The concept of confirmation as defined by
(9.1a) and (9.2) now satisfies (8.4) in addition to
(8.1), (8.2), (8.3) even if observation reports are

- STATISTICAL AND

If you ask a scientist whether the term
“probability” as used in science has always
the same meaning, you will find 2 curious
situation. Practically everyone will say that
there is only one scientific meaning; but
when you ask that it be stated, two different
answers will come forth. The majority will
refer to the concept of probability used in
mathematical statistics and its scientific
applications. However, there is a minority of
those who regard a certain nonstatistical
concept as the only scientific concept of
probability. Since either side holds that its
concept is the only correct one, neither
seems willing to relinquish the term “proba-
bility.” Finally, there are a few people—and
among them this author—who believe that
an unbiased examination must come to the
conclusion that both concepts are necessary
for science, though in different contexts.

I will now explain both concepts—distin-
guishing them as “statistical probability” and
“inductive probability”—and indicate their
different functions in science. We shall see,
incidentally, that the inductive concept, now
advocated by a heretic minority, is not a new
invention of the twentieth century, but was
the prevailing one in an earlier period and
only forgotten later on.
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construed in the broader fashion characterized
earlier in this footnote.

Rudolf Carnap
INDUCTIVE
PROBABILITY

The statistical concept of probability is well
known to all those who apply in their scien-
tific work the customary methods of mathe-
matical statistics. In this field, exact methods
for calculations employing statistical proba-
bility are developed and rules for its applica-
ton -are given. In the simplest cases,
probability in this sense means the relative
frequency with which a certain kind of event
occurs within a given reference class, cus-
tomarily called the “population.” Thus, the
statement “The probability that an inhabi-
tant of the United States belongs to blood
group A is p” means that a fraction p of the
inhabitants belongs to this group. Some-
times a statement of statistical probability
refers, not to an actually existing or
observed frequency, but to a potential one,
iLe., toa frequency that would occur under
certain specifiable circumstances. Suppose,
for example, a physicist carefully examines
a newly made die and finds it is a geo-
metrically perfect and materially homoge-
neous cube. He may then assert that the
probability of obtaining an ace by a throw of
this die is 1/6. This means that i a suffi-
ciently long series of throws with this die
were made, the relative frequency of aces
would be 1/6. Thus, the probability stare-
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ment here refers to a potential frequency
rather than to an actual one, Indeed, if the
die were destroyed before any throws were
made, the assertion would still be valid.
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Exactly speaking, the statement refers to the
physical microstate of the die; without spec-
ifying its details (which presumably are not
known), it is characterized as being such that
certain results would be obtained if the die
were subjected to certain experimental pro-
cedures. Thus the statistical concept of
probability is not essentially different from
other disposition concepts which charac-
terize the objective state of a thing by
describing reactions to experimental condi-
tions, as, for example, the 1.Q. of a person,
the elasticity of a material object, etc.

Inductive probability occurs in contexts of
another kind; it is ascribed to a hypothesis
with respect to a body of evidence. The
hypothesis may be any statement con-
cerning unknown facts, say, a prediction of
a future event, e.g., tomorrow’s weather or
the outcome of a planned experiment or of
a presidential election, or a presumption
concerning the unobserved cause of an
observed event. Any set of known or
assumed facts may serve as evidence; it con-
sists usually in results of observations which
have been made. To say that the hypothesis
h has the probability p (say, 3/5) with respect
to the evidence e, means that for anyone to
whom this evidence but no other relevant
knowledge is available, it would be reason-
able to believe in h to the degree p or, more
exactly, it would be unreasonable for him to
bet on h at odds higher than p:(1 — p) (in
the example, 3:2). Thus inductive proba-
bility measures the strength of support
given to h by e or the degree of confirmation of
h on the basis of e. In most cases in ordinary
discourse, even among scientists, inductive
probability is not specified by a numerical
value but merely as being high or low or, in
a comparative judgment, as being higher
than another probability. It is important to
recognize that every inductive probability
Judgment is relative to some evidence. In

