
A Game Theoretic Argument For Ockham’s

Razor

Conor Mayo-Wilson

December 17, 2009



Contents

1 Simplicity Defined 9
1.1 Linguistic Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Syntactic Simplicity . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 Semantic Simplicity . . . . . . . . . . . . . . . . . . . . . 18

1.2 Falsifiability and Testability . . . . . . . . . . . . . . . . . . . . . 19
1.3 Simplicity as Unification . . . . . . . . . . . . . . . . . . . . . . . 23

2 KGS Model 29
2.1 Empirical Effects, Problems, and Worlds . . . . . . . . . . . . . . 29

2.1.1 An Example - Causal Discovery . . . . . . . . . . . . . . . 31
2.2 Simplicity, Ockham’s Razor, and Scientific Methods . . . . . . . 34

2.2.1 Methods and Simplicity in Causal Discovery . . . . . . . 36
2.2.2 A Brief Discussion of the KGS definition of simplicity . . 37

2.3 Costs of Inquiry and the Efficiency Theorem . . . . . . . . . . . . 38

3 Randomized Strategies and Ockham’s Razor 44
3.1 Strategic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Nash Equilibria in Finite and Infinite Strategic Games . . 45
3.1.2 Mixed Strategies and Nash’s Theorem for Strategic Games 48
3.1.3 Quasi-Ordered Preferences in Strategic Games . . . . . . 50

3.2 Three Representations of the KGS Model as a Quasi-Game . . . 55
3.2.1 G : Actions as Answer and Effect Sequences . . . . . . . . 55
3.2.2 G∗: Actions as Methods and Worlds . . . . . . . . . . . . 69
3.2.3 G∗∗: Actions as Methods and Forcing Patterns . . . . . . . 84

3.3 A Brief Discussion of the Three Representations and the New
Efficiency Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Appendices 90
4.1 Measure Theory and Probability . . . . . . . . . . . . . . . . . . 90

4.1.1 Measures and Measure Spaces . . . . . . . . . . . . . . . . 90
4.1.2 Measurable Maps and Random Variables . . . . . . . . . 92
4.1.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Directed Acyclic Graphs and Bayesian Networks . . . . . . . . . 92

1



Acknowledgments

As is obvious from the number of citations to his work and the style of the
central argument in what follows, I owe an enormous intellectual debt to Kevin
Kelly. Kevin spent endless hours discussing the concept of simplicity with me;
he provided extensive written criticisms on earlier drafts of this thesis, and
perhaps most importantly, he gave me personal encouragement at every step of
the way. I cannot thank Kevin enough for the immense time and energy that
he has devoted to making this project come to fruition.

David Danks has also been an enormous asset to me in writing this thesis.
His attention to detail never ceases to amaze me, and the quickness and thor-
oughness with which he provided comments on earlier drafts of this thesis were
absolutely essential in the evolution of my writing and arguments. To put it
bluntly, much of what is written below would be lacking in motivation, organi-
zation, and cogency were it not for David’s comments and suggestive questions
on earlier drafts. Moreover, David pushed me to provide informal explanations
of technical results so as to sharpen the philosophical interpretations of the
theorems in the later chapters.

I also owe a great deal of thanks to a third member of the Carnegie Mellon
Philosophy department who was not an official member of my committee: Teddy
Seidenfeld. Teddy likely agrees with very few of the philosophical conclusions
below, but were it not for his questions and constant probing, I would not
have written this thesis at all. His influence on my thinking should, I hope,
be apparent in the discussions of decision theory and game theory throughout
the thesis. I owe thanks, therefore, for the time he has set aside to discuss any
number of issues concerning foundations of game theory, decision theory, and
finite-additivity, among other topics.

Finally, my family and friends have been immensely supportive during the
time in which I wrote this thesis. Few of them actually care about the subject
matter of this paper, but they cared deeply about my (sometimes questionable)
emotional and physical well-being as I wrote it. I can’t mention everyone, but
special thanks are due to my parents, my brother, my roommates, Shawn and
Lena, Stephanie, Steve, and Ruth.

2



Introduction

Beginning in Ancient Greece with Aristotle and Ptolemy,1 continuing in the Re-
naissance and Enlightenment in the works of Copernicus, Galileo, and Newton,2

and persisting in the 20th century in the writings of Feynmann and Einstein,3

scientists have consistently appealed to the principle that, all other things being
equal, it is rational to prefer simpler scientific theories to more complex ones.
This principle is called Ockham’s razor, and the aim of this thesis is justify it.

Justifying Ockham’s razor requires answering at least three questions. First,
what makes a scientific theory simple? Second, what criteria make it “rational
to prefer” one scientific theory to another? That is, what are the costs of en-
dorsing, believing, or pursuing research in a particular scientific theory? Finally,
why does a systematic preference for simpler theories minimize such costs?4 In

1In the Posterior Analytics, Aristotle writes “We may assume the superiority ceteris
paribus of the demonstration which derives from fewer postulates or hypotheses.” See Aristo-
tle (1971). Similarly, in arguing that a geocentric model of the solar system is most plausible,
Ptolemy claims, “For the same [observations] would result as if [the earth] had another posi-
tion than at the center [of the solar system]. And so it seems to me superfluous to look for
the causes of the motion to the center when it is once for all clear from the very appearances
that the earth is in the middle of the world” (my italics). See Ptolemy (1958) pp. 12.

2In defending a heliocentric model of the solar system, Copernicus writes, “Just as [nature]
especially avoids producing anything superfluous or useless, so it prefers to endow a single
thing with many effects.” See Copernicus (1995). Galileo uses similar reasoning in defending
Copernicus: “Nature does not multiply things unnecessarily; that she makes use of the easiest
and simplest means for producing her effects; that she does nothing in vain, and the like.” See
Galileo (1953). Finally, Newton’s first rule of scientific explanation reads as follows: “We are
to admit no more causes of natural things than such as are both true and sufficient to explain
their appearances.” Newton (1964) pp. 398.

3Einstein writes, “The grand aim of all science is to cover the greatest possible number
of empirical facts by logical deductions from the smallest possible number of hypotheses or
axioms.” Quoted in Nash (1963) pp. 173.

4To these three questions, Alan Baker adds a fourth: what role does simplicity actually play
in scientific practice? See Baker (2004). Baker’s distinction is important: many philosophers
have defended Ockham’s razor, but they often use the word “simple” in a way that is different
from that employed by practicing scientists. Thus, some philosophical defenses of Ockham’s
razor explain how a preference for simpler scientific theories might be justified, but they also
provide no defense of why various scientists’ appeals to simplicity have been, and continue to
be, successful heuristics in inquiry. I provide a defense of Ockham’s razor that, I will argue,
justifies appeals to simplicity in several scientific problems, including curve-fitting, causal
inference, and estimating conserved quantities in particle physics. I do not, however, provide
an extensive historical or sociological study to show that past or present scientists understand
simplicity and Ockham’s razor in the way defended in this paper.
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this introduction, I provide an overview of how philosophers, scientists, and
statisticians have attempted to answer these three questions. This overview is
expanded in the second chapter, where I summarize the philosophical literature
dedicated to Ockham’s razor in far greater detail.

How should simplicity be defined? The list of proposed definitions is numer-
ous; scientific theories have been characterized as simple if they minimize any of
the following: (1) number of causes required to explain a set of phenomena,5 (2)
number of theoretical entities (e.g. fundamental particles, chemical elements,
etc.),6 (3) number of theoretical predicates,7 (4) number of free parameters,8

(5) number of laws, hypotheses, and/or axioms,9 (6) description length,10 (7)
number of models or interpretations of the theory,11 and (8) number of tests
and/or experiments required to falsify or verify the theory.12 The eight defini-
tions above do not exhaust all philosophical attempts to define simplicity, but
the list does capture the bulk of them. Moreover, many philosophers identify
one or more of the above definitions. Karl Popper, for instance, argues that
the number of free parameters in a theory is directly related to its ability to be
falsified.

Despite their prima facie differences, the eight definitions of simplicity above
are similar in many ways. For example, definitions three through seven charac-
terize simplicity in terms of linguistic features of scientific theories. In particular,
definitions three through six characterize the syntactic complexity of a theory,
whereas seven concerns its semantic complexity. Moreover, because the number
of causes and entities postulated by a theory are often directly related to the
number of its parameters, predicates, hypotheses, and models, one might view
definitions three through seven as an attempt to make the first two definitions
of simplicity rigorous. A second similarity amongst all the definitions is that
they involve minimizing one quantity or another.13

With a host of potential definitions of simplicity in hand, one can begin to
address the second and third questions above. What are the values and costs
of scientific inquiry? And can a systematic preference for simpler theories help
to achieve said values and minimize said costs? Unfortunately, it would be
impossible to enumerate all possible goals, values, and costs of science.14 Scien-

5Copernicus (1995), Galileo (1953), and Newton (1964). This definition of simplicity is
closely related to that of unifying power, which is defended as a theoretical virtue by Friedman
(1974), Friedman (1983), Myrvold (2003), and Kitcher (1976)

6See Lewis (1973), Baker (2007), and Nolan (1997).
7See Goodman (1950), Goodman (1952), Goodman (1955), Goodman (1958), Suppes

(1956), Bunge (1961), and Bunge (1962)
8See Wrinch and Jeffreys (1919), Popper (1959), and Kyburg (1961)
9For instance, see Aristotle and Einstein’s explications of simplicity, cited above.

10See Li and Vitanyi (1997), Li and Vitanyi (2001), and Simon (2001).
11See Kemeny (1955b) and Bunge (1961).
12See Popper (1959), Mayo (1996), and Spanos (2001). For an argument that simplicity

and testability can be inversely related, see Schlesinger (1961)
13See Baker (2004) for a discussion of so-called “principles of plenitude,” which are excep-

tions to the characterization of simplicity as minimizing quantities.
14In fact, some philosophers argue that science has no overarching aims, values, or goals.

See Fine (1996). I think this view is misleading, if not altogether false. Although different
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tific theories are used to improve medicine, to build bridges, cars and airplanes,
to send astronauts into outer space, to provide a deeper understanding of the
world, and much more. For simplicity, then, philosophers have focused almost
exclusively on the relationship between Ockham’s razor and the goals/values of
the scientist qua scientists.15 That is, irrespective of their ability to improve
technology, medicine, and social policy, scientific theories can be praised if they
(a) are true, (b) do not contain erroneous hypotheses, (c) are informative (i.e.
contain many empirically testable consequences that are easily deduced from the
hypotheses of the theory), (d) are computationally tractable, (e) make accurate
predictions, and/or (f) possess other “pragmatic” or “theoretical” virtues like
explanatory power, unifying power, elegance, and so on.

The arguments employed by philosophers in defense of Ockham’s razor,
therefore, can be divided into one of two categories, depending upon which of
the goals enumerated in (a) through (f) are taken to be paramount. First, some
philosophers take (a) and (b) to be the primary goals of scientific inquiry, and
they argue that a systematic preference for simpler theories aids one in finding
true theories while at the same time minimizing error. In this sense, simplicity
is “truth-tracking.” I call this type of argument a realist defense of Ockham’s
razor.16 In contrast, other philosophers take some combination of (c) through
(f) to be the primary values of science, and they argue that simpler theories are
merely useful, in that they maximize informativeness, computational tractabil-
ity, and predictive accuracy, regardless of whether they are true or not. I call
such arguments anti-realist defenses of Ockham’s razor. Of course, a system-
atic preference for simpler theories might be both useful and “truth-tracking,”
which is the view taken in this paper. As will become clear, however, most
philosophers, scientists, and statisticians have abandoned the realist defenses of
Ockham’s razor.

In what ways might simpler theories be useful? One might argue that it
is easier to make numerical computations and predictions with theories that
contain fewer parameters and hypotheses. Consider the Ptolemaic and Coper-
nican models of the solar system, for instance. If an astronomer wished to
calculate the position of Venus using Ptolemy’s theory, he would need to make
roughly twice as many arithmetic calculations than had he used Copernicus’, as
he would need to account for Venus’ speed on both the deferent and epicycle.17

scientists may have different goals, and although sometimes scientists will have no aims in
common, many scientists do share aims and values, and it is a non-trivial matter to find and
analyze what said values are.

15Levi calls these the “cognitive” virtues of science. See Levi (1973).
16Throughout this paper, I assume that that scientific hypotheses have truth values. Many

philosophers contest this point, arguing that scientific hypotheses are better understood as
tools for making predictions, for example.

17In Ptolemy’s theory, planets move in two distinct circular paths simultaneously. One
path, called the “deferent,” is the circular path that a planet follows around the earth. The
second path, called an “epicycle,” is the circular motion a planet undertakes around a point
on the deferent. To visualize this, think of the motion of the moon in the Copernican model.
The moon rotates around the earth, but also moves in a path around the sun at the same time
(because the earth does!). In Ptolemy’s theory, all planets rotate around the earth in much
the same way, except that they circulate about a point on the deferent (rather than a planet,
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Similarly, if unified scientific theories are more explanatory, then simpler the-
ories might provide better explanations by showing how multiple phenomena
can be explained a single underlying cause. For example, Newton simultane-
ously explains planetary motion, the tides, and projectile motion in terms of
one cause: gravity.

One might question why I have distinguished between true theories and
ones that provide good predictions and explanations. Shouldn’t true scientific
theories always make the best predictions, for example? Unfortunately, the
answer is “no.” Consider the problem of curve-fitting. In curve-fitting, one
measures two real-valued variables x and y and plots the resulting points on a
graph. For concreteness, let x represent the number of cigarettes an individual
smokes in a day, and let y represent the volume of tar in one’s lungs. One
is then asked to “fit” a polynomial curve (i.e. a curve of the form f(x) =
anx

n + an−1x
n−1 + . . . + a1x + a0) to the data points on the graph. Here, a

collection of curves represents a theory about how the two variables are related
(e.g. tar increases quadratically in the number of cigarettes one smokes daily).
Polynomials with lower degree can be specified by fewer parameters/coefficients,
and Ockham’s razor is reflected in the standard practice of fitting the best line
to the data before trying higher degree polynomials. It turns out, that at low
sample sizes, a simpler polynomial might provide better predictions even if it
is known that the true relationship between the two variables is summarized by
a polynomial of higher degree.18 Thus, the question of whether simpler theories
are more likely to be true is independent of whether simpler theories make
better predictions. Similar arguments show that true scientific theories need
not provide better explanations or be computationally tractable.

Although some of the most prolific scientists of all time, including New-
ton and Galileo, have argued that a theory’s simplicity is an indication of its
truth, few philosophers today advocate realist defenses of Ockham’s razor. Many
philosophers have been convinced by the following argument, due to Bas Van
Fraassen, that there is no relationship between simplicity and true scientific
theories:

Some writings on the subject of induction suggest that simple theo-
ries are more likely to be true. But it is surely absurd to think that
the world is more likely to be simple than complicated (unless one
has certain metaphysical or theological views not usually accepted
as legitimate factors in scientific inference).19

Other philosophers, like Elliot Sober and Margaret Morrison argue that sim-
plicity and truth cannot be related because there is no single definition of sim-
plicity that is common to every scientific discipline: biologists, psychologists,
and physicists, for instance, all appeal to simplicity in different ways, and there

as the moon does) while simultaneously moving on a path around the earth. By eliminating
epicycles, the Copernican theory only needs to specify the speeds at which the planets rotate
around the sun, rather than their speeds on both the deferent and epicycle.

18See Vapnik (2000) and Forster and Sober (1994).
19See van Fraassen (1980).
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will be widespread disagreement about the definition of simplicity even within
a scientific discipline.20 Hence, even if one definition of simplicity were an in-
dicator of the truth of a scientific theory, there is no reason to believe that, in
general, Ockham’s razor is a principle that aids one in avoiding errors or find-
ing the truth. Amongst philosophers, therefore, there is a growing conviction
that while simpler theories might be useful, there is no relationship between
simplicity and theoretical truth.

This thesis meets the arguments of van Fraassen, Sober, and Morrison head
on. I argue that simpler theories are not only useful, but moreover, by giving
systematic preference to simpler theories, a scientist will, in some sense, find
a true theory in the “most direct” way. To do so, I first describe a model of
scientific inquiry developed by Kevin Kelly, Clark Glymour, and Oliver Schulte
(henceforth, the KGS model).21 I then explain how Kelly, Glymour, and Schulte
employ this model to provide a realist defense of Ockham’s razor. The center-
piece of their arguments are the Efficiency Theorems, which prove that, within
the KGS model, a scientist who repeatedly chooses simpler theories minimizes
the number of errors and changes in opinion he makes before finding a true the-
ory. The principal contribution of this thesis is a generalization of the Efficiency
Theorem; I prove that, even amongst randomized methods for choosing theo-
ries from available evidence, a preference for simpler theories is still optimal in
minimizing errors and changes in opinion. A similar theorem has already been
proven by the author and Kevin Kelly in another paper,22 but the one conjec-
tured here is far more general. Hence, it has a number of different important
philosophical implications that are discussed below.

The structure of the thesis is as follows. In the first chapter, I summarize
several definitions of “simplicity” that have been offered by philosophers, sci-
entists, and statisticians. Here, I outline three criteria that any definition of
simplicity ought to satisfy so that one can meaningfully ask whether there is a
relationship between theoretical simplicity and truth, and I argue that existing
definitions of simplicity generally fail to satisfy at least one of the criteria.

In Chapter two, I provide a detailed description of the KGS model (including
the definition of theoretical simplicity within the model), and I state the Effi-
ciency Theorems. To show how the KGS model is relevant problems of interest
to working scientists, I explain how the it can be used to represent learning
causal relationships between a finite number of variables. In outlining the KGS
model, I argue that its definition of simplicity satisfies the three criteria dis-
cussed in the first chapter.

In the third chapter, I generalize the Efficiency Theorem to consider ar-
bitrary, randomized strategies for inferring theories from data. To do so, I
represent the KGS model of inquiry as a two-person, strictly competitive game

20See Sober (1985) and Morrison (2000). Although Morrison’s book is about “unification”
rather than simplicity, she clearly thinks that her arguments apply to any standard theoretical
virtue (including simplicity) discussed in philosophy of science.

21See Kelly (2007), Kelly and Glymour (2004), and Schulte (1999a).
22See Kelly and Mayo-Wilson (2008).
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between a scientist and a player called “Nature.”23 The game-theoretic repre-
sentation of the KGS model is mathematically useful, but I should stress that,
unlike Descartes’ use of an evil demon to justify the method of doubt, the philo-
sophical conclusions that I reach do need not depend upon thinking of “Nature”
as an active, villainous agent trying to thwart a scientist’s attempts to under-
stand the world. Rather, one can interpret the (mixed) strategies employed by
Nature in my game as representing the scientist’s beliefs about the likelihood of
various possible worlds. This will be made more clear in subsequent chapters.

Given the game-theoretic framework, I lay the foundation for a general-
ization of the Efficiency Theorems, which would be philosophically important
for two at least reasons. First, there is a multitude of existing Bayesian ar-
guments for Ockham’s razor, all of which conclude that simpler theories are
better confirmed. All such arguments to date, however, implicitly assign higher
prior probability to simpler theories, thereby begging the question as to why
one ought to think simpler theories are more likely to be true.24 I prove a series
of theorems that suggest that, even when complex theories are assigned high
probability, a preference for simpler theories remains rational.

Second, Kelly, Glymour, and Schulte’s arguments justify Ockham’s razor
by use of a decision rule that is a variant of maximin. In other words, the
Efficiency Theorems prove that heeding Ockham’s razor only minimizes errors
and changes of the opinion in the worst-case, in some sense. This leaves open
the question, “Is there any (prior) probability distribution on possible worlds
under which heeding Ockham’s razor actually maximizes expected utility?”25

The central theorem of this paper suggests that the answer to this question is
“yes,” thereby proving that a preference for simpler theories not only minimizes
particular costs in the worst-case, but moreover, such a preference is in fact
optimal in certain cases (i.e. when one has a particular prior distribution on
worlds).

23Game-theoretic terms like “strictly competitive” are defined at the outset of Chapter 3.
24See Kelly (2009a) for an analysis of this argument.
25To be clear, the costs of inquiry in the KGS model are not representable by utilities,

but rather by vectors of real numbers representing several different, often incomparable costs.
Again, this will be made clear in subsequent chapters, but one can ask a similar question
about whether there is a prior distribution under which Ockham’s razor minimizes expected
cost, where expectation is taken coordinate-wise in the vectors.
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Chapter 1

Simplicity Defined

Although it has long been recognized that simplicity plays an important role in
scientific theorizing, it was not until the twentieth century that philosophers,
scientists, and statisticians attempted to rigorously analyze the concept. This
chapter summarizes the attempts of twentieth century thinkers to properly de-
fine simplicity and complexity. All definitions of simplicity, I argue, fall into one
of three groups.

Philosophers, scientists, and statisticians in the first group analyze simplicity
in terms of the linguistic features of scientific theories. For such philosophers,
a theory is generally defined to be a set of sentences expressed in a first-order
language with equality. For brevity, I call such definitions of simplicity linguis-
tic complexity measures. Advocates of linguistic complexity measures include
Nelson Goodman, Patrick Suppes, Henry Kyburg, Harold Jeffreys, Dorothy
Wrinch, and John Kemeny. For these philosophers, linguistic complexity is
measured either by syntactical features of first-order theories, like the number
of free parameters or predicates in the theory, or by semantic properties, like
the inter-definability of predicates and the number of models of the theory.

The second group of philosophers and statisticians, including Karl Popper
and Deborah Mayo, identify simplicity with testability or falsifiability in princi-
ple. Here, the qualification “in principle” is important: the hypothesis that an
object weighes five pounds is no more falsifiable than the claim that it weights
one tenth of a pound, even if I do not possess a sufficiently precise scale. Unless
there are mathematical or scientific reasons, that I cannot, in principle, measure
a tenth of a pound, then the two claims are equally falsifiable. Note that the
identification of simplicity and falsifiability or testability may be justified via
an appeal to measures of syntactic simplicity. For instance, Popper argues that
scientific hypotheses are simpler if they contain fewer quantifiers, and hence,
the connection between simplicity and falsifiability is mediated, in part, by the
connection of the two with the number of quantifiers in a hypothesis.

Importantly, by defining simplicity in terms of the linguistic features of scien-
tific theories or testability in principle, philosophers like Goodman and Popper
assume that the simplicity/complexity orderings do not depend on what data
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have been recorded or which phenomena have been observed. In contrast, the
final group of philosophers, who view simplicity as “data-reduction” or “unifica-
tion,” implicitly define a simplicity ordering of scientific theories as a function
of the data or phenomena to be explained. This approach is taken by Herbert
Simon, Paul Vitanyi, Ming Li, R.A. Fisher, Aris Spanos, and to a certain ex-
tent, Michael Friedman and Wayne Myrvold.1 How does the approach of these
philosophers and statisticians differ from that of the first group? When sim-
plicity is a function of observed phenomena, it is possible for a theory T1 to be
simpler than T2 relative to phenomenon P but more complicated relative to P ′.
Such a situation is impossible for philosophers who define simplicity in terms of
the linguistic features of scientific theories.

The distinction between the approach taken by the first two groups of
philosophers and that taken by the third has largely been ignored by philoso-
phers of science. Even those, like Friedman, who implicitly recognize that sim-
plicity might be a function of the phenomena to be explained often vacillate
when explaining their definition of simplicity. The distinction is important for
at least two reasons. First, those who advocate linguistic complexity measures
assume that the complexity of a scientific theory can be determined a priori;
philosophers in the second group are not committed to the view. In defending
Ockham’s razor, then, the first group of philosophers must defend significantly
stronger claims. Suppose one adopts a linguistic complexity measure and de-
fends Ockham’s razor by arguing that simpler theories are more likely to be
true. As linguistic simplicity can be determined a priori, then one is commit-
ted to the claim that simplicity is an a priori indicator of truth. That is an
extremely strong claim, and it’s one that those who define simplicity in terms
of data reduction are not committed. Second, Sober’s and Morrison’s argument
that there is no single definition of simplicity that applies in all contexts clearly
attacks the arguments presented by the first group of philosophers and statis-
ticians, but it’s not clear that it undermines the second group’s arguments at
all, as the second group would allow what constitutes a simple theory to differ
from one discipline or problem to the next.

Ultimately, I advocate a definition of simplicity (namely, that of the KGS
model) that borrows insights from all of the definitions presented in this chapter,
but which differs, at least formally, from each in substantial ways. For instance,
the definition of simplicity that I advocate, when used to analyze complexity of
various curves in non-linear regression, agrees with many of the linguistic and
falsifiability complexity measures that lower degree polynomials are simpler than
higher degree ones. And in causal inference, the definition of simplicity that I
advocate resembles that of the third group of philosophers and statisticians who
argue that simpler theories are more unified, thereby explaining multiple phe-
nomena by reference to a few causes. Studying previous attempts to explicate

1Unfortunately, to keep this thesis at a manageable length, I will focus entirely on the
philosophical literature dedicated to “unification,” and I will omit expositions of (i) Fisher’s
and Spanos’ identification of simplicity with “data reduction” and (ii) the huge literature on
minimum description length, which is employed in philosophical arguments by Simon, Vitanyi,
and Li. A more thorough literature review might be available later.
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simplicity, therefore, makes clear in what ways my arguments borrow ideas from
others, and in what ways they differ.

Yet a central question remains: why is there any debate over the definition
of “simplicity?” Definitions, as standardly understood, are neither true nor
false, and so one might wonder why one cannot see the existing philosophical
literature as a summary of different ways in which a theory might be simple.
Recall that the central reason that philosophers have sought to define simplicity
is so that they can ask two related questions: (1) What role ought theoretical
simplicity play in scientific theorizing? i.e. what reasons (if any) are there for
preferring simpler theories in inquiry? (2) In particular, is there any sense in
which simpler theories are “more likely” to be true? If these questions have
meaningful and non-trivial answers, then the definition of theoretical simplicity
ought to satisfy at least three criteria:

1. Clarity: Any definition of theoretical simplicity ought to allow one to
determine, in some class of scientific problems or historical case studies,
precisely which theories (if any) are simpler than others and which theo-
ries (if any) are incomparable in terms of complexity. Otherwise, such a
definition of simplicity is not sufficiently precise to allow one to evaluate
the use of simpler theories in practice.

2. Relevance to Scientific Practice: Any definition of theoretical simplic-
ity ought to agree with intuitive assessments (i.e. those of some practicing
scientists) of simplicity in some class of scientific problems. Otherwise,
definitions of “theoretical simplicity” are merely explications of some con-
cept other than what is called simplicity in science.

3. Data Driven: Any definition of simplicity ought not identify “simple”
with “more probable” or “better confirmed.” Otherwise, the definition of
simplicity renders trivial the question of the relation between simplicity,
truth, probability, and confirmation.

As I review each of the three families of definitions of simplicity, I argue that
most fail to meet (at least) one of the above criteria. Goodman’s and Suppes’
definitions of simplicity, for instance, are of questionable value in assessing the
complexity of any “real-world” scientific theories, and moreover, neither defini-
tion renders theoretical complexity a function of existing evidence; hence, they
fail both of the latter criteria. On the other hand, while those who identify sim-
plicity with “unifying power” seem to have picked out a definition of simplicity
that is both relevant to scientific practice and makes complexity a function of
observed phenomena (e.g. in the writings of Friedman and Kitcher), applying
their definitions to new problems or historical case studies is often nearly impos-
sible for lack of sufficiently clear definitions of simplicity. In the third chapter,
I argue that the definition of simplicity in the KGS model meets all three cri-
teria, thereby allowing one to reasonably ask about the possibility of a realist
justification of Ockham’s razor.
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1.1 Linguistic Simplicity

1.1.1 Syntactic Simplicity

The most systematic attempt to analyze the simplicity of scientific theories in
terms of syntax was made by Nelson Goodman in the 1950’s (See Goodman
(1955), Goodman (1958)). In a series of articles, Goodman argues that the
complexity of a scientific theory can be defined as a function of its predicate
basis. Roughly, one can think of a predicate basis of a scientific theory as the
collection of adjectives and terms that one might use to describe objects in the
theory. For example, a theory from particle physics might contain predicates
for mass, charge, spin, and momentum, as these are important properties of
particles. Similarly, a theory describing the basic elements appearing in the
periodic table might contain predicates for atomic weight and atomic mass.

More rigorously, Goodman analyzes the complexity of scientific theories (ex-
pressed in a natural language) by imagining that they have been translated
into a first order language L, which contains equality and a countable number
of predicate symbols of any finite arity. He assumes that each extra-linguistic
predicate (i.e. all predicates except equality) in the the scientific theory is as-
signed a predicate symbol in L. For instance, the assertion “particle p has
mass r” might be translated as the first order formula, “M(p, r).” When all
the predicates of a scientific theory have been expressed in a first order lan-
guage L, Goodman assumes that it makes sense to analyze the complexity of
the scientific predicate (e.g. mass) using the most commonly studied properties
of predicates in mathematical theories, mainly, their arity2 and whether they
possess properties like transitivity, symmetry, and reflexivity.3

Goodman fails to explicitly define a number of terms that he uses in devel-
oping an axiomatic theory of simplicity. In particular, he omits definitions of
the two most important concepts in his axiomatization: relevant kinds and the
notion of being always replaceable. I provide the most charitable reconstruc-
tion of his argument that I can below. Let L be a first order language with an
infinite number of predicate symbols of any finite arity, and let LP denote the
set of all predicates in L. Fix a natural language, say, English. Because the
number of English sentences is countable (as English sentences are finite strings

2The arity or a predicate is the number of objects it relates. For instance, “red” is a unary
predicate because it describes only one object (e.g. “roses are red.”) In contrast, “is redder
than” is a binary predicate because it is used to describe the relationship between two objects
(e.g. “a rose is redder than a violet”). We can always find predicates of arbitrarily large finite
arity. For example, the predicate “forms a Baker’s dozen” has arity 13, and the predicate
“forms a flock of geese” might take 27 arguments (depending upon where one wishes to draw
the line as to how many geese constitute a flock!).

