they hold in a certain case, we have
to carry out a more complex procedure,
which however also rests finally on observa-
tions. Between quite elementary concepts
and those of high abstraction there are
many intermediate levels. We shall not try to
give an exact definition for “degree of
abstractness”; what is meant will become
sufficiently clear by the following series of
sets of concepts, proceeding from elemen-
tary to abstract concepts: bright, dark, red,
blue, warm, cold, sour, sweet, hard, soft (all
concepts of this first set are meant as prop-
erties of things, not as sense-data); coinci-
dence; length; length of time; mass,

velocity, acceleration, density, pressure;
temperature, quantity of heat; electric
charge, electric current, electric field; elec-
tric potential, electric resistance, coefficient
of induction, frequency of oscillation; wave
function.

Suppose that we intend to construct an
interpreted system of physics—or of the
whole of science. We shall first lay down a
calculus. Then we have to state semantical
rules of the kind SD for the specific signs,
i.e., for the physical terms. (The SL-rules
are presupposed as giving the customary
interpretation of the logico-mathematical
basic calculus.) Since the physical terms
form a system, i.e., are connected with one
another, obviously we need not state a
semantical rule for each of them. For which
terms, then, must we give rules, for the ele-
mentary or for the abstract ones? We can, of
course, state a rule for any term, no matter
what its degree of abstractness, in a form
like this: “The term te designates tem-
perature,” provided the meta-language
used contains a corresonding expression
(here the word temperature) to specify the
designatum of the term in question. But
suppose we have in mind the following pur-
pose for our syntactical and semantical
description of the system of physics: The
description of the system shall teach a
layman to understand it, i.e., to enable him
to apply it to his observations in order to
arrive at explanations and predictions. A
layman is meant as. one who does not know
physics but has normal senses and under-
stands a language in which observable prop-
erties of things can be described (e.g., a
suitable part of everyday nonscientific
English). A rule like “the sign P designates
the property of being blue” will do for the
purpose indicated; but a rule like “the sign
Q designates the property of being elec-
trically charged” will not do. In order to
fulfill the purpose, we have to give seman-
tical rules for elementary terms only, con-
necting them with observable properties of
things. For our further discussion we sup-
pose the system to consist of rules of this
kind, as indicated in the diagram on the
next page.
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Now let us go back to the construction of
the calculus. We have first to decide at which
end of the series of terms to start the con-
struction. Should we take elementary terms
as primitive signs, or abstract terms? Our
decision to lay down the semantical rules for
the elementary terms does not decide this
question. Either procedure is still possible
and seems to have some reasons in its factor,
depending on the point of view taken. The
first method consists in taking elementary
terms as primitive and then introducting on
their basis further terms step by step, up to
those of highest abstraction. In carrying out
this procedure, we find that the introduc-
tion of further terms cannot always take the
form of explicit definitions; conditional def-
initions must also be used (so-called reduc-
tion sentences[see Vol. I, No. 1, p. 50]).
They describe a method of testing for a
more abstract term, ie., a procedure for
finding out whether the term is applicable in
particular cases, by referring to less abstract
terms. The first method has the advantage
of exhibiting clearly the connection between
the system and observation and of making it
easier to examine whether and how a given
term is empirically founded. However,
when we shift our attention from the terms
of the system and the methods of empirical
confirmation to the laws, i.e., the universal
theorems, of the system, we get a different
perspective. Would it be possible to formu-
late all laws of physics in elementary terms,
admitting more abstract terms only as
abbreviations? If so, we would have that

ideal of a science in sensationalistic form
which Goethe in his polemic against New-
ton, as well as some positivists, seems to have
had in mind. But it turns out—this is an
empirical fact, not a logical necessity—that it
is not possible to arrive in this way at a pow-
erful and efficacious system of laws. To be
sure, historically, science started with laws
formulated in terms of a low level of
abstractness. But for any law of this kind,
one nearly always later found some excep-
tions and thus had to confine it to a nar-
rower realm of validity. The higher the
physicists went in the scale of terms, the bet-
ter did they succeed in formulating laws
applying to a wide range of phenomena.
Herice we understand that they are inclined
to choose the second method. This method
begins at the top of the system, so to speak,
and then goes down to lower and lower lev-
els. It consists in taking a few abstract terms
as primitive signs and a few fundamental
laws of great generality as axioms. Then
further terms, less and less abstract, and
finally elementary ones, are to be intro-
duced by definitions; and here, so it seems
at present, explicit definitions will do. More
special laws, containing less abstract terms,
are to be proved on the basis of the axioms.
At least, this is the direction in which phys-
icists have been striving with remarkable
success, especially in the past few decades.
But at the present time, the method cannot
yet be carried through in the pure form
indicated. For many less abstract terms no
definition on the basis of abstract terms
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alone is as yet known; hence those terms
must also be taken as primitive. And many
more special laws, especially in biological
fields, cannot yet be proved on the basis of
laws in abstra¢£erms only; hence those laws
must also be ‘taken as axioms.