probably innocent or that, of two witnesses
A and B who have made contradictory state-
ments, it is more probable that A lied than
that B did, he means it with respect to the
evidence that was presented in the trial plus
any psychological or other relevant knowl-
edge of a general nature he may possess.
Probability as understood in contexts of this
kind is not frequency. Thus, in our exam-
ple, the evidence concerning the defendant,
which was presented in the trial, may be
such that it cannot be ascribed to any other
person; and if it could be ascribed to several
people, the juror would not know the rela-
tive frequency of innocent persons among
them. Thus the probability concept used
here cannot be the statistical one. While a
statement of statistical probability asserts a
matter of fact, a statement of inductive
probability is of a purely logical nature. If
hypothesis and evidence are given, the
probability can be determined by logical
analysis and mathematical calculation.

One of the basic principles of the theory
of inductive probability is the principle of
indifference. It says that, if the evidence does
not contain anything that would favor either
of two or more possible events, in other
words, if our knowledge situation is sym-
metrical with respect to these events, then
they have equal probabilities relative to the
evidence. For example, if the evidence e
available to an observer X, contains nothing
else about a given die than the information
that it is a regular cube, then the symmetry
condition is fulfilled and therefore each of
the six faces has the same probability 1/6 to
appear uppermost at the next throw. This
means that it would be unreasonable for X4
to bet more than one to five on any one face.
If X, is in possession- of the evidence €
which, in addition to €, contains the knowl-
edge that the die is heavily loaded in favor
of one of the faces without specifying which
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is made; it is then to be understood that the
totality of relevant information available to
the speaker is meant as evidence. If a mem-

ber of a jury says that the defendant is very
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probabilities tor X, are the same as
for X,. It, on the other hand, X3 knows eg to
the effect that the load favors the ace, then
the probability of the ace on the basis of e, is
higher than 1/6. Thus, inductive proba-



bility, in contradistinction to statistical prob-
ability, cannot be ascribed to a material
object by itself, irrespective of an observer.
This is obvious in our example; the die is the
same for all three observers and hence can-
not have different properties for them.
Inductive  probability  characterizes a
hypothesis relative to available information;
this information-may differ from person to
person and vary for any person in the
course of time.

A brief look at the historical development
of the concept of probability will give us a
better understanding of the present contro-
versy. The mathematical study of problems
of probability began when some mathemati-
cians of the sixteenth and seventeenth cen-
turies were asked by their gambler friends
about the odds in various games of chance.
They wished to learn about probabilities as a
guidance for their betting decisions. In the
beginning of its scientific career, the concept
of probability appeared in the form of
inductive probability. This is clearly
reflected in the title of the first major
treatise on probability, written by Jacob Ber-
noulli and published posthumously in 1713;
it was called Ars Conjectandi, the art of con-
Jecture, in other words, the art of Jjudging
hypotheses on the basis of evidence. This
book may be regarded as marking the
beginning of the so-called classical period of
the theory of probability. This period culmi-
nated in the great systematic work by
Laplace, Theorie analytique des probabilités
(1812). According to Laplace, the purpose
of the theory of probability is to guide our
Judgments and to protect us from illusions.
His explanations show clearly that he is

mostly concerned, not with actual frequen- .

cies, but with methods for Judging the
acceptability of assumptions, in other words,
with inductive probability.

In the second half of the last century and

still more in our century the anplication of

ety 207

statistical methods gained more and more
ground in science. Thus attention was
increasingly focussed on the statistical con-