3A binary predicate P is transitive just in case xPy and yPz implies that xPz. For
example, “taller than” is a transitive relation because if Jimmy is taller than Johnny, and
Johnny is taller than Jane, then Jimmy is taller than Jane. A binary predicate is symmetric
just in case xPy implies yPx. The predicate “is a sibling of” is symmetric because if Jimmy
is a sibling of Jane, then Jane is a sibling of Jimmy. Finally, a binary predicate is reflexive if
it relates every object to itself. The predicates “is at least as tall as” and “is identical to” are
both reflexive.
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from a finite alphabet), we may suppose that L contains a predicate symbol
corresponding to every predicate in English. If B is a finite subset of LP , we de-
fine a predicate basis to be the interpretation BM of the corresponding English
predicates. For convenience we drop the superscript M from now on. Define
Km,n = {B ⊂ LP : B is a predicate basis with m elements and
every predicate in B has arity n}. We then define the set K of relevant kinds
inductively as follows:

1. For any natural numbers m and n, the set Km,n is a relevant kind.

2. Let B be a predicate basis, and Bsym, Btrans, and Bref respectively denote
the set of symmetric, transitive and reflexive predicates of B. Then for any
relevant kind, Ksym := {Bsym : B ∈ K}, Ktrans := {Btrans : B ∈ K},
and Kref := {Bref : B ∈ K} are all relevant kinds.

3. If K and K ′ are relevant kinds, then K∧K ′ := {B∪B′ : B ∈ K,B′ ∈ K ′},
K ∗K ′ =: {B∩B′ : B ∈ K,B′ ∈ K ′}, and K|K ′ := {B−B′ : B ∈ K,B′ ∈
K ′} are all relevant kinds..

For example, the set K̂ = {{P,Q} : P is a unary predicate and Q is a
transitive binary predicate} is a relevant kind. What is the motivation for

the definition of relevant kinds? Goodman’s insight is that a predicate basis
of a particular relevant kind K is often routinely replaceable by a predicate
basis of a different relevant kind K ′. For example, three unary predicates “x is
red,” “y has teeth,” and “z behaves wildly” are replaceable by a single ternary
predicate “x is red, y has teeth, and z behaves wildly.” In general, any n unary
predicates {P1, . . . , Pn} can be replaced by a single n-ary predicate Q such that
P1(x1) ∧ . . . ∧ Pn(xn)↔ Q(x1, . . . , xn).

Essentially, a predicate basis B can be replaced by another basis B′ only
if everything that is expressible in terms of B is expressible in terms of B′.
Intuitively, predicate bases with greater expressive power ought to be more
complex, and so replacing one predicate basis by another cannot effect any
simplification. Goodman’s major axiom in defining simplicity, therefore, states
that routine replacement of one predicate basis by another can never decrease
complexity. Unfortunately, Goodman never explicitly states what counts as
routinely replacing one predicate basis by another. I make the notion as precise
as I can. First, note that for any relevant kind K, any basis B ∈ K has the same
size. As relevant kinds are defined recursively, this can be proven by induction.
Let nK denote the number of predicates in a given basis B ∈ K.

Now, for any relevant kindK, there is a second order formulaAK(X1, . . . , XnK )
that holds of every predicate basis B = {P1, . . . , PnK} in K, when the predicates
of B are enumerated in a particular order. For example, given the relevant kind
K̂ defined above, the second order formula AK̂(X1, X2) defining K is as follows.

∃x1X1(x)∧ ∃x1∃x2X2(x1, x2)∧ ∀z1∀z2∀z3[X2(z1, z2)∧X2(z2, z3)→ X2(z1, z3)]

The first two conjuncts in the above formula state that X1 and X2 are non-
empty, which Goodman requires, and the last conjunct states X2 is transitive.
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Given a relevant kind K and any arbitrary predicate basis B ∈ K, therefore,
let Bi ∈ B be an enumeration of B such that AK(B1, . . . , BnK ) holds, and let
ai be the arity of Bi.

Now we say a relevant kind K is always replaceable by a kind K ′ if there
exist nK many second-order formula ψi(X1, . . . , XnK′ , x1, . . . , xai) such that for
all B = {B1, . . . , BnK} ∈ K the following sentence is consistent:

∃X1 . . . ∃XnK′ (ϕK′(X1, . . . , XnK′ ))∧[∀x1 . . . ∀xai
∧

1≤i≤nK

[ψi(X1, . . . , XnK′ , x1, . . . , xai)↔ Bi(x1, . . . , xai)]]

In other words, relevant kind K is always replaceable by K ′ if there is a
method for defining all the predicates in a basis B ∈ K in terms of the pred-
icates in a basis B′ ∈ K ′ knowing only that B is of kind K, regardless of its
interpretation. Given these definitions, Goodman offers the following axioms
that constrain a choice of a complexity function:

Axiom 1.1.1. Every extralinguistic predicate has positive complexity

Axiom 1.1.2. The complexity of a predicate basis is the sum of the complexity
of the predicates it contains.

Axiom 1.1.3. The complexity of a relevant kind is the greatest complexity of
the predicate bases it contains.4

Axiom 1.1.4. The complexity of a predicate basis is equal to the complexity
of the narrowest kind that contains it.

Axiom 1.1.5. Let K and L be relevant kinds. If every K is always replaceable
by L, then K does not have greater complexity than L.

Given the above axioms, Goodman argues that there are three properties
most relevant to evaluating the complexity of a predicate: (1) arity, (2) “sym-
metricity degree,” and (3) “self-completeness degree.” For instance, from the
above axioms, Goodman claims that one can prove that if P is an n-ary pred-
icate, Q an m-ary predicate, and n > m, then the predicate basis {P} is more
complex than the basis {Q}.

For scientists and philosophers without extensive training in formal logic,
Goodman’s proposal to analyze the complexity of predicates might seem odd.
It might seem arbitrary, for example, to say that “red,” “orange-smelling,” are
any less complex than “bigger than a breadbox” or vice versa. Is the complexity
function that Goodman describes relevant to judgments of simplicity made in
various sciences? Or does Goodman argue that his complexity measurement
will be useful for any purpose?

4Though he never says so explicitly, Goodman’s third axiom assumes no relevant kind has
infinite complexity, and hence, by Axioms 1 and 2, the predicate bases in a relevant kind must
have a bounded size. This is why I have chosen to formalize Goodman’s notion of relevant
kind by letting the sets Km,n be a basis for relevant kinds instead of the more natural basis
consisting of all finite sets of n-ary predicates
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Goodman admits that theories might be judged “simple” in any number of
ways, that judgments of simplicity are made for various reasons (e.g. making
rough estimates versus making predictions), and what a particular scientist con-
siders to be simple might depend on subjective factors. In response, Goodman
argues that several millennia ago, judgments of size might have been viewed sim-
ilarly. Thin yet tall objects might be judged large, and similarly for short but
wide objects. Moreover, judgments of size can be affected by lighting, distance,
perspective, and so on. By fixing a unit length (say a meter), however, one
can start to make precise judgments of size, and one can precisely differentiate
between length, width, and depth. Of course, different types of measurement of
size will be relevant in different circumstances (the height of a giraffe is relevant
to explaining why it can eat leaves from tall trees; its girth is not), but this does
not mean we shouldn’t try to provide precise measurements of size.

Similarly, the axiomatization presented above, Goodman argues, may only
measure one “dimension” of simplicity, but it is a first step towards making one
such precise measurements of the simplicity of scientific theories. Still, even on
its own accounts, Goodman’s approach faces a number of problems. The first,
and perhaps most important, is raised by Suppes (1956): Goodman never uses
his axiomatization to analyze the complexity of any well-known, axiomatized
mathematical theory (let along a scientific one!), so one might question whether
his axiomatization captures any of the relevant “dimensions” of simplicity at
all. Goodman never provides an example from the history of science in which
his axiomatized concept of simplicity was invoked (knowingly or unknowingly)
by a scientist or metaphysician. Further, Goodman never explains how his
axiomatization might be a useful measurement of complexity, say, for making
predictions, even if it had never actually been implicitly invoked by any scientist.

Ignorance, however, is not a good objection: although Goodman does not
describe an episode from the history of science in which his definition of sim-
plicity was used, there still might be one. So how does Goodman’s theory do
when we try to apply it to examples from the history of science? Not well.
Kyburg convincingly argues that Goodman’s measure assigns equal complexity
to the Ptolemaic and Copernican models, as neither theory’s predicate basis is
more complex than the other. I argue Goodman’s theory also fails to capture
any relevant sense of simplicity in curve-fitting as well. Consider the set of all
functions f : R → R. According to Goodman’s measure of complexity, the
function f(x) = x is uniquely simplest amongst all functions because no other
functions are reflexive, symmetric, transitive, or self-complete. For the same
reason, every other function is equally complex according to Goodman’s mea-
sure, and so, for example, equal complexity values are assigned to g(x) = 3x
and h(x) =

∑∞
n=0

sin(x)
n!πn . Moreover, because binary relations that are sym-

metric, transitive, or self-complete are never functions, if scientists preferred
Goodman-simpler theories, they would almost never accept a hypothesis that
asserted a functional relationship held between two variables. Finally, even if we
are to accept Goodman’s highly un-intuitive simplicity ranking of functions, it’s
clear his definition is useless in curve-fitting: faced with the choice between two
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functions that explain the data equally well, Goodman’s measure of simplicity
cannot be used to break ties unless one of the functions is the identity mapping.

The second problem, raised by both Bunge (1961) and Suppes (1956), is
that Goodman’s measure of complexity does not adequately take into account
the relationship between predicates in a basis. To illustrate this point, I develop
an example that is simpler than those developed in Suppes. Consider a basis
consisting B = {�,≺} of a strict linear order ≺ and its reflexive closure � (i.e.
x � y ↔ x ≺ y ∨ x = y) . Then consider another linear order consisting of two
unrelated linear orders B′ = {≤,@}, where again the second predicate is non-
reflexive but the first is. According to Goodman’s axioms, both bases are equally
complex, as they belong to the relevant kind consisting of two linear orders, one
of which is reflexive and one of which is irreflexive. However, because the two
predicates in B can be defined in terms of one another, one might think that
former basis is simpler than the latter. If the axioms governing the relationship
between predicates in a basis B are relevant to determining its complexity,
therefore, we need not argue that Goodman’s measure of complexity fails to
capture enough features of scientific theories: Goodman’s axiomatization may
fail to meet its stated goal of measuring complexity for predicate bases.

Though obviously problematic, Goodman’s approach inspired Patrick Sup-
pes, Mario Bunge, Henry Kyburg, and John Kemeny to use the tools of formal
logic to develop alternative axiomatic definitions of complexity. In this section,
I describe Suppes, Bunge’s, and Kyburg’s alternative proposals, as their pro-
posals, like Goodman’s, focus on the syntactical features of a scientific theory.
In the next section, I summarize Kemeny’s proposal.

In light of the second criticism above, Suppes defines a complexity ordering
� on ordered pairs (P,A) where P is a predicate basis and A is a set of axioms
describing the relationship between the predicates. For example, Suppes first
three axioms state that � is a total, transitive ordering and that (P1, A1) �
(P2, A2) whenever A1 = A2 and P1 ⊆ P2 (this last axiom implies � is reflexive).
Note that Suppes does not argue that ordered pairs (P,A) can be assigned a
numerical value as Goodman does, but rather, argues that complexity orderings
may be entirely qualitative.5 Thus, for Suppes, simplicity is primarily a relation
amongst theories. In other words, Suppes is not committed to the view that
the complexity of a single theory can be assessed in isolation, but rather, its
simplicity may only be determined in relation to that of other existing theories.
This is an interesting distinction between Suppes’ proposal and, for instance,
that of Goodman. The definition of simplicity that I advocate also shares this

5In fact, at the time Suppes wrote his article, he said it was unknown whether the axioms
implicitly defined a real-valued function f such that f(P,A) ≤ f(P ′, A′) if and only if (P,A) �
(P ′, A′). Suppes’ axioms, however, were chosen to be formally analogous to de Finnetti’s and
Savage’s axioms for a binary qualitative probability relation, and furthermore, Savage and de
Finnetti’s axioms do induce strictly agreeing quantitative probability functions under various
assumptions about the structure of the σ-algebra on which the qualitative relation is defined.
See Savage (1972) for a discussion of these issues and an extended bibliography concerning
the various axiomatizations for qualitative probability. I have not been able to verify whether
Suppes’ axioms do meet the conditions guaranteeing the existence of a quantitative complexity
measure, though I think it is likely the question has been resolved.
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feature, but to my knowledge, no philosopher has analyzed he importance of
a relational versus non-relational analysis of simplicity; further work is needed
here.

Unfortunately, as his axiomatization is proposed only as an alternative to
Goodman’s, Suppes likewise does not provide any reason to believe his axioms
reflect any useful measurement of simplicity or have ever been employed in sci-
ence to decide between competing theories. Moreover, Suppes’ axiomatization
can easily be seen to fail to provide any useful measure of complexity of various
functions in curve-fitting.

Like Suppes, philosopher Mario Bunge argues that Goodman’s definition of
simplicity fails to consider several ways in which certain predicates are (intu-
itively) simpler than others. For example, Bunge distinguishes between atomic
predicates like “is black” and molecular predicates like “is a black crow,” which
can be expressed using boolean combinations of atomic predicates. Intuitively, a
molecular predicate ought to be more complex than the atomic predicates from
which it is constructed, but Goodman’s formalism does not seem to capture
this distinction. Bunge also distinguishes between predicates of different order.
For example, “red” might be a first order predicate, as it describes objects.
“Dark,” on the other hand, might be a second order predicate, as one can use it
to describe the first order predicate “red.” Finally, Bunge criticizes Goodman
for failing to distinguish between discrete predicates (e.g. ”has x ears”) from
continuous ones (e,g, “has mass x”); the latter, he thinks, are infinitely more
complex than the former, although this intuition is unmotivated.

Bunge’s most important contribution to the simplicity debate, however, is
to note that it is not straightforward to use a linguistic complexity measure for
predicate bases to define a complexity measure for scientific theories. One might
try measure the complexity of a sentence in terms of the predicates it mentions,
the number of connectives it contains, and the number and order of quantifiers
that appear. A complexity measure on sentences could then be used to define
the complexity of first-order theories (i.e. sets of sentences). However, Bunge
argues that, intuitively, what matters in measuring the complexity of a sentence
is the relationship between the predicates, connectives, and quantifiers. He
concludes “no adequate measure of complexity of propositions or propositional
functions is available.”6 Because measuring the syntactic complexity of theories
requires both (a) a complexity measure for sentences and (b) an analysis of
the relationship between the sentences of a theory, Bunge concludes that, like
propositions, no syntactic complexity for theories is available. Bunge does leave
open the possibility that there may be alternative, non-syntactic measures of
complexity.

Like Bunge, several other mid-twentieth century philosophers and statisti-
cians, including Henry Kyburg, Harold Jeffreys, and Dorothy Wrinch, realized
that analyzing complexity in terms of predicate bases was both excessively com-
plicated and tenuously motivated. As a result, they shifted their focus to a
different syntactic feature of scientific theories: the number and order of quan-

6See Bunge (1962), pp. 121.
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tifiers. For instance, Henry Kyburg makes the “modest proposal” that the
complexity of a scientific theory can be measured exclusively by the number of
quantifiers contained in a its axioms and observation sentences, and he claims
this is a more obvious way of understanding Ockham’s razor: “Do not multi-
ply entities needlessly” (See Kyburg (1961)). Unfortunately, Kyburg’s theory
seems incapable of distinguishing between many infinite theories. Let T be a
theory, A ⊆ T be its axioms and observation sentences, and Q ⊆ A be the set
of sentences of A containing a quantifier. If Q is infinite, then, according to
Kyburg’s measure, T has infinite complexity. Moreover, scientific theories with
an infinite set of axioms are quite common, as almost any phenomenon that is
described mathematically will require a theory to contain arithmetical axioms,
and hence, an induction schema.7

Harold Jeffreys and Dorothy Wrinch proposes a slightly more complicated
measure of complexity that accounts for both quantifier order and number, but
their proposal faces the same problem as Kyburg’s.8 Finally, in recursion theory
and descriptive set theory, there is a long tradition of measuring complexity in
terms of quantifier order, as is clear from the study of the analytic, arithmetic,
and Borel hierarchies. According to some philosophers, the simultaneous use of
quantifier order as a measure of complexity in recursion theory and in science
suggests a deep connection between the problem of induction and computation.9

1.1.2 Semantic Simplicity

Despite Goodman’s insight that simplicity is a multi-faceted concept, both he
and Suppes attempt to provide a single definition of simplicity. In contrast,
Mario Bunge and John Kemeny provide multiple measures of complexity, and
they argue that the different measures are indicators of different values in scien-
tific inquiry. 10 For example, Bunge provides a laundry list of theoretical virtues,
like “coherence,” “testability,” and “forecast power,” and he argues that differ-
ent measures of simplicity will simultaneously be indicators of these different
virtues. In the previous section, I described how Bunge analyzes the syntactic
complexity of a theory by expanding upon Goodman’s complexity measure for a
collection of predicates. Like Bunge, Kemeny also refines Goodman’s complex-
ity measure for predicate bases. However, both Kemeny and Bunge argue that
there are other measures of complexity of scientific theories (again, expressed in
a first-order language) that require analysis of their semantic properties. This
section describes the semantic measures of complexity.

Kemeny defines the simplicity of a scientific theory (again, expressed in a

7What is standardly called “Peano Arithmetic,” for instance, contains an axiom of the
following form for every formula ϕ(x) with a single free variable:

[ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(S(n))]→ ∀n(ϕ(n))

8See Wrinch and Jeffreys (1923), for instance.
9See Kelly and Schulte (1997).

10See Bunge (1961), Bunge (1962), and Kemeny (1955b).
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first-order language) in terms of the number of models it has.11 For Kemeny,
models represent “worlds,” and so different models of the same scientific theory
represent different “possible worlds,” in Leibniz’s sense. The obvious problem
with this model-theoretic approach, which Kemeny himself realizes, is that most
first order theories have infinite models. Moreover, if a first-order theory T
has an infinite model, then the Löwenheim-Skolem theorem implies that T has
a model of every infinite cardinality. Hence, according to Kemeny’s second
measure, not only do many theories have infinite complexity, but further, their
complexity cannot be bounded by any infinite cardinal.

Kemeny claims that the type of theories that occur within science, however,
will not have infinite complexity. Scientific theories may describe an extremely
large number of objects, such as the theory that describes the number of atoms
in the universe between 10 Billion B.C.E. and 100 Billion A.D., but such the-
ories, at root, are still only concerned with a finite number of objects. Thus,
Kemeny argues that typical scientific theories will not have infinite complexity,
as for a fixed first-order language L with a finite number of predicate and func-
tion symbols, there are only a finite number of L-structures of a fixed, finite
cardinality.

Kemeny’s argument, however, is clearly problematic. In virtually every sci-
entific domain, widely accepted theories require representing physical quantities
by real numbers. For example, consider any theory containing any of the follow-
ing predicates: mass, space, time, pressure, volume, and temperature. Models
of these theories will contain a continuum number of elements. Moreover, the
use of real numbers is not a defect, nor does it complicate such theories. In
fact, the use of continuous quantities instead of discrete ones is often view as an
attempt to simplify an otherwise unwieldy theory. Furthermore, some physical
theories go so far as to employ complex numbers as a simplifying tool, even
when the imaginary parts of said numbers have no physical interpretation, as
for instance, in the theory of RC-circuits. While Kemeny might be correct that,
at root, many physical quantities are discrete and can only take on a finite num-
ber of values, any complexity measure that fails to recognize the simplifying role
that continuous quantities play in scientific theories fails to accurately capture
the way Ockham’s razor is used in science.

1.2 Falsifiability and Testability

Like the first group of philosophers, Popper likewise measures the complexity
of a scientific theory in terms of its dimension or number of free parameters.
However, he also argues that simplicity ought to be identified with falsifiability,

11Technically, Kemeny uses the word “interpretations.” See Kemeny (1956a). However,
Kemeny’s definition of an interpretation is now the standard definition of a model. At the
time of Kemeny’s article, the word “model” was used to describe Tarski’s definition of a model,
which is no longer standard. See Etchemendy (1999), pp. 166, footnote number two, for a
discussion of the differences.
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which is the key characteristic of scientific hypotheses.12 To understand Pop-
per’s discussion of simplicity, however, one must first review other key concepts
in his epistemology.

In stark contrast to the majority of scientists, philosophers, and statisticians,
Popper argues that experiments and observational studies can never provide
support for a scientific hypothesis. Rather, hypotheses may only be falsified. For
Popper, scientific theories, which are conjunctions of hypotheses, logically entail
that particular phenomena will be observed under particular circumstances.
Newton’s theory of gravity, for example, might logically entail that scientists
will observe high tides during night. For Popper, then, a theory is falsified just
in case it entails a phenomenon that is not observed.

Why might falsifiability be a good measure of simplicity? Popper provides
several examples to prime his readers’ intuitions., Here, I discuss Popper’s anal-
ysis of curve-fitting, which is illustrative but also notoriously problematic.13

Consider the problem of finding which polynomial curve best describes the re-
lationship between two fixed variables x and y. Here, Popper claims, a hypoth-
esis is a particular polynomial f , and the hypothesis f is falsified just in case a
point (x, y) is observed that is not a member of the graph of f(x) = y. If three
non-collinear points are observed, then, assuming the data contains no errors,
the every linear hypothesis would be falsified. In contrast, there is always a
quadratic equation compatible with three points. Hence, Popper concludes that
linear hypotheses are simpler than quadratic ones, and similarly, the falsifiability
of a polynomial is directly related to its degree.

Of course, Popper’s analysis of curve-fitting is problematic. In the absence of
statistical error, observing the point (−1, 0) is sufficient to refute the quadratic
hypothesis y = x2. In general, if a hypothesis is identified with a single poly-
nomial, then there exists a single point that is sufficient to falsify any given
hypothesis (no polynomial covers every point on the plane!). Had Popper de-
fined a hypothesis to be the disjunction of the set of polynomials of a fixed
degree, then the hypothesis “There is a linear relationship between x and y”
would be falsified by three non-collinear points, while the hypothesis “There is a
quadratic relationship between x and y” could be falsified only by four or more
points. In this way, falsifiability might be an intuitive measure of simplicity.

Popper’s definition of simplicity, however, faces two serious problems. First
and foremost, experimental data is hardly ever conclusive enough to falsify a
particular hypothesis. Because of measurement error, chance variation, and
limits in computational precision, data is never exact. For instance, observing
400 non-collinear points in curve-fitting may not be taken as evidence against
the hypothesis that the relationship between the two variables is linear, so long

12Popper himself notes that he is often misinterpreted as claiming meaningful statements
are falsifiable. According to Popper, falsifiability is a criterion for demarcating scientific
statements from non-scientific ones.

13See Schlesinger (1961) pp. 487-490, Sober (2010), pp. 7, and Baker (2004) for various
criticisms of Popper. Importantly, Baker criticizes not only Popper, but also works like Sober
and Forster’s, that attempt to explain all of the various forms of Ockham’s razor in science
by appeal to statistical methods.
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as the 400 points are clustered in a certain way. Popper needs a more refined
notion of falsifiability, one which does not rule out a theory because of practical
limits in data collection.

Second, Popper’s notion of falsifiability also conflicts with intuitive judg-
ments of theoretical simplicity. Schlesinger proposes a particular compelling
counterexample.14 In the early nineteenth century, astronomers struggled to
explain perturbations in Uranus’ orbit, and several rival hypotheses were pro-
posed. One hypothesis, independently developed by John Couch Adams and
Heinrich d’Arrest, was that an eighth planet, now known as Neptune, caused
said perturbations. But one can also imagine a maverick nineteenth century sci-
entist who might have hypothesized that the irregularities in Uranus’ orbit were
caused by the gravitational pull of twelve yet undiscovered planets. Intuitively,
Adams’ and d’Arrest’s hypothesis seems simpler than that of the imagined scien-
tist, as it postulates fewer causes of the phenomena in question. If one identifies
simplicity with falsifiability, however, then the imagined scientist would have
proposed a simpler than either Adams or d’Arrest: it is surely easier to show
that one of the twelve planets does not exist rather than to show that a single
planet does not.

For most philosophers of science, these two difficulties were fatal for Popper’s
definition of simplicity. Popper’s arguments, however, inspired a small group
of philosophers to address the above two issues and to defend a more refined
analysis of simplicity in terms of falsifiability or testability. For example, Aris
Spanos and, to an extent, Deborah Mayo, employ techniques from classical
statistics to address the first deficiency of Popper’s definition and to rescue the
spirit of Popper’s insistence on submitting scientific hypotheses to rigorous (or
“severe”) testing. Ultimately, however, Spanos defines simplicity in terms of
number of parameters and “informational content” of a statistical model, and
he argues that greater testability is a consequence of simplicity, not its defining
feature. Arthur Schlesinger tries to address the second issue by turning Popper’s
definition on its head: Schlesinger claims simpler theories are, over time, more
difficult to falsify. In the remainder of this section, I summarize Schlesinger’s
analysis of simplicity, and I return to Spanos’ analysis later.

In evaluating the relationship between truth and simplicity, Schlesinger ar-
gues, the relevant property of scientific theories is dynamic simplicity, which
is the property of being capable of being updated with fewer, less complicated
hypotheses. Notice that Schlesinger tacitly employs two different definitions of
simplicity. That is, say a theory T in is dynamically simplest relative to new
data D if when T is brought to explain D, then its revision TD is statically
simpler than the revision of any other theory T ′ relative to data D. Notice
that dynamic simplicity must be relativized to a set of not yet observed data.
Schlesinger never fully defines what would make a theory T statically simpler,
but he provides an example to motivate the

Suppose that you have two new neighbors, Tom and Dick, who you know, via
neighborhood gossip, to be members of the same family. Suppose, however, that

14See Schlesinger (1961) pp. 491-492.
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you are unsure of how Tom and Dick are related. One day you meet Tom and
Dick, and you find that Tom and Dick have similar appearances. In particular,
Tom and Dick appear to be approximately 35 years old. You hypothesize that
Tom is Dick’s brother, but your skeptical friend insists that you cannot be sure
of your hypothesis. Tom, your friend hypothesizes, is Dick’s father, but through
extensive exercise, dieting, and meticulous care for his body, he has retained a
youthful appearance. Call your hypothesis that Tom and Dick are brothers H1,
and call your friend’s hypothesis that Tom is Dick’s father H2.

Now suppose that the day after you first meet Tom and Dick, your friend
sees Tom driving a car with a sticker advertising membership in the American
Association for Retired Persons (AARP). Your friend calls you and asserts that
he now knows that Tom is Dick’s father. Skeptically, you quickly retort that
you believe that Tom is Dick’s brother, but he likely drives a car that he in-
herited from a grandparent. Call your new hypothesis H ′1. One can continue
the story indefinitely. Suppose Tom declares “I am Dick’s father” one day in
conversation, and you adjust your hypothesis to be the claim H ′′1 that Tom is
Dick’s brother, but is a pathological liar, drives a car that he inherited from his
grandparents, and is excessively vain. Schlesinger argues that, in light of the ev-
idence, H1 is a dynamically less simple hypothesis than H2, as it requires more
and more ad hoc assumptions to explain the phenomena. Because true theories,
according to Schlesinger, will not require additional, ad hoc assumptions, there
is a straightforward relationship between (dynamic) simplicity and truth.

Despite the intuitive appeal of Schlesinger’s argument, his definition of dy-
namic simplicity seems to be equivalent to “better confirmed by existing evi-
dence.” In the story of Tom and Dick, the hypotheses H ′1 and H ′′1 are not only
more complicated than their rival H2, but moreover, they, intuitively, seem less
likely to be true than H2 is given the available evidence. As understood by
most philosophers, the problem of justifying Ockham’s razor, however, requires
explicating the relationship between simplicity and other values of inquiry, all
other things, including confirmation, being equal.

In the past two decades, Aris Spanos and Deborah Mayo have provided a
more nuanced analysis of the relationship between simplicity, testability, and
falsifiability.15 Spanos, however, argues that simplicity is defined, roughly, in
terms of compression of data and that greater testability is a consequence of
being simple. Spanos’ analysis of simplicity is one of many that analyze com-
plexity in terms description length, unification, and data reduction. In all such
proposals, simpler theories are defined to be those that provide the most concise
summary of the phenomena and data. Although I cannot discuss Spanos’ and
Mayo’s proposals in depth, the next section provides a brief overview of the
philosophical literature in which simplicity is identified with unification.

15See Spanos (2001) and Mayo and Spanos (2006).
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1.3 Simplicity as Unification

With the exception of Mario Bunge, all of the philosophers, scientists, and statis-
ticians discussed thus far have explicated the concept of simplicity in terms of
either (a) linguistic properties of scientific theories or (b) testability or falsifi-
ability of a theory. Importantly, both types of definitions explicate simplicity
as a function of a scientific theory alone. In contrast, many philosophers have
argued that the simplicity of a theory is both a function of properties of the
theory and available evidence. For example, Aris Spanos writes:

The second dimension of simplicity concerns the informational con-
tent of the statistical model . . . [However,] this “compression of in-
formation” cannot be done in the abstract, but in conjunction with
relevant information in the observed data.16

In this section, I summarize attempts, like Spanos’, to explicate simplicity
as a relation between theory and data. I begin with those philosophers, such as
William Whewell and Michael Friedman, who identify simplicity with unifying
power. While it is less clear that unifying power cannot be evaluated a priori,
one can understand these philosophers as advocating a view that simpler the-
ories are ones that can explain the phenomena that have been observed in the
shortest space. In this way, unifying power is relevant similar to data reduction,
a second type of definition of simplicity. Spanos, who takes inspiration from
RA Fisher, is the prominent defender of this analysis of simplicity. Finally,
recently, computer scientists and statisticians have attempted to identified sim-
plicity with minimum description length, which shares motivations with the
analysis of simplicity in terms of data-reduction. For reasons of length, I will
focus solely on the philosophical discussion of unification and simplicity; a fuller
literature review would address these latter two attempts to analyze simplicity.

