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Abstract

Belief revision theory aims to describe how one should change one’s beliefs
when they are contradicted by newly input information. The guiding principle
of belief revision theory is to change one’s prior beliefs as little as possible in
order to maintain consistency with the new information. Learning theory focuses,
instead, on learning power: the ability to arrive at true beliefs in a wide range
of possible environments. The goal of this paper is to bridge the two approaches
by providing a learning theoretic analysis of the learning power of belief revision
methods proposed by Spohn, Boutilier, Darwiche and Pearl, and others. The
results indicate that learning power depends sharply on details of the methods.
Hence, learning power can provide a well-motivated constraint on the design and
implementation of concrete belief revision methods.

1 Introduction

Intelligent systems act on the basis of fallible, general beliefs, such as “My car always stays
where I put it” or “rough objects of a given shape and size have more air resistance than
smooth ones”. When general beliefs of this sort are refuted by new information, they must
somehow be revised to accommodate it. Accordingly, there is increasing interdisciplinary
interest in Belief revision theory, which aims to specify how to rationally revise refuted
beliefs [1] [4] [10] [14] [32] [33] [5] [6] [36]. The official motivation for belief revision
theory [7] is to minimize change or loss to one’s prior belief state when new, conflicting
information is incorporated.

Learning theoretic research has traditionally focused on a different consideration:
learning power, or the ability to arrive at true beliefs in a wide range of possible envi-
ronments (e.g., [29] [21] [27] [16]). Learning power is crucial for intelligent behavior since
plans based upon false beliefs may fail to achieve their intended ends. Until recently,
there has been little interaction between learning theory and belief revision theory, even
though beliefs are revised through learning and the analogy between belief revision and
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scientific theory change has been recognized for over a decade [13] [34]. This paper bridges
the gap between the two perspectives by analyzing the learning powers of concrete belief
revision methods proposed by by Boutilier [1], Goldszmidt and Pearl [10], Darwiche and
Pearl [4], and Spohn [37].1

Some proposed belief revision methods have maximal learning power, in the sense that
they can solve every solvable learning problem, but these methods have been objected
to by some belief revision theorists for altering the agent’s epistemic state too much.
Other methods enforcing more stringent notions of “minimal change” in the agent’s ini-
tial epistemic state restrict learning power, in the sense that there are solvable learning
problems that they cannot solve, regardless of how we attempt to optimize the agent’s
initial epistemic state to the nature of the learning problem at hand. This restrictive-
ness is manifested by a curious limitation that might be called inductive amnesia: the
restrictive methods can predict the future — but only if they forget the past; and they
can remember the past — but not if they predict the future. In other words, inductively
amnestic agents who remember the past are doomed to repeat it!

In light of this tension between minimal epistemic change and learning power, it is
interesting and relevant to isolate, for each proposed notion of minimal belief change, the
“breaking point” at which the learning problem becomes sufficiently complex that the
method forces inductive amnesia on the learning agent. The notion of learning problem
complexity considered is the number of times the future may possibly “reverse” (e.g.,
the sequence 0000111000 . . . reverses twice, once at position 4 and once at position 7).
It turns out that the number of future reversals a belief revision method can handle
depends rather sharply on particular details of the method. Hence, learning power can
serve as an informative, well-motivated constraint on concretely proposed belief revision
methods.

In this note, I first introduce the belief revision methods to be analyzed. Then I define
a simple learning theoretic paradigm in which to study these methods. Next, I introduce
a hierarchy of ever more complex (but nonetheless solvable) learning problems based on
the number of possible future reversals in the data stream. Finally, I isolate, for each
method under consideration, the least problem in the hierarchy on which it fails.

2 Iterated Belief Revision

Originally [13] [7], belief revision theory was formulated in terms of an operation ∗ that
modifies a given, propositional belief state B in light of new information E to produce a
revised belief state B′:

B ∗ E = B′.
1Earlier applications of learning theoretic analysis to belief revision theory have focused on the general

axioms of belief revision theory rather than on the learning powers of concretely proposed belief revision
methods [28] [27] [26] [21].



This formulation implies that the future updating behavior of an agent with belief state B
cannot depend on the agent’s updating history except insofar as that history is recorded
in B. Some belief revision theorists [37] [1] [33] [10] [4] [5] [6] have responded with a
weaker theory in which ∗ operates not on the agent’s propositional belief state B, but on
a more comprehensive epistemic state which in turn determines the belief state B(σ):

σ ∗ E = σ′.

The epistemic state may record some or all of the agent’s updating history. The availabil-
ity of such a record is of obvious importance in learning from experience, for it enables
the learner to distinguish past observations from the consequences of refuted, past beliefs
when new beliefs are being formulated.