cept of probability. However, there was no
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clear awareness of the fact that this develop-
ment constituted a transition to a funda-
mentally different meaning of the word
“probability.” In the 1920’s the first proba-
bility theories based on the frequency inter-
pretation were proposed by men like the
statistician R. A. Fisher, the mathematician
R. von Mises, and the physicist-philosopher
H. Reichenbach. These authors and their
followers did not explicitly suggest to aban-
don that concept of probability which had
prevailed since the classical period and to
replace it by a new one. They rather
believed that their concept was essentially
the same as that of all earlier authors. They
merely claimed that they had given a more
exact definition for it and had developed
more comprehensive theories on this
improved foundation. Thus, they inter-
preted Laplace’s word “probability” not in
his inductive sense, but in their own statis-
tical sense. Since there is a strong, though by
far not complete analogy between the two
concepts, many mathematical theorems
hold in both interpretations, but others do
not. Therefore these authors could accept
many of the classical theorems but had to
reject others. In particular, they objected
strongly to the principle of indifference. In
the frequency interpretation, this principle
is indeed absurd. In our earlier example
with the observer X,;, who knows merely
that the die has the form of a cube, it would
be rather incautious for him to assert that
the six faces will appear with equal fre-
quency. And if the same assertion were
made by X,, who has information that the
die is biased, although he does not know the
direction of the bias, he would contradict his
own knowledge. In the inductive interpreta-
tion, on the other hand, the principle is
valid even in the case of X,, since in this
sense it does not predict frequencies but
merely says, in effect, that it would be arbi-
trary for X, to have more confidence in the

annearance of one face thaon in thae
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other face and therefore it would be unrea-
sonable for him to let his betting decisions
be guided by such arbitrary expectations.
Therefore it seems much more plausible to
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assume that Laplace meant the principle of
indifference in the inductive sense rather
than to assume that one of the greatest
minds of the eighteenth century in mathe-
matics, theoretical physics, astronomy, and
philosophy chose an obvious absurdity as a
basic principle.

The great economist John Maynard Key-
nes made the first attempt in our century to
revive the old but almost forgotten induc-
tive concept of probability. In his Treatise on
Probability (1921) he made clear that the
inductive concept is implicitly used in all our
thinking on unknown events both in every-
day life and in science. He showed that the
classical theory of probability in its applica-
tion to concrete problems was understand-
able only if it was interpreted in the
inductive sense. However, he modified and
restricted the classical theory in several
important points. He rejected the principle
of indifference in its classical form. And he
did not share the view of the classical
authors that it should be possible in princi-
ple to assign a numerical value to the proba-
bility of any hypothesis whatsoever. He
believed that this could be done only under
very special, rarely fulfilled conditions, as in
games of chance where there is a well deter-
mined number of possible cases, all of them
alike in their basic features, e.g., the six pos-
sible results of a throw of a die, the possible
distributions of cards among the players,
the possible final positions of the ball on a
roulette table, and the like. He thought that
in all other cases at best only comparative
Judgments of probability could be made,
and even these only for hypotheses which
belong, so to speak, to the same dimension.
Thus one might come to the result that, on
the basis of available knowledge, it is more
probable that the next child of a specified
couple will be male rather than female; but
no comparison could be made between the

probability of the birth of a male child and
the probability of the stocks of General Elec-
tric going up tomorrow.

A much more comprehensive theory of
inductive probability was constructed by the
geophysicist Harold Jeffreys (Theory of Prob-
ability, 1939). He agreed with the classical
view that probability can be expressed
numerically in all cases. Furthermore, in
view of the fact that science replaces state-
ments in qualitative terms (e.g., “the child to
be born will be very heavy”) more and more
by those in terms of measurable quantities
(“the weight of the child will be more than
eight pounds”), Jeffreys wished to apply
probability also to hypotheses of quan-
titative form. For this reason, he set up an
axiom system for probability much stronger
than that of Keynes. In spite of Keynes’s
warning, he accepted the principle of indif-
ference in a form quite similar to the classi-
cal one: “If there is no reason to believe one
hypothesis rather than another, the proba-
bilities are equal.” However, it can easily be
seen that the principle in this strong form
leads to contradictions. Suppose, for exam-
ple, that it is known that every ball in an urn
is either blue or red or yellow but that
nothing is known either of the color of any
particular ball or of the numbers of blue,
red, or yellow balls in the urn. Let B be the
hypothesis that the first ball to be drawn
from the urn will be blue, R, that it will be
red, and Y, that it will be yellow. Now con-
sider the hypotheses B and non-B. Accord-
ing to the principle of indifference as used
by Laplace and again by Jeffreys, since
nothing is known concerning B and non-B,
these two hypotheses have equal proba-
bilities, i.e., one half. Non-B means that the
first ball is not blue, hence either red or
yellow. Thus “R or Y” has probability one
half. Since nothing is known concerning R
and Y, their probabilities are equal and
hence must be one fourth each. On the
other hand, if we start with the considera-
tion of R and non-R, we obtain the result
that the probability of R is one half and that
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the previous result. Thus Jeffreys’s system
as it stands is inconsistent. This defect can-



not be eliminated by simply omitting the
principle of indifference. It plays an essen-
tial role in the system; without it, many
important results can no longer be derived.
In spite of this defect, Jeffreys’s book
remains valuable for the new light it throws
on many statistical problems by discussing
them for the first time in terms of inductive
probability.