Now let us examine the result of the
interpretation if the first or the second
method for the construction of the calculus
is chosen. In both cases the semantical rules
concern the elementary signs. In the first
method these signs are taken as primitive.
Hence, the semantical rules give a complete
interpretation for these signs and those
explicitly defined on their basis. There are,
however, many signs, especially on the
higher levels of abstraction, which can be
introduced not by an explicit definition but
only by a conditional one. The interpreta-
tion which the rules give for these signs is
incomplete. This is due not to a defect in the
semantical rules but to the method by which
these signs are introduced; and this method
1s not arbitrary but corresponds to the way
in which we really obtain knowledge about
physical states by our observations.

If, on the other hand, abstract terms are
taken as primitive—according to the second
method, the one used in scientific physics—
then the semantical rules have no direct
relation to the primitive terms of the system
but refer to terms introduced by long chains
of definitions. The calculus is first con-
structed floating in the air, so to speak; the
construction begins at the top and then adds
lower and lower levels. Finally, by the
semantical rules, the lowest level is anchored
at the solid ground of the observable facts.
The laws, whether general or special, are
not directly interpreted, but only the sin-
gular sentences. For the more abstract
terms, the rules determine only an indirect
interpretation, which is—here as well as in the
first method—in a certain sense incomplete.
Suppose B is defined on the basis of A; then,
if A is directly interpreted, B is, although
indirectly, also interpreted completely; if,
however, B is directly interpreted, A is not
necessarily also interpreted completely (but
only if A is also definable by B).

To give an example, let us imagine a calculus of
physics constructed, according to the second
method, on the basis of primitive specific signs
like “electromagnetic field,” “gravitational field,”
“electron,” “proton,” etc. The system of defini-
tions will then lead to elementary terms, e.g., to
Fe, defined as a class of regions in which the
configuration of particles fulfills certain condi-
tions, and Na-yellow as a class of space-time
regions in which the temporal distribution of the
electromagnetic fields fulfills certain conditions.
Then semantical rules are laid down stating that
Fe designates iron and Na-yellow designates a
specified yellow color. (If “iron” is not accepted
as sufficiently elementary, the rules can be stated
for more elementary terms.) In this way, the con-
nection between the calculus and the realm of
nature to which it is to be applied is made for
terms of the calculus which are far remote from
the primitive terms.

Let us examine, on the basis of these dis-
cussions, the example of a derivation D,
(§23). The premisses and the conclusion of
D, are singular sentences, but most of the
other sentences are not. Hence the pre-
misses and the conclusion of this, as of all
other derivations of the same type, can be
directly interpreted, understood, and con-
fronted with the results of observations.
More of an interpretation is not necessary
for a practical application of a derivation. If,
in confronting the interpreted premisses
with our observations, we find them con-
fimed as true, then we accept the conclusion
as a prediction and we may base a decision
upon it. The sentences occurring in the der-
ivation between premisses and conclusion
are also interpreted, at least indirectly. But
we need not make their interpretation
explicit in order to be able to construct the
derivation and to apply it. All that is neces-
sary for its construction are the formal rules
of the calculus. This is the advantage of the
method of formalization, i.e., of the separa-
tion of the calculus as a formal system from
the interpretation. If some persons want to
come to an agreement about the formal cor-
rectness of a given derivation, they may
leave aside all differences of opinion on
material questions or questions of inter-
pretation. They simply have to examine

whether or not the given series of formulas
fulfils the formal rules of the calculus. Here
again, the function of calculi in empirical
science becomes clear as instruments for
transforming the expression of what we
know or assume.

