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Rudolf Carnap

ON INDUCTIVE LOGIC

§1. INDUCTIVE LOGIC

Among the various meanings in which the
word “probability” is used in everyday
language, in the discussion of scientists, and
in the theories of probability, there are
especially two which must be clearly distin-
guished. We shall use for them the terms
“probability,” and “probability,.” Proba-
bility, is a logical concept, a certain logical
relation between two sentences (or, alter-
natively, between two propositions); it is the
same as the concept of degree of con-
firmation. I shall write briefly “¢” for
“degree of confirmation,” and “c(h, ¢)” for
“the degree of confirmation of the hypoth-
esis i on the evidence ¢”; the evidence is
usually a report on the results of our obser-
vations. On the other hand, probability, is
an empirical concept; it is the relative fre-
quency in the long run of one property with
respect to another. The controversy
between the so-called logical conception of
probability, as represented, e.g., by Key-
nes,! and Jeffreys,* and others, and the fre-
quency conception, maintained, e.g., by
Von Mises® and Reichenbach,* seems to me
tutile. These two theories deal with two dif-
ferent probability concepts which are both
of great importance for science. Therefore,
the theories are not incompatible, but rather
supplement each other.®

In a certain sense we might regard
deductive logic as the theory of L-implica-
tion (logical implication, entailment). And
inductive logic may be construed as the the-
ory of degree of confirmation, which is, so
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says that 4 is implicitly given with ¢, in other
words, that the whole logical content of 4 is
contained in e. On the other hand, c(h, ¢) =
3/4 says that & is not entirely given with ¢ but
that the assumption of 4 is supported to the
degree 3/4 by the observational evidence
expressed 1n e.

In the course of the last years, I have con-
structed a new system of inductive logic by
laying down a definition for degree of con-
firmation and developing a theory based on
this definition. A book containing this the-
ory is in preparation.® The purpose of the
present paper is to indicate briefly and
informally the definition and a few of the
results found; for lack of space, the reasons
for the choice of this definition and the
proofs for the results cannot be given here.
The book will, of course, provide a better
basis than the present informal summary
for a critical evaluation of the theory and of
the fundamental conception on which it is

based.”

§2. SOME SEMANTICAL CONCEPTS

Inductive logic is, like deductive logic, in my
conception a branch of semantics. However,
I shall try to formulate the present outline
in such a way that it does not presuppose
knowledge of semantics.

Let us begin with explanations of some
semantical concepts which are important
both for deductive logic and for inductive
logic.®

The system of inductive logic to be out-
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language systems Ly, (N = 1, 2, 3, etc.) and
an infinite language system Lo, Loo refers to
an infinite universe of individuals, desig-
nated by the individual constants a,, ay, etc.



(or a, b, etc.), while L,, refers to a finite uni-
verse containing only N individuals desig-
nated by a;, a,, . . . a5. Individual variables
X1, Xg, €tC. (O %, , etc.), are the only variables
occurring In these languages. The
languages contain a finite number of predi-
cates of any degree (number of arguments),
designating properties of the individuals or
relations between them. There are, further-
more, the customary connectives of nega-
tion (~, corresponding to not), disjunction
(V, or), conjunction (-, and); universal and
existential quantifiers (for every x, there is
an x); the sign of identity between individu-
als =, and ¢ as an abbreviation for an
arbitrarily chosen tautological sentence.
(Thus the languages are certain forms of
what is technically known as the lower func-
tional logic with identity.) (The connectives
will be used in this paper in three ways, as 1s
customary: (1) between sentences, (2)
between predicates (§8), (3) between names
(or variables) of sentences (so that, if ¢ and §
refer to two sentences, ¢Vj is meant to refer
to their disjunction).)

A sentence consisting of a predicate of
degree n with n individual constants is called
an atomic sentence (e.g., Pa,, i.e., a; has the
property P, or Ragas, i.e., the relation R
holds between a5 and a;). The conjunction
of all atomic sentences in a finite language
L, describes one of the possible states of the
domain of the N individuals with respect to
the properties and relations expressible in
the language L,,. If we replace in this con-
Jjunction some of the atomic sentences by
their negations, we obtain the description of
another possible state. All the conjunctions
which we can form in this way, including the
original one, are called state-descriptions in
L. Analogously, a state-description in L is
a class containing some atomic sentences
and the negations of the remaining atomic
sentences; since this class is infinite, it can-
not be transformed into a conjunction.
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language systems which cannot be given
here, semantical rules are laid down deter-
mining for any given sentence j and any
state-description ¢ whether j holds in i, that
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is to say whether ; would be true if i
described the actual state among all possible
states. The class of those state-descriptions
in a language system L (either one of the
systems Ly, or L®) in which j holds is called
the range of j in L.

The concept of range is fundamental
both for deductive and for inductive logic;
this has already been pointed out by Wit-
tgenstein. If the range of a sentence j in the
language system L is universal, i.e., if j holds
in every state-description (in L), j must nec-
essarily be true independently of the facts;
therefore we call j (in L) in this case L-true
(logically true, analytic). (The prefix L-
stands for “logical”; it is not meant to refer
to the system L.) Analogously, if the range
of j is null, we call j L-false (logically false,
self-contradictory). If j is neither L-true nor
L-false, we call it factual (synthetic, con-
tingent). Suppose that the range of ¢ 1s
included in that of A. Then in every possible
case in which ¢ would be true, 2 would like-
wise be true. Therefore we say in this case
that e L-implies (logically implies, entails) A. If
two sentences have the same range, we call
them L-equivalent; in this case, they are
merely different formulations for the same
content.

The L-concepts just explained are funda-
mental for deductive logic and therefore
also for inductive logic. Inductive logic is
constructed out of deductive logic by the
introduction of the concept of degree of
confirmation. This introduction will here be
carried out in three steps: (1) the definition
of regular ¢-functions (§3), (2) the definition
of symmetrical c-functions (85), (3) the defi-
nition of the degree of confirmation c* (§6).

§3. REGULAR C-FUNCTIONS

A numerical function m ascribing real num-
bers of the interval 0 to 1 to the sentences of

PSP S

A i .
an |||||||—- TANOTIACE T ST AT
RALARUN u;;buuo\, a 13- LAMELL - LSRR B

function if it is constructed according to the
following rules:

(1) We assign to the state-descriptions
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in L, as values of m any positive real
numbers whose sum is 1.

For every other sentence j in Ly;, the
value m(j) is determined as follows:
(a) Ifjis not L-false, m(j) is the sum
of the m-values of those state-
descriptions which belong to
the range of j.

If j is L-false and hence its
range is null, m(j) = 0.

(2)

(b)

(The choice of the rule (2)(a) is motivated
by the fact that j is L-equivalent to the dis-
junction of those state-descriptions which
belong to the range of j and that these state-
descriptions logically exclude each other.)

If any regular m-function m is given, we
define a corresponding function ¢ as fol-
lows:

(3) For any pair of sentences ¢, & in Ly,
m(eh

m(e)

m(j) may be regarded as a measure
ascribed to the range of j; thus the function
m constitutes a metric for the ranges. Since
the range of the conjunction ¢ - & 1s the com-
mon part of the ranges of ¢ and of A, the

where ¢ is not L-false, ¢(h, ¢) =

quotient in (3) indicates, so to speak, how -

large a part of the range of ¢ is included n
the range of . The numerical value of this
ratio, however, depends on what particular
m-function has been chosen. We saw earlier
that a statement in deductive logic of the
form ¢ L-implies h says that the range of e is
entirely included in that of A. Now we see
that a statement in inductive logic of the
form c(h, ¢) = 3/4 says that a certain part—
in the example, three fourths—of the range
of ¢ is included in the range of 4.9 Here, in
order to express the partial inclusion
numerically, it is necessary to choose a reg-
ular m-function for measuring the ranges.
Any m chosen leads to a particular ¢ as

all but should rather be changed according
to the accumulating experiences.!® This
feeling is correct in a certain sense.
However, it is to be satisfied not by the func-
tion m used in the definition (3) but by
another function m dependent upon ¢ and
leading to an alternative definition (5) for
the corresponding c. If a regular m is chosen
according to (1) and (2), then a correspond-
ing function m, is defined for the state-
descriptions in Ly, as follows:

(4) Let i be a state-descriptin in Ly, and ¢
a non-L-false sentence in L.
(a) If ¢ does not hold in ¢, m,(5) = 0.
m(i)

(b) If ¢ holds in ¢, m, (i) = .
m(e)

Thus m, represents a metric for the state-
descriptions which changes with the chang-
ing evidence e. Now m,(j) for any other sen-
tence j in Ly is defined in analogy to (2)(a)
and (b). Then we define the function ¢ cor-
responding to m as follows:

(5) For any pair of sentences ¢, h in Ly,
where ¢ is not L-false, c(h, ¢) = m,(h).