In his two-volume treatise Philosophy of The Inductive Sciences, William
Whewell identifies simplicity with the generality of a scientific hypothesis, where
a theory T is more general than T ′ if T entails T ′.17 Whewell calls the process
of finding more and more general hypotheses the “consilience of inductions,”
and he argues that, as more consilience of inductions occur, scientists can be
more and more assured that they are developing true theories. Whewell calls
the relationship between consilience and truth “the constant Tendency to Sim-
plicity observable in true theories.”18 As an example, Whewell discusses how

16See Spanos (2001), pp. 83.
17Here, I leave open the question of how strong the notion of “entailment” ought to be

understood. For example, a scientific theory T might logically entail T ′. A theory T might
entail T ′ only modulo standard mathematical axioms (e.g. Zermelo’s axioms for set theory).
A weak (but perhaps most plausible) way of defining entailment between scientific theories
is to say that T entails T ′ just in case T ′ is provable from T modulo standard mathematical
axioms and other widely accepted scientific theories. The example of the kinetic theory of
gases described in this section is of this character, as one can “derive” the ideal gas law from
the kinetic theory of gases only modulo axioms of real analysis and Newton’s laws.

18See Whewell (1966), 77.
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observable astronomical facts, known to the ancient Greeks and Babylonians,
are entailed by the heliocentric model of the solar system:

Thus, that the stars, the moon, and the sun, rise, culminate, and set
are facts included in the proposition that the heavens, carrying with
them all the celestial bodies, have a diurnal revolution about the axis
of the earth. Again, the observed monthly motions of the moon, and
the annual motions of the sun, are included in certain propositions
concerning the movements of the luminaries with respect to the stars.
But all these propositions are really included in the doctrine that
the earth, revolving on its axis, moves round the sun, and the moon
round the earth.19

Here, the (true) heliocentric hypothesis is more general than propositions
describing the “monthly motions of the moon and annual motions of the sun”
because the latter is entailed by the former. I describe Whewell’s argument in
greater detail below, and I also explain the concept of one proposition being
“included” in another. For now, it is important to note that the Whewell’s
concept of generality is closely related to an oft discussed theoretical virtue:
unifying power. In contemporary philosophical jargon, a theory is said to have
unifying power, roughly, if it simultaneously provides an explanation of many
observable phenomena and/or many other successful scientific theories. Clearly,
generality and unifying power are closely related: if one identifies scientific
explanations with deductions, as in the Deductive-Nomological (DN) model,
then theories with unifying power will also have greater generality and vice
versa.20 Hence, Whewell’s discussion of consilience might help us to understand
some hotly contested debates in 20th century philosophy of science. Moreover,
Whewell’s view is strikingly similar to that of two 20th century philosophers:
Michael Friedman and Philip Kitcher. In particular, I will argue that Whewell’s
understanding of consilience of inductions is actually more general (in a non-
Whewellian sense) than the definition of unification provided by Friedman.

Whewell distinguishes between two parts of the inductive process: (1) inven-
tion of a conception, and (2) deduction of less general laws from more general
ones. I describe the two parts in turn. Introductory textbooks in philosophy of
science often use examples like the following to describe the problem of induc-
tion as follows. If one knows that all swans are white, then she can (deductively)
infer that any particular swan that she observes will be white. In contrast, if
one has observed five thousand swans, all of which are white, she cannot infer
that the next swan that she observes will be white. After all, it is possible that,
by sampling error or bad luck, one has viewed all and only the white swans
in the world. Induction, according to such textbooks, is the process of making
inferences that do not preserve truth, and the problem of induction is to explain
when (or if) such inferences are reliable and/or justified.

19Ibid, pp. 75.
20See Hempel and Oppenheim (1948) for a discussion of the DN model, and Putnam (1973)

for a criticism as to why deductions are not necessarily explanatory.

24



Whewell thinks the above description of induction is extremely simplified
and misleading. According to Whewell, in order to observe whether a swan is
white or not, one first needs to possess the concepts “swan” and “white,” and
in particular, one must know under what conditions an object may said to be
a swan or said to be white. As such, induction is not simply the process of
inferring “All objects of types X possess property P” from the observation that
a particular sample of objects of type X are all P . In inductive reasoning, one
must first develop the appropriate concepts before any inferences can be made
whatsoever.

As an example, Whewell considers the hypothesis “All planets follow el-
liptical paths around the sun.” In making observations of the night sky, an
astronomer does not see heavenly bodies conveniently labeled with tags reading
“planet,” “moon,” “comet,” “star,” and so on. Instead, she must group heav-
enly bodies according to their size, brightness, movement in the night sky, and
so on. The astronomer might then form the concept “planet” to describe those
bodies other than the moon which, on the basis of their size, brightness, and
movement, appear to be closest to the earth in the sky. Similarly, an astronomer
does not observe dotted elliptical lines in the sky indicating the paths followed
by individual planets. Rather, she must document the position of different plan-
ets during different times of the month, year, and so on. She might then classify
the movement of a planet as elliptical because, when the astronomer’s observa-
tions are (i) augmented by interpolated values and (ii) represented graphically,
the planet’s movement resembles the geometric shape of an ellipse. Hence, be-
fore inferring that “all planets move in elliptical paths about the sun” from
observations that Venus and Mars do, an astronomer must develop the con-
cepts “planet” and “elliptical” and specify under what conditions a planet can
be said to moving in an elliptical path. Whewell calls this process “invention of
a conception.”21

Although Whewell does not say so explicitly, he seems to indicate that cer-
tain concepts are directly linked to observable properties of objects. For ex-
ample, the concept of “weighing five pounds” might be directly connected to
observable properties by specifying a scale and conditions under which the scale
is said to register five pounds as the weight of the object. In contrast, Whewell
indicates that certain concepts like elliptical orbit are derivative of more basic
concepts (here, cyclical motion), and hence, a hypothesis such as “the earth
follows an elliptical orbit” can only be tested by testing the truth of hypotheses
that contain concepts that are directly linked to observable properties. The hy-
pothesis that“the earth follows an elliptical orbit,” for example, might be tested
by testing the (conjunctive) hypothesis, “the earth occupies position p1 in the
night sky at time t1, p2 during time t2, and so on.” In general, Whewell seems
to indicate that there is a hierarchy of concepts such that concepts at the low-
est level are connected with directly observable properties of objects, and the
meaning of higher-level concepts is specified by a series of logical relationships
(perhaps definitions?) to directly observable properties.

21See Whewell (1966), pp. 49-54.
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Understanding Whewell in this way makes intelligible his claim that certain
scientific propositions are included in more general ones. If one understands
more general propositions as those containing higher level concepts, then the
logical relationships between concepts will induce logical relationships between
scientific hypotheses employing said concepts. For example, Whewell indicates
that Newton’s law of gravitation is more general than hypotheses about the
tides and planetary motion. According to the above reconstruction, one can
understand Whewell as saying that the meaning of Newton’s universal law is
specified, in part, by the predictions it entails about the tides and planetary
motion. Hence, Newton’s law of gravitation can be verified and/or refuted by
testing less general hypotheses about tides and planetary motion, and these less
general hypotheses are again verified and/or refuted by finding even less general
hypotheses. The process continues until one find a hypothesis that is directly
testable. Whewell writes:

That each of these particular propositions is true may be ascertained
. . . when the propositions is resolved into its more special proposi-
tions. And thus we may proceed, til’ the most general truth is bro-
ken up into small and manageable portions. Of these portions, each
may appear by itself narrow and easy; and yet, they are so woven
together by hypothesis and conjunction, that the truth of the parts
necessarily assures us of the truth of the whole.22

One can now see the relationship between Whewell’s view and contemporary
discussions of unifying power. For Whewell, general hypotheses are devised to
entail many different well-tested hypotheses, and they contain terms denoting
concepts that are (for a lack of a better term) generalizations of concepts occur-
ring in other extant theories. General scientific theories are simpler because they
reduce the number of laws and terms required to explain disparate phenomena.

Like Whewell, the contemporary philosopher Michael Friedman identifies
simplicity with unifying power. To motivate his discussion of unifying power,
Friedman provides several paradigmatic examples of unification: the kinetic the-
ory of gases, the atomic theory of matter, and Newton’s theory of gravitation.
For brevity, I will merely summarize Friedman’s view on the kinetic theory of
gases, which explicates macroscopic properties of gases in terms of the veloc-
ity and collisions of the molecules that compose it. Prior to and during the
development of the kinetic theory, scientists had developed numerous laws de-
scribing the relationship between macroscopic properties of gases like pressure,
volume, and temperature. For example, Boyle discovered that volume and pres-
sure were inversely proportional given a fixed temperature. Scientists have also
long known that volume and temperature were directly related at a fixed pres-
sure, and that temperature and pressure are inversely related at a fixed volume;
these facts are now known respectively as Charles’ and Gay-Lussac’s laws.

The kinetic theory of gases unifies such gas laws in three ways. First, by in-
troducing quantities for the number of molecules in a sample of gas, the kinetic

22Ibid, pp. 80.
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theory permits all gas laws to be expressed in a single mathematical expression,
mainly, the ideal gas law PV = nrT .23 That is, in the absence of the variable
n, which represents the number of moles in a sample of an ideal gas, the rela-
tionship between pressure and volume, for example, can only be expressed by
the equation P = k · 1

V , where k is a constant the depends on a fixed sample of
gas. If two different samples of nitrogen are added, therefore, the pre-molecular
theoretic gas laws (e.g. Boyle’s law) do not possess the resources to express the
resulting relationship between the pressure and volume of the new sample.

Second, by identifying gases with collections of molecules, the kinetic theory
also permits one to identify all macroscopic properties of gases, like temper-
ature, with properties of aggregates of molecules, like root mean kinetic en-
ergy. Third, under certain assumptions the ideal gas law (and hence Boyle’s,
Charles’m and Gay-Lussac’s laws) is derivable from laws that govern the behav-
ior of molecules.24 For these three reasons, both the length of the mathematical
description and the number of primitive properties of gases are reduced by the
kinetic theory. Friedman then identifies theoretical simplicity (he calls it “parsi-
mony”) with fewer primitive entities and properties, and he and concludes that
unified theories are simpler.25

In general, Friedman argues that, in cases in which scientific theories are
unified, there is a model M = 〈|M|, RM1 , . . . , RMn , f

M
1 , . . . , fMk 〉 of observable

phenomena (e.g. the macroscopic property of gases) that is a substructure of
a theoretical model N = 〈|N |, RN1 , . . . , RNs , fN1 , . . . fNr 〉 where s ≥ n, r ≥ k,
|M| ⊆ |N |, and RNi � |N | = RMi for all i ≤ n. Note, Friedman carefully
distinguishes between a structure M being embeddable in N and it being a
substructure. The former he calls a representation, the latter a reduction. The
distinction will be important when discussing Friedman’s argument that unified
theories, over time, are more confirmed than disjoint collections of theories. I’ll
return to this argument in the next chapter.

Friedman’s identification of simplicity with unification is both intuitive and
plausible. However, I would argue that the mathematical representation of
unification in terms of the submodel relation is problematic for at least three

23Here, P denotes the pressure of the gas, V its volume, T its temperature, n the number
of moles of molecules in the gas, and r a called the universal gas constant. Gases are called
ideal so long as intermolecular forces, like Van der Waal forces, are negligible in comparison
to the effects of the the pressure of the gas.

24Two related philosophical issues could be mentioned, but I cannot pursue them here.
First, the last two reasons supporting the claim that the ideal gas law unifies previous gas
laws suggest that there might be a close relationship between unification and reductionism in
science. Hence, one might ask, “are reduced theories always more unified?” Second, attempts
at reduction within science, that is, attempts (i) to identify observable, macroscopic phenom-
ena with behavior of microscopic ones (e.g. fundamental particles), and (ii) to derive laws
governing macroscopic phenomena from laws governing the corresponding microscopic entities
are analogous to logicist attempts in foundations of mathematics (i’) to define mathematical
concepts with logical ones and (ii’) to prove mathematical theorems from only logical axioms
and rules of inference. Are the desires for unification in science and logical foundations of
mathematics both instances of a more general principle concerning explanation?

25Friedman (1983), 335-336
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reasons.26 First, in the cases discussed by Friedman, elements of the observ-
able model (e.g. gases) are simply not elements of the theoretical model (e.g.
molecules). Gases are collections of molecules, and so strictly speaking the sub-
set relation is lacking. Similarly, properties of gases (e.g. temperature) are not
also properties of molecules (e.g. velocity); they are properties of collections
of molecules. Third, the motivation for the use of the submodel relation is to
make rigorous the distinction between representations and reductions; that is,
Friedman wants to distinguish objects of the theory (e.g. space-time points)
from representations of those objects (e.g. a four-tuple of real numbers repre-
senting a point of space-time). However, unless Friedman wishes to admit the
existence of a continuum number of predicates, the extensions of predicates like
“is x meters long” must include both an object and real numbers describing the
object. Why? Descriptions of the form “is x meters long” can either be repre-
sented as a continuum number of unary predicates Lx(O), each of which keeps
the real number x fixed, or they can represented as a binary relation L(x,O)
which relates a variable real number x to a variable object O. In the former
case, every model of a physical system will have continuum many predicates,
and so scientific theories do not appear to be very parsimonious under Fried-
man’s account. In the latter case, however, both concrete physical objects (e.g.
tables) and abstract mathematical objects will lie in the extension of the rela-
tion L(x,O). Hence, both concrete physical objects and abstract mathematical
objects need to be elements of any given model, which destroys the distinction
between reduction and representation that Friedman hoped to stress.

Friedman can address all three deficiencies by appropriate use of model the-
ory. For instance, the first two problems can be ratified by defining a reduction
to be an appropriate relation between two models, where one structure con-
tains second-order predicates ranging over subsets of the universe of the first.
However, I am unsure what role the model theory actually plays in Friedman’s
arguments; as long as the distinction between reduction and representation is
clear, the choice of mathematical formalization is less important.

This concludes a summary of the major attempts, in philosophy, to define
the notion of simplicity as it pertains to scientific theories. Having highlighted
both the difficulties and strong points of different attempts to define simplicity,
it will be clear how the definition of simplicity advocated in the third chapter
(namely that of the KGS model) avoids many of the downfalls of the proposals
just considered, and capitalizes on their insights.

26Morrison (2000) has criticized Friedman’s proposal in other ways. At the informal level,
I find Friedman’s definition of simplicity to be insightful, though his attempts to make it
rigorous by employing formal logic are clearly problematic.
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Chapter 2

KGS Model

In this chapter, I describe a model of scientific inquiry developed by Kelly, Gly-
mour, and Schulte (henceforth, the KGS model). I provide one paradigmatic
example of how the model can be used to formally represent interesting problems
in scientific inquiry; the example is causal discovery. I then state and explain
the Ockham Efficiency Theorems, which prove that scientists who heed Ock-
ham’s razor retract their opinions less often than do their complexity preferring
counterparts.

2.1 Empirical Effects, Problems, and Worlds

In scientific inquiry, theories are often refuted by small, difficult to detect phe-
nomena. Newton’s explanation of planetary motion, for example, might be
taken to have been refuted by the observation of precession of the perihelion of
mercury, which could only be accounted for by the addition of a number of ad
hoc hypotheses. Such phenomena, like the precession of Mercury’s perihelion,
are often difficult to observe because of a lack of sensitive experimentation, inge-
nuity in experiment design, or perhaps because the sample size of observations
is too small to compensate for intrinsic randomness in observations. For brevity,
I use the word effect to refer to such difficult to detect phenomena.

To represent these ideas formally, let E be a non-empty, countable (finite or
countably infinite) set whose elements are called empirical effects, and define a
problem to be a set K ⊆ 2E such that each member of K is finite. A problem
is intended to represent those sets of effects that a scientist would observe were
he or she to live forever. In this paper, K is a variable that is often held fixed,
and thus, reference to K may be dropped to ease notation. A world w in K is
an infinite sequence in (2E)ω such that

1. wn ⊆ wn+1 for all n ∈ N

2. There exists an n ∈ N such that wn ∈ K and wm = wn for all m ≥ n.
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In other words, a world is a non-decreasing sequence of sets of effects such
that there is some point at which no further effects are observed. The point
n ∈ N at which a world w “stabilizes” to some set of effects for eternity is called
the modulus of convergence for w and is denoted mod(w). Informally, a world
represents the evidence available to a scientist at discrete points in inquiry.

Let WK be the set of worlds, and let w � n denote the finite initial segment
〈w0, . . . , wn−1〉 of w. In particular, w � 0 = 〈〉, the empty sequence. For
arbitrary set R ⊆ E, let R∞ denote the infinite sequence that is constantly R.
Let:

WK,n = {w � n : w ∈WK};

WK,fin =
⋃
i≥0

WK,i.

Let e, e′ ∈ WK ∪WK,fin, and let l(e) be the length of the sequence e (so that
l(e) ∈ N ∪ {ω}). In general, if σ is any sequence of order type ω, we will use
l(σ) to denote its length. Write e ≤ e′ if e an initial segment of e′ and let
e < e′ hold just in case e is a proper initial segment of e′. Let ∗ denote sequence
concatenation, so that, for example, if e = 〈∅, ∅〉 and e′ = E∞0 for some E0 ∈ K,
then e ∗ e′ = 〈∅, ∅, E0, E0, E0, . . .〉. Define:

WK,fin,e = {e′ ∈WK,fin : e ≤ e′};
WK,e = {q ∈WK : e ≤ q}.

The set of effects presented along e is:

Ee = el(e).

The restriction of K to effect sets compatible with e is then:

Ke = {K0 ∈ K : Ee ⊆ K0}.

As argued above, when many common scientific problems are represented
formally in the KGS model, it turns out that (under the most realistic assump-
tions) any theory might be refuted by some yet-unobserved effect. However, if
a scientist knew that no future effects would be observed − in other words, if
he knew the world w in which he lived − then there should be a unique scien-
tific theory true of that world. As such, it is reasonable to let each effect set
K0 ∈ K determine a scientific theory. Formally, let Th be any countable set,
and call elements of Th theories. To represent the fact that each member of K
determines a theory, let T : K → Th be any function, and for ease of notation,
define TK0 := T (K0) for all K0 ∈ K. For any sequence e ∈ WK ∪WK,fin such
that el(e) ∈ K, define Te ∈ Th to be the theory T (el(e)). If w ∈ WK is a world,
then say Tw is the theory true of w. Finally, define a problem to be a triple
〈K,Th, T : K → Th〉.1

In the next chapter, it will be helpful to know that almost all of the sets
defined above are countable:

1This definition of problems differs from that in Kelly’s papers, as it is slightly more general.
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Lemma 2.1.1. The following sets are countable:

1. Any problem K defined with respect to a countable set of empirical effects
E.

2. The set of theories Th and the set of answers Ans.

3. The set of all finite initial segments of worlds WK,fin

4. The set of all worlds WK .

Proof: The proof is entirely routine, but is included for completeness. (1) As
the set of empirical effects E is countable, so is the set Efin of all finite subsets
of E. Since K ⊆ Efin, the set K is countable.
(2) There is, by definition, a surjection from K onto Th. Hence, the cardinality
of K is greater than or equal to that of Th, from which is follows that Th is
countable. As Ans is merely Th with the additional element ‘?′, the set Ans is
likewise countable.
(3) The set W fin

K is a subset of the set of finite sequences from the set Efin. As
the set of finite sequences from a countable set is itself countable, we know that
Efin and consequently, WK,fin are countable.
(4) Any world w ∈ W can be identified with a pair (Tw, ew) where Tw is the
theory true of w and e ∈WK,fin is the largest finite initial segment of w before
which w converges to the true theory w. Hence, the cardinality |WK | of WK is
at most |Th| · |WK,fin|, both of which are countable by above.

�

I now turn to an example to see how effects, theories, and worlds as defined
above can be used to understand a concrete scientific problem.

2.1.1 An Example - Causal Discovery

One central task in scientific research is to discover causes. Medical researchers,
for instance, might ask, “what are the causes of heart disease?” Psychologists
and sociologists might be interested in the causes of suicide, and economists
often study the causes of a recession. How might one formally represent causal
discovery problems like these in the KGS model?

In recent years, a number of philosophers, computer scientists, and statis-
ticians have argued that one can discover causal relationships amongst vari-
ables of interest by studying the conditional probabilistic dependencies that hold
amongst said variables; such probabilistic relationships are often visually rep-
resented in directed acyclic graphs (DAGs) like the one below.2 For example,
suppose that smoking causes increased tar in the lungs, and further, suppose

2See Spirtes, et. al. (2000) for a discussion of the use of DAGs in representation of causal
relationships amongst variables. Appendix 2 contains all mathematical details necessary to
understand this paper.
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that tar causes cancerous cell growth in the lungs. Finally, suppose that smok-
ing only causes cancer by increasing tar, so that there is no other mechanism
by which it raises the incidence of cancer. One might represent this graphically
in the DAG below.

Of course, given this causal knowledge, one should expect that smokers will
have higher incidence of lung cancer so that

p(lung cancer = ‘Yes’| Smoker ’ = ‘Yes’) > p(lung cancer = ‘Yes’| Smoker ’ = ‘No’).

Importantly, if one knew that amount of tar in John’s lungs, then one would not
need to know whether or not John smokes in order to predict his chances of lung
cancer: because the only mechanism by which smoking causes cancer is through
increasing tar in the lungs, the knowledge of his smoking habits is irrelevant
once one knows how much tar is in her lungs. In this case, the probabilistic
dependence between smoking and lung cancer disappears when one conditions
on tar in the lungs. In other words,

p(lung cancer = ‘Yes’| ‘Smoker’ = ‘Yes’ &‘Tar in Lungs’ = ‘Yes’) = p(lung cancer = ‘Yes’|‘Tar in Lungs’).

The above example is intended to suggest that causal relationships leave
a “footprint” in the probabilistic dependencies amongst variables. Yet in the
social sciences and medical research, variables of interest are frequently very
weakly correlated, and as a result, statistical dependencies are often incapable
of being detected without sensitive instrumentation, large sample sizes, or in-
genious experimental design. Moreover, the most subtle and difficult to detect
dependencies may be of critical importance to discovering the true causal theory
governing the variables under investigation. Therefore, it makes sense to define
an effect in causal discovery to be a conditional dependence statement of the
form:

v1 is conditionally dependent on v2 given some set of variables V0

Keeping these ideas in mind, I now formalize how one might represent the
problem of causal discovery in the KGS model. Let V be a finite or infinite
set of random variables on a common probability space 〈Ω,F , p〉.3 Let dagV
be the set of directed acyclic graphs with vertices in V . For any two variables

3See Appendix 1 for definitions of random variable and probability space.
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v1, v2 ∈ V and any subset of variables V0 ⊆ V \ {v1, v2}, I use the following
abbreviation for the claim “v1 is probabilistically dependent on v2 given V0”:

D(v1, v2 | V0)

Let cdcV be the set of all such assertions over a set of variables V ; here cdc
stands for “conditional dependence constraint.” If G is a DAG, let DG ⊆ cdcV
be the set of conditional dependence constraints implied G. Then, to represent
causal inference in the KGS model, one lets:

EV = cdcV

KV = {DG ⊆ cdc : G is a DAG G over V }

Here, elements of KV are in bijective correspondence with Markov Equivalence
classes or patterns over V , where patterns are simply the graphical represen-
tations of Markov equivalence classes. Importantly, note that, although the
set of variables V may itself be infinite, because each element of KV is finite
by stipulation, it follows that there are only finitely many edges in the pat-
tern corresponding to any element K0 ∈ KV . Given the above definition of KV ,
worlds w ∈WKV are sequences of non-decreasing sets of conditional dependence
statements, which are learned as weaker and weaker probabilistic dependencies
between the variables are discovered.

Now one may be interested in any number of different questions concerning
the variables under investigation. For instance, one might be interested in dis-
covering all of probabilistic dependencies that held amongst the variables V . In
this case, theories are simply elements of K, so that ThV = KV , and so one is
interested solving the problem 〈K,ThV , id : K → ThV 〉, where id is the identity
map.

On the other hand, one might only be interested in determining whether v
causes v′ or vice versa, where v, v′ ∈ V are two variables of special interest.
In this case, partition KV into four classes Kv→v′ ,Kv′→v,Kv−v′ ,Kv 6−v′ ⊆ KV

where Kv→v′ consists of sets of conditional dependence constraints that imply v
causes v′ (i.e. there is a directed edge from v to v′ in the pattern corresponding
to K), Kv′−v consists of sets conditional dependence constraints from which
one cannot detect whether v causes v′ or vice versa (i.e. there is an undirected
edge from v to v′ in the pattern corresponding to K), and Kv 6−v′ consists of
sets conditional dependence constraints such that neither v causes v′ nor vice
versa (i.e. there is no edge from v to v′ in the pattern corresponding to K).
Accordingly, define:

Thv,v′ = {Kv→v′ ,Kv′→v,Kv−v′ ,Kv 6−v′}

Then one is interested in solving the problem 〈K,Thv,v′ , Tv,v′ : K → Thv,v′〉
where Tv,v′ is the function that takes some set K0 ∈ K to the element of the
partition Thv,v′ to which it belongs. For brevity, in the future I will refer to
the first problem as the full causal discovery problem and the latter as the edge
discovery problem.
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2.2 Simplicity, Ockham’s Razor, and Scientific
Methods

Given the above examples, one can now discuss the problem of induction in the
KGS model. In the KGS model, the problem of induction amounts to this:

For any world w ∈W and any finite point in inquiry w � n, there are effect
sets K0,K1 ∈ K such that w � n ⊆ K0,K1 and TK0 6= TK1 .

In other words, the problem of induction is that, for many real-world problems,
at any point of scientific inquiry, there are distinct theories compatible with all
available evidence. Hence, the central task of a methodologist is to prescribe
how, given available evidence, one ought to choose from competing theories that
are compatible with current observations. Of course, scientists are not always
proponents of a single theory, as they may think that the available evidence is
insufficient to warrant believing one theory rather than another. Accordingly,
let Ans = Th∪{‘?’} be the set of answers a scientist may produce during inquiry;
here ‘?’ represents refusal to commit to a single theory.4 Say that a method is
any function of the form M : WK,fin → Ans, so that a method M produces an
answer given some finite amount of evidence. The purpose of this paper is to
present a novel argument for Ockham’s razor, and hence, to assess the merits
and demerits of methods that select only the simplest theories compatible with
available evidence. To do so, however, one first needs a definition of simplicity
and complexity.

Recall, elements of the set E are intended to represent subtle, difficult to
detect empirical effects, such as weak correlations between random variables (as
discussed above). Thus, it makes sense to characterize the complexity of a given
world and theory, roughly, by the number of effects it postulates in addition to
those already observed. Accordingly, for any problem 〈K,Th, T : K → Th〉 and
for any e ∈WK,fin, define a path to be a finite sequence 〈Kj〉j 6=n (where n ∈ N)
of elements of Ke such that for all j < n:

Kj ⊂ Kj+1

TKj 6= TKj+1

In particular, because the entire path lies in Ke, notice that Ee ⊆ K0. For each
K0 ∈ Ke, let path(S|e) be the set of paths in Ke terminating in S. Abusing
terminology, define a path to a theory T ∈ Th given e to be a path 〈Kj〉j 6=n in

4Teddy Seidenfeld has remarked that ‘?’ fails to capture the wide variety of ways in which
a scientist might be hesitant to commit to a single theory. For example, one might believe that
either T1 or T2 is true, but think that T3 is distinctly false. Alternatively, one might think
T1 or T3 is true, but think that T2 is false. Ideally, a model of scientific inquiry ought to be
able to capture the distinction between these two ways of failing to commit to a single theory
rather than using a single symbol, ‘?’, to represent both. I agree with these suggestions
wholeheartedly; Kevin Kelly and Hanti Lin have made promising steps in generalizing the
model presented here so that Ans consists of arbitrary, finite disjunctions of theories, as for
instance, Levi’s model permits.
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Ke such that T = TKn . Given a set of effects E0 ⊆ E, define:

OckK(E0) := {π ∈ path(S|e) : l(π)− 1 = 0}
where, as always, l(π) is the length of the path. The above definition might
be rephrased more perspicuously as follows. The set OckK(E0) contains all
paths of length 1 starting with E0 such that there is no proper subpath. Say a
theory T ∈ Th is simplest relative to e if there exists K0 ∈ OckK(Ee) such that
T = TK0 . Define the set of Ockham answers given e as follows:

Ocke = {T ∈ Th : T is simplest relative to e} ∪ {‘?’}
Finally, define an Ockham method M : WK,fin → Ans to be a function such
that M(e) ∈ Ocke for all e ∈WK,fin.

According to the above definition, there are still many Ockham methods
with pathological behavior. For example, one Ockham method may choose the
simplest theory compatible with the data (whenever one exists) at every even
stage of inquiry, and return ‘?’ at every odd stage of inquiry. There is a more
useful class of methods in the KGS model called normal Ockham methods that
have the following three properties:

1. Every normal Ockham method is an Ockham method simpliciter.

2. If M is normally Ockham, then it is eventually informative, which means
that for all w ∈ WK , there is some n ∈ N such that M(w � n′) 6= ‘?’ for
all n′ ≥ n.