Let W be the set of possible worlds. A proposition is a set of possible worlds. Infor-
mally, a belief state is a set of believed propositions, but we may identify such a state
with the set of all worlds that satisfy each proposition in the set. Hence, a belief state B
may be represented as a proposition.

It is usually assumed that epistemic state σ determines not only a belief state B(σ),
but also a total pre-ordering ≤σ on some subset D(σ) of W . The ordering ≤σ is called
the implausibility ordering induced by σ. Define minσ(E) to be the set of all ≤σ-minimal
elements of E ∩ D(σ) (i.e., the most plausible states satisfying E). It is then assumed
that the belief state is the set of most plausible worlds in the ordering:

B(σ) = minσ(W ).

Most belief revision theorists agree that the updated belief state B(σ ∗E) that arises
when σ is updated with new information E consistent with D(σ) should be:2

B(σ ∗ E) = minσ(E).

There is less agreement about how to update the rest of the epistemic state. For
example, Boutilier’s [1] natural method ∗M performs the minimal modification of ≤σ

consistent with the above procedure for calculating B(σ ∗E). That is, worlds in minσ(E)
are brought to the bottom of the revised order, leaving the ordering over all other worlds
unaffected. Formally, if E is consistent with D(σ) and σ′ = σ∗M then

w ≤σ′ w′ ⇔ (w ∈ minσ(E)) ∨ (w ≤σ w′).

Another method ∗L, presented by Spohn [37] and generalized by Nayak [33], rigidly
slides all E-worlds below all nonE-worlds.3 In other words, the revised ranking is as
much as possible like its predecessor subject to the constraint that no refuted world is

2Adam Grove [12] showed that any method satisfying the axioms presented in [7] can be so repre-
sented. It should be mentioned, however, that an alternative approach to revision called updating [15]
proceeds differently.

3Steven Glaister [8] has recently produced a symmetry argument in favor of Nayak’s rule.



more plausible than a non-refuted world. So if E is consistent with D(σ) and σ′ = σ∗L,
then we have:

w ≤σ′ w′ ⇔ (w ∈ E ∧ w′ /∈ E) ∨ ((w ∈ E ⇔ w′ ∈ E) ∧ w ≤σ w′).

Other rules are possible if one adds structure to the agent’s epistemic state. For exam-
ple, Spohn [37] recommends modelling the epistemic state as a (possibly partial) mapping
r from possible worlds to ordinal-valued degrees of implausibility. If E is consistent with
the domain of r, define

rmin(E) = min{r(w′) ∈ dom(r) ∩ E}

and
r(w|E) = −rmin(E) + r(w).

Think of rmin(E) as the “height” of the most plausible member of E and think of r(w|E)
as the “height” of w above the most plausible member of E. Then r(w|E) is referred to
as the conditional implausibility of w given E.

Using these concepts, one may define Spohn’s [37] qualitative generalization of Jeffrey
conditioning ∗J,α, which has since been explored in [10] [4]. This method lowers all E
worlds until the most plausible of them are assigned implausibility degree 0, and then
moves the non-E worlds until the most plausible of them is assigned implausibility α.

(r ∗J,α E)(w) =











r(w|E) if w ∈ dom(r) ∩ E
r(w|W − E) + α if w ∈ dom(r)− E
↑ otherwise.

Darwiche and Pearl [4] have recently proposed an interesting modification ∗R,α of ∗S,α.
This rule rigidly boosts the non-E worlds up from where they currently are by a fixed
ordinal α. I refer to this as the ratchet method, since refuted worlds always move upward
by a fixed amount without backsliding.

(r ∗R,α E)(w) =











r(w|E) if w ∈ dom(r) ∩ E
r(w) + α if w ∈ dom(r)− E
↑ otherwise.

Goldszmidt and Pearl [10] mention the procedure of boosting all non-E worlds to the
fixed ordinal ω. More generally, one might consider sending all refuted worlds to a fixed
ordinal α.

(r ∗A,α E)(w) =











r(w|E) if w ∈ min≤r(E)
α if w ∈ dom(r)− E
↑ otherwise.

One may also reformulate the “natural” method ∗M in terms of ordinals:

(r ∗M ′ E)(w) =











0 if w ∈ E ∩B(r(.|E))
r(w) + 1 if w ∈ dom(r)− (E ∩B(r(.|E)))
↑ otherwise.