It can easily be shown that this alternative
definition (5) yields the same values as the
original definition (3).

Suppose that a sequence of regular m-
functions is given, one for each of the finite
languages Ly (N = 1, 2, etc.). Then we
define a corresponding m-function for the
infinite language as follows:

(6) m(j) in L, is the limit of the values
m(j) in Ly for N — o.

c-functions for the finite languages are
based on the given m-functions according to
(3). We define a corresponding c-function
for the infinite language as follows:

defined above. All functions ¢ obtained in
this way are called regular c-functions.

One might perhaps have the feeling that
the metric m should not be chosen once for

(7) ¢(h, e) In L, 1s the limit of the vaiues
c(h, €) in Ly, for N — oo,

The definitions (6) and (7) are applicable



only in those cases where the specified limits
exist.

We shall later see how to select a par-
ticular sub-class of regular c-functions (§5)
and finally one particular ¢-function ¢* as
the basis of a complete system of inductive
logic (§6). For the moment, let us pause at
our first step, the definition of regular ¢-
functions just given, in order to see what
results this definition alone can yield, before
we add further definitions. The theory of
regular ¢-functions, i.e., the totality of those
theorems which are founded on the defini-
tion stated, is the first and fundamental part
of inductive logic. It turns out that we find
here many of the fundamental theorems of
the classical theory of probability, e.g., those
known as the theorem (or principle) of mul-
tiplication, the general and the special the-
orems of addition, the theorem of division,
and, based upon it, Bayes’s theorem.

One of the cornerstones of the classical
theory of probability is the principle of
indifference (or principle of insufficient
reason). It says that, if our evidence ¢ does
not give us any sufficient reason for regard-
ing one of two hypotheses 2 and 2’ as more
probable than the other, then we must take
their probabilities; as equal: ¢(h, &) = c(h', ¢).
Modern authors, especially Keynes, have
correctly pointed out that this principle has
often been used beyond the limits of its orig-
inal meaning and has then led to quite
absurd results. Moreover, it can easily be
shown that, even in its original meaning, the
principle is by far too general and leads to
contradictions. Therefore the principle
must be abandoned. If it is and we consider
only those theorems of the classical theory
which are provable without the help of this
principle, then we find that these theorems
hold for all regular ¢-functions. The same is
true for those modern theories of proba-
bility, (e.g., that by Jeffreys, op. cit.) which
make use of the principle of indifference.

—Most—authors—of —modern—axionr—s systems
of probability, (e.g., Keynes, op. cit,
Waismann, op. cit.,, Mazurkiewicz!l,

Hosmssonl?, von Wright!®) are cautious
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enough not to accept that principle. An
examination of these systems shows that
their axioms and hence their theorems hold
for all regular ¢-functions. Thus these sys-
tems restrict themselves to the first part of
inductive logic, which, although fundamen-
tal and important, constitutes only a very
small and weak section of the whole of
inductive logic. The weakness of this part
shows itself in the fact that it does not deter-
mine the value of ¢ for any pair 4, ¢ except in
some special cases where the value is 0 or 1.
The theorems of this part tell us merely how
to calculate further values of ¢ if some values
are given. Thus it is clear that this part alone
is quite useless for application and must be
supplemented by additional rules. (It may
be remarked incidentally, that this point
marks a fundamental difference between
the theories of probability, and of proba-
bility, which otherwise are analogous in
many respects. The theorems concerning
probability, which are analogous to the the-
orems concerning regular ¢-functions con-
stitute not only the first part but the whole
of the logico-mathematical theory of proba-
bility,. The task of determining the value of
probability, for a given case is—in contra-
distinction to the corresponding task for
probability,—an empirical one and hence
lies outside the scope of the logical theory of
probability,.)

§4. THE COMPARATIVE CONCEPT
OF CONFIRMATION

Some authors believe that a metrical (or
quantitative) concept of degree of con-
firmation, that is, one with numerical values,
can be applied, if at all, only in certain cases
of a special kind and that in general we can
make only a comparison in terms of higher
or lower confirmation without ascribing
numerical values. Whether these authors
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merely comparative (or topological) concept
of confirmation not presupposing a metrical
concept 1s, in any case, of interest. We shall
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now discuss a way of defining a concept of
this kind.

For technical reasons, we do not take the
concept “more confirmed” but “more or
equally confirmed.” The following discus-
sion refers to the sentences of any finite
language L,,. We write, for brevity, MC(h, e,
k', ¢') for h is confirmed on the evidence ¢
more highly or just as highly as 2’ on the
evidence ¢'.

Although the definition of the com-
parative concept MC at which we aim will
not make use of any metrical concept of
degree of confirmation, let us now consider,
for heuristic purposes, the relation between
MC and the metrical concepts, i.e., the reg-
ular c-functions. Suppose we have chosen
some concept of degree of confirmation, in
other words, a regular ¢-function ¢, and fur-
ther a comparative relation MC; then we
shall say that MC is in accord with ¢ if the
following holds:

(1) For any sentences h, ¢, h', ¢', if MC
(h, e, h', ¢') then c(h, ¢) > c(h', ¢').

However, we shall not proceed by select-
ing one c-function and then choosing a rela-
tion MC which is in accord with it. This
would not fulfill our intention. Our aim is to
find a comparative relation MC which
grasps those logical relations between sen-
tences which are, so to speak, prior to the
introduction of any particular m-metric for
the ranges and of any particular ¢-function;
in other words, those logical relations with
respect to which all the various regular ¢-
functions agree. Therefore we lay down the
following requirement:

(2) The relation MC is to be defined in
such a way that it is in accord with all
regular ¢-functions; in other words, if
MC(h, e, h', ¢'), then for every regular
¢, c(h, e) = c(h', e').

tences h, ¢, h', ¢/ which satisty the following
condition occurring in (2):
(3) For every regular ¢, c(h, ¢)
> c(h', e').

Itis easy to find various kinds of such quad-
ruples. (For instance, if ¢ and ¢’ are any non-
L-false sentences, then the condition (3) is
satisfied in all cases where ¢ L-implies £,
because here c(h, ¢) = 1; further in all cases
where ¢’ L-implies ~A’, because here ¢(', ¢')
= 0; and in many other cases.) We could, of
course, define a relation MC by taking some
cases where we know that the condition (3)
is satisfied and restricting the relation to
these cases. Then the relation would fulfill
the requirement (2); however, as long as
there are cases which satisfy the condition
(3) but which we have not included in the
relation, the relation is unnecessarily
restricted. Therefore we lay down the fol-
lowing as a second requirement for MC:

(4) MC is to be defined in such a way
that it holds in all cases which satisfy
the condition (3); in such a way, in
other words, that it is the most com-
prehensive relation which fulfills the
first requirement (2).

These two requirements (2) and (4)
together stipulate that MC(h, ¢, h', ¢') is to
hold if and only if the condition (3) is satis-
fied; thus the requirements determine
uniquely one relation MC. However,
because they refer to the ¢-functions, we do
not take these requirements as a definition
for MC, for we intend to give a purely com-
parative definition for MC, a definition
which does not make use of any metrical
concepts but which leads nevertheless to a
relation MC which fulfills the requirements
(2) and (4) referring to c-functions. This aim
is reached by the following definition

(where = pr 18 used as sign of definition).

It 1s not difficult to find relations which
fulfill this requirement (2). First let us see
whether we can find quadruples of sen-

(5) MC(h, e, h', ¢') = py the sentences £,
e, h', ¢’ (in L) are such that ¢ and ¢’
are not L-false and at least one of



the following three conditions is

fulfilled:

(a) e L-implies 4,

(b) ¢’ L-implies ~A/,

(c) ¢ - b’ L-implies ¢ - A and simul-
taneously ¢ L-implies 2 V ¢'.

((a) and (b) are the two kinds of rather trivial
cases earlier mentioned; (c) comprehends
the interesting cases; an explanation and
discussion of them cannot be given here.)

The following theorem can then be
proved concerning the relation MC defined
by (5). It shows that this relation fulfills the
two requirements (2) and (4).

(6) Forany sentencesh, e, h',¢" in Ly the
following holds:
(a) If MC(h, e, ' ¢'), then, for every
regular ¢, c(h, €) = c(h/, ¢').
(by If, for every regular ¢, c(h, €) =
c(h', e"), then MC(h, e, h', ¢').

(With respect to L, the analogue of (6)(a)
holds for all sentences, and that of (6)(b) for
all sentences without variables.)