Against the view that for the application
of a physical calculus we need an interpreta-
tion only for singular sentences, the follow-
ing objection will perhaps be raised. Before
we accept a derivation and believe its con-
clusion we must have accepted the physical
calculus which furnishes the derivation and
how can we decide whether or not to accept
a physical calculus for application without
interpreting and understanding its axioms?
To be sure, in order to pass judgment about
the applicability of a given physical calculus,
we have to confront it in some way or other
with observation, and for this purpose an
interpretation is necessary. But we need no
explicit interpretation of the axioms, nor
even of any theorems. The empirical exam-
ination of a physical theory given in the
form of a calculus with rules of interpreta-
tion is not made by interpreting and under-
standing the axioms and then considering
whether they are true on the basis of our
factual knowledge. Rather, the examination
is carried out by the same procedure as that
explained before for obtaining a prediction.
We construct derivations in the calculus
with premisses which are singular sentences
describing the results of our observations,
and with singular sentences which we can
test by observations as conclusions. The
physical theory is indirectly confirmed to a
higher and higher degree if more and more
of these predictions are confirmed and none
of them is disconfirmed by observations.
Only singular sentences with elementary
terms can be directly tested; therefore, we
need an explicit interpretation only for
these sentences.

25. “UNDERSTANDING” IN PHYSICS

The development of physics in recent cen-
turies, and especially in the past few
decades, has more and more led to that
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method in the construction, testing, and
application of physical theories which we
call formalization, i.e., the construction of a
calculus supplemented by an interpretation.
It was the progress of knowledge and the
particular structure of the subject matter
that suggested and made practically possible
this increasing formalization. In con-
sequence, it became more and more possible
to forego an “intuitive understanding” of
the abstract terms and axioms and theorems
formulated with their help. The possibility
and even necessity of abandoning the search
for an understanding of that kind was not
realized for a long time. When abstract,
nonintuitive formulas, as, e.g., Maxwell’s
equations of electromagnetism, were pro-
posed as new axioms, physicists endeavored
to make them “intuitive” by constructing a
“model,” i.e., a way of representing elec-
tromagnetic micro-processes by an analogy
to known macro-processes, e.g., movements
of visible things. Many attempts have been
made in this direction, but without satisfac-
tory results. It is important to realize that
the discovery of a model has no more than
an aesthetic or didactic or at best a heuristic
value, but is not at all essential for a suc-
cessful application of the physical theory.
The demand for an intuitive understanding
of the axioms was less and less fulfilled when
the development led to the general theory
of relativity and then to quantum mechan-
ics, involving the wave function. Many peo-
ple, including physicists, have a feeling of
regret and disappointment about this.
Some, especially philosophers, go so far as
even to contend that these modern theories,
since they are not intuitively understand-
able, are not at all theories about nature but
“mere formalistic constructions,” “mere cal-
culi.” But this is a fundamental misunder-
standing of the function of a physical
theory. It is true a theory must not be a
“mere calculus” but possess an interpreta-
tion, on the basis of which it can be applied
to facts of nature. But it is sufficient, as we
have seen, to make this interpretation
explicit for elementary terms; the inter-
pretation of the other terms is then indi-
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rectly determined by the formulas of the
calculus, either definitions or laws, con-
necting them y}'rth the elementary terms. If
we demand fr¥om the modern physicist an
answer to the question what he means by the
symbol ¥ of his calculus, and are astonished
that he cannot give an answer, we ought to
realize that the situation was already the
same in classical physics. There the physicist
could not tell us what he meant by the sym-
bol E in Maxwell’s equations. Perhaps, in
order not to refuse an answer, he would tell
us that E designates the electric field vector.
To be sure, this statement has the form of a
semantical rule, but it would not help us a
bit to understand the theory. It simply
refers from a symbol in-a symbolic calculus
to a corresponding word expression in a cal-
culus of words. We are right in demanding
an interpretation for £ but that will be given
indirectly by semantical rules referring to
elementary signs together with the formulas
connecting them with E. This interpretation

enables us to use the laws containing E for
the derivation of predictions. Thus we
understand E, if “understanding” of an
expression, a sentence, or a theory means
capability of its use for the description of
known facts or the prediction of new facts.
An “intuitive understanding” or a direct
translation of E into terms referring to
observable properties is neither necessary
nor possible. The situation of the modern
physicist is not essentially different. He
knows how to use the symbol ¥ in the cal-
culus in order to derive predictions which
we can test by observations. (If they have the
form of probability statements, they are
tested by statistical results of observations.)
Thus the physicist, although he cannot give
us a translation into everyday language,
understands the symbol ¥ and the laws of
quantum mechanics. He possesses that kind
of understanding which alone is essential in
the field of knowledge and science.