Both Keynes and Jeffreys discussed also
the statistical concept of probability, and
both rejected it. They believed that all prob-
ability statements could be formulated in
terms of inductive probability and that
therefore there was no need for any proba-
bility concept interpreted in terms of fre-
quency. I think that in this point they went
too far. Today an increasing number of
those who study both sides of the contro-
versy which has been going on for thirty
years are coming to the conclusion that
here, as often before in the history of scien-
tific thinking, both sides are right in their
positive theses, but wrong in their polemic
remarks about the other side. The statistical
concept, for which a very elaborate mathe-
matical theory exists, and which has been
fruitfully applied in many fields in science
and industry, need not at all be abandoned
in order to make room for the inductive
concept. Both concepts are needed for sci-
ence, but they fulfill quite different func-
tions. Statistical probability characterizes an
objective situation, e.g., a state of a physical,
biological, or social system. Therefore it is
this concept which is used in statements con-
cerning concrete situations or in laws
expressing general regularities of such sit-
uations. On the other hand, inductive prob-
ability, as I see it, does not occur n scientific
Statements, concrete or general, but only in
Judgments about such statements; in par-
ticular, in judgments about the strength of
support given by one statement, the evi-
dence, to another, the hyp

the basis of the former. Thus, strictly speak-

, ther, the hypothesis, and__classical form.
hence about the acceptability of the latter on
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ing, inductive probability belongs not to sci-
ence itself but to the methodology of
science, i.e., the analysis of concepts, state-
ments, theories, and methods of science.

The theories of both probability concepts
must be further developed. Although a
great deal of work has been done on statis-
tical probability, even here some problems
of its exact interpretation and its applica-
tion, e.g., in methods of estimation, are still
controversial. On inductive probability, on
the other hand, most of the work remains
still to be done. Utilizing results of Keynes
and Jeffreys and employing the exact tools
of modern symbolic logic, I have con-
structed the fundamental parts of a mathe-
matical theory of inductive probability or
inductive logic (Logical Foundations of Proba-
bility, 1950). The methods developed make
it possible to calculate numerical values of
inductive probability (“degree of con-
firmation”) for hypotheses concerning
either single events or frequencies of prop-
erties and to determine estimates of fre-
quencies in a population on the basis of
evidence about a sample of the population.
A few steps have been made towards
extending the theory to hypotheses involv-
ing measurable quantities such as mass, tem-
perature, etc.

It is not possible to outline here the math-
ematical system itself. But I will explain
some of the general problems that had to be
solved before the system could be con-
structed and some of the basic conceptions
underlying the construction. One of the
fundamental questions to be decided by any
theory of induction is whether to accept a
principle of indifference and, if so, in what
form. It should be strong enough to allow
the derivation of the desired theorems, but
at the same time sufficiently restricted to
avoid the contradictions resulting from the

The problem will become clearer if we
use a few elementary concepts of inductive
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logic. They will now be explained with the
help of the first two columns of the accom-

panying diagram. We consider a set of four.

individuals, say four balls drawn from an
urn. The individuals are described with
respect to a given division of mutually
exclusive properties; in our example, the
two properties black (B) and white (W). An
individual distribution is specified by ascribing
to each individual one property. In our
example, there are sixteen individual dis-
tributions; they are pictured in the second
column (e.g., in the individual distribution
No. 3, the first, second, and fourth ball are
black, the third is white). A statistical distribu-
tion, on the other hand, is characterized by
merely stating the number of individuals for
each property. In the example, we have five
statistical distributions, listed in the first col-
umn (e.g., the statistical distribution No. 2 is
described by saying that there are three B
and one W, without specifying which indi-
viduals are B and which W).