§5. SYMMETRICAL C-FUNCTIONS

The next step in the construction of our sys-
tem of inductive logic consists in selecting a
narrow sub-class of the comprehensive class
of all regular ¢-functions. The guiding idea
for this step will be the principle that induc-
tive logic should. treat all individuals on a
par. The same principle holds for deductive
logic; for instance, if . .a..b.. L-implies
- -b- -c- - (where the first expression 1is
meant to indicate some sentence containing
a and b, and the second another sentence
containing b and ¢), then L-implication
holds likewise between corresponding sen-
tences with other individual constants, e.g.,
between . .d. .c.. and - -¢- -a- -. Now we

~ require that this should hoid also for induc-

tive logic, e.g., that ¢(- -b- -c- -, . .a. .b. .) =
(- -¢- -a- -, ..d..c..). It seems that all
authors on probability; have assumed this
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principle—although it has seldom, if ever,
been stated explicitly—by formulating the-
orems in the following or similar terms: “On
the basis of observations of s things of which
s, were found to have the property M and s,
not to have this property, the probability
that another thing has this property is such
and such.” The fact that these theorems
refer only to the number of things observed
and do not mention particular things shows
implicitly that it does not matter which
things are involved; thus it is assumed, e.g.,
that ¢(Pd, Pa -Pb - ~ Pc) = ¢(Pc, Pa - Pd - ~
Pb).

The principle could also be formulated as
follows. Inductive logic should, like deduc-
tive logic, make no discrimination amon
individuals. In other words, the value of ¢
should be influenced only by those dif-
ferences between individuals which are
expressed in the two sentences involved; no
differences between particular individuals
should be stipulated by the rules of either
deductive or inductive logic.

It can be shown that this principle of non-
discrimination is fulfilled if ¢ belongs to the
class of symmetrical ¢-functions which will
now be defined. Two state-descriptions in a
language L, are said to be isomorphic or to
have the same structure if one is formed
from the other by replacements of the fol-
lowing kind: We take any one-one relation
R such that both its domain and its converse
domain is the class of all individual con-
stants in Ly, and then replace every individ-
ual constant in the given state-description by
the one correlated with it by R. If a regular
m-function (for L,,) assigns to any two iso-
morphic state-descriptions (in L) equal val-
ues, it is called a symmetrical m-function;
and a c-function based upon such an m-
function in the way explained earlier (see (3)
in §3) is then called a symmetrical c-function.

§6. THE DEGREE OF

WP W U T ol W oo S WY W ol WP e W W0 B oo 237
TR DR T e I8 T T RN TR O
NN WETINT Y7 Vv ey

Let ¢ be a state-description in L. Suppose
there are =, state-descriptions in L, iso-
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morphic to ¢ (including i itself), say ¢, ¢/, ¢/,
etc. These n,; state-descriptions exhibit one
and the same structure of the universe of L,
with respect to all the properties and rela-
tions designated by the primitive predicates
in L. This concept of structure is an exten-
sion of the concept of structure or relation-
number (Russell) usually applied to one
dyadic relation. The common structure of
the isomorphic state-descriptions i, ¢, ¢,
etc., can be described by their disjunction #V
i V"V ....Therefore we call this disjunc-
tion, say j, a structure-description in Ly,. It can
be shown that the range of j contains only
the isomorphic state-descriptions ¢, ¢', ¢, etc.
Therefore (see (2)(a) in §3) m(j) is the sum
of the m-values for these state-descriptions.
If m is symmetrical, then these values are
equal, and hence

(1) m(y) = n; X m(2).

And, conversely, if m(j) is known to be ¢,
then

@) m@) = m@’) = m@) = ... = gn,

This shows that what remains to be
decided is merely the distribution of m-val-
ues among the structure-descriptions in L,
We decide to give them equal m-values. This
decision constitutes the third step in the
construction of our inductive logic. This
step leads to one particular m-function m*
and to the c¢-function ¢* based upon m*.
According to the preceding discussion, m* is
characterized by the following two stipula-
tions:

(3) (a) m* is a symmetrical m-function;
(b) m* has the same value for all
structure-descriptions (in Ly)).

We shall see that these two stipulations
characterize Just one function. Every state-

(1) in §3). Thus, if the number of structure-
descriptions in Ly is m, then, according to

(3)(b),

(4) for every structure-description j in Ly,
: 1
m*(j) = =

Therefore, if i is any state-description in Ly
and n; is the number of state descriptions
isomorphic to ¢, then, according to (3)(a)

and (2),

) me(i) = -1

(5) constitutes a definition of m* as applied
to the state-descriptions in L,,. On this basis,
further definitions are laid down as
explained above (see (2) and (3) in §3): first
a definition of m* as applied to all sentences
in Ly, and then a definition of ¢* on the
basis of m*. Our inductive logic is the theory
of this particular function ¢* as our concept
of degree of confirmation.

It seems to me that there are good and
even compelling reasons for the stipulation
(3)(a), 1.e., the choice of a symmetrical func-
tion. The proposal of any non-symmetrical
c-function as degree of confirmation could
hardly be regarded as acceptable. The same
can not be said, however, for the stipulation
(3)(b). No doubt, to the way of thinking
which was customary in the classical period
of the theory of probability, (3)(b) would
appear as validated, like (3)(a), by the princi-
ple of indifference. However, to modern,
more critical thought, this mode of reason-
ing appears as invalid because the structure-
descriptions (in contradistinction to the
individual constants) are by no means alike
in their logical features but show very con-
spicuous differences. The definition of ¢*
shows a great 51mp11C1ty n comparlson with
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just one structure-description. Therefore,
the sum of the m*-values for all structure-
descriptions in L, must be the same as for
all state-descriptions, hence 1 (according to
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sideration. Although this fact may influence
our decision to choose ¢*, it cannot, of
course, be regarded as a sufficient reason
for this choice. It seems to me that the




choice of ¢* cannot be justified by any fea-
tures of the definition which are imme-
diately recognizable, but only by the
consequences to which the definition leads.

There is another ¢-function ¢y, which at
the first glance appears not less plausible
than ¢*. The choice of this function may be
suggested by the following consideration.
Prior to experience, there seems to be no
reason to regard one state-description as
less probable than another. Accordingly, it
might seem natural to assign equal m-values
to all state-descriptions. Hence, if the
number of the state-descriptions in Ly is n,
we define for any state-description i

(6)

My (1) =

3

This definition (6) for my, is even simpler
than the definition (5) for m*. The measure
ascribed to the ranges is here simply taken
as proportional to the cardinal numbers of
the ranges. On the basis of the m -values for
the state-descriptions defined by (6), the val-
ues for the sentences are determined as
before (see (2) in §3), and then ¢y, is defined
on the basis of m,, (see (3) in §3).14

In spite of its apparent plausibility, the
function ¢y, can easily be seen to be entirely
inadequate as a concept of degree of con-
firmation. As an example, consider the
language L,,, with P as the only primitive
predicate. Let the number of state-descrip-
tions in this language be n (it is 21°1). Then
for any state-description, my, = 1/n. Let ¢ be
the conjunction Pa, * Pay - Pag . .. Pay
and let A be Pa,5,. Then e - h is a state-
description and hence my(e - h) = 1/n. e
holds only in the two state-descriptions ¢ - &
and ¢ - ~ h; hence my,(¢) = 2/n. Therefore
cwlh, &) = 1/2. If ¢’ is formed from ¢ by
replacing some or even all of the atomic sen-
tences with their negations, we obtain like-
wise ¢y (h, ¢') = 1/2. Thus the cy-value for
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choice of ¢y, as the degree of confirmation
would be tantamount to the principle never
to let our past experiences influence our
expectations for the future. This would
obviously be in striking contradiction to the
basic principle of all inductive reasoning.

§7. LANGUAGES WITH ONE-PLACE
PREDICATES ONLY

The discussions in the rest of this paper con-
cern only those language systems whose
primitive predicates are one-place predi-
cates and hence designate properties, not
relations. It seems that all theories of proba-
bility constructed so far have restricted
themselves, or at least all of their important
theorems, to properties. Although the defi-
nition of ¢* in the preceding section has
been stated in a general way so as to apply
also to languages with relations, the greater
part of our inductive logic will be restricted
to properties. An extension of this part of
inductive logic to relations would require
certain results in the deductive logic of rela-
tions, results which this discipline, although
widely developed in other respects, has not
yet reached (e.g., an answer to the appar-
ently simple question as to the number of
structures in a given finite language system).