These rules differ primarily in how much of a “boost” they apply to refuted possible
worlds. The ∗M rule boosts refuted worlds by one step, along with many nonrefuted
worlds. The lexicographic ∗L rule provides an infinite boost. ∗J,α may provide a negative
boost if α is lower than the most plausible refuted world. ∗R,α sends refuted worlds up
by a fixed increment α. Each time a refuted world w is inserted beneath a non-refuted
world w′ satisfying the inputs already received, there is some concern that w′ is actually
the true state, but w drops back to the bottom of the ranking before w′ does. If that
happens, the agent “forgets” the past data refuting w. This study concerns learning
problems on which some of the rules cannot help but forget if they eventually predict the
future.

3 A Simple Learning Paradigm

Many people believe that a rough ball will have more air drag than a smooth one. Suppose
we invite such a subject to consider the results of an experiment. We mount both balls
in a wind tunnel and measure the drag on each. We start the tunnel at a small wind
velocity and raise the velocity incrementally. After each increment, we report a 0 to the
subject if the drag on the smooth ball is no greater than that on the rough ball and
we report a 1 otherwise. The experiment is run. The subject is smug as several 0s are
presented, consistently with her current belief. But to her utter surprise, the sequence
reverses and 1s continue for some time [25]. Thereafter, the sequence flips back to 0s
and yields 0s thereafter. The sequential outcomes of the aerodynamical experiment look
something like this:

e = (0000001111000 . . .).

Empirical outcomes of this kind are commonplace in nonlinear systems.4

Generalizing this example, let an outcome stream be an infinite sequence e of natural
numbers encoding experimental outcomes, and let U be the set of all such outcome
streams. An empirical proposition is a proposition whose truth depends only on the
outcome stream. In particular, the proposition that says outcome b will be observed at
position n in the outcome stream is:

[n, b] = {e′ ∈ U : e′(n) = b}.

The data stream generated by e is therefore the sequence of propositions

[e] = ([0, e(0)], [1, e(1)], . . .).
4The reversal is due to the fact that the flow past the rough ball becomes turbulent at a lower velocity

than that around the smooth ball and the turbulence stays attached to the surface longer, producing a
smaller wake with fewer eddies. The sequence of 1s appears when the rough ball’s wake is so reduced
but the smooth ball’s wake is still large. After the smooth ball’s flow also becomes turbulent, the rough
ball’s extra skin friction results in higher drag, so the sequence has 0s forever after.



The initial segment of e at stage k is just

e|k = (e(0), e(1), . . . , e(k − 1)),

and the corresponding sequence of data received by stage k is

[e|k] = ([0, e(0)], [1, e(1)], . . . , [k − 1, e(k − 1)]).

Let ∗ be an epistemic revision operator and let σ be an epistemic state of the appro-
priate type. A revision agent is then a pair (σ, ∗), which may be viewed as starting out in
the a priori epistemic state σ and then successively updating on the propositions input
thereafter. Suppose that the revision agent aims to acquire complete, true beliefs about
the outcome stream e, not merely by accident, but by following a method guaranteed
to lead to complete knowledge over a wide range P ⊆ U of possible outcome streams.
More precisely, we may say that (σ, ∗) identifies P just in case for each e ∈ P there is
a stage k such that for each subsequent k′ ≥ k, (σ ∗ [e|k′]) = {e}. This is an adaptation
of E. M. Gold’s [9] concept of identification in the limit to the present situation. We
will leniently count an operator as successful if there exists at least one initial epistemic
state that enables it to identify P : ∗ can identify P just in case there exists a σ such
that (σ, ∗) identifies P . P is identifiable just in case some (σ, ∗) identifies P . Then say
that ∗ is complete if it can identify every identifiable P . Else, ∗ restricts learning power.
The principal concern of this study is to determine whether the various iterated belief
revision methods described above are complete or restrictive.

4 Learning Tail Reversals

Define the tail reversal operation on Boolean outcome streams as follows, where ¬ denotes
bit reversal:5

(e′ ‡ k)(n) =
{

e′(n) if n ≤ k
¬(e′(n)) otherwise.

Then we may represent the aerodynamical outcome sequence

e = (0000001111000 . . .)

as the result of reversing the tail of the everywhere 0 sequence z in two positions:

e = (z ‡ 6) ‡ 11.

Since tail reversals commute and associate under composition, one may write without
confusion

e = z ‡ {6, 11}.
5This construction is similar to Nelson Goodman’s construction of the “grue” predicate [11].



Define for each n < ω,
Gn(z) = {z ‡ S : |S| ≤ n}.

Then let
Gω(z) =

⋃

i<ω
Gi(z).

In other words, the outcome streams in Gn(z) are precisely those that reverse the tail
of z in at most n distinct positions and the members of Gω(z) are the outcome streams
that eventually stabilize to 0 or to 1. So the e from the aerodynamical example is in
G2(z).6 The sequence of problems G0(z), G1(z), G2(z), . . . may be thought of as a crude
scale of learning power, according to which stronger methods can identify problems of
higher complexity.