3. If M is normally Ockham, then it is stalwart, which means that for all
w ∈WK and n ∈ N, if T is simplest at w � n and w � n+1, and moreover,
if M(w � n) = T , then M(w � n+ 1) = T

In other words, normally Ockham methods are those that (i) never return a
theory other than that which is simplest with respect to available evidence, (ii)
eventually stop returning ‘?’, and finally, (iii) having produced some theory T ,
continue to return T until it fails to be simplest with respect to available evi-
dence. One final series of definitions will be helpful before providing examples.
Given the above definition of path, one can characterize three types of problems
that will be of special interest in this thesis. Say a problem 〈K,Th, T : K → Th〉
• has no short paths if for every e ∈ WK,fin and for all K0 ∈ OckK(Ee),

there exists a path of maximal length in Ke beginning with K0.

• has an infinite path if there exists a path of infinite length K0 ⊂ K1 . . . ,
in K.

• is bounded nowhere if and only if for each e ∈WK,fin and each K0 ∈ Ke,
there exists K1 ∈ Ke such that K0 ⊂ K1 and TK0 6= TK1

Roughly, a problem is bounded nowhere if for every e ∈WK,fin, all paths in Ke

can be extended infinitely. If 〈K,Th, T : K → Th〉 is bounded nowhere, then it
has an infinite path and it has no short paths. In general, the converse of both
assertions is false.

The next section shows that this definition of simplicity captures intuitions.

35



2.2.1 Methods and Simplicity in Causal Discovery

Although small correlations may be extremely difficult to detect, scientists and
policy makers cannot wait indefinitely to form causal hypotheses. As a result,
scientists must choose amongst competing causal theories as they detect more
and more subtle statistical dependencies amongst the variables under study.
Hence, a method a M : WK,fin → Ans returns causal theory given a particular
set of observed statistical dependencies, where Ans might be either ThV ∪ {‘?’}
or Thv,v′ ∪{‘?’} depending on whether one is interested in solving the full causal
discovery problem or the edge discovery problem.

Intuitively, simple causal theories postulate few of these weak statistical de-
pendencies, and extremely complex ones imply that many subtle, yet-unobserved
statistical dependencies hold between the variables under investigation. Hence,
the definition of simplicity in terms of paths in the previous section captures
important intuitions about the relative complexity of differing causal graphs.
When there are three variables under investigation, the figure below depicts
how differing DAGs are characterized in terms of complexity.

Interestingly, the causal discovery problems of standard interest are of the
form discussed in the previous section.

Theorem 2.2.1. When V is finite, then both the full causal discovery problem
〈K,ThV , TV : K → ThV 〉 has no short paths.

Proof: The proof follows from Chickering’s Theorem (See Appendix 2), but is
omitted for ease of exposition.

�

Theorem 2.2.2. When V is infinite, then both the full causal discovery problem
and the edge discovery problem are bounded nowhere. Consequently, both
problems have no short paths as well.

Proof: First, consider the full discovery problem. Given any e ∈ WK,fin and
any set K0 ∈ OckKV ,e, there is an infinite path in KV beginning with K0, as one
can simply add more and more conditional dependencies to produce patterns
with more and more edges. For instance, as K0 is finite, there are infinitely many
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pairs of variables {{vn, v′n}}n∈N such that no conditional dependence constraints
of the form D(vn, v′n|V0) are members of K0 (where V0 ⊆ V \ {v, v′}). Define:

C(v, v′) = {D(v, v′|V0) ∈ cdcV : V0 ⊆ V \ {v, v′}}

Then because there is an edge between two variables v and v′ in some Bayes
net if and only if the two variables are probabilistically dependent given any
subset of the variables, the set K0 ∪ C(v, v′) is a set of conditional dependence
constraints for some set of DAGs. One can define an infinite path 〈Kn〉n∈N in
KV by recursion as follows:

K0 = K0

Kn+1 = Kn ∪ C(v, v′)

In the case of the edge discovery problem, for any e ∈ WK,fin and any set
K0 ∈ OckKV ,e, there is an infinite path in KV beginning with K0 by the proof
of Proposition 16 in Kelly and Mayo-Wilson (2007).

�

2.2.2 A Brief Discussion of the KGS definition of simplic-
ity

Recall in the first chapter, I outlined three criteria that any account of theoret-
ical simplicity ought to satisfy:

1. Clarity: Any definition of theoretical simplicity ought to allow one to
determine, in some class of scientific problems or historical case studies,
precisely which theories (if any) are simpler than others and which theo-
ries (if any) are incomparable in terms of complexity. Otherwise, such a
definition of simplicity is not sufficiently precise to allow one to evaluate
the use of simpler theories in practice.

2. Relevance to Scientific Practice: Any definition of theoretical simplic-
ity ought to agree with intuitive assessments (i.e. those of some practicing
scientists) of simplicity in some class of scientific problems. Otherwise,
definitions of “theoretical simplicity” are merely explications of some con-
cept other than what is called simplicity in science.

3. Data Driven: Any definition of simplicity ought not identify “simple”
with “more probable” or “better confirmed.” Otherwise, the definition of
simplicity renders trivial the question of the relation between simplicity,
truth, probability, and confirmation.

I argued that previous attempts to analyze theoretical simplicity failed to
meet at least on of the above three criteria. Given the discussion in the last few
sections it should now be clear why the definition of simplicity within the KGS
model meets all three. With respect to the clarity criterion, the KGS model

37



provides an unambiguous axiomatic definition of simplicity.5 Hence, “simplic-
ity” is whatever satisfies said axioms for a given problem, and thus, given a
particular question, one can always construct a partial ordering on theories in
terms of their degree of complexity.

The KGS definition of simplicity meets the second criterion in that it pro-
vides a reasonable definition of simplicity in causal discovery and curve-fitting,
two central problems in all areas of scientific inquiry. Finally, as theories are not
assigned probabilities in the KGS model, and hence, simpler theories cannot be
more probable, it meets the second half of the data-driven criterion in that it
does not beg the question as to why it is rational to prefer simpler theories. As
a result of this third feature of the KGS definition of simplicity, it follows that,
unlike Bayesian arguments that turn on how probable a theory is thought to
be a priori, the KGS justification for Ockham’s razor will justify a systematic
preference for simpler theories no matter how likely such theories are thought to
be a priori.

Importantly, the reader should note that the KGS definition of simplicity
agrees extensionally with many other analyses of simplicity in a number of prob-
lems. Like those who argue simplicity is a matter of minimizing free parameters,
or any number of other measures of syntactic complexity, the KGS analysis of
simplicity in curve-fitting identifies simplicity with lower degree polynomials,
and complexity with higher-degrees. Like those who identified simplicity with
falsifiability, the KGS analysis of simplicity in curve-fitting and causal inference
identifies simplicity with models that are more easily rejected at lower sample
sizes (and hence, more falsifiable), and identifies complexity with models that
might take enormous amounts of data to refute; for example, in curve-fitting, it
is considerably more difficult to rule out the possibility that some cubic poly-
nomial explains available data than it is to rule out that some line explains the
data. Finally, like those who identify simplicity with unifying power, the KGS
analysis of simplicity in causal inference implies that it is often simpler to sup-
pose that there is one cause of many different phenomena when many variables
are correlated.

2.3 Costs of Inquiry and the Efficiency Theorem

In the KGS model, there are three virtues of methods. The first and most
important virtue is convergence; a method M : Wfin → Ans is said to be
convergent provided that for all w ∈ W there exists an nw ∈ N such that
M(w � m) = Tw for all m ≥ nw. In other words, a method M is convergent if
M eventually (i.e. at some point of inquiry) produces the true theory in every
world w, and continues (from that point of inquiry) to produce the true theory
forever.6

5To be fair, the above definition of simplicity in terms of “empirical effects” is not axiomatic,
but it is a special case of an axiomatic definition of simplicity available in Kelly (2009b).

6Importantly, the notion of convergence in the KGS model is a minor variant of the more
general concept of statistical consistency when one (i) considers Th as a metric space with
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A second virtue of a method M is that it minimizes errors. Informally, say
a method M errs in some world w whenever it produces a theory other than
Tw, the theory true of w. More precisely, say a method M errs in w at stage n
if M(w � n) ∈ Th \ {Tw}. Notice, that ‘?’ does not constitute an error. This
allows one to define a function ε : AnsWK,fin ×WK × N→ {0, 1} such that:

ε(M,w, n) =
{

1 if errs at w at stage n
0 otherwise

Let ε(M,w) =
∑
n∈N ε(M,w, n) be the total number of errors committed by

M in w. Favoring methods that converge to the true theory and minimize
total errors is fairly uncontroversial. Most philosophers, working scientists, and
statisticians would recognize the importance of eventually finding true theories
(or at least approximating such theories), and of minimizing errors whenever
possible. Of course, some philosophers might think that there are other virtues
of scientific theories that, in some circumstances, are more important than error
minimization and convergence.7

However, there is third, less standard virtue of methods in the KGS model
that is crucial for proving the Efficiency Theorems: minimization of “retrac-
tions.” A scientist is said to retract his opinion at time n if he advocates some
theory T at time n − 1, and some other answer (whether it be another theory
or ‘?’) at time n. In symbols, say M retracts in w at stage n (where n ≥ 2) if
M(w � n) 6= M(w � (n− 1)) and M(w � (n− 1)) 6= ‘?’. Define:

ρ(M,w, n) =
{

1 if M retracts in w at stage n
0 otherwise

Hence, ρ(M,w) :=
∑
n∈N ρ(M,w, n) is the total number of retractions commit-

ted by some method M in the world w.
Penalizing a scientist for retracting his previous opinions might seem, on

first glance, to reward dogmatism and penalize open-mindedness. However,
recall that the most important virtue of scientific method in the KGS model is
convergence to the truth, i.e. a scientist accrues the greatest loss in scientific
inquiry when he or she adheres to theories that are show to be false. Thus,
the KGS model requires that one eventually abandon false beliefs no matter
how strongly those beliefs are held. In this sense, the KGS model penalizes
dogmatism, so long as one’s dogma is false.

Moreover, costs in the KGS model balance penalizing dogmatism with pe-
nalizing fickleness in one’s theoretical commitments. Penalizing retractions rec-
ognizes that abandoning an old theory in favor of a new one often comes with
heavy costs, both epistemically and pragmatically. What are the “epistemic”
costs of retracting one’s beliefs? 8 Induction, as is known, fails to possess certain

the discrete metric, (ii) considers initial segments of some world w as (deterministic) samples
of increasing size given the unknown world w.

7See Sober (1985) for a discussion of why statistical consistency, for instance, need not be
considered a paramount virtue of estimators.

8The analogy between properties of deductive and inductive inference above was jointly
discovered recently by Hanti Lin and Kevin Kelly.

39



desirable properties that are normally attributed to deduction. In particular,
deduction is valid, in that deductive inferences yield true conclusions from true
premises, and it is monotone, in that one need never abandon belief in a truth
discovered from a deductive inference from true premises.

In induction, one cannot obtain either of these goals. One’s data may accu-
rately reflect measurements of phenomena (and hence be “true” of the world),
and yet, inferences drawn from said data may be false and may need to aban-
doned later in inquiry. Hence, inductive inferences are neither valid nor mono-
tonic. However, “good” inductive procedures ought to be “as sound and mono-
tonic as possible.” They ought to be approximately valid, in that they eventu-
ally yield true conclusions from true premises (i.e. they converge to the truth),
and they ought to be approximately monotonic, in that they minimize unnec-
essary changes of opinions (i.e. they minimize retractions). Thus, gratuitous
retractions are epistemically costly in that they reflect a lack of concern for
monotonicity of belief.

Retracting previously held scientific theories can also lead to substantial
pragmatic costs. For a scientist, abandoning an old theory in favor of a new
one requires learning all of the theoretical consequences and commitments of
the new and unlearning those of the old.9 One must learn new vocabulary
and explanations of familiar phenomena; one must often rework mathematical
calculations in a new framework, repeat computer simulations, and so on.

Further, the pragmatic costs of retractions often extend well-beyond the
university and laboratory. Consider causal inference, and imagine a federal ed-
ucation policy, for example, that needed to be abandoned in light of a new causal
theory concerning the efficacy of a particular type of mathematics curriculum.
Retraining instructors, revising textbooks, and so on is financially expensive
and administratively burdensome. Hence, there are significant reasons to avoid
retracting previously held scientific theories.

Importantly, one should note that retracting a previously endorsed theory
can be costly even if one is abandoning a false theory in favor of a true one.
The costs discussed above are the result of changing one’s mind and occur
independently of whether the newly advocated theory is true or not.

Before developing the KGS model in any greater detail, I want to anticipate
an important objection. One might object that retractions are not so costly
(either epistemically or pragmatically) in every area of scientific inquiry as they
might be in the example involving development of educational policy discussed
above. I agree with this so-called objection. Recall the purpose of the KGS
model is to (i) discover those costs that would make a systematic preference
for simpler theories rational, and (ii) to explain under what circumstances such
costs are reasonably part of scientists’ concerns and goals in a particular area
of inquiry. If one is unconcerned with truth or avoiding error, or if retracting
previously advocated theories is particularly cheap, then the arguments below

9Strictly speaking, according to the above definition, a scientist may not advocate a new
theory at the time he retracts an old one. This is unimportant, as the costs in KGS model
require that a scientist eventually advocate another theory, lest he fail to converge to the truth
in some world.
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provide little reason to heed Ockham’s razor. The force of the Efficiency The-
orem as an argument for Ockham’s razor lies in the fact that, in more areas
of scientific inquiry than not, retractions, errors, and/or failures to find true
theories are far more costly than the alternatives.

Given these definitions, one can define the cost vector λ(M,w) of the method
M in the world w to be the ordered pair 〈ε(M,w), ρ(M,w)〉. Define a partial
ordering on cost vectors as follows:

λ(M,w) � λ(M ′, w) if and only if ε(M,w) ≤ ε(M ′, w) and ρ(M,w) ≤ ρ(M ′, w)

Further, say λ(M,w) ≺ λ(M ′, w) if and only if λ(M,w) � λ(M ′, w) and either
(a) ε(M,w) < ε(M ′, w) or (b) ρ(M,w) < r(M ′, w) (or both).

In the absence of well-defined probabilities on worlds, a scientist interested
in minimizing errors and retractions might wish to pick methods that minimize
the number of errors and retractions he commits in the worst-case. Accordingly,
define the worst case cost bound over a set of worlds W0 ⊆W to be λ(M,W0) :=
sup{λ(M,w) : w ∈ W0}. One can then compare worst-case cost bounds over a
set of worlds W0 in the same way one compared cost bounds over a single world.
Namely, employing M is held to be at least as desirable as employing M ′ in W0

if M commits no more retractions or errors in the worst case in W0; employing
M is strictly preferred to employing M ′ in W0 if M is at least as desirable, and
moreover, M commits either strictly fewer errors or strictly fewer retractions in
the worst-case.

Above, the supremum is defined coordinate-wise, so that sup{λ(M,w) : w ∈
W0} := 〈sup{ε(M,w) : w ∈ W0}, sup{ρ(M,w) : w ∈ W0}〉. This supremum is
always defined as 〈ω, ω〉 bounds all possible cost bounds.

Proposition 2.3.1. IfM is convergent, then the worst case cost bound λ(M,W )
over the set of all worlds is 〈ω, ω〉.

By the above proposition, all convergent methods have the same worst case
cost bounds over the set of all worlds. So we cannot expect Ockham’s razor
to minimize worst-case retractions over all worlds. A similar situation arises
in computer science. In general, there are no finite bounds on the amount of
time and space an algorithm might use, as input sizes are unbounded. For
example, if it takes n2 seconds to multiply two n-digit numbers, then we can
force a computer to take arbitrarily long to multiply by feeding it larger and
larger numbers. To analyze complexity, then, computer scientists compare the
worst case performance of algorithms on inputs of a fixed size. The KGS model
pursues similar approach, by comparing the performance of methods on worlds
of identical empirical complexity. How is complexity defined? For all e ∈Wfin,
define the nth complexity class Compn,e relative to e to be the set of worlds
w ∈ WK,e such that there exists (i) a path 〈Kj〉0≤j≤n of length n + 1 in Ke

and (ii) m0 < m1 . . . < mn ∈ N, where m0 > l(e), such thatwmj = Kj for
all j ≤ n. In other words, complexity is, roughly, a function of the number of
subtle empirical effects predicted by a theory.
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Now it is possible to compare two methods’ M and M ′ performances by com-
paring their worst case bounds on complexity classes. Let λen(M) = λ(M,Compn,e),
and define a partial ordering on methods as follows:

M �e M ′ if and only if for all n ∈ N, we have λen(M) � λen(M ′)

Define M ≺′e M to hold if and only if λen(M) � λen(M ′) for all n ∈ N and there
exists an n0 such that λen0

(M) ≺ λen0
(M ′). That is, M ≺′e M if M performs

at least as well (in terms of errors and retractions) as M ′ on every complexity
class (with respect to e), and performs strictly better in at least one complexity
class. Of course, one may wish to know whether M does strictly better than
M ′ in every complexity class, and for this, we introduce one more abbreviation:

M <<e M
′ if and only if for all ∀n ∈ N(λen(M) ≺ λen(M ′))

Deciding whether to switch from a method M to M ′ after acquiring some
evidence e ∈WK,fin requires evaluating whether M or M ′ accrues more errors
or retractions in the future. But in such cases, analyzing the cumulative costs
of each method is misleading: M may have fewer total costs but accrue more
costs than M ′ in the future. Hence, if we treat past costs as fixed, one can only
evaluate methods that have identical costs in the past. One easy way to do so
is to compare methods that have identical behavior up to the point of inquiry
e in question. Accordingly, if M and M ′ are methods, write M ≈e M ′ if and
only if M(e � j) = M ′(e � j) for all j < n. Now we can state the first efficiency
theorem.

Theorem 2.3.1 (Weak Efficiency Theorem). Let e ∈WK,fin. If M is normally
Ockham (i.e Ockham, stalwart, and eventually informative), then M �e M ′ for
all convergent methods M ′ such that M ≈e M ′.

Of course, the above theorem only proves that Ockham methods perform no
worse than do other methods. Yet a stronger theorem is true. Assuming that the
problem K has no short paths, an Ockham method M performs strictly better
(in the worst-case) than does any non-Ockham method M ′ from any point of
inquiry at which the M ′ fails to be Ockham onward. However, the argument
for this claim requires introducing a fourth cost of inquiry not discussed above:
retraction times. For any given method M and any world w, one can define a
retraction vector γ(M,w) that is a vector of natural numbers, with coordinates
containing the successive times of inquiry at which M retracts in w. One can
then compare worst-case retraction vectors of methods across worlds, where one
retraction vector is worse than another if it contains at least as many retractions
as the former at stages of inquiry at least as late.10 It turns out, then when
retraction times are considered, non-Ockham methods perform strictly worse
than do Ockham methods.

More formally, say M violates Ockham’s razor at e if M(e) 6∈ Ocke. With
these definitions, one can now state the strong efficiency theorem which is proven
in Kelly (2007) and in more general form in Kelly and Mayo-Wilson (2008).

10See Kelly (2007) for a precise definition.
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Theorem 2.3.2 (Strong Efficiency Theorem). Suppose M is a normally Ock-
ham method (i.e M is Ockham, stalwart, and eventually informative). Further,
assume that M ′ is a convergent method. Let e ∈ Wfin, and suppose that M ′

violates Ockham’s razor time at e. Then M <<e M
′.11

It follows immediately from Theorems 2.2.1 and 2.2.2 that Ockham methods
are most efficient in the full causal discovery problem when V is finite, and in
the full causal and edge discovery problems when V is infinite.

11As discussed above, the relation <<e used here must included a comparison of retraction
times.
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Chapter 3

Randomized Strategies and
Ockham’s Razor

In the last chapter, I sketched the KGS model of inquiry, and described the
Efficiency Theorems, which prove that a systematic preference for simpler the-
ories is truth-tracking in that scientists who employ normal Ockham methods
make fewer errors and retract their opinions less often (in the worst case) than
those who do not. The Efficiency Theorems, however, are limited in two pri-
mary ways. First, effects are assumed to be unambiguous in the sense that they
are not subject to measurement error or chance deviation from their true value.
Second, in the KGS model, a scientist must deterministically choose theories
given available data; she is not permitted to use any sort of randomizing device.

In this chapter, I generalize the KGS model to consider randomized methods
for inferring theories from data, thereby addressing the second limitation. To do
so, I represent the KGS model as a strategic game, so that randomized methods
are formally represented by mixed strategies in the game. In the game-theoretic
representation of the KGS model, there are two players, the scientist and Nature,
whose interests are strictly competitive. That is, any gain for the scientist is a
loss for Nature and vice versa. In the upcoming sections, I will rigorously define
the actions available to the scientist and Nature, what their preferences are, and
so on. However, for now, it is important to explain the purpose of employing
game theory at all, and how one should interpret a game in which “Nature” is
a competitor.

First, and most importantly, representing the KGS model as a game does
not commit one to the (untenable) assumption that there is an intelligent agent
called “Nature” whose purpose is to wreak havoc on scientific inquiry. Rather,
one can imagine a mixed strategy for Nature as a scientist’s “prior” probability
on possible states of world (so that a pure strategy for Nature represents the
scientist’s belief that a particular state is true with probability 1). The game-
theoretic concepts of “best response” and “Nash equilibrium,” then, allow one
to investigate what types of methods a scientist would regard as rational given
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various candidate prior probabilities on states of the world.
Second, representing the KGS model game theoretically suggests a deep ex-

tension of Kelly’s efficiency theorem. Although a full proof is not yet available,
the results of this chapter suggest the following conjecture:

Conjecture: When the KGS model is appropriately represented as a two-
person, strategic form game, then the only Nash equilibria are those in which
the scientist plays a mixture of Ockham methods.

If the conjecture is true, then one can conclude that, even amongst random-
ized methods for selecting theories from data, a systematic preference for sim-
pler theories is still rational (in the sense that a scientist whose randomized
method favors simpler theories will minimize errors and retractions during in-
quiry). Moreover, the conjecture would imply that a systematic preference for
simpler theories is rational even when one believes the truth is arbitrarily com-
plex with high probability. Because, as I have argued, various Bayesian defenses
of Ockham’s razor beg the question by assuming the truth to be simple with
high probability, the arguments I present provide a novel defense of Ockham’s
razor.

The structure of this chapter is as follows. In the first section, I review basic
game theory. The section can be skipped by anyone with familiarity with the
subject. Next, I analyze a class of games, which I call quasi-games, which relax
the standard game-theoretic assumption that players’ preferences are linearly
ordered. I then prove a generalized version of Nash’s theorem for games in which
player’s preferences are quasi-orders with a particular structure. In the second
section, I represent the KGS model as a quasi-game in three different ways, and
I analyze the equilibria in each of the three representations.

3.1 Strategic Games

In game theory, it is standard to distinguish between strategic games and
extensive-form games. In the former, a finite number of players each simul-
taneously choose one action to perform, and the payoffs to each player are a
function of the set of all actions chosen by all of the players. In contrast, in
extensive-form games, players make sequential decisions, often informed by the
actions taken by other players in the past. Moreover, unlike strategic games, the
same player may act more than once in an extensive-form game. In this section,
I provide three ways of representing the KGS model as a strategic game, and
argue the second is most appropriate. I first review some basic game theory.

3.1.1 Nash Equilibria in Finite and Infinite Strategic Games

A strategic game G is a triple G = 〈N, {Ai}i∈N , {�i}i∈N 〉 where:

1. N is a finite set of players, which, for simplicity, will be labeled by natural
numbers {1, 2, . . . , N}
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2. For each i ∈ N , the set Ai is the set of actions available to player i

3. For each i ∈ N , the relation {�i}i∈N is a linear, quasi-order on A =
×i∈N Ai. The relation {�i}i∈N is called the preference relation of player
i.1

A game G is called finite if A is a finite set. For all a, a′ ∈ A, write a ≈i a′ if
a �i a′ and a′ �i a. Condition (3) is sometimes strengthened so that a = a′

whenever a ≈i a′. In other words, players’ preference relations are often assumed
to be anti-symmetric. In such cases, �i is called a total order. Say that Player i
weakly prefers a to a′ if a �i a′, and say that he strictly prefers a to a′, written
a′ ≺i a, if a �i a′ but a 6�i a′. For the purposes of modeling scientific inquiry, in
upcoming sections we will drop the requirement of linearity in Condition (3), so
that each player’s preference relation is assumed only to be a quasi-order (i.e.
not every strategy profile need be comparable under a given player’s preference
relation).

Many of the fundamental results of elementary game theory, however, no
longer hold if player’s preferences are not linearly-ordered, so we first review
standard game-theoretic results in the presence of the linear ordering assump-
tion. Then we show how they change when the requirements on preference
relations are relaxed. Standard examples of games include the following:

Example: Bach Or Stravinsky Suppose that two friends, Manuel and Deb-
orah, wish to attend a classical musical concert tonight with one another,
but neither Manuel nor Deborah is able to contact the other before the con-
cert (perhaps Manuel has no cellphone). There are two different concerts
taking place: a Bach concert and a Stravinsky performance. Manuel would
like to see the Bach concert with Deborah; Deborah would prefer to see the
Stravinsky concert with Manuel, and both prefer seeing a concert with the
other than going to the symphony alone. Formally, there are two players
N = {M = Manuel,D = Deborah}, each of whom can choose to attend the
Bach or Stravinksy concert AM = AD = {B = Bach, S = Stravinsky}, and
their respective preference orderings are as follows:

(B,B) �M (S, S) �M (B,S) �M (S,B)

(S, S) �D (B,B) �D (B,S) �D (S,B)

Example: Prisoner’s Dilemma Suppose that two suspects for a crime, Bonny
and Clyde, are taken to separate holding cells to be interrogated. Each suspect
is then offered the following deal. If neither suspect confesses to committing

1Here, a quasi-order is a reflexive, transitive binary relation. In mathematics, quasi-orders
are more frequently called pre-orders. An ordering on a set is linear just in case any two
elements of the set are comparable in the ordering. Note that one does not assume that
player’s preferences are anti-symmetric, as there might be two distinct outcomes that are
equally desirable. For example, if a decision-maker enjoys coffee as much as he does tea, then
“coffee � tea” and “tea � coffee” might both be true, but this does not imply that coffee and
tea are the same beverage.

46



the crime, then both will receive a mandatory 2 years in prison. If one suspect
confesses while the other remains silent, then the confessor will receive only a
year sentence for his or her cooperativeness and the silent one will receive 10
years in prison. Finally, if both parties confess, then both will receive 3 year
sentences, as neither suspect’s confession provides information to the police that
they would have failed to obtain had only one party decided to remain silent.
Both Bonny and Clyde know that the other has been offered the same deal,
and each must decide indepedently whether to confess or remain silent without
knowledge of the other’s choice. Outcomes of the game are represented by
ordered pairs from {S,C}×{S,C}, where (S,C), represents the outcome where
Bonny stays silent (S) and Clyde confesses (C). Both Bonny and Clyde prefer
to minimize the time they spend in jail, and so their preference relations are as
follows:

(C, S) �B (S, S) �B (C,C) �B (S,C)

(S,C) �C (S, S) �C (C,C) �D (C, S)

Example: Matching Pennies Suppose Manuel and Deborah decide to play a
second game called matching pennies. In this game, each player has two possible
moves: “heads” and “tails.” If both players choose the same move (i.e. both
players play heads, or both players play tails), then Manuel wins a point and
Deborah loses a point. Otherwise, Manuel loses a point and Manuel wins a
point. Again, the outcome space is a set of ordered pairs where each coordinate
is either H or T , representing heads and tails respectively, and Manuel and
Deborah’s preference relations are as follows:

(H,H) ≈M (T, T ) �M (H,T ) ≈M (T,H)

(T,H) ≈D (H,T ) �D (H,H) ≈D (T, T )

Game theorists argue that, under particular models of rationality, players will
utilize particular strategies in the above games. To see why, it will be helpful
to introduce some notation. Call an element a ∈ A a strategy profile. For any
player i, let a−i = (a1, . . . ai−1, ai+1, . . . , aN ) be the N − 1-tuple consisting of
all coordinates of a except ai. For any strategy profile a ∈ A and any a∗i ∈ Ai,
let (a−i, a∗i ) denote the result of replacing the ith coordinate of a with a∗i . Then
say a strategy profile a is a Nash equilibrium if a �i (a−i, a∗i ) for all i ∈ N and
all a∗i ∈ Ai.

There are several alternative definitions of a Nash equilibrium. For each
player i ∈ N , define the set B(a−i) of best responses given a−i as follows:

B(a−i) = {a∗i ∈ Ai | (a−i, a∗i ) �i (a−i, a∗∗i ) for all a∗∗i ∈ Ai}

Alternatively, define a player’s uB(a−i) unbeaten responses given a−i as follows:

uB(a−i) = {a∗i ∈ Ai | ¬∃a∗∗i ∈ Ai such that (a−i, a∗∗i ) �i (a−i, a∗i )}

When each player’s preference relation is linear, it’s clear that uB(a−i) =
B(a−i), and thus, a ∈ A is a Nash equilibrium if and only if ai ∈ B(a−i)
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for all i ∈ N if and only if ai ∈ uB(a−i) for all i ∈ N. When one drops the
linearity assumption, however, a player may have unbeaten responses that are
not best responses in the sense defined above, and so the equivalence of the
above definitions does not hold.

For examples of Nash equilibria, again consider the above three games. By
definition, Bach or Stravinsky has two Nash equilibria: (B,B) and (S, S). The
prisoner’s dilemma has a unique Nash equilibrium, namely, when both players
confess. Finally, the matching pennies game has no Nash equilibria. It turns
out, however, that if one allows players to employ randomizing devices, one can
likewise find Nash equilibria for the matching pennies game. In fact, under very
general conditions, any finite game has Nash equilibria when one allows players
to employ randomizing devices. These results are reviewed in the next section,
and I then discuss their importance to an analysis of the KGS model of inquiry.