By the wnitial probability of a hypothesis
(“probability a priori” in traditional termi-
nology) we understand its probability before
any factual knowledge concerning the indi-
viduals is available. Now we shall see that, if
any 1nitial probabilities which sum up to one
are assigned to the individual distributions,
all other probability values are thereby
fixed. To see how the procedure works, put
a slip of paper on the diagram alongside the
list of individual distributions and write
down opposite each distribution a fraction
as 1its initial probability; the sum of the six-
teen fractions must be one, but otherwise
you may choose them just as you like. We

shall soon consider the question whether .

some choices might be preferable to others.
But for the moment we are only concerned
with the fact that any arbitrary choice con-
stitutes one and only one inductive method in
the sense that it leads to one and only one

system of probability values which contain-

‘an initial probability for any hypothe;is‘
(concerning the given individuals and the
given properties) and a relative probability

for any hypothesis with respect to any evi-
dence. The procedure is as follows. For any
given statement we can, by perusing the list
of individual distributions, determine those
in which it holds (e.g., the statement “among
the first three balls there is exactly one W”
holds in distributions Nos. 3, 4, 5, 6,7, 9).
Then we assign to it as initial probability the
sum of the initial probabilities of the indi-
vidual distributions in which it holds. Sup-
pose that an evidence statement e (e.g.,
“The first ball is B, the second W, the third
B”) and a hypothesis h (e.g., “The fourth
ball is B”) are given. We ascertain first the
individual distributions in which e holds (in
the example, Nos. 4 and 7), and then those
among them in which also h holds (only No.
4). The former ones determine the initial
probability of e; the latter ones determine
that of e and h together. Since the latter are
among the former, the latter initial proba-
bility is a part (or the whole) of the former.
We now divide the latter initial probability
by the former and assign the resulting frac-
tion to h as its relative probability with
respect to e. (In our example, let us take the
values of the initial probabilities of individ-
ual distributions given in the diagram for
methods I and II, which will soon be
explained. In method I the values for Nos. 4
and 7—as for all other individual distribu-
tions—are 1/16; hence the initial probability
of e is 2/16. That of e and h together is the
value of No. 4 alone, hence 1/16. Dividing
this by 2/16, we obtain 1/2 as the probability
of h with respect to e. In method I1, we find
for Nos. 4 and 7 in the last column the val-
ues 3/60 and 2/60 respectively. Therefore
the initial probability of e is here 5/60, that
of eand h together 3/60; hence the proba-
bility of h with respect to e is $/5.)

The problem of choosing an inductive
method is closely connected with the prob-
lem of the principle of indifference. Most
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accepted some form of the principle and
have thereby avoided the otherwise
unlimited arbitrariness in the choice of a
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STATISTICAL INDIVIDUAL METOHD I METHOD II
DISTRIBUTIONS | DISTRIBUTIONS
Initial Initial Probability of
Number | Number Probability Statistical Individual
of 0 of Individual | Distribu- Distribu-
Blue White Distributions tions tions

1 4 o0 {{ . 9090 @ 1/16 1/5 i 1/5=12/60
2. 9000 1/16 1/20 = 3/60

EA NON N J 1/16 1/20 = 3/60

500089 1/16 1/20 = 3/60

6.9 ® OO 1/16 1/30 = 2/60

70080 1/16 1/30 = 2/60

3 2 2 LAY NONON J 1/16 15 1/30 = 2/60
.20000 1/16 1/30 = 2/60

i1 10.0@0 @ 1/16 1/30 = 2/60

1.OO0O o ® 1/16 1/30 = 2/60

12 OO0 O 1/16 1/20 = 3/60

4 { 3 13.0@&@ OO 1/16 1/5 1/20 = 3/60
4. 00 ® O 1/16 1/20 = 3/60

15.000@ 1/16 1/20 = 3/60

5 0 4 { 160 00O 1/16 /5 {1 1/5=12/60

Inductive Probability Methods. (From Rudolf Carnap, ““What is Probability?”’
Scientific American, September, 1953.)