Let L,? be a language containing N indi-
vidual constants a,, . . . a5, and p one-place
primitive predicates Py, . . . P,. Let us con-
sider the following expressions (sentential
matrices). We start with Pyx - Pox . . .. P,x;
from this expression we form others by
negating some of the conjunctive compo-
nents, until we come to ~P;x + ~Pox ...
~P,x, where all components are negated.
The number of these expressions is k£ = 27;
we abbreviate them by Qx, ... Q,x. We
call the k properties expressed by those &
expressions in conjunctive form and now
designated by the k new Q-predicates the
Q-properties with respect to the given

the prediction that a,,, is P is always the

same, no matter whether among the hun-
dred observed individuals the number of
those which we have found to be P is 100 or
50 or 0 or any other number. Thus the

“language L,?. We see easily that these O-

properties are the strongest properties
expressible in this language (except for the
L-empty, i.e., logically self-contradictory,
property); and further, that they constitute
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an exhaustive and non-overlapping classi-
fication, that is to say, every individual has
one and only one of the Q-properties.
Thus, if we state for each individual which
of the Q-properties it has, then we have
described the individuals completely. Every
state-description can be brought into the
form of such a statement, i.e., a conjunc-
tion of N Q-sentences, one for each of the
N individuals. Suppose that in a given
state-description ¢ the number of individu-
als having the property Q, is N 1» the
number for Qs is Ny, . . . that for Q, is N,.
Then we call the numbers Ny, Ny, ... N,
the Q-numbers of the state-description i;
their sum is N. Two state-descriptions are
isomorphic if and only if they have the
same Q-numbers. Thus here a structure-
description is a statistical description giving
the Q-numbers N,, N,, etc., without spec-
ifying which individuals have the proper-
ties Q,, Q,, etc.

Here—in contradistinction to languages
with relations—it is easy to find an explicit
function for the number m of structure-
descriptions and, for any given state-
description 7 with the Q-numbers N, . . . N b
an explicit function for the number n, of
state-descriptions isomorphic to i, and
hence also a function for m*(j).15

Let j be a non-general sentence (i.e., one
without variables) in L,*. Since there are
effective procedures (that is, sets of fixed
rules furnishing results in a finite number of
steps) for constructing all state-descriptions
in which j holds and for computing m* for
any given state-description, these pro-
cedures together yield an effective pro-
cedure for computing m*(j) (according to
(2) in §3). However, the number of state-
descriptions becomes very large even for
small language systems (it is £V, hence, e.g.,
in L;3 it is more than two million). There-
fore, while the procedure indicated for the
computation of m*(j) is effective, nev-

to the end. I have developed another pro-
cedure for the computation of m*(5) which is
not only effective but also practicable if the
number of individual constants occurring in
J is not too large.

The value of m* for a sentence j in the
infinite language has been defined (see (6)
in §3) as the limit of its values for the same
sentence j in the finite languages. The ques-
tion arises whether and under what condi-
tions this limit exists. Here we have to
distinguish two cases. (i) Suppose that J con-
tains no variable. Here the situation is sim-
ple; it can be shown that in this case m*(j) is
the same in all finite languages in which J
occurs; hence it has the same value also in
the infinite language. (i) Let j be general,
i.e., contain variables. Here the situation is
quite different. For a given finite language
with N individuals, j can of course easily be
transformed into an L-equivalent sentence
J'~y without variables, because in this
language a universal sentence is L-equiv-
alent to a conjunction of N components.
The values of m*(j'y) are in general dif-
ferent for each N; and although the sim-
plified procedure mentioned above is avail-
able for the computation of these values,
this procedure becomes impracticable even
for moderate N. Thus for general sentences
the problem of the existence and the prac-
tical computability of the limit becomes seri-
ous. It can be shown that for every general
sentence the limit exists; hence m* has a
value for all sentences in the infinite
language. Moreover, an effective procedure
for the computation of m*(j) for any sen-
tence j in the infinite language has been con-
structed. This is based on a procedure for
transforming any given general sentence J
into a non-general sentence ;' such that j
and j', although not necessarily L-equiv-
alent, have the same m*-value in the infinite
language and j' does not contain more indi-
vidual constants than j; this procedure is not
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ticable; that is to say, the number of steps to
be taken, although finite, is so large that
nobody will have the time to carry them out

only effective but also practicable for sen-

tences of customary length. Thus, the com-
putation of m*(j) for a general sentence j is
in fact much simpler for the infinite



language than for a finite language with a
large N.

With the help of the procedure men-
tioned, the following theorem is obtained:

If j is a purely general sentence (i.e., one
without individual constants) in the in-
finite language, then m*(j) is either 0 or 1.

§8. INDUCTIVE INFERENCES

One of the chief tasks of inductive logic is to
furnish general theorems concerning induc-
tive inferences. We keep the traditional
term “inference”; however, we do not mean
by it merely a transition from one sentence
to another (viz., from the evidence or pre-
miss ¢ to the hypothesis or conclusion ) but
the determination of the degree of con-
firmation c(h, ¢). In deductive logic it is suffi-
cient to state that 4 follows with necessity
from e; in inductive logic, on the other
hand, it would not be sufficient to state that
h follows—not with necessity but to some
degree or other—from e. It must be spec-
ified to what degree & follows from e; in
other words, the value of c(k, ¢) must be
given. We shall now indicate some results
with respect to the most important kinds of
inductive inference. These inferences are of
special importance when the evidence or the
hypothesis or both give statistical informa-
tion, e.g., concerning the absolute or rela-
tive frequencies of given properties.

If a property can be expressed by primi-
tive predicates together with the ordinary
connectives of negation, disjunction, and
conjunction (without the use of individual
constants, quantifiers, or the identity sign),
itis called an elementary property. We shall use
M, M', My, My, etc., for elementary proper-
ties. If a property is empty by logical neces-
sity (e.g., the property designated by P - §
P), we call it L-empty; if it is universal by
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logical-necessity {e.g P V-§P), wecalbir E-
umiversal. If it is neither L-empty nor L-uni-
versal (e.g., Py, P, - § P,), we call it a factual

property; in this case it may still happen to be

On Inductive Logic 297

universal or empty, but if so, then con-
tingently, not necessarily. It can be shown
that every elementary property which is not
L-empty is uniquely analyzable into a dis-
Jjunction (i.e., or-connection) of Q-proper-
ties. If M is a disjunction of n Q-properties
(n 2 1), we say that the (logical) width of M is
n; to an L-empty property we ascribe the
width 0. If the width of M is w (2 0), we call
wik its relative width (k is the number of Q-
properties).

The concepts of width and relative width
are very important for inductive logic.
Their neglect seems to me one of the
decisive defects in the classical theory of
probability which formulates its theorems
“for any property” without qualification.
For instance, Laplace takes the probability
a priori that a given thing has a given prop-
erty, no matter of what kind, to be 1/2.
However, it seems clear that this probability
cannot be the same for a very strong prop-
erty (e.g., P, + Py + Pg) and for a very weak
property (e.g., P, V Py V P3). According to
our definition, the first of the two proper-
ties just mentioned has the relative width
1/8, and the second 7/8. In this and in
many other cases the probability or degree
of confirmation must depend upon the
widths of the properties involved. This will
be seen in some of the theorems to be men-
tioned later.

§9. THE DIRECT INFERENCE

Inductive inferences often concern a situa-
tion where we investigate a whole popula-
tion (of persons, things, atoms, or whatever
else) and one or several samples picked out
of the population. An inductive inference
from the whole population to a sample is
called a direct inductive inference. For the
sake of simplicity, we shall discuss here and
in most of the subsequent sectiéns only the
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tion of all individuals into M and ~ M. The
theorems for classifications with more prop-

erties are analogous but more complicated.
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In the present case, the evidence ¢ says that
in a whole population of » individuals there
are n; with the property M and ny = n — n,
with ~M; hence the relative frequency of M
is r = ny/n. The hypothesis & says that a
sample of s individuals taken from the
whole population will contain s, individuals
with the property M and s, = s — 5, with
~M. Our theory yields in this case the same
values as the classical theory.!6

If we vary s;, then ¢* has its maximum in
the case where the relative frequency s,/s in
the sample is equal or close to that in the
whole population.

If the sample consists of only one individ-
ual ¢, and 4 says that ¢ is M, then c*(h, ¢) = 7.

As an approximation in the case that 7 is
very large in relation to s, Newton’s theorem
holds.!” If furthermore the sample is suffi-
ciently large, we obtain as an approximation
Bernoulli’s theorem in its various forms.

It is worthwhile to note two charac-
teristics which distinguish the direct induc-
tive inference from the other inductive
inferences and make it, in a sense, more
closely related to deductive inferences:

(1) The results just mentioned hold not
only for ¢* but likewise for all sym-
metrical ¢-functions; in other words,
the results are independent of the
particular m-metric chosen provided
only that it takes all individuals on a
par.

The results are independent of the
width of M. This is the reason for the
agreement between our theory and
the classical theory at this point.