3.1.2 Mixed Strategies and Nash’s Theorem for Strategic
Games

In order to model the use of randomizing devices in games, let Ai be a σ-algebra
over Ai. In most applications, it is assumed that Ai contains every singleton
of the form {ai}, where ai ∈ Ai. Define a mixed strategy for player i to be a
probability measure p overAi. When G is a finite game, as in many applications,
Ai is a finite set and it is standard to define Ai to be 2Ai so that each action
ai ∈ Ai has a well-defined probability. If p is countably additive, then a mixed
strategy is called a countable mixture, and if p is purely finitely additive, then
p is called a purely finite mixture. In most standard applications, it is assumed
that p is countable mixture.

How does one assess the desirability of playing a mixed strategy? Assume
that, for each player i ∈ N , each strategy profile a ∈ A can be assigned a
numerical utility ui(a).2 For each player i ∈ N , let P(Ai) represent the set of
probability measures on Ai. Define player i’s utility for p ∈ ×i∈N P(Ai) as
follows:

ui(p) =
∑
a∈A

[(Πj∈N pj(aj)) · ui(a)]

That is, the utility of a mixed strategy p is the weighted average of the utilities
it assigns to each (pure) strategy profile, where the weights are exactly the
probabilities of a particular strategy profile being being the outcome of the game.
Here, the probability that a strategy profile a ∈ A is played is Πj∈N pj(aj); this
assumption of probabilistic independence is justified by the fact that players
choose their actions simultaneously in strategic games.

Why are mixed strategies important? Again, consider the matching pennies
game. Suppose Manual employs the strategy p = ( 1

2 ,
1
2 ), where p represents the

mixed strategy in which heads and tails are each played with equal probability of
2In decision theory, it is standard to first axiomatize plausible properties of preference

relations of rational agents, and then to prove that such axioms imply that one’s preferences
are representable as numerical utilities. See Savage (1972).
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one half. What is Deborah’s best response? It turns out that, whatever strategy
Deborah employs, she can expect to win half the times she plays matching
pennies if Manuel plays p. Suppose that Deborah plays the strategy q = (q1, 1−
q1). Deborah wins exactly when Manuel and she play different actions (i.e. one
player chooses heads while the other chooses tails). Hence, given that Manuel
and Deborah play simultaneously (and thus, their actions are probabilistically
independent), then the probability that Deborah wins is exactly:

q1 ·
1
2

+ (1− q1) · 1
2

=
1
2

If Deborah likewise chooses the strategy p = (.5, .5), therefore, then Manual can
expect to win exactly half of the games whatever strategy he employs, and so
he has no reason to choose a strategy other than p. It follows that the strategy
profile (p, p) is a mixed strategy Nash equilibrium of the matching pennies game.

The example of matching-pennies is not unique. In light of the following
theorem (due to Nash), extending a game by mixed strategies creates mixed
strategy Nash equilibria under very general circumstances.

Theorem 3.1.1 (Nash 1950). Let G be a finite strategic game in which each
player’s preferences are representable as numerical utilities. Then G has a count-
ably additive mixed strategy Nash equilibrium.

Each assumption of Nash’s theorem is necessary to obtain the desired result.
For example, infinite games need not have countably additive mixed strategy
Nash equilibria. Consider a two player game called, “Pick the biggest natural
number.” Every natural number represents a possible action for each player,
and a player wins in this game if and only if he picks a larger natural number.
Clearly, there are no pure strategy Nash equilibria in this game because, for
if a player chooses a smaller integer than his opponent, then he would have
benefited from choosing a different, larger integer.

Moreover, it can be shown that there there are no countably additive Nash
equilibria. An informal argument is given here. Let p1(n) represent the proba-
bility that player one plays the natural number n. Because player one’s mixed
strategy must be countably additive, it follows that:

∞∑
n=0

p1(n) = 1

In other words, for any ε, there is some nε ∈ N such that player one places
probability at least 1− ε on all natural numbers before nε. Player 2, then, can
achieve an expected payoff of at least 1−ε so long as he chooses a mixed strategy
that assigns probability 1 to numbers greater than nε. In such a case, Player
1’s expected payoff is ε. But notice that Player 2’s strategy must likewise be
countably additive, and hence, there is some mε > nε such that Player 2 plays
numbers less than mε with probability 1− ε. Thus, Player 1 could improve his
expected earnings from ε to 1− ε by playing an alternative mixed strategy that
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assigns probability one to numbers greater than mε. And so on. So there are
no countably additive Nash equilibria either.

There is an extensive literature on infinite games, and the mathematical con-
ditions under which such games have equilibria.3 However, these results stan-
dardly assume, like Nash’s theorems, that players preferences are representable
by numerical utilities, or at the least, player’s preferences over outcomes are
linearly ordered (i.e. confronted with two outcomes, a player weakly prefers one
outcome to the other).

Yet one can also see the failure of Nash’s theorem when player’s preferences
are not required to be linearly ordered. Consider a one-person game in which
the sole player has two possible actions, neither of which he prefers to the other.
That is, the two possible outcomes of the game are incomparable to the player;
he is not indifferent between the two outcomes. Then, by definition, no action
is preferred to all others, and so there are no Nash equilibrium simpliciter in
such a game. Both actions, however, are what I call quasi-Nash equilibrium,
which will be defined more precisely below. More complicated examples can be
constructed in multi-player games in which there may exist distinct equilibria,
some of which are Nash and some of which are merely quasi-Nash.

In formalizing the KGS model of inquiry, I consider games in which players
have both (i) an infinite number of actions and (ii) quasi-ordered preferences.
Despite the failure of these two crucial assumptions, which are standardly made
in game theory, the games I discuss often have non-trivial Nash equilibria. Be-
fore discussing such equlibria, it will be helpful to prove some results about
games in which players’ preferences over outcomes are not linear, as such games
are rarely discussed in game theory.

3.1.3 Quasi-Ordered Preferences in Strategic Games

In this section, I generalize Nash’s theorem to consider games in which players
desire to maximize a finite set of goods, some of which are comparable, and
some of which are not. For example, suppose a player desires to maximize
three different goods: wealth, leisure time, and reputation. The imaginary
player may prefer, say, wealth to both leisure time and reputation, but she
may not have well-defined preferences concerning how leisure time and personal
reputation ought to be balanced against or traded for one another. Alternatively,
a player may be interested in maximizing different qualities or virtues of a single
object. For instance, car buyers often seek cars that are simultaneously reliable,
aesthetically-pleasing, and so on.

In either case, a player’s preferences may only be quasi-ordered, and more-
over, they may contain lexicographical comparisons, in the sense that some
goods or virtues, no matter how small in quantity, are preferred to other goods
or virtues, no matter how great the quantity. For example, some car buy-
ers are primarily concerned with reliability, and they only consider aesthetic

3See Berge et. al. (1957) Parts IV, and V. See Heath and Sudderth (1972) and Kadane,
Schervish, and Seidenfeld (1999) pp. 246-267 for a discussion of finitely-additive equilibria in
infinite games.
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features of cars to break ties between vehicles that are equally reliable. It is
well-known that, in general, there may be no equilibria in games in which play-
ers’ preferences are lexicographically ordered.4 However, below I prove that,
in several interesting games, equilibria exist even when players preferences con-
tain lexicographically-ordered components. Moreover, I prove that, although
relaxing the ordering assumption might seem to be a major revision to the defi-
nition of the game, it turns out that when the quasi-orders representing players’
preferences are of a particular form, the proof of Nash’s theorem remains fun-
damentally unchanged.

Before embarking on studying games in which players’ preferences are only
quasi-ordered, it is important to explain why one should be interested in the
hybrid lexicographic-pareto preference relations discussed above. Recall that,
in the KGS model, a scientist wishes to find a convergent method the mini-
mizes errors and retractions during inquiry. Thus, the scientist is interested in
maximizing three different virtues of scientific methods, namely, convergence,
avoidance of error, and retraction minimization. In the KGS model, convergent
methods are preferred to non-convergent ones always, but there is no prescribed
way of balancing errors against retractions. Therefore, the costs of inquiry in
the KGS model are best represented as one of the preference relations described
above, in which some goods and/or values are ranked lexicographically higher
than others, while other goods may simply be incomparable.

Define a strategic quasi-game G to be a triple G = 〈N, {Ai}i∈N , {�i}i∈N 〉,
where

1. N is a finite set of players, which, for simplicity, will be labeled by natural
numbers {1, 2, . . . , N}

2. For each i ∈ N , the set Ai is the set of actions available to player i

3. For each i ∈ N , player i’s preference relation {�i}i∈N is a reflexive, quasi-
order on A = ×i∈N Ai.

Notice that only difference between the definition of a strategic game and a
quasi-game is Condition (3), as in quasi-games players preference are not re-
quired to be linearly ordered. Hence, every game is a quasi-game, but not vice
versa.

Recall that Nash equilibria exist in finite strategic games in which players
preferences are representable by numerical utilities. Hence, one should expect
Nash’s theorem to generalize to quasi-games only when players’ preferences are
representable in some numerical fashion. In this section, I will focus on a class
of quasi-games, which I call quasi-game for incomparable goods, in which players
preferences are representable by finite vectors of real numbers.5 These vectors
will represent quantities of different goods or sources of value available to a given
player. For example, if a player wishes to maximize wealth and leisure time,

4See Fishburn (1972).
5I do not know what axioms a preference ordering must satisfy so that it can be represented

in the way I describe below.
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then his or her preferences might be represented as ordered pairs (x, y) ∈ R2,
where x represents some number of dollars, and y represents number of hours.
As discussed above, some of the goods the players wish to maximize may be
incomparable, as for example, if a player does not know how to compare amounts
of wealth and leisure time. Other goods will be lexically ordered, so that, for
example, a player who abhors chocolate ice cream may prefer one teaspoon of
vanilla ice cream to any arbitrarily large amount of chocolate.

To represent such preference relations, let k = 〈k1, . . . , kn〉 ∈ ω<ω be a finite
sequence of natural numbers, and let l(k) denote its length. Here, a coordinate
ki of k represents quantities of a finite number of goods which a player will
consider to be incomparable. If i < j, then the player prefers all goods in ki to
all those represented in kj . As in previous sections, for any sequence r, let ri
denote the ith element in the sequence r. So if r ∈ Rk, then ri is the ith real
number of the vector r (assuming, of course, i ≤ k).

For any k ∈ N, define a quasi-order 3k on Rk such that r 3k r′ if and only
if ri ≥ r′i for all i ≤ k. In other words, 3k is the (weak) Pareto ordering on
Rk. For any k ∈ ω<ω, let k∗ =

∑
i≤l(k) ki, and then define Rk = Rk∗ . For any

j ≤ lh(k), let πj : Rk → Rkj be the projection:

πj(〈r1, r2, . . . , rk∗〉) = 〈r∑
i<j ki

, . . . , rkj+
∑
i<j ki

〉

Finally, given k ∈ ω<ω, define a quasi-ordering .k on Rk as follows. For r, r′ ∈
Rk, say r . r′ if and only if there exists j ≤ l(k) for which

πi(r) = πi(r′) for all i < j and
πj(r) 2kj πj(r′)

Suppose that, for each player i ∈ N , there is a k(i) ∈ ω<ω and a function
fi : A→ Rk(i)∗ such that for a, a′ ∈ A :

a �i a′ ⇔ fi(a) .k fi(a′)

Then say G = 〈G, {fi}i∈N 〉 is a strategic quasi-game for incomparable goods.
If l(k(i)) = 1 for all players i ∈ N , then say G is a simple, strategic quasi-
game for incomparable goods. In other words, in such simple games, players’
preference relations do not contain lexicographic components, but rather, are
merely pareto orderings on finitely many goods or types of value. Here, the
functions fi associate each strategy profile with a list of the finite set of goods
of interest to player i. Notice that, because all of the information concerning
player i′s preferences is encoded by the mapping fi, one can describe a strategic
quasi-game for incomparable goods by a triple 〈N, {Ai}i∈N , {fi}i∈N 〉.

As noted above, when players’ preferences are linearly-ordered, there are
several alternative definitions of a Nash equilibrium. Namely, a ∈ A is a Nash
equilibrium if and only if ai ∈ B(a−i) for all i ∈ N if and only if ai ∈ uB(a−i)
for all i ∈ N. In strategic quasi-games, these definitions are no longer equivalent
and as such, it is important to introduce different terminology for both.
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Definition 3.1.1. Say a ∈ A is a strong Nash equilibrium if and only
if ai ∈ B(a−i) for all i ∈ N . Say a ∈ A is a quasi-Nash equilibrium if
ai ∈ uB(a−i) for all i ∈ N.

Every strong Nash equilibrium is a quasi-Nash equilibrium but not vice versa
(i.e. B(a−i) ⊆ uB(a−i) for any a ∈ A and i ∈ N). Moreover, if each player’s
preference relation is linear, then the set of Nash equilibria and quasi-Nash equi-
libria are identical. In order to generalize Nash’s theorem, one needs to define the
payoff associated with a mixed strategy in a quasi-game for incomparable goods.
The obvious approach is taken, where the payoff is the weighted averaged of the
strategy profiles in each coordinate. That is, suppose G = 〈N, {Ai}i∈N , {fi}i∈N 〉
is a finite, strategic game for incomparable goods. Define the mixed extension
G∗ to be the quasi-game for incomparable goods such that:

• N is the finite set of players from G

• Player i’s actions are P(Ai), which is the set of probability measures on
Ai. Here, Ai is the set of actions available to player i in the quasi-game G

• For each i ∈ N , the function f∗i : ×i∈N P(Ai) → Rk(i) extends fi from
the game G so that f∗i (p1, . . . , pN ) =

∑
a∈A [(Πj∈N pj(aj)) · fi(a)]

• For every i ∈ N , player i’s (quasi) preference ordering�i on P = ×i∈N P(Ai)
is encoded by f∗i . In other words, for all p, p′ ∈ P , one has p �i p′ ⇔
f∗i (p) .k(i) f∗i (p′)

Let G be the mixed extension of a finite, strategic quasi-game for incompara-
ble goods. Say a player’s preference relation �i is convex if and only if for every
p ∈ P , the set {p′i ∈ P(Ai) | (p−i, p′i) �i p} is convex in Rk(i). Further, say �i
is continuous if and only if for every pair of sequences 〈ak〉k∈N and 〈bk〉k∈N with
limits a and b respectively, if ak �i bk for all k, then a �i b.6

Proposition 3.1.1. A strategic quasi-game has a quasi-Nash equilibrium if

• for all i ∈ N the set of actions Ai for player i is a nonempty, compact,
convex subset of Rk for some k ∈ N

• for all i ∈ N , player i’s preference relation �i is continuous and convex on
A.

Proof: This is Proposition 20.3 in Osborne and Rubinstein (1994), which is
a special version of Theorem in Nikaido and Isoda (1955). The same proof works
here, as Nikaido’s proof proceeds by contradiction assuming the non-existence
of a quasi-Nash equilibrium (in our sense) and then employing the equivalence
of a quasi-Nash equilibrium and strong Nash equilibrium in strategic games.

6Here, limits are with respect to the standard Euclidean metric on Rn. Also, recall that a
subset K ⊆ Rn is convex provided that for every pair x, y ∈ K and any number s ∈ [0, 1], the
element sx + (1 − s)y ∈ K. This captures the notion that if x and y are in K, then the line
joining x and y also lies entirely in K.
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Lemma 3.1.1. Let G∗ be the mixed extension of a simple, finite, strategic
quasi-game for incomparable goods. Then for all i ∈ N , player i′s preference
relation is continuous and convex on P(Ai).

Proof: The lemma follows immediately from the continuity and convexity
of the relation ≤ on R, but we fill in the details for clarity.

Let (rn)n∈N, (qn)n∈N be two infinite sequences in Rk such that (i) rn 3k qn

for all n ∈ N and (ii) limn→∞r
n = r and limn→∞q

n = q. We must show r 3k q.
Suppose not. Then there is some qj > rj for some j ≤ k. Hence, there is some
ε > 0 such that qj = rj + ε. As rn → r, there is some n0 such that |rmj − rj | < ε

2
for all m ≥ n0. Similarly, as qn → r, there is some n1 such that |qmj − qj | < ε

2
for all m ≥ n1. Let n = max{n0, n1}. It follows that rmj < rj + ε

2 < qj− ε
2 < qmj

for all m ≥ n. In particular, by the definition of the ordering 3k, it follows that
rn 63 qn, contradicting assumption. So 3k is continuous.

To show that 3k is convex, suppose r, r′ 3k q. By the definition of 3k, it
follows that rj , r′j ≥ qj for all j ≤ k. Hence, for all j ≤ k and all δ ∈ [0, 1], it
follows that (δ · rj) + ((1− δ) · r′j) ≥ qj , which implies (δ · r) + ((1− δ) · r) 3 q,
as desired. �

Theorem 3.1.2. Every simple, finite, strategic quasi-game for incomparable
goods has a mixed strategy quasi-Nash equilibrium.

Proof: If the set of player i’s actions Ai = {a1, . . . , an} is a finite set for all
i ∈ N , then the a probability distributions p ∈ P(Ai) over Ai is representable
as a vector in Rn, namely, 〈p(a1), . . . , p(an)〉. The set of all probability distribu-
tions P(Ai) on Ai is clearly non-empty, convex, and compact. By Lemma 3.1.1,
each player i′s preference relation is continuous and convex on P(Ai). Hence,
by Proposition 3.1.1, there exists a quasi-Nash equilibrium p ∈ P. �

Requiring the quasi-game to be simple is necessary for the proof of Lemma
3.1.1, as the relation .k is not continuous when l(k) > 1. For example, let
k = 〈〈1〉, 〈1〉〉, which is the standard lexicographic ordering .k on R2. That is,
.k is the ordering such that 〈x, y〉 .k 〈x′, y′〉 if and only if (i) x ≤ x′ or (ii)
both x = x′ and y ≤ y′. Let 〈rn〉n∈N be the sequence rn = 〈2− 1

2n , 2〉, and let
qn be the constant sequence 〈2, 1〉. Then rn <k qn for all n, but

〈2, 1〉 = lim
n→∞

qn <k lim
n→∞

rn = 〈2, 2〉

Hence, .k is not continuous. It is an open question whether one can amend the
above proof to quasi-games for incomparable goods more generally.
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3.2 Three Representations of the KGS Model as
a Quasi-Game

I now describe three ways in which one might represent the KGS model of
inquiry as an infinite strategic game. In each of the three representations, one
begins with the assumption that there are two players: Nature and the scientist.
I will use N to denote “Nature,” and S to denote scientist.7 The three ways
of understanding the KGS model, then, correspond to ways in which one can
specify the actions of these two players. After describing the three different
representations, I argue the second is the most reasonable model of scientific
inquiry, as it captures the dynamic aspect of learning over time in a way the
first representation does not, and it does not anthropomorphize Nature in the
way that the third does.

Before I begin, two remarks are in order. First, one might ask, “if only the
second representation of the KGS model as a game is philosophically interest-
ing, why do I spend so much time discussing the other two?” It turns out,
for purely formal reasons, that a number of the mathematical results concern-
ing the first representation of the KGS model can be re-used in analyzing the
second and third representations. Similarly, the third representation exhibits a
mathematical symmetry not possessed by the second, and thus, it contributes
to an explanation of why the second model does and does not have equilibria
under various assumptions.

Second, all of the games discussed in this paper are strategic (also called
normal form) games rather than extensive-form games. Recall, that in strate-
gic games, players act simultaneously, whereas in extensive games, players act
sequentially and can (in some circumstances) choose their next move in light of
previous moves made in the game. This distinction is important, but the ar-
guments below show that the game-theoretic analogs of the Efficiency Theorem
can be proven using only strategic form representations of the KGS model.

3.2.1 G : Actions as Answer and Effect Sequences

Imagine that inquiry is a one-shot, simultaneous-play game between nature and
the scientist in which the scientist’s set of pure strategies is identical to the set
of infinite sequences of answers, and that nature’s set of pure strategies is the
set of infinite sequences of nested sets of effects. In other words:

AN = {η ∈ (2E)ω : ηn ⊆ ηn+1 for all n ∈ N}
AS = Ansω

7From hereon, I will not use N to refer to the set of players in a game. Similarly, A will no
longer represent the set of strategy profiles, but rather, will be used as a variable to indicate
an element of Ans as defined in the KGS model.
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In order to define mixed strategies, however, one must introduce some defini-
tions. For any α ∈ AN , η ∈ AS , and m ∈ N, define:

[α � m] = {α′ ∈ AS : α′ � m = α � m}
[η � m] = {η′ ∈ AN : η′ � m = η � m}

In other words, [α � m] is the set of infinite answer sequences α′ that are identical
to α up to stage m. Similarly, [η � m] is the set of infinite effect sequences η′

that are identical to η up to stage m. Let AS = σ({[α � n] : α ∈ AS , n ∈ N})
and AN = σ({[η � n] : η ∈ AN , n ∈ N}) be the respective σ-algebras created by
taking the σ-closure of the events defined above.8 It is convenient to know that
the following events are measurable in these two σ-algebras.

Proposition 3.2.1. The following events are measurable:

1. For any A ∈ Ans and any m ∈ N, the event [αm = A] = {α ∈ AS : αm =
A} is AS-measurable. For any E0 ⊂ E, the event [ηm = E0] = {η ∈ AN :
ηm = A} is AN -measurable

2. For any α ∈ AS , the singleton {α} is AS-measurable, and analogously,
the singleton {η} is AN -measurable. In particular, any world w ∈ W is
AN -measurable.

3. For any E0 ⊂ E, the set CE0
m = {η ∈ AN : ηm′ = ηm = E0 for all m′ ≥

m} is AN measurable. Similarly, for any A ∈ Ans, the set CAm = {α ∈
AS : αm′ = αm = A for all m′ ≥ m} is AS-measurable.

4. For any set E0 ∈ K The set CE0 = {η ∈ AN : ∃m∀m′ ≥ m(ηm′ = ηm =
E0)} is AN -measurable. Similarly, for any A ∈ Ans, the set CA = {α ∈
AN : ∃m∀m′ ≥ m(αm′ = αm = A)} is AS-measurable.

5. The set CKm = {η ∈ AN : ηm′ = ηm ∈ K for all m′ ≥ m} is AN
measurable.

6. The set of worlds W is AN -measurable, and thus, AN contains the power
set P(W ) of worlds.

7. Define I(η) to be the greatest natural number n such that there are m1 <
m2 . . . < mn ∈ N and ηm1 ⊂ ηm2 ⊂ . . . ⊂ ηmn ∈ K such that Tηmi 6=
Tηmi+1

for all i ≤ n. Let [I(η) = n] = {η ∈ AN : I(η) = n}, and define

8Because Ans and E are countable, the σ-algebras AS and AN are isomorphic to the
standard Borel algebra on ωω . See Appendix 1 for definition of “Borel Algebra.” That is,
because Ans is countable, one can think of a sequence in Ansω simply as a sequence of natural
numbers in ωω (the so called Baire space). Then, just as one defines a topology on ωω , one
can consider the sets [α � m], for example, for the basis of a topology on AS , and so the AS

is simply the Borel algebras with respect to this topology.
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Compn to be the set W ∩ [I(η = n)]. Compn is called the “nth complexity
class.” Then Compn is AN -measurable.9

Proof:
(1) As Ans is countable, the set of sequences Ansn+1 of answers of length n+ 1
is also countable. Hence, the set Ansn+1

A of finite sequences of answers of length
n+1 whose last coordinate is A is at most countable, and it’s also clearly infinite
as Ans is countable. Thus

[αm = A] =
⋃

α�n+1∈Ansn+1
A

[α � n+ 1]

is a countable union of measurable events, and is therefore measurable. The
exact analogous approach applies to showing [ηm = E0] is measurable.
(2) Notice that

α =
⋂
m∈N

[α � m]

is a countable intersection of measurable events by (1), and hence is measurable.
Similarly for η.
(3) CE0

m =
⋂
m′≥m[ηm′ = E0] is a countable intersection of measurable events

by (1). Similarly for CAm.
(4) CE0 =

⋃
m∈N C

E0
m , and similarly for CA.

(5) Follows immediately from the fact that CKm =
⋃
E0∈K C

E0
m and that K is

countable.
(6) W is measurable because W =

⋃
m∈N C

K
m , and CKm is measurable by (5). To

show P(W ) ⊂ AN , notice that any subset W0 ⊆W is at most countable because
W is itself countable. Hence, W0 is at most a countable union of singletons,
and so is measurable.
(7) Follows immediately from (6). �

Say a mixed strategy for the scientist is a probability measure pS on AS
and that a mixed strategy for Nature is a probability measure pN on AN . To
finish specifying the representation of the KGS model as a game, one needs
to define the preference relations on strategy profiles. Two major caveats are
necessary before I introduce said preference relations. First, notice that, in
allowing her to choose arbitrary sequences in η ∈ AN , Nature is no longer
constrained to stop presenting effects at any point in inquiry, which contradicts
the assumption in the KGS model that only finitely many effects occur in any
world. By appropriately defining the preference relations below, however, I
ensure that there is a cost to presenting infinitely many effects, which ensures

9In Kelly’s papers, the definition of complexity class differs slightly from the one presented
here. The relation between the two is that for all n, the definition of complexity class n here
is a subset of the complexity class n is Kelly’s sense, namely, the subset of worlds in which
there are no “jumps” in complexity. The reader is urged to consult those papers to examine
the difference more formally.
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that Nature, if behaving rationally, will only choose answer sequences that are
worlds. Again, one should be careful not to understand this feature of the game
as modeling the preferences of some agent called “Nature.” Rather, penalizing
Nature for presenting an infinite number of effects is equivalent to forgiving a
scientist for his or her mistakes when confronted with empirical problem that
is, by definition, unsolvable in any finite amount of time.

Second, throughout the following three sections, I discuss preference rela-
tions that contain infinitely long chains, in the sense that one player in the
game may prefer action an+1 to an for some infinitely long sequence of actions
(an)n∈N. It is well-known that decision theory, and expected utility theory in
particular, yields strange and counterintuitive results when dealing with un-
bounded utilities. Hence, one may be extremely skeptical of drawing normative
conclusions about scientific inquiry from the results below. At the end of the
chapter, I discuss why the use of preference relations with infinitely long chains
is unproblematic, and even required by the KGS model.

Recall, in Kelly, Glymour, and Schulte’s model, the cost of employing method
M in world w is represented by a cost-vector λ(M,w) = 〈ε(M,w), ε(M,w)〉,
where ε(M,w) and ρ(M,w) are the number of errors and retractions committed
by M in w respectively. When comparing the cost of a method M to that of its
rivals, the scientist also implicitly evaluates whether M converges in w or not, as
she prefers convergent methods (in w) to non-convergent ones, regardless of the
number of errors and retractions M commits in w. That is, define c(M,w) to be
0 if M converges in w and 1 otherwise. In the KGS model, the scientist strictly
prefers any method that converges in a world to ones that do not, and she then
prefers methods that commit fewer errors and fewer, earlier retractions.

Although cost vectors are a function of methods and worlds, one can tweak
their definition ever so slightly in order to develop a preference ordering for
nature and science in the game in which their actions are answer and effect
sequences respectively. Say an effects sequence η ∈ AN converges if η ∈ W .
Define a function cN : AN → {0, 1} such that cN is zero if η ∈ W and is one
otherwise. Similarly, say answer sequence α ∈ AS is convergent in η if either (a)
η 6∈ W , or (b) there exists an n ∈ N such that αm = Tη for all m ≥ n. Define
cS(α, η) to be zero if α converges in η and one otherwise. Further, define:

ε(α, η, n) =
{

1 if αn 6= Tw and η ∈W
0 otherwise

ρ(α, n) =
{

1 if αn 6= αn+1 and αn 6= ‘?’
0 otherwise

Notice that ρ does not depend upon η, as the scientist chooses an infinitely long
sequence of answers, not a method for selecting theories from data. This will be
important later. One can then define the retraction vector and the total errors
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of α in η as follows:

ε(α, η) :=
∞∑
n=0

ε(α, η, n)

ρ(α) :=
∞∑
n=0

ρ(α, n)

Finally, the above definitions allow one to define a preference relation for the
scientist as follows:

(I) (α, η) �S (α′, η′)⇔

 η ∈W and η′ 6∈W or
η, η′ ∈W and c(α, η) > c(α′, η′) or
η, η′ ∈W, c(α, η) = c(α, η′), ε(α, η) ≥ ε(α′, η′) and ρ(α) ≥ ρ(α′)

Notice, the scientist’s preference relation is not a total. For simplicity, sup-
pose the game is strictly competitive, so that the nature disprefers (α, η) to
(α′, η′) if and only if the scientist prefers (α, η) to (α′, η′). With the above def-
initions, one can define the costs associated with mixed strategies by taking
weighted averages of the pure strategies employed in the mixture as follows.

Let pS and pN be mixed strategies for the scientists and Nature respectively.
Because the scientist and nature choose their respective strategies simultane-
ously, their choices are probabilistically independent of one another. Therefore,
it makes sense to stipulate that the probability that a given pair of strategies
(α, η) will be played is simply the product of the probabilities pS(α) and pN (η).
The expected number of errors and retractions of employing a mixed strategy
pS in response to pN , then, is as follows:10

ε(pS , pN ) :=
∫
AN

∫
AS

∞∑
n=0

ε(η, α, n) · pS(dα) · pN (dη)

ρ(pS) :=
∫
AS

∞∑
n=0

ρ(α, n) · pS(dα)

cN (pN ) :=
∫
AN

cN dpN

cS(pS , pN ) :=
∫
AN

∫
AS

cS dpS dpN

If the above series diverge on a set of positive measure, assign the integrals the
value ∞. Again, it is important to note that ρ is a function of pS only, which
means that in G, the scientist’s losses due to expected retractions depends upon
his strategy alone, and is not changed if Nature alters her strategy.