method. On the other hand, practically all
authors in our century agree that the princi-
ple should be restricted to some well-
defined class of hypotheses. But there is no
agreement as to the class to be chosen. Many
authors advocate either method I or
method 11, which are exemplified in our
diagram. Method I consists in applying the
principle of indifference to individual dis-
tributions, in other words, in assigning
equal initial probablhtles to individual dis-
tributions. In method II the principle is first
applied to the statistical distributions and
then, for each statistical distribution, to the
corresponding  individual distributions.
Thus, in our example, equal initial proba-
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statistical dlstrlbutlons hence 1/5 to each
then this value 1/5 or 12/60 is distributed in
equal parts among the corresponding indi-

vidual distributions, as indicated in the last
column.

If we examine more carefully the two
ways of using the principle of indifference,
we find that either of them leads to contra-
dictions if applied without restriction to all
divisions of properties. (The reader can
easily check the following results by himself.
We consider, as in the diagram, four indi-
viduals and a division D, into two proper-
ties; blue (instead of black) and white. Let h
be the statement that all four individuals are
white. We consider, on the other hand, a
division D5 into three properties: dark blue,
light blue, and white. For division Do, as
used in the diagram, we see that h is an indi-
vidual distribution (No. 16) and also a statis-
tical distribution (No. 5). The same holds
for division Ds. By setting up the complete
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diagram for the latter division, one finds
that there are fifteen statistical distributions,
of which h is one, and 81 individual dis-
tributions (viz., 3 X 3 X 3 X 3), of which h
is also one. Applying method I to division
D,, we found as the initial probability of h
1/16; if we apply it to Dg, we find 1/81; these
two results are incompatible. Method II
applied to D, led to the value 1/5; but
applied to Dy it yields 1/15. Thus this
method likewise furnishes incompatible
results.) We, therefore, restrict the use of
either method to one division, viz. The one
consisting of all properties which can be dis-
tinguished in the given universe of dis-
course (or which we wish to distinguish
within a given context of investigation). If
modified in this way, either method is con-
sistent. We may still regard the examples in
the diagram as representing the modified
methods I and II, if we assume that the dif-
ference between black and white is the only
difference among the given individuals, or
the only difference relevant to a certain
investigation.

How shall we decide which of the two
methods to choose? Each of them is
regarded as the reasonable method by prom-
inent scholars. However, in my view, the
chief mistake of the earlier authors was their
failure to specify explicitly the main charac-
teristic of a reasonable inductive method. It
is due to this failure that some of them chose
the wrong method. This characteristic is not
difficult to find. Inductive thinking is a way
of judging hypotheses concerning unknown
events. In order to be reasonable, this judg-
ing must be guided by our knowledge of
observed events. More specifically, other
things being equal, a future event is to be
regarded as the more probable, the greater
the relative frequency of similar events
observed so far under similar circum-
stances. This principle of leaming from experi-
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inductive thmkmg n everyday affairs and in
science. Our confidence that a certain drug
will help in a present case of a certain dis-
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ease is the higher the more frequently it has
helped in past cases. We would regard a
man’s behavior as unreasonable if his
expectation of a future event were the
higher the less frequently he saw it happen
in the past, and also if he formed his
expectations for the future without any
regard to what he had observed in the past.
The principle of learning from experlence
seems indeed so obvious that it might
appear superfluous to emphasize it
explicitly. In fact, however, even some
authors of high rank have advocated an
inductive method that violates the principle.

Let us now examine the methods I and II
from the point of view of the principle of
learning from experience. In our earlier
example we considered the evidence e say-
ing that of the four balls drawn the first was
B, the second W, the third B; in other
words, that two B and one W were so far
observed. According to the principle, the
prediction h that the fourth ball will be black
should be taken as more probable than its
negation, non-h. We found, however, that
method 1 assigns probability 1/2 to h, and
therefore likewise 1/2 to non-h. And we see
easily that it assigns to h this value 1/2 also
on any other evidence concerning the first
three balls. Thus method I violates the prin-
ciple. A man following this method sticks to
the initial probability value for a prediction,
irrespective of all observations he makes. In
spite of this character of method I, it was
proposed as the valid method of induction
by prominent philosophers, among them
Charles Sanders Peirce (in 1883) and Lud-
wig Wittgenstein (in 1921), and even by
Keynes in one chapter of his book, although
in other chapters he emphasizes eloquently
the necessity of learning from experience.