Carl G. Hempel

A LOGICAL APPRAISAL OF

Operationism, in its fundamental tenets, is
closely akin to logical empiricism. Both
schools of thought have put much emphasis
on definite experiential meaning or import
as a necessary condition of objectively sig-
nificant discourse, and both have made
strong efforts to establish explicit criterions
of experiential significance. But logical
empiricism has treated experiential import
as a characteristic of statements—namely, as
their susceptibility to test by experiment or
observation—whereas operationism has
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OPERATIONISM

tended to construe experiential meaning as
a characteristic of concepts or of the terms
representing them—namely, as their sus-
ceptibility to operational definition.

BASIC IDEAS OF OPERATIONAL
ANALYSIS

An operational definition of a term is con-
ceived as a rule to the effect that the term is
to apply to a particular case if the perfor-
mance of specified operations in that case
yields a certain characteristic result. For

example, the term harder than might be
operationally defined by the rule that a
piece of mineral x, is to be called harder
than another piece of mineral, y, if the oper-
ation of drawing a sharp point of x across
the surface of y results in a scratch mark on
the latter. Similarly, the different numerical
values of a quantity such as length are
thought of as operationally definable by ref-
erence to the outcomes of specified measur-
ing operations. To safeguard the objectivity
of science, all operations invoked in this
kind of definition are required to be inter-
subjective in the sense that different obser-
vers must be able to perform “the same
operation” with reasonable agreement in
their results.!

P.W. Bridgman, the originator of opera-
tional analysis, distinguishes several kinds of
operation that may be invoked in specifying
the meanings of scientific terms.? The prin-
cipal ones are (1) what he calls instrumental
operations—these consist in the use of vari-
ous devices of observation and measure-
ment—and (2) paper-and-pencil operations,
verbal operations, mental experiments, and
the like—this group is meant to include,
among other things, the techniques of
mathematical and logical inference as well
as the use of experiments in imagination.
For brevity, but also by way of suggesting a
fundamental similarity among the pro-
cedures of the second kind, I shall refer to
them as symbolic operations.

The concepts of operation and of opera-
tional definition serve to state the basic prin-
ciples of operational analysis, of which the
following are of special importance:

(1) “Meanings are operational.” To
understand the meaning of a term, we must
know the operational criterions of its
application,® and every meaningful scien-
tific term must therefore permit of an oper-
ational definition. Such definition may refer
to certain symbolic operations and it always
must ultimately make reference to some
instrumental operation.*

(2) To avoid ambiguity, every. scientific
term should be defined by means of one
unique operational criterion. Even when
two different operational procedures (for
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instance, the optical and the tactual ways of
measuring length) have been found to yield
the same results, they must still be consid-
ered as defining different concepts (for
example, optical and tactual length), and
these should be distinguished termi-
nologically because the presumed coinci-
dence of the results is inferred from
experimental evidence, and it is “not safe”
to forget that the presumption may be
shown to be spurious by new, and perhaps
more precise, experimental data.?

(3) The insistence that scientific terms
should have unambiguously specifiable
operational meanings serves to insure the
possibility of an objective test for the
hypotheses formulated by means of those
terms.® Hypotheses incapable of opeta-
tional test or, rather, questions involving
untestable formulations, are rejected as
meaningless: “If a specific question has
meaning, it must be possible to find opera-
tions by which an answer may be given to it.
It will be found in many cases that the oper-
tions cannot exist, and the question there-
fore has no meaning.””

The emphasis on “operational meaning”
in scientifically significant discourse has
unquestionably afforded a salutary critique
of certain types of procedure in philosophy
and in empirical science and has provided a
strong stimulus for methodological think-
ing. Yet, the central ideas of operational
analysis as stated by their proponents are so
vague that they constitute not a theory con-
cerning the nature of scientific concepts but
rather a program for the development of
such a theory. They share this characteristic
with the insistence of logical empiricism that
all significant scientific statements must have
experiential import, that the latter consists
in testability by suitable data of direct obser-
vation, and that sentences which are entirely
incapable of any test must be ruled out as
meaningless “pseudo hypotheses.” These
ideas, too, constitute not so much a thesis or
a theory as a program for a theory that
needs to be formulated and amplified in
precise terms.

An attempt to develop an operationist
theory of scientific concepts will have to deal