Alternatively when pS and pN are both countably additive, one can define p
to be the product measure on the product space AS ⊗AN = σ({X × Y : X ∈

10I use the standard definition of the Lebesgue integral. See Appendix 1.
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AS , Y ∈ AN}). That is, p is the unique measure on AS ⊗AN such that for any
X and Y such that X ∈ AS and any Y ∈ AN :11

(∗) p(X,Y ) = pS(X) · pN (Y )

One can then provide an alternative definition ε, ρ, and so on, as follows:

ε(pS , pN ) =
∫
AN×AS

∞∑
n=0

εn · dp

ρ(pS) =
∫
AS

∞∑
n=0

ρn · dpS

cN (pN ) =
∫
AN

cN dpN

cS(pS , pN ) =
∫
AN×AS

cS dp

where εn : AS ×AN → {0, 1} is the map εn(α, η) = ε(α, η, n) which determines
whether α errs in η at time n or not. Similar remarks apply for ρn.

A note of warning is appropriate here. These two definitions of costs are
not equivalent if either pS or pN is finitely additive. In such cases, there exist
probability measures on the product space AS ⊗ AN satisfying (∗), but such
measures, are, in general, not unique. When either pS or pN is finitely additive,
the first definitions of ε, ρ, cN , and cS above ought to be used.

Given the above definitions of expected retractions, errors, and convergence
costs, one can then use the definition of the preference relations in (I) to provide
a reasonable comparison of costs of mixed strategies for both the scientist and
Nature as follows:

(II) (pS , pN ) �S (p′S , p
′
N )⇔


cN (pN ) < cN (p′N ) or
cN (pN ) = cN (p′N ) and c(pS , pN ) > c(p′S , p

′
N ) or

cN (pN ) = cN (p′N ), cS(pS , pN ) = cS(p′S , p
′
N ), ε(pS , pN ) ≥ ε(p′S , p′N ) and

ρ(pS , pN ) ≥ ρ(p′S , p
′
N )

This completes the description of the first way in which the KGS model can
be represented as a strategic quasi-game. For brevity, call the quasi-game G.
Although the preference relation above is close to that defined in the KGS model
in the previous chapter, there is one feature in need of explanation: why does
the scientist prefer some pair of mixed strategies (pS , pN ) to another (p′S , p

′
N ) if

cN (pN ) < cN (p′N )? In particular, reliable learning (in the sense of converging
to the true theory) is, in general, impossible in effect sequences η that are
not worlds; by definition, in such η, there is no “true theory” to which one
could converge! So shouldn’t an adversarial player Nature prefer to thwart the
scientist’s attempts to learn?

11The existence and uniqueness of p follows from Caratheodory’s Theorem. See Appendix
1.
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In representing the KGS model as a game, one should be careful to avoid
speaking of Nature as a player too literally. Even though a Cartesian-like demon
might prefer to thwart a scientist’s attempts to learn, I do not truly believe that
there is an adversarial agent controlling the universe who seeks to undermine
human attempts to understand their surroundings. The competitive structure of
the games developed in this thesis is intended to symbolize or reflect the arduous
character of scientific inquiry. Hence, the scientist’s preference relation in G is
constructed so as not to penalize the scientist the scientist for failing to converge,
for erring, and/or for retracting when learning is impossible. In other words, I
assume that “ought” implies “can.” In questioning whether a systematic bias
for simpler theories is rational in scientific inquiry, one must side-step broader
skeptical worries about whether science can ever discover “truth.”

Because each player’s preferences are only partially-ordered (and hence not
representable as utilities), Nash’s theorem does not guarantee the existence of
a mixed strategy solution to G. If K is finite, however, it turns out that G has
a strong Nash equilibrium, and in a certain sense, this equilibrium is unique. If
K is infinite, then G has neither a pure strategy nor countably-additive mixed
strategy quasi-Nash equilibria (and hence, no strong Nash equilibria either). To
prove these facts, two short lemmas are needed.

The first lemma asserts, roughly, that Nature minimizes “convergence costs”
by playing some mixture of worlds, rather than a mixture of effect sequences
that do not converge to an element of K. In other words, Nature is penalized for
playing any sequence of effects for which it would be impossible for the scientist
to learn the true theory in some finite amount of time. Moreover, if nature plays
a countably additive mixed strategy, then as time elapses, the probability that
she will present any new effects in the future approaches zero.

Lemma 3.2.1. If pN is countably additive, then the following are equivalent:

1. cN (pN ) = 0

2. pN (W ) = 1

3. limm→∞ pN (CKm ) = 1

Proof: (1)⇒(2): Suppose cN (pN ) = 0. By definition, for any η ∈ AN , one
has cN (η) = 0 if η ∈W and is 1 otherwise. So:

0 =
∫
AN

cN dp

=
∫
AN\W

cN dp+
∫
W

cN dp

= (pN (AN \W ) · 1) + (pN (W ) · 0)
= pN (AN \W )

It follows that:

1 = pN (AN ) = pN (AN \W ) + pN (W ) = pN (W )
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(2)⇒(1): The above proof is reversible. Explicitly, if pN (W ) = 1, then it follows
that:

cN (pN ) =
∫
AN

cN dp

=
∫
W

cN dp

= p(W ) · 0
= 0

(2)⇔(3): Note that CKm ⊆ CKm+1 for all m. Now because W =
⋃
m∈N C

K
m , by

countable additivity it follows that:

p(W ) = p(
⋃
m∈N

CKm ) = lim
m→∞

pN (CKm )

The desired equality follows. Notice that countable additivity is only used to
prove the third statement equivalent to the first two. �

Together, the next two propositions show that the game G is structurally
similar to the game matching pennies discussed above. Why? In G the scientist
wishes to “match” the “theory” played by Nature, and Nature desires the exact
opposite. Hence, just as in matching pennies, G has no pure strategy equilibria,
which is proven in Proposition . Similarly, if the set set of theories is finite,
then just as in matching pennies, Nature can minimize her worst-case losses
by playing each theory with equal probability, and the scientist maximizes his
worst-case gains by guessing each theory with equal probability. Unsurprisingly,
then, G has a countably additive mixed strategy equilibrium when Ths is finite.12

This is proven in Proposition 3.2.3. Of course, if the scientist and Nature’s mixed
strategies are countably additive, then assigning equal probability to each theory
is possible only when there are only finitely many theories, which is why the
restriction that Th is finite is necessary.

Proposition 3.2.2. G has no pure strategy quasi-Nash equilibria.

Proof: Suppose the scientist employs answer sequence α (a pure strategy) and
nature chooses the effect sequence η. If η 6∈W , then Nature would have preferred
to play a world regardless of the scientist’s choice. Hence, suppose η ∈W . Now
either α converges in η or it doesn’t. If α does not converge in η, then the
scientist would have preferred to play a sequence α′ that does converge in η
according to the above preference relation. So suppose α does converge in η,
which means there is some n ∈ N such that αm = Tw for all m ≥ n. Let η′

be a world such that Tη′ 6= Tη. Such an η exists because Th has at least two
elements. Then α does not converge in η, and so Nature would benefit from
playing η′ instead of η, keeping α fixed. This shows that, whichever strategies

12Strictly speaking, because the scientist’s preference relation contains a lexicographic com-
ponent, the existence of an equilibrium does not follow from the fact that the above game is
zero-sum and there are minimax strategies. See Fishburn (1972).
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are chosen by the scientist and Nature, one of the two players would benefit
from deviating if the other keeps his or her strategy fixed. Hence, there are no
pure strategy Nash equilibria in the game.

�

Proposition 3.2.3. If Th is finite, then G has a Nash equilibrium amongst
countably-additive strategies.

In order to prove the proposition, we first need a somewhat technical lemma:

Lemma 3.2.2. Let pN be a countably-additive mixed strategy for Nature in
G, and suppose that cN (pN ) = 0. Let if pS is countably-additive strategy for
the scientist. Then, there exists a finite collection of theories T1, . . . , Tm ∈ Th
such that pS is a best response (amongst countably additive strategies) for the
scientist if and only if:

1 = pS({α ∈ AS : (∃n)(∃i ≤ m)[∀n′ < n(αn′ = ‘?’) and ∀n′ ≥ n(αn′ = Ti)]})

Proof: By assumption cN (pN ) = 0, and so by Lemma 3.2.1, if follows that
pN (W ) = pN (

⋃
E′∈K C

E′) = 1. Because pN is countably additive, there exist
finitely many effect sets E0, . . . , Em ∈ K such that pN assigns maximal prob-
ability to CEi for each i ≤ m. Let that probability be q. In other words,
pN (CEi) > 0 and q := pN (CEi) ≥ pN (CE

′
) for all E′ ∈ K. In particular,

pN (CEi) = pN (CEj ) for all i, j ≤ m.. Note that for all E′ ∈ K and all i ≤ m:

(†) 1− pN (CE
′
) ≥ 1− pN (CEi) = 1− q

where the inequality is strict if E′ 6= Ei for some i ≤ m. Now define:

ai = {α ∈ AS : (∃n)[∀n′ < n(αn′ = ‘?’) and ∀n′ ≥ n(αn′ = TEi)]}
a =

⋃
i≤m

ai

Let p∗ be a countably-additive measure such that p∗(a) = 1. Note that p∗(a) =∑
i≤m p

∗(ai) as the ai’s are disjoint. We claim p∗ is a best response to pN . First
we show that p∗ maximizes cS if pN is held fixed. Let p be the unique product
measure induced by p∗ and pN , and define:

U = {〈α, η〉 ∈ AS ×An : cS(α, η) = 1}
U1 = {α ∈ AS : 〈α, η〉 ∈ U for some η ∈ AN}
Uα = {η ∈ AN : 〈α, η〉 ∈ U}
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One can now calculate that:

cS(p∗, pN ) =
∫
AN

∫
AS

cS dp
∗ · dpN

=
∫
AN×AN

cS dp by Fubini’s theorem, as both p∗&pN are countably additive.

=
∫
U

cS dp+
∫

(AN×AS)\U
cS dp

=
∫
U

1 dp+
∫

(AS×AN )\U
0 dp

=
∫
U

dp

=
∫
U1

∫
Uα

dpN dp∗ again by Fubini’s theorem.

=
∫
a

∫
Uα

dpN dp∗ as p∗(a) = 1

=
∑
i≤m

p∗(ai) ·

[∫
W\CEi

dpN

]
=

∑
i≤m

p∗(ai) · (1− p(CEi)) as pN (W ) = 1

= 1− q

Recall that cS indicates non-convergence to the truth, and so the scientist wishes
to minimize cS . In contrast, let pS be any countably-additive mixed strategy for
the scientist, and let p′ be the product measure on AS ⊗AN induced by pS and
PN . For any answer sequence α ∈ AS , define Eα to be the total set of effects
presented in α. Abusing notation, let CEα = ∅ if Eα 6∈ K, and be defined as
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before otherwise. It follows that:

cS(pS , pN ) =
∫
AN

∫
AScS dpS dpN

=
∫
AS×AN

cS dp
′ z by Fubini

=
∫
U

dp

=
∫
U1

∫
Uα

dpN dpS

=
∫
U1

[
∫
W\CEα

dpN ] dpS as pN (W ) = pN (CK) = 1

≥
∫
U1

(1− q) dpS by †

≥ 1− q
= c(p∗, pN )

Hence, if pS(a) = 1 for some i ≤ m, it follows that cS(pS , pN ) ≤ cS(p′S , pN )
for any mixed strategy p′S for the scientist. Next we consider errors and retrac-
tions. By definition p∗ assigns probability one to answer sequences α for which
ρ(α, η) = 0 for all η ∈ AN . Hence, p∗ has zero expected retractions regardless
of the strategy employed by Nature, and thus, ρ(p∗, pN ) = 0 ≤ ρ(pS , pN ) for
any other mixed strategy pS employed by the scientist.

Finally, consider the expected errors of p∗. There are two cases to consider.
First, consider the case that pN (WTi) = 1. Then by definition, p∗ assigns
probability one to answer sequences whose entries contains only ‘?’ and Ti as
their entries. It follows that ε(p∗, pN ) = 0, and so p∗ has no more expected
errors than any other mixed strategy that could be employed by the scientist.
Next, consider the case that pN (WTi) 6= 1. Then there are at least two effect
sets E0 and E1 such that pN (CE0) = p(CE1) > 0. It’s easy to check that every
convergent strategy employed by the scientist accrues infinite expected errors,
and so p∗ does as well as any other mixed strategy employed by the scientist.
Hence, p∗ is a best response to pN .

Conversely, suppose that pS is a countably additive measure such pS(a) 6= 1.
We want to show that pS is not a best response to pN . It suffices to show that
c(pS , pN ) is strictly greater than 1 − q. Again, noting that pN (W ) = 1, the
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calculation is nearly identical to the two above:

cS(pS , pN ) =
∫
U

dp

=
∫
U1

∫
Uα

dpN dpS

=
∫
a

∫
W\CEα

dpN dpS +
∫
AS\a

∫
W\CEα

dpN dpS

= p(a)(1− q) +
∫
AS\a

∫
W\CEα

dpN dpS

> p(a)(1− q) +
∫
AS\a

(1− q) dpS by †

= p(a)(1− q) + (1− p(a))(1− q)
= 1− q

This completes the proof.

(End Proof of Lemma) �

Proof of Proposition 3.2.3: Let Th = {T1, . . . , Tm}, and let {E1, . . . , Em} ⊆
K be the effect sets corresponding to each of the finitely many theories Ti
(i.e. TEi = Ti). Construct a strong Nash equilibrium as follows. Let pN
be a probability measure on AN (i.e. mixed strategy for Nature) such that
pN (CEi) = 1

m for all i ≤ m. Then, by definition, pN (W ) = 1 and so cN (pN ) = 0
by Lemma 3.2.1. Suppose ai is defined as in Lemma 3.2.2 (See below), and let pS
be a probability measure on AS such that pS(ai) = 1

m . By the same calculations
as in the proof of Lemma 3.2.2, it follows that (i) cS(pS , pN ) = 1 − 1

m , (ii)
ρ(pS , pN ) = 0, (iii) ε(pS , pN ) is either 0 or ∞ depending upon whether the
cardinality of K is or is not greater than 1, and finally (iv) that pS is a best
response to pN . We claim that pN is a best response to pS .

Whichever strategy p′N Nature employs, it’s clear that ρ(pS , p′N ) = 0, so pN
does no worse with regard to expected retractions than other mixed strategies
for Nature. Now consider errors. If m > 1, then ε(pS , pN ) =∞ ≥ ε(pS , p′N ) for
any mixed strategy p′N . If m = 1, then p′N (CE0) = 1 for any unbeaten mixed
strategy for nature, in which case ε(pS , pN ) = 0 = ε(pS , p′N ). So it suffices to
show that cS(pS , pN ) is maximized by pN . It turns out that cS(pS , p′N ) = 1− 1

m
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no matter the strategy p′N chosen by Nature:

cS(pS , p′N ) =
∫
AS×AN

cS dp

=
∑
i≤m

pS(ai) ·
∑
j 6=i

p′N (CEj )

=
1
m

(p′N (CE2) + . . .+ p′N (CEm)) +
1
m

(p′N (CE1) + p′N (CE3) . . .+ p′N (CEm)) + . . .

+
1
m

(p′N (CE1) + . . .+ p′N (CEm−1))

=
1
m

∑
i≤m

(m− 1)p′N (CEi)

=
m− 1
m

= 1− 1
m

�

The above proof is informative as it constructs a Nash equilibrium for the
game G. However, one can provide a second, shorter proof of the existence of
a quasi-Nash equilibrium by employing Proposition 3.1.1. Suppose K contains
m-many elements E1, . . . , Em. By Lemmas 3.2.1 and 3.2.2, if pN is an un-
dominated mixed strategy for Nature (in the sense that there is no p′N for
Nature that is preferred to pN regardless of the scientist’s choice of strategy),
then pN (W ) = 1. Similarly, if pS is an un-dominated strategy for the scientist,
then pN (a) = 1 where a =

⋃
i≤m ai is defined as in Lemma 3.2.2. Now, one can

check that, for any fixed mixed strategy for Nature pN , and for any two answer
sequences α, α′ ∈ AS such that α, α′ ∈ ai:

cS(α, pN ) = cS(α′, pN )
ε(α, pN ) = ε(α′, pN )
ρ(α, pN ) = ρ(α′, pN )

It follows that, for any mixed strategy pN for nature, and any two mixed strate-
gies pS and p′S such that pS(ai) = p′S(ai) for all i ≤ m:

cS(pS) = cS(p′S)
ε(pS , pN ) = ε(p′S , pN )
ρ(pS , pN ) = ρ(p′S , pN )

Hence, no generality is lost by restricting the scientist to the finite set of pure
strategies {αi}i≤m, where αi is the constant sequence Ti. Similarly, for fixed
a mixed strategy pS , the cost of a mixed strategy pN for Nature is determined
exclusively by the probabilities pN (CEi) for i ≤ m. In other words, if pN and
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p′N are two probability measures such that pN (CEi) = p′N (CEi) for all i ≤ m,
then for a mixed strategy pS for the scientist:

cN (pN ) = cN (p′N )
ε(pS , pN ) = ε(pS , p′N )
ρ(pS , pN ) = ρ(pS , p′N )

Hence, again, no generality is lost by restricting Nature to the finite set of pure
strategies {wi}i≤m where wi is the constant sequence Ei. When Nature and the
scientist are restricted to these strategies, the resulting game is a simple, finite
quasi-game for incomparable goods, and therefore, has a quasi-Nash equilibrium
by employing Proposition 3.1.1.13

Notice that, in the proof of Proposition 3.2.3, one could select any of an
uncountable number of probability measures pS and pN for scientist and Na-
ture respectively, and the two mixed strategies would still constitute a Nash
equilibrium. However, the above proof indicates that there is a sense in which
there is only one such equilibrium. Namely, if pS and pN do not assign uniform
probabilities to the ai’s and CEi ’s respectively, then their strategies will not
constitute a Nash equilibrium. If pS does not assign uniform probabilities to
the a′is, for instance, then there is at least one aj that is assigned smaller (or
equal) probability than all other ai’s. As such, Nature can cause the scientist
to accrue greater losses (than had he played a uniform distribution on the a′is)
by picking a distribution pN that assigns probability 1 to CEj . An entirely
symmetric argument shows that Nature ought to place uniform probabilities on
the events of the form CEi .

These remarks bolster the claim that G is structurally similar to the game
matching pennies. In order to avoid being dominated, Nature must choose a
strategy that assigns probability 1 to the set of worlds. When Th = {T1, . . . , Tm}
is finite, therefore, there are, in a sense, only finitely many available options
to Nature, namely, the possible probability assignments to the m-events CE1

to CEm (where, again, Ti = TEi). And above, we argued that in any Nash
equilibrium, Nature places a uniform distribution on these events. Similarly,
in matching pennies, there is a single Nash equilibrium in which both players
place uniform distributions on their possible actions. Moreover, if either player
in matching pennies chooses a mixed strategy other than a uniform distribution
on heads and tails, then there is a pure strategy for the second player that is a
best response.

However, the assumption that Th is finite is absolutely necessary for the the
existence of countably additive equilibria in G. When Th is infinite, not only
does the above proof fail, but further, the proposition is demonstrably false:

Proposition 3.2.4. If Th is infinite, then G has no countably additive mixed
strategy quasi-Nash equilibria.

13Strictly speaking, there preference relations of scientist and nature are not of the form
specified in simple games, as they contain a lexicographic coordinate for convergence. However,
this coordinate is constant for both players when they play un-dominated strategies by the
arguments above, and so the two players’ preference orders are isomorphic to simple ones.
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Proof: An analogous argument to Proposition 3.2.2 works here. Let pN be
a mixed strategy for Nature. By Lemma 3.2.1, Nature maximizes cN (pN ) by
picking a mixed strategy pN such that pN (W ) = 1. By Lemma 3.2.2, there
is some finite collection of theories T1, . . . , Tm such that the set of best replies
for the scientist are measures such that pS(a) = 1, where a is defined as in the
previous lemma. Let T 6= Ti for all i ≤ m. Such a T exists, as Th is infinite.
Let ET be the effect set corresponding to T , and let η be the pure strategy for
nature that consists in playing the constant sequence ET . Clearly, cN (η) = 0.
Moreover:

cS(pS , η) < cS(pS , η) = 1

And so, holding pS fixed, Nature prefers η to pN . This shows there are no
countably additive mixed strategy Nash equilibria in G.

�

But there is a curious feature about the above proofs. Only the convergence
and error components of the preference relations were used in the above argu-
ments. Thus, the number of retractions committed by the scientist were totally
irrelevant to the existence of Nash equilibria when the KGS model is repre-
sented as a game in any of the above ways. In particular, a quick examination
of the Nash equilibria constructed above shows that a scientist is rewarded for
rolling a die to determine a theory, and then dogmatically asserting the result
for eternity! This suggests that the above model is not the correct way represen-
tation of inquiry. In the next sections, I represent the KGS model in a way that
makes the costs of retractions relevant to assessing the desirability of particular
actions.

3.2.2 G∗: Actions as Methods and Worlds

In the previous section, scientific inquiry was represented as a one-shot game
between Nature and a scientist, where Nature and the scientist simultaneously
play an infinite data sequence and an infinite sequence of theory guesses re-
spectively. Clearly, that is a terrible model of inquiry: the idealized scientist
in the above game does not form theories on the basis of evidence, but rather,
decides a priori which theories she will guess for eternity. In this section, I
describe a more realistic representation of inquiry as a strategic game in which
the scientist’s set of possible actions consists of methods, or functions from data
sequences to theories. I call the resulting game G∗.

Let AN be the set of possible actions for Nature as defined in the previous
section. Define AfinN to be the set of finite initial segments of sequences in AN ,
and let A∗S , which is the set of possible actions for the scientist, be defined as
follows:

A∗S = AnsA
fin
N

In other words, A∗S is the set of functions from finite effect sequences to answers.
So a pure strategy for the scientist is a method or a mapping M : AfinN →
Ans. In the same ways as the previous section, define a σ-algebra AN on AN .

69



Analogously, one can define a σ-algebra A∗S on A∗S as follows. For any M ∈ A∗S ,
and k ∈ N, define:

[M(η, k) = α] = {M ′ ∈ A∗S : M ′(η � k′) = αk′ for all k′ ≤ k where α ∈ Ansk}

Let A∗S = σ({[M(η, k) = α] : M ∈ A∗S , k ∈ N}) be the σ-algebra formed by
taking the σ-closure of the events [M(η, k) = α]. Then mixed strategies for
the scientist and Nature are respectively measures on AN and A∗S . In order to
define the two player’s preference relations in G∗, one can employ the preference
relations for the game G as defined in Equation (II) as follows. Let αM,η ∈ Ansω

be the answer sequence such that αM,η
n = M(η � n) for all n ∈ N. In other words,

αM,η is the answer sequence that is produced when the scientist plays M and
Nature plays η. Then, one can identify the errors and retractions committed by
M in response to η in G∗ as those that would be committed by αM,η in response
to η in G. Formally, for all M ∈ A∗S , η ∈ AN , and n ∈ N define:

ε(M,η, n) = e(αM,η, η, n)
ρ(M,η, n) = r(αM,η, η, n)
cS(M,η) = cS(αM,η, η)

In the same way as for G, one can extend the cost functions cS , e, and r on
pure strategies to functions cS , ε, and ρ on mixed strategies as follows. Let p∗S
be a measure on A∗S and pN be a measure on AN . Then define:

ε(p∗S , pN ) =
∫
AN

∫
A∗S

∞∑
n=0

e(M,η, n) · pN (dη) · p∗S(dM)

ρ(p∗S , pN ) =
∫
AN

∫
A∗S

∞∑
n=0

ρ(M,η, n) · pN (dη) · p∗S(dM)

cS(p∗S) =
∫
AN

∫
A∗S

cS(αM,η, η)pN (dη) · p∗S(dM)

Again, note the order of integration in the above definitions. In contrast to G,
notice that the scientist’s retraction costs in G∗ do depend upon Nature’s strat-
egy η. Therefore, the above cost functions are a more realistic representation of
scientific inquiry than those defined in the game G. Now that we have defined
the error, retraction, and convergence cost functions on for mixed strategies, we
can now use the ordering defined in Equation (II) to define the scientist’s and
Nature’s respective preference orderings. This completes the second formaliza-
tion of the KGS model as a game. Call this game G∗.

Before characterizing equilibria in G∗, three notes are in order. First, in later
discussions, it will be helpful to evaluate the expected number of retractions
and errors of a given mixed strategy p∗S for the scientist (with respect to some
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measure pN ) over a fixed complexity class. To this end, for all n ∈ N, define:

εn(p∗S , pN ) =
∫

Compn

∫
A∗S

∞∑
n=0

e(M,η, n) · pN (dη) · p∗S(dM)

ρn(p∗S , pN ) =
∫

Compn

∫
A∗S

∞∑
n=0

ρ(M,η, n) · pN (dη) · p∗S(dM)

Second, when p∗S and pN are both countably additive measures, a second,
cleaner characterization of costs is available. Define a mapping ϕ∗ : A∗S×AN →
AS ×AN as follows:

ϕ∗(M,η) = (αM,η, η)

Proposition 3.2.5. The function ϕ∗ is σ(A∗S ×AN )/σ(AS ×AN )-measurable.

Proof: For brevity, define:

G = {[α � m] : α ∈ AS}
H = {[η � m] : η ∈ AN}
G∗ = {[M(η,m) = α] : M ∈ A∗S , η ∈ AN , α ∈ AS ,m ∈ N}

Then by Schilling (2005) Theorem 13.3, it follows that σ(AS×AN ) = σ(G×H)
and σ(A∗S × A∗N ) = σ(G∗ × H). Hence, by ? Theorem 7.2, it suffices to show
that for any g ∈ G and h ∈ H, the set ϕ−1(g × h) is σ(A∗S × AN )-measurable.
This is confirmed by the following calculation:

ϕ−1([α � m1]× [η � m2]) = ϕ−1({(α′, η′) : α′ � m1 = α � m1 and η′ � m2 = η � m2})
= {(M,η′) ∈ A∗S ×AN : αM,η � m1 = α � m1 and η′ � m2 = η � m2}
= [M(η,m1) = α]× [η � m2]

This event is not only in σ(A∗S × A∗N ) = σ(G∗ × H∗), but moreover, it is a
member of the generator set G∗ ×H itself!

�

Thus, when p∗S and pN are countably additive measures on A∗S and AN respec-
tively, Proposition 3.2.5 motivates the following approach to evaluating mixed
strategies. Let p∗ be the induced product measure on σ(A∗S × AN ). Let p
be the measure induced on σ(AS × AN ) by the mapping ϕ. That is, for all
X ∈ σ(AS ×AN ), define:

p(X) = p∗(ϕ−1(X))

The function p is a probability measure because ϕ is measurable, in light of
proposition 3.2.5. Finally, for X ∈ AS and Y ∈ AN , define:

pS(X) = p(X ×AN )
pN (Y ) = p(AS × Y )
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Then one can use the preference relations defined in Equation II to order mixed
strategies in this new game as follows:

(p∗S , pN ) �S (q∗S , qN ) ⇔ (pS , pN ) �S (qS , qN )
(p∗S , pN ) �N (q∗S , qN ) ⇔ (pS , pN ) �S (qS , qN )

Again, the reader is warned that these two approaches for evaluating costs of
mixed strategies are only equivalent when the measures are countably additive.

A third, more troublesome issue arises concerning the definition of conver-
gence costs above. To explain the problem, it will be helpful to have a list of
measurable events handy:

Lemma 3.2.3. The setMc = {M ∈ A∗S : for all η ∈W,M converges in η} of
methods that converge is countable.

Proof: Routine. The assertion follows from the fact that a countable union
of countable sets is countable. �

Proposition 3.2.6. The following events are measurable:

1. For any A ∈ Ans and any m ∈ N, the event [M(η � n) = A] = {M ∈ A∗S :
M(η � n) = A} is A∗S-measurable.

2. For any M ∈ A∗S , the singleton {M} is A∗S-measurable.

3. The set Mc,w = {M ∈ A∗S : M converges in w} is A∗S-measurable.

4. For any set of worldsW0 ⊆W , the setMc,W0 = {M ∈ A∗S : M converges in every w ∈
W0} isA∗S-measurable. In particular, the setMc = {M ∈ A∗S : M converges in w for all w ∈
W} is A∗S-measurable.

5. The set MOck = {M ∈ A∗S : M is Ockham } is A∗S-measurable.

Proof Sketch: To write the above events as countable unions and inter-
sections of known measurable events, one can simply replace every universal
quantifier in the above definitions with an intersection symbol and every exis-
tential quantifier with a union. For example, a method M converges if (∀w ∈
W )(∃n ∈ N)(∀m ≥ n)[M(w � m) = Tw], and so one can write this as a union of
known measurable events (using (1)) as

⋂
w∈W

⋃
n∈N

⋂
m≥n[M(w � m) = Tw].

Hence, when the quantifiers in the definitions of the above events range over
countable sets (which is guaranteed by 2.1.1), the above events are measurable
in their respective σ-algebras.