We saw earlier that method I1 assigns, on
the evidence specified, to h the probablllty

Q/t‘( ‘f\r\v\/\f\,#r\ B Q/t: "PL othea
TN

TIyri=oi T I o ) “l [

1 principle
of learnmg from experience is satisfied in

this case, and it can be shown that the same
holds in any other case. (The reader can



easily verify, for example, that with respect
to the evidence that the first three balls are
black, the probability of h is 4/5 and there-
fore that of non-h 1/5.) Method 1II in its

‘modified, consistent form was proposed by

the author in 1945. Although it was often
emphasized throughout the historical
development that induction must be based
on experience, nobody as far as I am aware,
succeeded in specifying a consistent induc-
tive method satisfying the principle of learn-
ing from experience. (The method
proposed by Thomas Bayes (1763) and
developed by Laplace—sometimes called
“Bayes’s rule” or “Laplace’s rule of succes-
sion”—fulfills the principle. It is essentially
method II, but in its unrestricted form;
therefore it is inconsistent.) I found later
that there are infinitely many consistent
inductive methods which satisfy the princi-
ple (The Continuum of Inductive Methods,
1952). None of them seems to be as simple
in its definition as method 11, but some of
them have other advantages.

Once a consistent and suitable inductive
method is developed, it supplies the basis
for a general method of estimation, i.e., a
method for calculating, on the basis of given
evidence, an estimate of an unknown value
of any magnitude. Suppose that, on the
basis of the evidence, there are n pos-
sibilities for the value of a certain magnitude
at a given time, e.g., the amount of rain

tomorrow, the number of persons coming

to a meeting, the price of wheat after the
next harvest. Let the possible values be x,,
X9, . . . ,X,, and their inductive probabilities
with respect to the given evidence p;, po,
.+ ., Pp> respectively. Then we take the
product p,x, as the expectation value of the
first case at the present moment. Thus, if
the occurrence of the first case is certain and
hence p, = 1, its expectation value is the
full value x; if it is just as probable that it

will occur as that it will not, and hence p, = _

172, its expectation value is half its full value

(P1x1 = x,/2), etc. We proceed similarly
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with the other possible values. As estimated
or total expectation value of the magnitude
on the given evidence we take the sum of
the expectation values for the possible cases,
that is, p;X; + poxo + ... + p_x,. (For
example, suppose someone considers buy-
ing a ticket for a lottery and, on the basis of
his knowledge of the lottery procedure,
there is a probability of 0.01 that the ticket
will win the first prize of $200 and a proba-
bility of 0.03 that it will win $50; since there
are no other prizes, the probability that it
will win nothing is 0.96. Hence the estimate
of the gain in dollars is 0.01 x 200 + 0.03
X 50 + 0.96 X 0 = 3.50. This is the value
of the ticket for him and it would be irra-
tional for him to pay more for it.) The same
method may be used in order to make a
rational decision in a situation where one
among various possible actions is to be
chosen. For example, a man considers sev-
eral possible ways for investing a certain
amount of money. Then he can—in princi-
ple, at least—calculate the estimate of his
gain for each possible way. To act rationally,
he should then choose that way for which
the estimated gain is highest.

Bernoulli and Laplace and many of their
followers envisaged the idea of a theory of
inductive probability which, when fully
developed, would supply the means for
evaluating the acceptability of hypothetical
assumptions in any field of theoretical
research and at the same time methods for
determining a rational decision in the
affairs of practical life. In the more sober
cultural atmosphere of the late nineteenth
century and still more in the first half of the
twentieth, this idea was usually regarded as
a utopian dream. It is certainly true that
those audacious thinkers were not as near to
their aim as they believed. But a few men
dare to think today that the pioneers were
not mere dreamers and that it will be possi-
ble in the future to make far-reaching pro-

gress in essentially that direction in which
they saw their vision.