(11)

§10. THE PREDICTIVE INFERENCE

We call the inference from one sample to
another the predictive inference. In this
case, the evidence ¢ says that in a first sample

of s individuals, there are s, with the prop-
erty M, and s, = s — s, with ~M. The
hypothesis & says that in a second sample of
s" other individuals, there will be s, with M,

and s’y = 5" — 5’| with ~M. Let the width of
M be w,; hence the width of ~M is wy =k —
w..18

1-

The most important special case is that
where A refers to one individual ¢ only and
says that ¢ is M. In this case,

$y + ouy

) s+ k7

c*(h, ) =

Laplace’s much debated rule of succession
gives in this case simply the value (s, + 1)/
(s + 2) for any property whatever; this,
however, if applied to different properties,
leads to contradictions. Other authors state
the value s,/s, that is, they take simply the
observed relative frequency as the proba-
bility for the prediction that an unobserved
individual has the property in question.
This rule, however, leads to quite implausi-
ble results. If s, = s, e.g., if three individuals
have been observed and all of them have
been found to be M, the last-mentioned rule
gives the probability for the next individual
being M as 1, which seems hardly accept-
able. According to (1), ¢* is influenced by
the following two factors (though not
uniquely determined by them):

(i)  w,/k, the relative width of M;
(1) s,/s, the relative frequency of M in
the observed sample.

The factor (i) is purely logical; it is deter-
mined by the semantical rules. (ii) is
empirical; it is determined by observing and
counting the individuals in the sample. The
value of ¢* always lies between those of (i)
and (ii). Before any individual has been
observed, ¢* is equal to the logical factor (i).
As we first begin to observe a sample, c* is
influenced more by this factor than by (ii).
As the sample is increased by observing

- . : : . A
more-and more individuals (but not includ-—

ing the one mentioned in %), the empirical
factor (ii) gains more and more influence
upon c¢* which approaches closer and closer
to (ii); and when the sample is sufficiently



large, ¢* is practically equal to the relative
frequency (ii). These results seem quite
plausible.1®

The predictive inference is the most
important inductive inference. The kinds of
inference discussed in the subsequent sec-
tions may be construed as special cases of
the predictive inference.

§11. THE INFERENCE BY ANALOGY

The inference by analogy applies to the fol-
lowing situation. The evidence known to us
is the fact that individuals b and ¢ agree in
certain properties and, in addition, that b
has a further property; thereupon we con-
sider the hypothesis that ¢ too has this prop-
erty. Logicians have always felt that a
peculiar difficulty is here involved. It seems
plausible to assume that the probability of
the hypothesis is the higher the more prop-
erties b and ¢ are known to have in common;
on the other hand, it is felt that these com-
mon properties should not simply be
counted but weighed in some way. This
becomes possible with the help of the con-
cept of width. Let M, be the conjunction of
all properties which b and ¢ are known to
have in common. The known similarity
between b and ¢ is the greater the stronger
the property M,, hence the smaller its
width. Let M, be the conjunction of all
properties which b is known to have. Let the
width of M, be w,, and that of M,, w,.
According to the above description of the
situation, we presuppose that M, L-implies
M, but is not L-equivalent to M,; hence w,
= wy. Now, we take as evidence the conjunc-
tion e - j; e says that b is My, and j says that ¢
is M. The hypothesis % says that ¢ has not
only the properties ascribed to it in the evi-
dence but also the one (or several) ascribed
in the evidence to b only, in other words,

that ¢ has all known properties of b, or
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J and h speak only about ¢; ¢ introduces the
other individual b which serves to connect
the known properties of ¢ expressed by j
with its unknown properties expressed by A.
The chief question is whether the degree of
confirmation of % is increased by the analogy
between ¢ and b, in other words, by the addi-
tion of ¢ to our knowledge. A theorem?2° is
found which gives an affirmative answer to
this question. However, the increase of ¢* is
under ordinary conditions rather small; this
1s in agreement with the general conception
according to which reasoning by analogy,
although admissible, can usually yield only
rather weak results.

Hosiasson?! has raised the question men-
tioned above and discussed it in detail. She
says that an affirmative answer, a proof for
the increase of the degree of confirmation
in the situation described, would justify the
universally accepted reasoning by analogy.
However, she finally admits that she does
not find such a proof on the basis of her
axioms. I think it is not astonishing that nei-
ther the classical theory nor modern theo-
ries of probability have been able to give a
satisfactory account of and justification for
the inference by analogy. For, as the the-
orems mentioned show, the degree of con-
firmation and its increase depend here not
on relative frequencies but entirely on the
logical widths of the properties involved,
thus on magnitudes neglected by both classi-
cal and modern theories.

The case discussed above is that of simple
analogy. For the case of multiple analogy,
based on the similarity of ¢ not only with one
other individual but with a number n of
them, similar theorems hold. They show
that ¢* increases with increasing » and
approaches 1 asymptomatically. Thus, mul-
tiple analogy is shown to be much more
effective than simple analogy, as seems
plausible.

briefly that ¢ is My. Then

(1) c*(h, e+ j) =

§12. THE INVERSE INFERENCE

The inference from a sample to the whole
population is called the inverse inductive
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inference. This inference can be regarded
as a special case of the predictive inference
with the second sample covering the whole
remainder of the population. This infer-
ence is of much greater importance for
practical statistical work than the direct
inference, because we usually have statistical
information only for some samples and not
for the whole population.

Let the evidence e say that in an observed
sample of s individuals there are s, individu-
als with the property M and s, = 5 — s, with
~M. The hypothesis % says that in the whole
population of 7 individuals, of which the
sample is a part, there are n, individuals
with M and ny with ~M (n, Z s, ny > 's,).
Let the width of M be w;, and that of ~M be
wy = k — w,. Here, in distinction to the
direct inference, c*(h, ) is dependent not
only upon the frequencies but also upon the
widths of the two properties.22

§13. THE UNIVERSAL INFERENCE

The universal inductive inference is the
inference from a report on an observed
sample to a hypothesis of universal form.
Sometimes the term “induction” has been
applied to this kind of inference alone,
while we use it in a much wider sense for all
non-deductive kinds of inference. The uni-
versal inference is not even the most impor-
tant one; it seems to me now that the role of
universal sentences in the inductive pro-
cedures of science has generally been over-
estimated. This will be explained in the next
section.

Let us consider a simple law [, i.e., a fac-
tual universal sentence of the form “all M
are M'” or, more exactly, “for every x, if x is
M, then x is M',” where M and M’ are ele-
mentary properties. As an example, take
“all swans are white.” Let us abbreviate M -
~ M" (“non-white swan”) by M, and let the

lated thus: “M, is empty,” 1.e. “there is no
individual (in the domain of individuals of
the language in question) with the property

width OfM, bﬁ‘?,U, Thenl can-be formu—

M,” (“there are no non-white swans”). Since
L is a factual sentence, M, is a factual prop-
erty; hence w; > 0. To take an example, let
wy be 3; hence M, is a disjunction of three
Q-properties, say Q V Q' V Q". Therefore, [
can be transformed into: “Q is empty, and
Q' is empty, and Q" is empty.” The weakest
factual laws in a language are those which

- say that a certain Q-property is empty; we

call them Q-laws. Thus we see that [ can be
transformed into a conjunction of w, Q-
laws. Obviously [ asserts more if w 1 1s larger;
therefore we say that the law [ has the
strength w;.

Let the evidence ¢ be a report about an
observed sample of s individuals such that
we see from e that none of these s individu-
als violates the law [; that is to say, ¢ ascribes
to each of the s individuals either simply the
property ~M,; or some other property L-
implying ~M,. Let I, as above, be a simple
law which says that M, is empty, and w, be
the width of M,; hence the width of ~M 118
Wy = k — w,. For finite languages with N
individuals, ¢*([, ¢) is found to decrease with
increasing N, as seems plausible.2® If N is
very large, ¢* becomes very small; and for
an infinite universe it becomes 0. The latter
result may seem astonishing at first sight; it
seems not in accordance with the fact that
scientists often speak of “well-confirmed”
laws. The problem involved here will be dis-
cussed later.

So far we have considered the case in
which only positive instances of the law [
have been observed. Inductive logic must,
however, deal also with the case of negative
instances. Therefore let us now examine
another evidence ¢' which says that in the
observed sample of s individuals there are s,
which have the property M, (non-white
swans) and hence violate the law [, and that
S = s — s, have ~M, and hence satisfy the
law [. Obviously, in this case there is no point
in taking as hypothesis the law [ in its orig-
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ble with the present evidence ¢’, and hence
¢*(l, ¢') = 0. That all individuals satisfy [ 1s
excluded by ¢'; the question remains



whether at least all unobserved individuals
satisfy /. Therefore we take here as hypoth-
esis the restricted law [’ corresponding to
the original unrestricted law [; {’ says that all
individuals not belonging to the sample of s
individuals described in ¢’ have the property
~M ;. w, and w, are, as previously, the wid-
ths of M, and ~M, respectively. It is found
that ¢*(l', ¢') decreases with an increase of N
and even more with an increase in the
number s, of violating cases.?* It can be
shown that, under ordinary circumstances
with large N, ¢* increases moderately when
a new individual is observed which satisfies
the original law /. On the other hand, if the
new individual violates [, ¢* decreases very
much, its value becoming a small fraction of
its previous value. This seems in good
agreement with the general conception.