�

Given the above lemma, we can now describe a philosophical worry concerning
the definition of G∗. In every area of empirical science, practitioners must make
inferences from data that are known to have randomly distributed errors; such
error may be due to experimental error, lack of precision in measuring devices,
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or simply indeterminism in the phenomena under investigation. Regardless of
the source of the error in the data, scientists often require that the methods that
they employ are statistically consistent. What is statistical consistency? In
many common problems, there is some metric on the set of theories, which
provides a quantitative measure of how much two theories T1 and T2 differ.
For example, suppose one is interested in estimating the mean of a normal
distribution with known variance of one. Then one can say that two different
theories T1 and T2, which here are represented by real numbers r1 and r2, are
|r1 − r2| close to one another. A method is said to be statistically consistent
if, for every ε > 0, the probability that the method produces a theory T that
differs from the true theory T0 by more than ε approaches zero as the amount
of data (usually quantified in terms of sample size) approaches infinity. In other
words, a method for guessing theories from data is statistically consistent if it
produces theories closer and closer to the truth with probability approaching
one as time elapses.

When the scientist and Nature employ countably additive mixed strategies in
G∗, then the convergence cost cS(p∗S, pN ) of employing some mixed strategy p∗S
is exactly zero if and only if the scientist is statistically consistent with respect
to the worlds in the support of pN . This is expressed by the following lemma:

Lemma 3.2.4. Suppose pN and p∗S are countably additive measures on AN and
A∗S respectively. Further, suppose that W0 ⊆ W is the support of pN . Then
the following are equivalent:

1. cS(p∗S , pN ) = 0

2. p∗S(Mc,W0) = 1

3. limn→∞ p∗S([M(w � n) = Tw]) = 1 for all w ∈W0

Proof: Apply Lemma 3.2.1.

�

That is, when the measures under consideration are countably additive, any
mixture of convergent methods is statistically consistent, and any statistically
consistent mixed strategy is a mixture of convergent methods. However, this
equivalence fails to hold when the scientist’s methods are only finitely additive.
To see why, consider a finitely additive strategy for the scientist that does the
following.14 The scientist first fixes a convergent method M . Then the scientist
rolls an infinite-sided die with sides labeled 1, 2, 3, . . . and so on. Here, because
we are interested in representing finitely-additive mixed strategies, imagine that
the die has equal probability of landing on any given side. Thus, the probability
that the die lands on any particular side is zero, even though the probability
that it lands on at least one of the sides is one. If the die lands on side n, then
the scientist then says ‘?’ until time n, at which point he begins employing the
method M . Call this mixed strategy p∗S .

14Thanks to Teddy Seidenfeld for suggesting the following example.
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Given this mixed strategy, for any fixed natural number n ∈ N, the probabil-
ity that the scientist will have guessed some theory T other than ‘?’ before time
n is zero. So the mixed strategy is clearly not statistically consistent, under
any reasonable metric of closeness of theories. However, it’s easy to check that
cS(p∗S , pN ) = 0 regardless of the mixed strategy employed by Nature. Hence,
if one wishes to penalize the scientist for employing methods that fail to be
statistically consistent, then above cost functions will simply not do.

One might object that the described mixed strategy converges almost surely,
which is to say that it assigns probability one to convergent methods. Almost
sure convergence, moreover, is often considered to be a virtue of scientific meth-
ods, and in many circumstances, it is considered to be more valuable than
convergence in probability. One reason that almost sure convergence is prized,
however, is that it implies convergence in probability when one’s measure is
countably additive. That is, in many practical applications, almost sure con-
vergence is strictly stronger than convergence in probability. However, as is
exhibited by the mixed strategy p∗S , almost sure convergence does not imply
convergence in probability when one’s measure is purely finitely additive. Be-
cause, I assume, most scientists value methods that will provide some informa-
tion in some finite amount of time, I assume that convergence is probability is
a more realistic representation of cost in scientific inquiry in general.

With these arguments in mind, one can adjust the preference relations of
the scientist and Nature as follows. Say a mixed strategy p∗S for the scientist is
convergent in probability if for every w ∈W :

lim
n→∞

p∗S([M(w � n) = Tw]) = 1

Then define a preference relation �S for the scientist as follows:

(III) (p∗S , pN ) �S (q∗S , p
′
N )⇔



cN (pN ) < cN (p′N ) or

cN (pN ) = cN (p′N ) and q∗S converges in probability and p∗S does not, or

cN (pN ) = cN (p′N ), and both p∗S and q∗S converge in probability, and
ε(p∗S , pN ) ≥ ε(q∗S , p′N ) and
ρ(p∗S , pN ) ≥ ρ(q∗S , p

′
N )

From here onward, I shall refer to the game with these preference relations as G∗.
It should be emphasized that there are many finitely additive mixed strategies
that also converge in probability. Hence, levying a tax on the scientist for not
converging in probability does nothing to inhibit him from employing finitely
additive mixed strategies.

It is an open question whether, in general, G∗ has any countably additive
quasi-Nash equilibria. When K contains an infinite path, the game G∗ does
have finitely-additive mixed strategy equilibria, which is proven below. Before
embarking on the proof, however, an informal outline of the proof will be helpful.
Suppose Nature has two dice, both of which have countably many sides. Label
the sides of the dice 1, 2, 3, . . .. Suppose the first die is countably additive with
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respect to which of the sides on which it lands, but the second is not. In fact, for
any natural number n, the probability that the second die lands on a number
less than or equal to n is zero (and hence, the probability that it lands on a
side numbered n+ 1 or greater is one). Nature throws the first die to determine
the complexity of the world that she plays. If the first die lands on n, she then
throws the second, finitely-additive die, n-times to determine when (i.e. the
stages of inquiry) to present some new set of effects that make the world appear
to be in the next highest complexity class. In other words, suppose the rolls of
the second die are m1,m2, . . .mn. We may assume that m1 < m2 < . . .mn, as
Nature can redo the jth roll if the number rolled is not greater than previous
ones. Then Nature picks a world in complexity class n that (i) resembles a zero
complexity world until time m1, (ii) resembles a one-complexity world until time
m2, (iii) resembles a three-complexity world until time m3, and so on. Notice
that because the second die is finitely additive, the probability that the j + 1st

set of effects will be presented “infinitely late” after the jth set of effects is one.
Now let pS be a mixed strategy for the scientist that is convergent in proba-

bility. Then as the first set of effects occur “infinitely late”, the scientist guesses
with near unit probability the theory of the zero-complexity world before he sees
the first set of effects. Once he sees the first set of effects, however, he begins
to converge towards the theory of the one-complexity world. Now, because the
second set of effects occur “infinitely late” after the first set, the scientist guesses
with near unit probability the theory of the one-complexity world before he sees
the second set of effects. And so on. This suggests that the scientist retracts
at least n-times in when nature plays according to the strategy pN and selects
a world in the nth complexity class. If the countably additive die employed by
Nature assigns approximately 1

2n probability to picking a world in the (2n)− th
complexity class, then a St. Petersburg-like argument proves that Nature forces
the scientist to accrue an infinite number of expected retractions and errors.
The extensive technical details in the proof below mainly concern the compu-
tation of probabilities of the relevant events governed by the finitely additive
die.

The proof that G∗ has finitely-additive mixed strategy equilibria is quite
involved. We first prove a shorter proposition, which itself requires a new
definition. Let 〈Kj〉j≤n+1 be a path of length n + 1 in K. For every mea-
sure on A∗S that is convergent in probability, and every ε, x ∈ (0, 1] such that
x < 1− (1− ε

n )1/n. Define:

Retn(p∗S , 〈Kj〉j≤n+1, ε, x) = {w ∈ Compn : ∃m0 < m1 < . . . < mn ∈ N
∀j ≤ n(p∗S([M(w � mj) = TKj ]) > 1− x)}

That is, Retn(p∗S , 〈Kj〉j≤n+1, ε, x) is the set of worlds such that p∗S first produces
theory TK0 at some stage of inquiry m0 with probability at least 1−x, and then
produces theory TK1 at some later stage m1 with probability at least 1 − x,
and so on. The following proposition shows that every probability measure pN
assigning Retn(p∗S , ε, x) unit probability causes the scientist to accrue almost n-
retractions in complexity class n. For ease of notation, when the path 〈Kj〉j≤n+1
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and the number x ∈ (0, 1] are held fixed and obvious from context, we will write
Retn(p∗S , ε).

Proposition 3.2.7. Let p∗S be a measure on A∗S that is convergent in prob-
ability. Let n be a natural number, and suppose that 〈Kj〉j≤n+1 is a path of
length n + 1 in K, such that K0 ∈ minK(∅). Let ε, x ∈ (0, 1] be such that
x < 1− (1− ε

n )1/n. Then for every pN on AN such that pN (Retn(p∗S , ε, x)) = 1,
it follows that:

ρn(p∗S , pN ) > n− ε

Proof: Let ε, x ∈ (0, 1] be such that x < 1 − (1 − ε
n )1/n. One can check this

ensures that (1− x)n > 1− ε
n

First, we prove that Retn(p∗S , ε) is non-empty. Consider the world w0 = K∞0
that is constantly K0. As p∗S is convergent in probability, there is some m0,ε

such that for all m ≥ m0,ε:

p∗S([M(w0 � m) = TK0 ]) > 1− x

Now define a world w1 such that

w1
j =

{
K0 if j ≤ m0,ε

K1 if j > m0,ε

Then, again as p∗S is convergent in probability, there is some m1,ε such that for
all m ≥ m1,ε:

p∗S([M(w � m) = TK1 ]) > 1− x
Now define a world w1 such that

w2
j =

 K0 if j ≤ m0,ε

K1 if m0,ε < j ≤ m1,ε

K2 if j > m1,ε

Continuing in this way, we can define m0,ε < m1,ε < . . . < mn,ε ∈ N and world
wn such that for all j ≤ n:

p∗S([M(wn � mj,ε) = TKj ]) > 1− x

It follows that wn ∈ Retp∗S ,ε, and so Retp∗S ,ε is non-empty as claimed.
Now we show that for all measures pN on AN such that pN (Retn(p∗S , ε)) = 1:

ρ(p∗S , pN ) > n− ε

Let w ∈ Retn(p∗S , ε). By definition of Retn(p∗S , ε), it follows that there are natural
numbers m0,w < m1 . . . < mn,w such that p∗S([M(w � mj,w) = TKj ]) > 1−x for
all j ≤ n. It follows that:

p∗S(
⋂
j≤n

[M(w � mj,w) = TKj ]) ≥ Πj≤n p
∗
S([M(wn � mj,w) = TKj ])

> (1− x)n

> 1− ε

n

76



Here, the last inequality follows from the choice of x. Define:

Rn,w := {M ∈ A∗S : ∃q1 < q2 . . . < qn ∈ N∀j ≤ (mj,w < qj ≤ mj+1,w & r(M,w, qj) = 1)}

That is, Rn,w is the set of methods that retract at least once between mj,w and
mj+1,w in w for all j ≤ n. Notice that

⋂
j≤n[M(w � mj,w) = TKj ] ⊆ Rn,w. It

immediately follows that:

p∗S(
⋂
j≤n

[M(w � mj,w = TKj ]) ≤ p∗S(Rn,w)

Finally, by definition of Rn,w, for all M ∈ Rn,w, It follows that:

∞∑
j=0

ρ(M,w, j) ≥ n

All that remains is to compute the quantity ρn(p∗S , pN ):

ρn(p∗S , pN ) =
∫

Compn

∫
A∗S

∞∑
j=0

ρ(M,w, j) · pN (dw) · p∗S(dM)

≥
∫

Retn(p∗S ,ε)

∫
Rn,w

∞∑
j=0

ρ(M,w, j) · p∗S(dM) · pN (dw)

≥
∫

Retn(p∗S ,ε)

n ·

(∫
Rn,w

p∗S(dM)

)
· pN (dw)

=
∫

Retn(p∗S ,ε)

n · p∗S(Rn,w) · pN (dw)

≥
∫

Retn(p∗S ,ε)

n · p∗S(
⋂
j≤n

[M(w � mj,w = TKj ])) · pN (dw)

>

∫
Retn(p∗S ,ε)

n · (1− ε

n
) · pN (dw)

≥
∫

Retn(p∗S ,ε)

(n− ε) · pN (dw)

= n− ε

�

Theorem 3.2.1. Suppose K contains an infinite path. Then the game G∗ has
finitely-additive mixed strategy equilibria.

Proof: The proof requires first introducing a considerable number of definitions
and notational conventions. First, given any set R, define cof(R) ⊂ 2R be the
set of co-finite subsets of R. For any positive natural number n, define N[n]

to be the set of all increasing n-tuples of natural numbers. In symbols, for all
n ∈ N:

N[n] = {s ∈ Nn : ∀i < n− 1(si < si+1)}
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Note that when n = 0 the set N[n] is the empty sequence 〈〉. For any subset
S ⊆ N[n] and any i such that i < n, define:

Si = {s � i : s ∈ S}
N(s, S, i) = {m ∈ N : (s � i) ∗m ∈ Si+1}
CofExtn = {S ⊆ N[n] : ∃S′ ⊆ N[n]∀s ∈ S′∀i < n(N(s, S, i) ∈ cof(N))}

Here, CofExtn is a mnemonic for “co-finitely extendable.”
By assumption, K contains an infinite path. Denote this path by 〈Kn〉n∈N.

Now, given an increasing n-tuple s ∈ N[n], define ws to be the world in Compn
such that

wsj =

 K0 if j < s0

Ki if ∃i < n(si−1 ≤ si)
Kn if j ≥ sn−1

In other words, ws is the world that begins by presenting the effect set K0 until
the sth0 stage of inquiry, at which point it presents K1 and continues to present
K1 until the sth1 stage of inquiry, at which point it presents K2, and so on.
When s is the empty sequence 〈〉, the world ws is the constant sequence (K0)∞.
Given s ∈ N[n] and i ∈ N, recall s∗ i is the result of concatenating i to the end of
the sequence s (i.e. s ∗ i = 〈s0, s1, . . . , sm−1, i〉). Notice that s ∗ i is an element
of N[n+1] if and only if s ∈ N[n] and i > sn−1. Accordingly, for each positive
natural number n, s ∈ Nn, and I ⊆ N, define:

s ∗ I = {s ∗ i : i ∈ I and i > sn−1}
W s∗I = {ws∗i ∈WK : i ∈ I}

Notice that W s∗I is always a subset of the (n + 1)st complexity class when
s ∈ Nn (though it may be empty if there is no i ∈ I such that i > sn).

For each positive natural number n and each s ∈ N[n−1], define:

Cn[s] = W s∗N

Cn = {ws : s ∈ N[n]} =
⋃

s∈N[n−1]

Cn[s]

Yn = {{ws : s ∈ S} ⊆ Compn : S ∈ CofExtn}
Zn = {Cn \ U : U ∈ Yn}
Bn = Yn ∪ Zn

When n = 0, define C0 = Y0 = {(K0)∞}, and let Z0 = {∅} so that B0 =
{(K0)∞, ∅}. We will need the following two lemmas, whose proofs are postponed
for exposition.

Lemma 3.2.5. For all natural numbers n ∈ N, the set Bn is an algebra on
Cn.15

15See Appendix for definition of algebra. In set theory and logic, the measure-theoretic
definition of algebra offered in the appendix is equivalent to the definition of a Boolean al-
gebra on the power set of some set Ω, where meets and joins correspond to the set-theoretic
operations of intersection and union.
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Lemma 3.2.6. Let 〈pn〉n∈N be a sequence of finitely additive probability mea-
sures on same underlying measurable space (Ω,F), and let 〈rn〉n∈N be a sequence
of real numbers such that

∑
n∈N rn = 1. Then p :=

∑
n∈N rn ·pn is a probability

measure on (Ω,F).

Because K contains an infinite branch, the algebra Bn is non-empty for
each n ∈ N. Let pn : Bn → [0, 1] be a probability measure on Bn such that
pn(U) = 1 for all U ∈ Yn (and, hence, pn(U) = 0 for all U ∈ Zn). Notice that
pn is purely finitely additive for all natural numbers n. Let B be the smallest
algebra containing ∪n∈NBn. One can see that, because each of the Bn’s is itself
an algebra and the Bn’s are disjoint, B is simply the result of closing ∪n∈NBn
under finite unions. Hence, every event U ∈ B can be represented as a finite
union U = Ui1 ∪ Ui2 . . . ∪ Uin for some set of natural numbers {i1, . . . , in} such
that Uij ∈ Bij . For all n ∈ N, extend pn to a probability measure pn on B by
defining:

pn(U) =
{
pn(U) if U ∈ Bn
0 otherwise

Define a function g : N→ [0, 1] as follows:

g(n) =


1
8 if n ∈ {0, 1}

1
2d+1 if n = 2d for some d ∈ N,

1
2d+1(2d−1)

if 2d < n < 2d+1 for some d ∈ N

It’s easy to check that g is actually a countably additive probability measure
on the power set of natural numbers. Now, for any U = Ui1 ∪ Ui2 . . . Uin in B,
define:

p(U) = g(i1) · pi1(Ui1) + g(i2) · pi2(Ui2) + . . .+ g(in) · pin(Uin)

Then, by Lemma 3.2.6, p is a probability measure on B. By Lemma 3.2.5 and
Theorem 4.1.2 in the appendix, the function p extends to a finitely additive
probability measure pN on AN . Notice that, for all n ∈ N, the measure pN � Bn
is equal to g(n) · pn, as each of the algebras Bn are disjoint.

The following lemma is the major step to proving the theorem:

Lemma 3.2.7. Let p∗S be a measure on A∗S that converges in probability. Then
for all natural numbers n ∈ N:

ρn(p∗S , pN ) ≥ n · g(n)

Proof: When n = 0, the proof is trivial as retractions are always greater than
or equal to zero. So suppose n > 0.

First, we introduce one more piece of notation. Note that because p∗S is
convergent in probability, there exists a function γ(p∗S ,−,−) : WK × (0, 1]→ N
such that:

γ(p∗S , w, ε) = min{m ∈ N : p∗S([M(w � m′)] = Tw) > 1− ε for all m′ ≥ m}
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In general, if P(A∗S)cp is the set of probability measures on A∗S that converge in
probability, one can consider γ as a function with domain P(A∗S)cp×WK×(0, 1].
Importantly, notice that for any triple 〈p∗S , w, ε〉, the set

Γ(p∗S , w, ε) := N \ {0, 1, . . . , γ(p∗S , w, ε)}

is co-finite in N. Now:

ρn(p∗S , pN ) =
∫

Compn

∫
A∗S

∞∑
m=0

ρ(M,w,m) · p∗S(dM) · pN (dw)

= g(n) ·
∫

Compn

∫
A∗S

∞∑
m=0

ρ(M,w,m) · p∗S(dM) · pn(dw)

where the last equality follows by the definition of pN . Hence, it suffices to show
that: ∫

Compn

∫
A∗S

∞∑
m=0

ρ(M,w,m) · p∗S(dM) · pn(dη) ≥ n.

Let ε ∈ [0, 1) and x ∈ (0, 1] be such that (1 − x)n+1 > 1 − ε
n+1 and define

Retn(p∗S , 〈Kj〉j≤nε, x) as in Proposition 3.2.7. Recall that Retn(p∗S , 〈Kj〉j≤n, ε, x)
is the set of worlds in complexity class n where the mixed strategy p∗S produces
TK0 with probability greater than 1 − x at some point of inquiry m1, then
produces TK1 with probability greater than 1−x at some later point of inquiry
m1 > m0, and so on. Again, we write Retn(p∗S , ε) dropping the path parameter,
as it is held fixed, and x because it is a function of ε.

It suffices to show that pn(Retn(p∗S , ε)) = 1, for then:∫
Compn

∫
A∗S

∞∑
m=0

ρ(M,w,m) · p∗S(dM) · pn(dη) ≥
∫

Retn(p∗S ,ε,x)

∫
A∗S

∞∑
m=0

ρ(M,w,m) · p∗S(dM) · pn(dη)

> n− ε

where the last inequality follows by Proposition 3.2.7. As ε was chosen arbitrar-
ily, the result would follow. But to show pn(Retn(p∗S , ε)) = 1, by the definition
of pn, it suffices to show that U ⊆ Retn(p∗S , ε) for some U ∈ Yn, as pn(U) = 1
for all U ∈ Yn.

The proof proceeds by induction on n, and the base case is trivial. So suppose
there is U ∈ Yn such that U ⊆ Retn(p∗S , ε). We want to find some V ∈ Yn+1

such that V ⊆ Retn+1(p∗S , ε). By definition of Yn, there exists SU ∈ CofExtn
such that

{ws ∈WK : s ∈ SU} ⊆ U.
Recall Γ(p∗S , w

t, x) = N \ {0, 1 . . . , γ(p∗S , w
t, x)}. With that in mind, define

SV =
⋃
s∈SU s ∗ Γ(p∗S , w

s, x) and define

V = {ws ∈WK : s ∈ SU}.

By definition of CofExtn, we have that N(s, SU , i) ∈ cof(N) for all s ∈ SU and
all i < n. But notice that (SV )i = (SU )i for all i ≤ n, and hence, N(s, SV , i) =
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N(s, SU , i) for all i < n. It follows that N(s, SV , i) ∈ cof(N) for all s ∈ SV and
all i < n. Moreover, N(s, SV , n) is co-finite for all s ∈ SV because (i) Γ(p∗S , w, x)
is co-finite for any world w, and (ii) N(s, SV , n) = Γ(p∗S , w

s, x). Thus, we’ve
show that N(s, SV , i) ∈ cof(N) for all s ∈ SV and all i ≤ n, from which it
follows that SV ∈ CofExtn+1.

To show that V ⊆ Retn+1(p∗S , ε), recall that by inductive hypothesis U ⊆
Retn(p∗S , ε), and so for all w ∈ U , there are s0 < s1 . . . < sn such that

p∗S([M(w � sj) = TKj ]) > 1− x.

for all j ≤ n. Now every world w ∈ V is of the form ws∗t where ws ∈ U ⊆
Retn(p∗S , ε) and t > γ(p∗S , w

s, x). Thus:

ws � j = ws∗t � j.

for all j ≤ γ(p∗S , w
s, x) < t. It follows that

p∗S([M(ws � j) = A]) = p∗S([M(ws∗t � j) = A])

for all j ≤ γ(p∗S , w
s, x) < t and all A ∈ Ans. Thus, for all j ≤ n − 1, it follows

that p∗S([M(ws∗t � sj) = TKj ]) = p∗S([M(ws � sj) = TKj ]) > 1 − x. Moreover,
by definition of γ(p∗S , w

s, x), it follows that

p∗S([M(ws∗t � sn] = TKn) = p∗S([M(ws � sn) = TKn ]) > 1− x.

Finally, because p∗S converges in probability, there is some sn+1 ∈ N such that
p∗S([M(ws∗t � sn+1) = TKn+1 ]) > 1−x. Therefore, the sequence s0, s1, . . . , sn+1

witness the fact that ws∗t ∈ Retn+1(p∗S , ε). So we’ve shown that V ⊆ Retn+1(p∗S , ε)
as desired.

(End Proof of Lemma 3.2.7) �

Now to finish the proof of Theorem 3.2.1, we use the above show that,
for any mixed strategy p∗S for the scientist that is convergent in probability,
ε(p∗S , pN ) = ρ(p∗S , pN ) = ∞. Therefore, because pN (WK) = 1, the mixed strat-
egy pN is optimal for Nature. It follows that, for any mixed strategy p∗S for the
scientist that is convergent in probability, (p∗S , pN ) is a Nash equilibrium. To
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show ε(p∗S , pN ) = ρ(p∗S , pN ) =∞, note:

ρ(p∗S , pN ) =
∫
AN

∫
A∗S

∞∑
m=0

ρ(M,w,m) · p∗S(dM) · pN (dw)

=
∞∑
n=0

∫
Compn

∫
A∗S

∞∑
m=0

ρ(M,w,m) · p∗S(dM) · pN (dw)

≥
∞∑
n=0

n · g(n) by the previous lemma

>

∞∑
n=0

2n · g(2n)

=
∞∑
n=0

2n · 1
2n+1

by definition of g

=
∑
n∈N

1
2

= ∞

Because each of the forced retractions above also constitutes an error, one
can use a similar argument to that above to show that ε(p∗S , pN ) = ∞ as well.
Thus, Nature can do no better than pN as it minimizes her convergence costs cN ,
and maximizes the number of errors and retractions the scientist might accrue.
Hence, for any mixed strategy p∗S for the scientist, the pair (p∗S , pN ) constitutes
a Nash equilibrium. All that remains is to provide proofs of Lemmas 3.2.5 and
3.2.6.

Proof of Lemma 3.2.5: B0 is clearly an algebra. So assume n > 0. First, note
that Cn = {ws : s ∈ N[n]}. Hence, as N[n] ∈ CofExtn, it follows that Cn ∈ Yn,
and therefore, Cn ∈ Bn. Next, notice that Bn is closed under complements
(relative to Cn) by construction, as every element is either in Yn or Zn, and the
elements in Yn are complements of those in Zn by construction (and vice versa).
Finally, we must show that Bn is closed under finite unions. To so so, we first
show that CofExtn is closed under finite unions and intersections.

By construction, CofExtn is trivially closed under finite unions. To show
CofExtn is closed under finite intersections, one proceeds by induction on n.
The base case, when n = 1, follows from the fact that co-finite subsets of N are
closed under intersection. For the inductive step, let S, S′ ∈ CofExtn+1. Then:

S ∩ S′ = {s ∗ N(s, S ∩ S′, n+ 1) : s ∈ Sn ∩ S′n}

But N(s, S ∩ S′, n+ 1) = N(s, S, n+ 1) ∩ N(s, S′, n+ 1) is co-finite because co-
finite subsets of N are closed under intersection. Moreover, Sn ∩ S′n ∈ CofExtn
by inductive hypothesis. This shows that S ∩ S′ ∈ CofExtn+1 because one can
check that every U ∈ CofExtn+1 is of the form:

U = {u ∗ FU (u) : u ∈ U ′ ∈ CofExtn and FU : U ′ → cof(N)}
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Now we show that Bn is closed under finite unions. Let U, V ∈ Bn. The
proof breaks into two cases:

Case 1: Suppose either U or V (or both) is an element of Yn. Without loss of
generality, assume U ∈ Yn. We claim that U ∪ V ∈ Yn. To do so, note that, by
definition of Yn, there exists SU ∈ CofExtn such that {ws : s ∈ SU} ⊆ U . But
then {ws : s ∈ SU} ⊆ U ∪ V , and it follows that U ∪ V ∈ Yn.

Case 2: Suppose both U, V ∈ Zn. We claim that U ∪ V ∈ Zn. By Demorgan’s
laws, it suffices to show that Yn is closed under intersection. But this follows
immediately from the fact that CofExtn is closed under finite intersections.

(End Proof of Lemma 3.2.5) �

.
Proof of Lemma 3.2.6: Let 〈pn〉n∈N be a sequence of finitely additive prob-
ability measures on same underlying measurable space (Ω,F), and let 〈rn〉n∈N
be a sequence of real numbers such that

∑
n∈N rn = 1. Define p :=

∑
n∈N rn ·pn.

We want to show p is a probability measure on (Ω,F). First, note that

p(Ω) =
∞∑
n=0

rn · pn(Ω) =
∞∑
n=0

rn = 1

Next, for any finite collection of disjoint events {Q1, . . . , Qm}, one has:

p(
⋃
i≤m

Qi) =
∞∑
n=0

rn · pn(
⋃
i≤m

Qi)

=
∞∑
n=0

rn ·

∑
i≤m

pn(Qi)


=

∑
i≤m

∞∑
n=0

rn · pn(Qi)

=
∑
i≤m

p(Qi)

(End Proof of Lemma and Theorem 3.2.1) �

Although the above proof only constructs one equilibrium in G∗ (when K
contains an infinite path), it provides a recipe for constructing uncountably
many more. The mixed strategy pN for Nature in the above proof is a weighted
average of probability measures of the form pn, where pn is defined on an algebra
Bn that is a subset of complexity class n. The function g : N → [0, 1], which
weighted the amount of probability assigned to Bn, is a “St. Petersburg”-like
distribution, in that it assigned appropriate probabilities to various worlds so
that the expected cost to the scientist is infinite. One can simply modify the
function g to obtain various other St. Petersburg-like distributions, and the
remainder of the proof remains unchanged.
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3.2.3 G∗∗: Actions as Methods and Forcing Patterns

In the last section, I showed that, if Nature’s set of pure strategies is identi-
fied with the set of worlds and the scientist’s set of pure strategies consists of
methods, then the canonical representation of the KGS model as a game has
finitely-additive equilibria, but it does not have a countably additive equilibrium
under certain conditions. But there is an asymmetry in the above game that
puts Nature at a disadvantage. As the scientist’s strategies consist of functions
from effects to answers, there is a sense in which the scientist can respond to
Nature’s moves, even though it’s a one-shot game. What if one permits Nature
to do the same?

In this section, I provide a third way of representing the KGS model as
a strategic game that eliminates this asymmetry. Here, Nature’s set of pure
strategies consists of functions that map finite answer sequences provided by
the scientist to effect sets (i.e. L : Ans<ω → 2E). It is shown in this game there
are, in fact, infinitely many countably-additive, mixed strategy Nash equilibria.

Let the set of pure strategies for the scientist A∗S be the set of functions
of the form M : (2E)<ω → Ans. Similarly, let the set of pure strategies for
Nature A∗n be the collection of functions of the form L : Ans<ω → 2E such
that L(α) ⊆ f(α′ for all α, α′ ∈ Ans<ω where α is an initial segment of α′ (in
symbols, α ≤ α′).