For the infinite universe, ¢* is again 0, as
in the previous case. This result will be dis-
cussed in the next section.

§14. THE INSTANCE
CONFIRMATION OF A LAW

Suppose we ask an engineer who is building
a bridge why he has chosen the building
materials he is using, the arrangement and
dimensions of the supports, etc. He will
refer to certain physical laws, among them
some general laws of mechanics and some
specific laws concerning the strength of the
materials. On further inquiry as to his con-
fidence in these laws he may apply to them
phrases like “very reliable,” “well founded,”
“amply confirmed by numerous experi-
ences.” What do these phrases mean? It is
clear that they are intended to say some-
thing about probability, or degree of con-
firmation. Hence, what is meant could be
formulated more explicitly in a statement of
the form “c(h, ¢) is high” or the like. Here
the evidence e is obviously the relevant
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in question, hence a universal sentence [ of
the form: “For every space-time point x, if
such and such conditions are fulfilled at x,
then such and such is the case at x.” I think,
however, that the engineer is chiefly inter-
ested not in this sentence I, which speaks
about an immense number, perhaps an
infinite number, of instances dispersed
through all time and space, but rather in
one instance of [ or a relatively small
number of instances. When he says that the
law is very reliable, he does not mean to say -
that he is willing to bet that among the bil-
lion of billions, or an infinite number, of
instances to which the law applies there is
not one counter-instance, but merely that
this bridge will not be a counter-instance, or
that among all bridges which he will con-
struct during his lifetime, or among those
which all engineers will construct during the
next one thousand years, there will be no
counter-instance. Thus % is not the law [
itself but only a prediction concerning one
instance or a relatively small number of
instances. Therefore, what is vaguely called
the reliability of a law is measured not by the
degree of confirmation of the law itself but
by that of one or several instances. This sug-
gests the subsequent definitions. They refer,
for the sake of simplicity, to just one
instance; the case of several, say one hun-
dred, instances can then easily be judged
likewise. Let ¢ be any non-L-false sentence
without variables. Let [ be a simple law of
the form earlier described (§13). Then we
understand by the instance confirmation of [
on the evidence ¢, in symbols c¢*,(l, ¢), the
degree of confirmation, on the evidence e,
of the hypothesis that a new individual not
mentioned in e fulfills the law /.25

The second concept, now to be defined,
seems in many cases to represent still more
accurately what is vaguely meant by the
reliability of a law /. We suppose here that [
has the frequently used conditional form
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of all physicists together at the present time.
But what is to serve as the hypothesis 22 One
might perhaps think at first that 4 is the law

mentioned earhier: “For every x, if x 18 M,
then x is M'” (e.g., “all swans are white”). By
the qualified-instance confirmation of the law

that all swans are white we mean the degree
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of confirmation for the hypothesis 4’ that
the next swan to be observed will likewise be
white. The difference between the hypoth-
esis h used previously for the instance con-
firmation and the hypothesis A’ just
described consists in the fact that the latter
concerns an individual which is already
qualified as fulfilling the condition M. That
is the reason why we speak here of the quali-
fied-instance confirmation, in symbols ¢* ,.2°
The results obtained concerning instance
confirmation and qualified-instance con-
firmation2” show that the values of these
two functions are independent of N and
hence hold for all finite and infinite uni-
verses. It has been found that, if the number
s, of observed counter-instances is a fixed
small number, then, with the increase of the
sample s, both ¢*; and ¢* ; grow close to 1, in
contradistinction to c¢* for the law itself. This
justifies the customary manner of speaking
of “very reliable” or “well-founded” or
“well-confirmed” laws, provided we inter-
pret these phrases as referring to a high
value of either of our two concepts just
introduced. Understood in this sense, the
phrases are not in contradiction to our pre-
vious results that the degree of confirmation
of a law is very small in a large domain of
individuals and .0 in the infinite domain
(§13).

These concepts will also be of help in sit-
uations of the following kind. Suppose a sci-
entist has observed certain events, which are
not sufficiently explained by the known
physical laws. Therefore he looks for a new
law as an explanation. Suppose he finds two
incompatible laws ! and ', each of which
would explain the observed events satisfac-
torily. Which of them should he prefer? If
the domain of individuals in question is
finite, he may take the law with the higher
degree of confirmation. In the infi-
nite domain, however, this method of
comparison fails, because the degree of

then this law will be preferable, if no reasons
of another nature are against it.

It is clear that for any deliberate activity
predictions are needed, and that these pre-
dictions must be “founded upon” or
“(inductively) inferred from” past experi-
ences, in some sense of those phrases. Let us
examine the situation with the help of the
following simplified schema. Suppose a man
X wants to make a plan for his actions and,
therefore, is interested in the prediction A
that ¢ is M'. Suppose further, X has
observed (1) that many other things were M
and that all of them were also M’, let this be
formulated in the sentence ¢; (2) that ¢ 1s M,
let this be j. Thus he knows ¢ and j by obser-
vation. The problem is, how does he go
from these premisses to the desired con-
clusion A? It s clear that this cannot be done
by deduction; an inductive procedure must
be applied. What is this inductive pro-
cedure? It is usually explained in the follow-
ing way. From the evidence ¢, X infers
inductively the law [ which says that all M
are M'; this inference is supposed to be
inductively valid because ¢ contains many
positive and no negative instances of the law
[; then he infers A (“c is white”) from [ (“all
swans are white”) and j (“c is a swan”) deduc-
tively. Now let us see what the procedure
looks like from the point of view of our
inductive logic. One might perhaps be
tempted to transcribe the usual description
of the procedure just given into technical
terms as follows. X infers ! from e induc-
tively because c*(/, ¢) is high; since [ - j L-
implies %, ¢*(h, e - j) is likewise high; thus A
may be inferred inductively from ¢ - ;.
However, this way of reasoning would not
be correct, because, under ordinary condi-
tions, ¢*(/, ¢) is not high but very low, and
even 0 if the domain of individuals is
infinite. The difficulty disappears when we
realize on the basis of our previous discus-
sions that X does not need a high ¢* for [ in

confirmation is 0 for either law. Here the

concept of instance confirmation (or that of
qualified-instance confirmation) will help. If
it has a higher value for one of the two laws,

order to obtain the desired high ¢ for #; all
he needs is a high ¢* ; for [; and this he has
by knowing e and ;. To putitin another way,

X need not take the roundabout way




through the law [ at all, as is usually
believed; he can instead go from his obser-
vational knowledge ¢ - j directly to the pre-
diction 4. That is to say, our inductive logic
makes it possible to determine c¢*(h, e - §)
directly and to find that it has a high value,
without making use of any law. Customary
thinking in every-day life likewise often
takes this short-cut, which is now justified by
inductive logic. For instance, suppose some-
body asks Mr. X what color he expects the
next swan he will see to have. Then X may
reason like this: He has seen many white
swans and no non-white swans; therefore
he presumes, admittedly not with certainty,
that the next swan will likewise be white;
and he is willing to bet on it. He does per-
haps not even consider the question
whether all swans in the universe without a
single exception are white; and if he did, he
would not be willing to bet on the affir-
mative answer.

We see that the use of laws is not indis-
pensable for making predictions. Nev-
ertheless it is expedient of course to state
universal laws in books on physics, biology,
psychology, etc. Although these laws stated
by scientists do not have a high degree of
confirmation, they have a high qualified-
instance confirmation and thus serve us as
efficient instruments for finding those
highly confirmed singular predictions which
we need for guiding our actions.

§15. THE VARIETY OF INSTANCES

A generally accepted and applied rule of sci-
entific method says that for testing a given
law we should choose a variety of specimens
as great as possible. For instance, in order to
test the law that all metals expand by heat,
we should examine not only specimens of
iron, but of many different metals. It seems
clear that a greater variety of instances
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dred metal pieces and observing their
expansion; the first physicist neglects the
rule of variety and takes only pieces of iron;
the sécond follows the rule to a small extent
by examining iron and copper pieces; the
third satisfies the rule more thoroughly by
taking his one hundred specimens from six
different metals. Then we should say that
the third physicist has confirmed the law by
a more thoroughgoing examination than
the two other physicists; therefore he has
better reasons to declare the law well
founded and to expect that future instances
will likewise be found to be in accordance
with the law; and in the same way the sec-
ond physicist has more reasons than the
first. Accordingly, if there is at all an ade-
quate concept of degree of confirmation
with numerical values, then its value for the
law, or for the prediction that a cer-
tain number of future instances will fulfill
the law, should be higher on the evidence of
the report of the third physicist about the
positive results of his experiments than for
the second physicist, and higher for the sec-
ond than for the first. Generally speaking,
the degree of confirmation of a law on the
evidence of a number of confirming experi-
ments should depend not only on the total
number of (positive) instances found but
also on their variety, i.e., on the way they are
distributed among various kinds.