Then, for any pure strategy for Nature L : Ans<ω → 2E and any strategy
M : (2E)<ω → Ans for the scientist, define by simultaneous recursion:

η0 = L(∅)
α0 = M(〈η0〉)

ηn+1 = = L(〈α0, . . . , αn〉)
αn+1 = = M(〈η0, . . . , ηn+1〉)

Then the sequences ηM,L = (ηn)n∈N and αM,L = (αn)n∈N are members of (2E)ω

and Ansω respectively. Hence, one can use the same techniques in Section 4.2.1
to define the total number of errors and retractions committed by the method
M in response to Nature’s strategy L as follows. namely, define:

(M,L) �S (M ′, L′)⇔ (αM,L, ηM,L) �S (αM
′,L′ , ηM

′,L′)

where the ordering on the right side of the biconditional is defined as in equation
(I) in Section 4.2.1.

One can extend this ordering to mixed strategies, but to do so, one first
needs to define the notion of a mixed strategy. Define the events:

[Mη = α � m] = {M ∈ A∗S : M(η � j) = α � j for all j ≤ m}
[Lα = η � m] = {L ∈ A∗N : L(α � j) = η � j for all j ≤ m}

A∗S = σ({[Mη = α � m] : M ∈ A∗S , η ∈ AN , α ∈ AS})
A∗N = σ({[Lα = η � m] : L ∈ A∗N , η ∈ AN , α ∈ AS})
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Notice that A∗S is defined identically as in the previous section; the definition
is repeated as a reminder. Then mixed strategies for the scientist and Nature
are probability measures p∗S and p∗N on A∗S and A∗N respectively. Then one can
define:

ε(p∗S , p
∗
N ) =

∫
A∗N

∫
A∗S

ε(αM,L, ηM,L) · p∗S(dM) · p∗N (dL)

ρ(p∗S , p
∗
N ) =

∫
A∗N

∫
A∗S

ρ(αM,L, ηM,L) · p∗S(dM) · p∗N (dL)

cS(p∗S , p
∗
N ) =

∫
A∗N

∫
A∗S

cS(αM,L, ηM,L) · p∗S(dM) · p∗N (dL)

cN (p∗N , p
∗
N ) =

∫
A∗N

∫
A∗S

cN (ηM,L) · p∗S(dM) · p∗N (dL)

Notice that, because Nature is capable of responding to the scientist’s answers at
successive stages of inquiry in G∗∗, the cost cN (p∗N , p

∗
S) above depends upon both

Nature’s strategy and the scientist’s strategy. As in G∗, the definition of the
preference relation for the scientist (and Nature) requires considering methods
that “converge in probability.” Because the game has changed, however, one
must alter the definition of convergent in probability ever so slightly. Say a
pure strategy L ∈ A∗N for Nature is convergent if for all methods M ∈ A∗S ,
the sequence ηM,L is a world (i.e. ηM,L ∈ WK). If L is a convergent strategy
for Nature, say a pure strategy M for the scientist is convergent in L if there
exists an n ∈ N such that M(ηM,L � n′) = TηM,L for all n′ ≥ n. Say M is
convergent (simpliciter) if M converges in L for all convergent L. Finally, say
a mixed strategy p∗S for the scientist is convergent in probability if for all
convergent strategies L for Nature, one has:

lim
n→∞

p∗S([M(ηM,L � n) = TηM,L ]) = 1

Given the definition of convergent in probability, retractions, and errors for
pairs of actions A∗S and A∗N , one can then define the preference relation for
the scientist in the same way as in Equation III of the previous section. This
completes the third formalization of the KGS model as a game. Call the game
G∗∗.

An additional similarity betweenG∗ andG∗∗ is that both admit an alternative
definition to the preference relation that is equivalent when p∗S and p∗N are both
countably additive. The alternative definition is described and made possible
by the following propositions:

Proposition 3.2.8. The function ϕ∗∗ : A∗S × A∗N → AS × AN defined by
ϕ∗∗(M,L) = (αM,L, ηM,L) is σ(A∗S ×A∗N )/σ(AS ×AN )-measurable.

Proof: The proof is nearly identical to that of Proposition 3.2.5.

�
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Proposition 3.2.8 motivates the following approach to evaluating mixed strate-
gies. Let p∗S and p∗N be probability measures on A∗S and A∗N respectively. Let
p∗ be the unique induced product measure on σ(A∗S ×A∗N ) (Recall, we are as-
suming that both p∗S and p∗N are both countably additive for the moment). Let
p be the measure induced on σ(AS ×AN ) by the mapping ϕ∗∗. That is, for all
X ∈ σ(AS ×AN ), define:

p(X) = p∗((ϕ∗∗)
−1(X))

The function p is a probability measure because ϕ∗∗ is measurable, in light of
proposition 3.2.8. Finally, for X ∈ AS and Y ∈ AN , define:

pS(X) = p(X ×AN )
pN (Y ) = p(AS × Y )

Then one can use the preference relations defined in Equation II to order mixed
strategies in this new game as follows:

(p∗S , p
∗
N ) �S (q∗S , q

∗
N ) ⇔ (pS , pN ) �S (qS , qN )

(p∗S , p
∗
N ) �N (q∗S , q

∗
N ) ⇔ (pS , pN ) �S (qS , qN )

In order to begin analyzing whether G∗∗ has a solution, it is necessary to
build a catalog of known measurable events. A short lemma will be helpful in
doing so:

Then by analogous reasoning to that in Lemma 3.2.1, one obtains the fol-
lowing facts:

Proposition 3.2.9. The following events are measurable:

1. For any A ∈ Ans and any n ∈ N, the event [Mη,n = A] = {M ∈ A∗S :
M(η � m) = A} is A∗S-measurable. For any E0 ⊂ E, the event [fα,m =
E0] = {f ∈ A∗N : f(α � m) = E0} is A∗N -measurable

2. For any M ∈ A∗S , the singleton {M} is A∗S-measurable, and analogously,
the singleton {f} isA∗N -measurable for any f : Ans<ω → 2E . In particular,
one can identify any world w with a function Lw such that Lw(α � n) = wn
for all α ∈ Ans<ω and all n ∈ N. So one obtains that any world w ∈W is
A∗N -measurable.

3. For any η ∈ A∗N , the set Mη
c = {M ∈ A∗S : M converges in η} is A∗S-

measurable, and analogously, the set FMc = {f ∈ A∗N : ηM,f ∈ W} is
A∗N -measurable.

4. The set Mc = {M ∈ A∗S : for all η ∈ W,M converges in η} is A∗S-
measurable. Similarly, Fc = {f ∈ A∗N : for all M ∈ Mc, ηM,f ∈ W}
is A∗N -measurable.
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Unlike the first two representations of the KGS model as a game, one need
not resort to finite mixed strategies in order to obtain Nash equilibria when
K contains a infinite path. Here, we present an intuitive argument that Nash
equilibria exist in the above game even when K is infinite, and we make the
argument more precise below. Assume that Nature has an infinite collection
of dice, and suppose that each die has 2n sides labeled with numbers 1 to
2n. Furthermore, assume that, for each die with 2n sides, the probability that
the die will land on the highest labeled side 2n is .99 and the probability it
will land on any other side is 1

100·(2n−1) . Nature can then achieve an infinite
number of expected errors and retractions, while still converging, by employing
the following mixed strategy. Nature flips a coin until it lands heads. If the coin
lands heads on the nth toss, she then rolls the die with 2n sides. Suppose that
the die lands on side k. Nature then picks an arbitrary sequence of theories
〈T1, T2, . . . , Tk〉 such that Ti ⊆ Ti+1 for all i ≤ k. She then presents theory
T1 at the outset of inquiry. If the scientist never returns T1, then Nature wins
by presenting T1 indefinitely. Otherwise, the scientist eventually returns T1,
and then Nature switches to T2. Nature repeats this process until she reaches
theory Tk, at which point she stops returning different effect sets. Suppose that,
in response to this mixed strategy, the scientist employs any mixed strategy that
assigns probability one to convergent methods (i.e p∗S(Mc) = 1).

If Nature and the scientist follow these respective strategies, then the scien-
tist will accrue an infinite number of expected retractions and errors. Nature
can do no better, moreover, as she achieves the maximum possible gains in the
game. Why? It is proven below that the scientist achieves a convergence cost of
zero in this game by assigning probability one to convergent methods. Hence,
by employing the above strategy, Nature achieves the best possible outcome in
the game, as she minimizes her cost of non-convergence (namely, by making it
zero) and maximizes the error and retraction costs to the scientist (by making
them infinite). The scientist, in turn, can do no better because, if he were to
reduce his expected number of errors and retractions, he would do so on pains
of increasing the probability that he does not converge to the true theory, thus
increasing his cost of non-convergence. Hence, we’ve found (an infinite) number
of Nash equilibria.

We now make this argument more precise. Suppose K contains an infinite
path 〈Kn〉n∈N. For each n ∈ N define µn : {Kn}n∈N → {Kn}n∈N by:

µn(S) =
{
Kj+1 if S = Kj and j < n
Kn+1 otherwise

Again, for each n, define Ln ∈ A∗N as follows. For every α ∈ Ansω and any
m ∈ N:

Ln(∅) = L(α0) = K0

Ln(α � m+ 1) =
{
Ln(α � m) if αm 6= TLn(α�m)

µn(Ln(α � m)) otherwise

Here, Ln corresponds to a strategy for Nature that involves playing K0 until
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the scientist returns TK0 , then playing K1 until the scientist returns TK1 , and
so on until returning Kn+1 for eternity. The following facts are easily proven:

Lemma 3.2.8.

1. Ln is convergent for all n.

2. Suppose M is convergent. The ρ(M,Ln) := ρ(αM,Ln) ≥ n.

3. Suppose p∗S is convergent in probability. Then ρ(p∗S , Ln) ≥ n for all n ∈ N.

The above lemma can be used to prove the following.

Theorem 3.2.2. Suppose K contains an infinite path. Then there exist in-
finitely many countably additive mixed strategy Nash equilibria in G∗∗.

Proof: Like the proof of Theorem 3.2.1, one defines a “St. Petersburg”-like dis-
tribution p∗N on the Ln’s and shows that, for any mixed strategy for the scientist
p∗S that converges in probability, the ρ(p∗S , p

∗
N ) = ε(p∗S , p

∗
N ) =∞. Because there

are infinitely many such St. Petersburg-like distributions, the result follows. We
give an example below.

Let g : N→ [0, 1] be the probability measure defined on the power set of the
natural numbers like the one defined in Theorem 3.2.1. Recall:

g(n) =


1
8 if n ∈ {0, 1}

1
2d+1 if n = 2d for some d ∈ N,

1
2d+1(2d−1)

if 2d < n < 2d+1 for some d ∈ N

Let p∗N be the unique countably additive measure such that p∗N (Ln) = g(n).
Then by the previous lemma:

ρ(p∗S , p
∗
N ) =

∫
A∗N

∫
A∗S

ρ(αM,L) · p∗S(dM) · p∗N (dM)

=
∞∑
n=0

g(n) ·

[∫
A∗S

ρ(αM,Ln) · p∗S(dM)

]
definition of p∗N

≥
∞∑
n=0

g(n) · n by Lemma 3.2.8

= ∞

�

3.3 A Brief Discussion of the Three Represen-
tations and the New Efficiency Conjecture

Although each of the three representations of the KGS model as a game have
equilibria, in no such games are the scientist’s half of the equilibria constituted
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uniquely by Ockham strategies. This raises the question: why do the game the-
oretic results above not provide an alternative proof of the Efficiency Theorems?

Roughly, there are two hurdles to proving a more general Efficiency Theorem
within the game-theoretic framework. Recall in the description of the KGS
model, one does not compare the worst-case costs of two methods over all worlds
because such costs are, in general, infinite. Instead, one compares the costs
of two methods across complexity classes, where such costs are often bounded.
This suggests the conjecture that, if the preference relations above in G∗, and G∗∗
are refined to consider comparisons of errors and retractions within complexity
classes, only mixtures of Ockham methods (that converge in probability) for the
scientist will be in equilibria with Nature’s finitely additive mixed strategies.

The major stumbling block to proving this conjecture, however, is to provide
a more general definition of simplicity. Why? If Nature “zeros out” particular
complexity classes by playing the complexity class with probability zero, then
the scientist, it seems, ought never to guess a theory of that complexity, even
if such a theory is simplest according to the definitions of the KGS model.
Note this isn’t a challenge to the defense of Ockham’s razor provided by the
Efficiency Theorems, for if Nature’s mixed strategy represents the scientist’s
prior distribution on worlds (or fooling strategies in G∗∗), then the scientist
hardly ought to consider a theory with zero probability “simplest.” In other
words, the KGS model ought to be revised so that the definition of simplicity
is a function, in some way or another, of the scientist’s prior distribution on
worlds. Yet it is not clear how the definition of simplicity ought to reflect one’s
prior distribution, and so this very general conjecture remains open.
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Chapter 4

Appendices

4.1 Measure Theory and Probability

4.1.1 Measures and Measure Spaces

Let Ω be any set, and F be a subset of 2Ω, the power set of Ω. F is called a
σ-algebra if (i) Ω ∈ F , (ii) S ∈ F implies that Sc, the complement of S is in F ,
and (iii) If 〈Sn〉n∈N is a countable sequence of events such that Sn ∈ F for all
n ∈ N, then

⋃
n∈N Sn ∈ F . In other words, a σ-algebra on a set Ω is a collection

of subsets of Ω that contains Ω itself and is closed under countable unions and
complements. By Demorgan’s laws, σ-algebras are also closed under countable
intersections. If one relaxes condition (iii) so that F need only be closed under
finite unions, then F is called an algebra (simpliciter). A pair 〈Ω,F〉 where F
is a σ-algebra on Ω is called a measurable space, and elements of F are called
measurable sets.

Lemma 4.1.1. If 〈Fi〉i∈I is a family of σ-algebras on some set Ω, then
⋂
i∈I Fi

is a σ-algebra on Ω.

Let B ⊆ 2Ω and Σ(B) = {F ⊆ 2Ω : F is a σ− algebra and B ⊆ 2Ω}. Then
by the above lemma, σ(B) =

⋂
F∈±(B) F is a σ-algebra on Ω. A particularly

important σ-algebra is the Borel algebra B(Rn), which the one generated by
open sets in Euclidean space Rn (i.e. B(Rn) = σ(O) where O = {S ⊆ R\ :
S is open }). In general, if Ω is a set and τ is a topology on Ω, then σ(τ) is
called the Borel Algebra with respect to τ .

If 〈Ω,F〉 is a measurable space, then a function p : F → R∪ {∞} is called a
countably additive measure if for every countable collection {Sn}n∈N of disjoint
sets Sn ∈ F , it follows that p(

⋃
n∈N En) =

∑
n∈N p(En). Similarly, a function

p : F → R∪{∞} is called a finitely additive measure if p(
⋃
i≤nEi) =

∑
i≤n p(Ei)

for any finite collection of disjoint measurable sets {E1, . . . , En}. Notice that
every countably additive measure is finitely additive, but not vice versa. For
example, let p be a measure on 2N that assigns probability zero to each natural
number and probability one to the set of all natural numbers. For this reason,
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call measures that are finitely additive but not countably additive purely finitely
additive. A measure space is a triple 〈Ω,F , p〉 such that 〈Ω,F〉 is a measurable
space and p is a finitely additive measure. If p is countably additive, then
〈Ω,F , p〉 is called a countably additive measure space.

A measure p is said to be σ-finite if there exists a countable set of measurable
sets {Sn}n∈N such that Ω =

⋃
n∈N Sn and each Sn has finite measure (i.e p(Sn) <

∞ for all n ∈ N). A probability space is a measure space in which p(Ω) = 1.
All probability measures are trivially σ-finite, as p(Ω) = 1, and so the constant
countable sequence 〈Ω,Ω, . . .〉 yields the desired witness to σ-finiteness.

It is often difficult to define a measure on the entirety of some σ-algebra F
on a set Ω. However, if one has a measure p on a family of sets B ⊆ 2Ω and
F = σ(B), then, under certain conditions specified by the following theorem, p
can be extended to a measure on the entirety of F :

Theorem 4.1.1 (Caratheodory). Let B be an algebra on a set Ω, and suppose
p : B → R ∪ {∞} is a countably-additive measure on B. Then there exists a
countably-additive measure p : σ(B)→ R∪ {∞} extending p (i.e p � B = p). If
p is, in addition, σ-finite, then p is unique and σ-finite.

An analogous result also holds for finitely additive measures.

Theorem 4.1.2. Let B be an algebra on a set Ω, and suppose p : B → R∪{∞}
is a finitely-additive measure on B. Then there exists a finitely-additive measure
p : σ(B)→ R ∪ {∞} extending p (i.e p � B = p).

The difference between the two theorems is that extensions of a finitely
additive measure will in general not be unique, even when the finite measure
is bounded (and hence, σ-finite). See Swartz (1994) for a proof of the lat-
ter theorem. A particularly important countably additive measure space is
〈Rn,B(Rn), λ〉, where λ is the Lebesgue measure, which is unique countably-
additive extension of the function that assigns every open ball its volume. The
existence and uniqueness of λ follows from Caratheodory’s Theorem.

Another important application of Caratheodory’s Theorem is the construc-
tion of measures on product spaces. Let 〈Ω,F , p〉 and 〈Ω′,F ′, p′〉 be two measure
spaces. Define:

F ⊗ F ′ = σ({E × E′ : E ∈ F , E′ ∈ F ′})

and consider the measurable space 〈Ω×Ω′,F⊗F ′〉. For every pair of sets E ∈ F
and E′ ∈ F ′, define a function p × p′(E × E′) = p(E) · p(E′). Then if p and
p′ are countably additive and σ-finite, then by Caratheodory’s theorem, the set
function p×p′ extends to a unique countably additive σ-finite measure p× p′ on
F ⊗F ′. As a particular example, when p and p′ are both probability measures,
then p× p′ is a probability measure (as p× p′(Ω × Ω′) = p × p′(Ω × Ω′) =
p(Ω) · p′(Ω′) = 1). When either p or p′ are purely finitely additive, Theorem
4.1.2 guarantees the existence of a measure on F ⊗ F ′, but uniqueness is not
guaranteed.
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4.1.2 Measurable Maps and Random Variables

Let 〈Ω,F , p〉 and 〈Ω′,F ′, p′〉 be two measure spaces and X : Ω → Ω′ be a
function. Then X is said to be F/F ′-measurable if X−1(S) ∈ F for all S ∈
Ω′. When the measurable spaces are unambiguous, one just says that X is
measurable without mentioning the underlying sets and σ-fields. If 〈Ω,F , p〉 is
a probability space, then X is called an abstract random variable. If 〈Ω,F , p〉
is a probability space and If 〈Ω′,F ′, p′〉 is the measure space 〈R,B(R), λ, then
X is called a random variable (simpliciter). If X is a measurable mapping from
the measure space 〈Ω,F , p〉 to some other measurable space 〈Ω′,F ′, then one
can define a measure p′ on 〈Ω′,F ′ as follows:

p′(S) = p(X−1(S))

for all S ∈ F ′. In this case, p′ is called the image measure or measure induced
by X. When X is a random variable, then p′ is called the distribution of X.

4.1.3 Integration

Let (Ω,F , p) be a measure space and g : Ω → R a measurable function. Then
g is called simple if there exist finitely many real numbers r1, r2, . . . , rn ∈ R
and finitely many events Q1, . . . , Qn ∈ F such that g =

∑n
i=1 ri · 1Qi , where

1Qi is the characteristic function of the event Qi. The the integral
∫
fdp of

an arbitrary F/B(R)-measurable function f is defined as follows. For simple
functions g =

∑n
i=1 ri · 1Qi , one defines

∫
gdp =

∑n
i=1 ri · p(Qi). Then for

any arbitrary measurable function f , the integral
∫
fdp is then defined to be

sup{
∫
gdp : g is simple and g(ω) ≤ f(ω) for all ω ∈ Ω}.

If (Ω1,F1, p1) and (Ω2,F2, p2) are countably-additive measure spaces, then
Fubini’s theorem provides a direct connection between integration over the prod-
uct space

Theorem 4.1.3 (Fubini-Tonelli). Suppose (Ω1,F1, p1) and (Ω2,F2, p2) are
countably-additive, σ-finite measure spaces. Let (Ω1 × Ω2,F1 ⊗ F2, p1 × p2)
be the product space, and f : Ω1 × Ω2 → R+ be F1 ⊗ F2/B(R)-measurable.
Then: ∫

Ω1×Ω2

f dp1 × p2 =
∫

Ω1

∫
Ω2

f dp2 · dp1 =
∫

Ω2

∫
Ω1

f dp1 · dp2

Fubini’s theorem fails for merely finitely-additive measures, and so specifica-
tion of order of integration is important when the measures under consideration
are merely finitely-additive.

4.2 Directed Acyclic Graphs and Bayesian Net-
works

A directed acyclic graph (DAG) is an ordered pair G = (V,A) where V is a
finite set of vertices and A ⊂ V ×V is an anti-reflexive, anti-symmetric relation
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representing the graph’s arrows (often called edges). If (v, v′) ∈ A, then we say
v is a parent of v′, and that v′ is a child of v. Often, we will write v → v′ is
in A or v → v′ appears in G if the ordered pair (v, v′) ∈ A. For brevity, let
PAG(v) denote the set of parents of v in G, and let ChG(v) denote its children.
An undirected path (or simply, path) π is a sequence π = 〈v1, v2, . . . , vn〉 such
that vi 6= vj for i 6= j and either (vi, vi+1) ∈ A or (vi+1, vi) ∈ E for all 1 ≤
i ≤ n. If π1 = 〈v1, v2, . . . , vn〉 and π2 = 〈w1, w2, . . . , wm〉 are paths, then we
let π1 _ π2 = 〈v1, v2, . . . , vn, w1, w2 . . . , wm〉 denote the concatenation of the
two paths. Notice that the concatenation π1 _ π2 of two paths need not be a
path itself, as some variable v may be on both π1 and π2. Abusing notation, we
will sometimes write {v1, v2, . . . vn} ⊆ π if the variables v1, v2, . . . vn appear on
the path π. Finally, if π1 = 〈v1, v2, . . . , vn〉 is a path, and π2 = 〈v1, v2, . . . , vr〉
where r ≤ n is an initial segment (not necessarily proper) of π1, then we say π2

is a subpath of π1 and we write π2 v π1.
If π = 〈v1, v2, . . . , vn〉 is such that (vi, vi+1) ∈ A for all i, then we say π is a

directed path from v1 to Vn. In this case, we also say that v1 is an ancestor of vn
and that vn is a descendant of v1. Let DescG(v) denote the set of descendants
of v, and similarly let AncG(v) denote its ancestors. Finally, if v1 → v3 ← v2

appears in a graph G, then we say v3 is a collider with respect to v1 and v2.
If v2 is a collider with respect to v1 and v3 and, in addition, there is no edge
between v1 and v2, then we say v3 is an unshielded collider with respect to v1

and v2.
A Bayesian network (or Bayes net, for short) is a pair B = (G, pG) where

(i) the set of vertices V in the graph G = (V,A) are random variables over
a common measurable space 〈Ω,F , p〉 and (ii) pG is the joint distribution on
Euclidean space induced by the random variables V . Although Bayes nets are
arbitrary ordered pairs of the form B = (G, pG), this paper only considers Bayes
nets that represent causal relationships amongst variables. As such, I assume
that Bayes nets satisfy two conditions, called the Causal Markov Condition and
the Faithfullness Condition.

The Causal Markov Condition (CMC) states that any random variable v ∈ V
is probabilistically independent of its non-descendants conditional on its parents
in the graph G. Symbolically, let v, v′ ∈ V be such that v′ 6∈ DescG(v), then
CMC states that

pG(v, v′|PAG(v)) = pG(v|PAG(v))pG(v′|PAG(v)).

In this case, say that pG is Markov for the graph G. For any subset S ⊆ V ,
write vqv′|V0 to abbreviate the statement v is independent of v′ conditional on
V0. In general, define cicV to be the set of conditional independence constraints
of the form v q v′|S, where v, v′ ∈ V and V0 ⊆ V \ {v, v′}.

The Causal Markov Condition can be written in a slightly more perspicu-
ous way as follows. Let V be a finite set of random variables and pG a joint
probability distribution over V . Let Ip denote the set of conditional indepen-
dence statements of the form v q v′|S that hold with respect to p. Finally,
let G = (V,A) be a DAG and MG denote the set of conditional independence
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constraints of the form:
v q v′|PAG(v)

where v, v′ ∈ V and v′ /∈ Descv. Then we say B = (G, p) satisfies the CMC if
and only if p is Markov for G if and only if MG ⊆ Ip.

The second assumption here about Bayes nets is the faithfulness condition,
which states that if two variables v1, v2 ∈ V are independent conditional on
S ⊂ V , then this independence is logically entailed by the Markov condition.
Equivalently, let B = (G, pG) be a Bayes Net where pG is Markov for G. Then
we say B satisfies the faithfulness condition and that pG is faithful for G if for all
B′ = (G, p′G) where p′G is Markov for G, we have IpG ⊆ Ip′G . More perspicuously,
let G = (V,A) be a DAG, and define

IG =
⋂
{Ip : p is a joint distribution over V and MG ⊆ Ip}.

Then B = (G, p) is faithful and p is faithful for G if and only if Ip = IG. For
brevity, say that IG is the set of conditional independencies implied by the graph
G.

Although it is standard to characterize a DAG by the set of conditional in-
dependencies that it implies, it is sometimes helpful to have notation to speak of
probabilistic dependencies. Accordingly, abbreviate the negation of a statement
v q v′|V0 in cicV by D(v, v′|V0). That is, D(v, v′|V0) is the assertion that v
and v′ are not probabilistically independent given V0. Let cdcV be the set of
all conditional dependence constraints. Then because every DAG G = (V,E)
implies some set of conditional independence constraints IG in cicV , one can
define DG to be negations of conditional independence constraints in the set
cicV \ IG, and say that DG is the set of conditional dependence constraints
implied by the graph G.

For any given set of variables V and joint distribution P , define the Markov
Equivalence Class to be the equivalence class of all DAGs representing the same
conditional independencies on V . Symbolically, let G = (V,A), G′ = (V,A′)
be two DAGs over the same set of variables, and write G ≡ G′ if and only
if IG = IG′ . That is, G ≡ G′ if and only if G and G′ imply the same set
of conditional independencies. Clearly, ≡ is an equivalence relation. Then
let G = {G′ : G′ is a DAG and G ≡ G′}. Markov Equivalence classes are
important because, supposing the true causal graph is G, one cannot expect
to distinguish between any two members of G using conditional independence
information alone.

The graphical representations of Markov equivalence classes are called pat-
terns. If G and H are Markov equivalence classes, then we will use the lower
case letters g and h to denote their respective patterns. A pattern is much like
a graph, except that an arrow A in a pattern g may be undirected if there are
two graphs G and G′ in G such that A has opposite orientations in G and G′

respectively.
Using graph-theoretic notions only, the following theorem provides condi-

tions under which two graphs belong to the same pattern.
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Theorem 4.2.1 (Verma and Pearl). Let G = (V,A) and G′ = (V,A′) be two
DAGs. Then the following are equivalent:

• G ≡ G′

• G and G′ have the same adjacencies and unshielded colliders.

By the above theorem, therefore, one can know when two Bayes Nets B =
(G, p) and B′ = (G′, p′) (over a common set of variables) imply the same condi-
tional independencies by looking only at their respective graphs. That is, when
investigating the conditional independence statements that hold for a Bayes net
B = (G, p), the CMC and faithfulness condition allow one to ignore the prob-
ability distribution p and pay attention solely to the graph G. Furthermore,
the following definitions and theorem allow us to ascertain when any particular
conditional independence statement v q v′|V0 holds for a Bayes net B = (G, p)
solely by looking at its graph.

Definition 4.2.1. Let G = (V,E), v, v′ ∈ V , π an undirected path between v
and v′, and V0 ⊆ V − {v, v′}. Then a vertex v′′ is active on π relative to U
just in case either

1. v′′ is not a collider on π and v′′ 6∈ V0

2. v′′ is a collider on π and either (i) v′′ ∈ V0 or (ii) there is w ∈ Descv′′ ∩V0

(or both).

Then say a path π between v and v′ is active relative to V0 just in case every
variable on π is active.

Definition 4.2.2. Let G = (V,E), v, v′ ∈ V , and V0 ⊆ V −{v, v′}. Then v and
v′ are d-separated given V0 if and only there is no undirected path π between
v and v′ such that π is active relative to V0.

Then the following theorem shows that d-separation and conditional inde-
pendence are equivalent for Bayes nets satisfying the CMC and faithfulness
condition.

Theorem 4.2.2 (Verma and Pearl). Let B = (G, p) be a Bayes net satisfying
the CMC and faithfulness condition. Let G = (V,E), v, v′ ∈ V , and V0 ⊆
V − {v, v′}. Then v q v′|V0 if and only if v and v′ are d-separated given U .

A useful and important consequence of Verma and Pearl’s theorem is the
following proposition:

Proposition 4.2.1. Suppose either v → v′ or v′ → v appears in G. Then
D(v, v′|V0) ∈ DG for all V0 ⊆ {v, v′}. Equivalently, v q v′|V0 6∈ IG for all
V0 ⊆ {v, v′}.

Finally, given two Bayes nets B1 = (G1, pG) and B2 = (G2, pG) satisfying
the CMC and faithfulness condition, one can often characterize the relationships
between the sets of conditional independence constraints their graphs imply and
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their respective graphical structures. Suppose that v → v′ is an edge in G. Say
that v → v′ is covered if and only if

PAG(v′) \ {v} = PAG(v).

A covered edge reversal involves flipping a covered edge to obtain a new G′.
Then:

Theorem 4.2.3 (Chickering 2002). Let G1 and G2 be two DAGs. Then:

1. IG1 = IG2 if and only if G1 can be obtained from G2 by a finite sequence
of covered edge reversals.

2. IG1 ⊆ IG1 if and only if G1 can be obtained from G2 by a finite sequence
of edg additions and covered edge reversals.
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