Ernest Nagel®® has discussed this prob-
lem in detail. He explains the difficulties
involved in finding a quantitative concept of
degree of confirmation ‘that would satisfy
the requirement we have just discussed, and
he therefore expresses his doubt whether
such a concept can be found at all. He says
(pp. 69ff.): “It follows, however, that the
degree of confirmation for a theory seems
to be a function not only of the absolute
number of positive instances but also of the
kinds of instances and of the relative
number in each kind. It is not in general
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allows a more effective examination of the
law. Suppose three physicists examine the
law mentioned; each of them makes one

hundred experiments by heating one hun-
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firmation in a linear order, because the evi-
dence for theories may not be comparable
in accordance with a simple linear schema;
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and a fortiori degrees of confirmation can-
not, in general, be quantized.” He illustrates
his point by a numerical example. A theory
T is examined by a number E of experi-
ments all of which yield positive instances;
the specimens tested are taken from two
non-overlapping kinds K, and K. Nine pos-
sibilities Py, . .. Pgy are discussed with dif-
ferent numbers of instances in K, and in K.
The total number E increases from 50 in P,
to 200 in Py. In Py, 50 instances are taken
from K, and none from Ky;in Py, 198 from
K, and 2 from K. It does indeed seem diffi-
cult to find a concept of degree of con-
firmation that. takes into account in an ade-
quate way not only the absolute number E
of instances but also their distribution
among the two kinds in the different cases.
And I agree with Nagel that this require-
ment is important. However, I do not think
it impossible to satisfy the requirement; in
fact, it is satisfied by our concept c*.

This is shown by a theorem in our system
of inductive logic, which states the ratio in
which the ¢* of a law [ is increased if s new
positive instances of one or several different
kinds are added by new observations to
some former positive instances. The the-
orem, which is too complicated to be given
here, shows that ¢* is greater under the fol-
lowing conditions: (1) if the total number s
of the new instances is greater, ceteris par-
wus; (2) if, with equal numbers s, the
number of different kinds from which
the instances are taken is greater; (3) if
the instances are distributed more evenly
among the kinds. Suppose a physicist has
made experiments for testing the law [ with
specimens of various kinds and he wishes to
make one more experiment with a new
specimen. Then it follows from (2), that the
new specimen is best taken from one of
those kinds from which so far no specimen
has been examined; if there are no such
kinds, then we see from (3) that the new

practice. (The above formulations of (2) and
(3) hold in the case where all the kinds con-
sidered have equal width; in the general and
more exact formulation, the increase of ¢* is
shown to be dependent also upon the vari-
ous widths of the kinds of instances.) The
theorem shows further that ¢* is much more
influenced by (2) and (3) than by (1); that is
to say, it is much more important to improve
the variety of instances than to increase
merely their number.

The situation is best illustrated by a
numerical example. The computation of the
increase of ¢*, for the nine possible cases
discussed by Nagel, under certain plausible
assumptions concerning the form of the law
l'and the widths of the properties involved,
leads to the following results. If we arrange
the nine possibilities in the order of ascend-
ing values of ¢*, we obtain this: Py, Pg, P,
Pg; Py, Py, Py, Pg, Pg. In this order we find
first the four possibilities with a bad dis-
tribution among the two kinds, i.e., those
where none or only very few (two) of the
instances are taken from one of the two
kinds, and these four possibilities occur in
the order in which they are listed by Nagel;
then the five possibilities with a good or
fairly good distribution follow, again in the
same order as Nagel’s. Even for the smallest
sample with a good distribution (viz., P,
with 100 instances, 50 from each of the two
kinds) ¢* is considerably higher—under the
assumptions made, more than four times as
high—than for the largest sample with a bad
distribution (viz., Py, with 200 instances,
divided into 198 and 2). This shows that a
good distribution of the instances is much
more important than a mere increase in the
total number of instances. This is in accor-
dance with Nagel's remark (p. 69): “A large
increase in the number of positive instances
of one kind may therefore count for less, in
the judgment of skilled experimenters, than
a small increase in the number of positive
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those kinds which contain the minimum
number of instances tested so far. This
seems in good agreement with scientific

instances of another kind.”

Thus we see that the concept ¢* is in satis-
factory accordance with the principle of the
variety of instances.



§16. THE PROBLEM OF THE
JUSTIFICATION OF INDUCTION

Suppose that a theory is offered as a more
exact formulation—sometimes called a
“rational reconstruction”—of a body of gen-
erally accepted but more or less vague
beliefs. Then the demand for a justification
of this theory may be understood in two dif-
ferent ways. (1) The first, more modest task
is to validate the claim that the new theory is
a satisfactory reconstruction of the beliefs in
question. It must be shown that the state-
ments of the theory are in sufficient agree-
ment with those beliefs; this comparison is
possible only on those points where the
beliefs are sufficiently precise. The question
whether the given beliefs are true or false is
here not even raised. (2) The second task is
to show the validity of the new theory and
thereby of the given beliefs. This is a much
deeper going and often much more difficult
problem.

For example, Euclid’s axiom system of
geometry was a rational reconstruction of
the beliefs concerning spatial relations
which were generally held, based on experi-
ence and intuition, and applied in the prac-
tices of measuring, surveying, building, etc.
Euclid’s axiom system was accepted because
it was in sufficient agreement with those
beliefs and gave a more exact and consistent
formulation for them. A critical investiga-
tion of the validity, the factual truth, of the
axioms and the beliefs was only made more
than two thousand years later by Gauss.

Our system of inductive logic, that is, the
theory of ¢* based on the definition of this
concept, is intended as a rational recon-
struction, restricted to a simple language
form, of inductive thinking as customarily
applied in everyday life and in science. Since
the implicit rules of customary inductive
thinking are rather vague, any rational
reconstruction contains statements which

1
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tive thinking are precise enough. It seems to
me that on these points sufficient agreement
is found to show that our theory is an ade-
quate reconstruction; this agreement is seen
in many theorems, of which a few have been
mentioned in this paper.

An entirely different question is the
problem of the validity of our or any other
proposed system of inductive logic, and
thereby of the customary methods of induc-
tive thinking. This is the genuinely philo-
sophical problem of induction. The
construction of a systematic inductive logic
is an important step towards the solution of
the problem, but still only a preliminary
step. It is important because without an
exact formulation of rules of induction, i.e.,
theorems on degree of confirmation, it is
not clear what exactly is meant by “inductive
procedures,” and therefore the problem of
the validity of these procedures cannot even
be raised in precise terms. On the other
hand, a construction of inductive logic,
although it prepares the way towards a solu-
tion of the problem of induction, still does
not by itself give a solution.

Older attempts at a justification of induc-
tion tried to transform it into a kind of
deduction, by adding to the premisses a
general assumption of universal form, e.g.,
the principle of the uniformity of nature. I
think there is fairly general agreement
today among scientists and philosophers
that neither this nor any other way of reduc-
ing induction to deduction with the help of
a general principle is possible. It is generally
acknowledged that induction is fundamen-
tally different from deduction, and that any
prediction of a future event reached induc-
tively on the basis of observed events can
never have the certainty of a deductive con-
clusion; and, conversely, the fact that a pre-
diction " reached by certain inductive
procedures turns out to be false does not
show that those inductive procedures were

are neither supported nor rejected by the
ways of customary thinking. Therefore, a
comparison is possible only on those points

where the procedures of customary induc-
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The situation just described has some-
times been characterized by saying that a
theoretical justification of induction is not
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possible, and, hence, that there is no prob-
lem of induction. However, it would be bet-
ter to say merely that a justification in the
old sense is not possible. Reichenbach?2? was
the first to raise the problem of the justifica-
tion of induction in a new sense and to take
the first step towards a positive solution.
Although I do not agree with certain other
features of Reichenbach’s theory of induc-
tion, I think it has the merit of having first
emphasized these important points with
respect to the problem of justification: (1)
The decisive justification of an inductive
procedure does not consist in its plausibility,
i.€., its accordance with customary ways of
inductive reasoning, but must refer to its
success in some sense; (2) the fact that the
truth of the predictions reached by induc-
tion cannot be guaranteed does not pre-
clude a justification in a weaker sense; (3) it
can be proved (as a purely logical result)
that induction leads in the long run to suc-
cess 1n a certain sense, provided the world is
“predictable” at all, i.e., such that success in
that respect is possible. Reichenbach shows
- that his rule of induction R leads to success
in the following sense: R yields in the long
run an approximate estimate of the relative
frequency in the whole of any given prop-
erty. Thus suppose that we observe the rela-
tive frequencies of a property M in an
increasing series of samples, and that we
determine on the basis of each sample with
the help of the rule R the probability ¢ that
an unobserved thing has the property M,
then the values ¢ thus found approach in
the long run the relative frequency of M in
the whole. (This is, of course, merely a log-
ical consequence of Reichenbach’s defini-
tion or rule of induction, not a factual
feature of the world.) '

I think that the way in which Reichenbach
examines and justifies his rule of induction
1s an important step in the right direction,
but only a first step. What remains to be

any procedure which does not possess the
characteristic described above (viz., approx-
imation to the relative frequency in the
whole) is inferior to his rule of induction.
However, his rule, which he calls “the” rule
of induction, is far from being the only one
possessing that characteristicc. The same
holds for an infinite number of other rules
of induction, e.g., for Laplace’s rule of suc-
cession (see above, §10; here restricted in a
suitable way so as to avoid contradictions),
and likewise for the corresponding rule of
our theory of ¢* (as formulated in theorem
(1), §10). Thus our inductive logic is justi-
fied to the same extent as Reichenbach’s
rule of induction, as far as the only criterion
of justification so far developed goes. (In
other respects, our inductive logic covers a
much more extensive field than Reichen-
bach’s rule; this can be seen by the theorems
on various kinds of inductive inference
mentioned in this paper.) However,
Reichenbach’s rule and the other two rules
mentioned yield different numerical values
for the probability under discussion,
although these values converge for an
increasing sample towards the same limit.
Therefore we need a more general and
stronger method for examining and com-
paring any two given rules of induction in
order to find out which of them has more
chance of success. I think we have to mea-
sure the success of any given rule of induc-
tion by the total balance with respect to a
comprehensive system of wagers made
according to the given rule. For this task,
here formulated in vague terms, there is so
far not even an exact formulation; and
much further investigation will be needed
before a solution can be found.
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“doneis to find a procedure for the examina-
tion of any given rule of induction in a more
thoroughgoing way. To be more specific,
Reichenbach is right in the assertion that
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grounds of that proposition (*5.101). “If T_ is the
number of the truth-grounds of the proposition
r, T,, the number of those truth-grounds of the
proposition s which are at the same time truth-
grounds of r, then we call the ratio T,: T, the
measure of the probability which the proposition r
gives to the proposition s” (*5.15). It seems that
the concept of probability thus defined coincides
with the function c,,.

15. The results are as follows.

0 (N + k- 1)
Nl — 1!

(2) n, = N
NI!NQ! T N

Therefore (according to (5) in §6):

NN, - Nk = 1)L
K07} =
®) m*@) (N + k& — 1)

16. The general theorem is as follows:
9)()
(%)

17. (c)*h, ¢) = ( _: )w‘l(l — e
1

c*(h, ) =

18. The general theorem is as follows:

sptsitw;—1 Sot+sg+wo—1
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s+s'+E—1
S/

. 19. Another theorem may be mentioned
which deals with the case where, in distinction to
the case just discussed, the evidence already gives
some information about the individual ¢ men-
tioned in h. Let M, be a factual elementary prop-
erty with the width w; (w, 2 2); thus M, is a

c*(h, e) =
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Jjunction of wy among those w, Q-properties (1 <
wy < w); hence M, L-implies M, and has the
width w,. ¢ specifies first how the s individuals of
an observed sample are distributed among cer-
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tain properties, and, in particular, it says that s,
of them have the property M, and s, of these s,
individuals have also the property My; in addi-
tion, e says that ¢ is M; and h says that ¢ is also
M,. Then,

So + w
c*(h,e) = 22
$; T w,y

This is analogous to (1); but in the place of the
whole sample we have here that part of it which
shows the property M.

20. c*(h, e )
c*h, 7)

This theorem shows that the ratio of the increase
of ¢* is greater than 1, since w; > wj.

21. Janina Lindenbaum-Hosiasson, “Induc-
tion et analogie: Comparaison de leur fonde-
ment,” Mind, L, (1941), 351-65; see especially
pp. 361-65.

22. The general theorem is as follows:

s;tw,—1 So twy—1
c*(h, €) = .
n+tk—1
n—s
Other theorems, which cannot be stated here,
concern the case where more than two properties
are involved, or give approximations for the fre-

quent case where the whole population is very
large in relation to the sample.

23. The general theorem is as follows:

sth—1
Wi
N+k=1Y
Wy
In the special case of a language containing M, as
the only primitive predicate, we have w; = 1 and

wl - w2
wy(w, + 1)
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The latter value is given by some author as hold-
ing generally (see Jeffreys, op. cit., p. 106 (16)).
However, it seems plausible that the degree of
confirmation must be smaller for a stronger law
and hence depend upon w,.

If 5, and hence N, too, is very large in relation
to k, the following holds as an approximation:

.0 = ()%

For the infinite language L % we obtain,
according to definition (7) in §3:

(3)

(2)

c*(, e) = 0.

924. The theorem is as follows:

s+ k—1
e §; T w, .
€)= NTET
§ytwy )
95 In technical terms, the definition is as fol-
lows: c*(l, ¢) = Dec*(h, ¢), where A is an instance

of [ formed by the substitution of an individual
constant not occurring in e.

96. The technical definition will be given
here. Let [ be “for every x, if x is M, then x sM'.”
Let { be non-L-false and without variables. Let ¢
be any individual constant not occurring ine; lety
say that ¢ is M, and A’ that ¢ 1s M'. Then the
qualified-instance confirmation of [ with respect
to M and M’ on the evidence ¢ is defined as fol-
lows: c* (M, M, ¢) = Doc*(h', e " ).

97. Some of the theorems may here be given.
Let the law [ say, as above, that all M are M'. Let
M, be defined, as earlier, by M - ~ M' (“non-
white swan”) and M, by M - M’ (“white swan”).
Let the widths of M, and M, be w; and w, respec-
tively. Let ¢ be a report about s observed individ-
uals saying that s, of them are M, and s, are Mo,
while the remaining ones are ~M and hence
neither M, nor M,. Then the following holds:

$; + wy

(1)
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values stated in (1) and (2) by taking s, = 0.
28. E. Nagel, Principles of the Theory of Proba-
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bility. Int. Encycl. of Unified Science, I, No. 6,
1939; see pp. 68-71.

29. Hans Reichenbach, Experience and Predic-
tion, 1938, §838 ff., and earlier publications.

Nelson Goodman

THE NEW RIDDLE OF INDUCTION

Confirmation of a hypothesis by an instance
depends rather heavily upon features of the
hypothesis other than its syntactical form.
That a given piece of copper conducts elec-
tricity increases the credibility of statements
asserting that other pieces of copper con-
duct electricity, and thus confirms the
hypothesis that all copper conducts elec-
tricity. But the fact that a given man now in
this room is a third son does not increase the
credibility of statements asserting that other
men now in this room are third sons, and so
does not confirm the hypothesis that all men
now in this room are third sons. Yet in both
cases our hypothesis is a generalization of
the evidence statement. The difference is
that in the former case the hypothesis is a
lawlike statement; while in the latter case, the

hypothesis is a merely contingent or acci-

dental generality. Only a statement that is
lawlike—regardless of its truth or falsity or
its scientific importance—is capable of
receiving confirmation from an instance of
it; accidental statements are not. Plainly,
then, we must look for a way of distinguish-
ing lawlike from accidental statements.

So long as what seems to be needed is
merely a way of excluding a few odd and
unwanted cases that are inadvertently

admitted by our definition of confirmation,
the problem may not seem very hard or very
pressing. We fully expect that minor defects
will be found in our definition and that the
necessary refinements will have to be
worked out patiently one after another. But
some further examples will show that our
present difficulty is of a much graver kind.

Suppose that all emeralds examined
before a certain time ¢ are green. At time ¢,
then, our observations support the hypoth-
esis that all emeralds are green; and thisis in
accord with our definition of confirmation.
Our evidence statements assert that emerald
a is green, that emerald b is green, and so
on; and each confirms the general hypoth-
esis that all emeralds are green. So far, so
good.

Now let me introduce another predicate
less familiar than “green.” It is the predicate
“grue” and it applies to all things examined
before ¢ just in case they are green but to
other things just in case they are blue. Then
at time ¢ we have, for each evidence state-
ment asserting that a given emerald is
green, a parallel evidence statement assert-
ing that that emerald is grue. And the state-
ments that emerald a is grue, that emerald b
is grue, and so on, will each confirm the gen-
eral hypothesis that all emeralds are grue.
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“Thus according to our definition, the pre-

diction that all emeralds subsequently exam-
ined will be green and the prediction that all
will be grue are alike confirmed by evidence