Suppose one wishes to identify Gβ(z), where β ≤ ω. A sensible procedure would be
to believe at each stage that the observed tail reversals are the only ones that will ever be
observed. This procedure follows Popper’s suggestion to accept the simplest hypothesis
consistent with the data. This simple, Popperian procedure has three characteristic
virtues with respect to the learning problem Gβ(z), where β ≤ ω:

1. it identifies Gβ(z);

2. no other method identifying Gβ(z) weakly dominates it in convergence time (i.e.,
finds the truth as fast on each outcome stream in Gβ(z) and faster on some such
outcome stream.)

3. no other method identifying Gβ(z) has a lower worst-case bound on the number of
retractions performed prior to convergence.

I do not insist that every rational agent must use this procedure, or even that it is a
good solution to each learning problem (it isn’t). It suffices that the method is trivial to
compute and works well for problems of this particular sort. Hence, it would seem that
any proposed method of rational belief change that cannot duplicate this behavior— or
even identify Gn(z) in the limit— is deficient, the extent of the deficiency rising as n
decreases.

6Game theorists may find the following sort of interpretation more suggestive. Fred and Jane are
engaged in an indefinitely repeated prisoner’s dilemma. Fred fully believes that Jane is a patsy who will
cooperate no matter how often he defects. But maybe Jane simply has a veneer of civility that affords
a fixed “grace period” of unconditional cooperation to new acquaintances to encourage good behavior,
and punishes defections for eternity once this grace period is over (one tail reversal). Or maybe she
punishes the first infraction after the grace period for a fixed time and then returns to being a patsy
forever (two tail reversals). Or maybe she punishes the first infraction after the grace period for a fixed
time, offers a new grace period, and punishes the next infraction for eternity (three tail reversals), etc.



5 Negative Results

Proofs of the following results are presented in [24]. Recall that if ∗ cannot identify
P , then there exists no possible initial state σ such that (σ, ∗) identifies P . Since an
epistemic state can be an arbitrary assignment of ordinals to infinitely many infinite
outcome streams, negative results in this setting are very strong. The first result concerns
belief revision methods that cannot even identify the extremely simple learning problem
G1(z). In other words, they are incapable of first believing in z and then upon seeing a
tail reversal at position k, believing in z ‡k therefter. This limitation is quite remarkable,
given the simplicity of the learning problem.

Proposition 1 ∗M ′ , ∗J,1, ∗A,1 cannot identify G1(z).

Moving to the case of at most two tail reversals (as in the aerodynamical example), we
have

Proposition 2 ∗M , ∗A,2, ∗R,1 cannot identify G2(z).

Darwiche and Pearl’s ratchet method ∗R,1 fails one level higher than the Jeffrey condi-
tioning method ∗J,1. This illustrates how learning theoretic analysis can provide sharp
recommendations about subtle variations in belief revision architecture. Proceeding still
higher,

Proposition 3 for all n > 0, ∗A,n cannot identify Gn(z).

Say that (r, ∗) predictively identifies P just in case for each e ∈ P , for all but finitely
many n,

∅ 6= B(r ∗ [e|n]) ⊆
∞
⋂

i=n
[i, e(i)].

In other words, the method is guaranteed to eventually produce only belief states that
correctly predict the future (but that may fail to entail all the past observations). Say
that (r, ∗) remembers the past in P just in case for each e ∈ P for each n,

∅ 6= B(r ∗ [e|n]) ⊆
n−1
⋂

i=0
[i, e(i)].

It turns out that each of the methods under consideration can predictively identify Gω(z)
(if it is not required to remember the past) and each of the methods can be made to
remember the past (if it is not required to predictively identify Gω(z)).7 Hence, each of
the above, negative results is an instance of inductive amnesia.

The negative arguments are established by diagonal arguments that depend on the
possibility of an odd number of tail reversals in the outcome stream, suggesting that some
of the methods may perform better if we restrict attention to outcome streams involving

7Start out with the epistemic state that puts all possible worlds at the bottom level.



only even numbers of reversals. Accordingly, define the even tail reversal hierarchy of
learning problems as follows:

Gn
even(z) = {z ‡ S : |S| ≤ 2n ∧ |S|is even}.

Gω
even(z) =

⋃

i<ω
Gi

even(z).

The negative results concerning ∗R,1, ∗J,1 are thereby overturned, but the rest of the
negative results continue to hold:

Proposition 4 Except for those concerning ∗R,1, ∗J,1, all of the preceding negative
results continue to hold when Gn(z) is replaced with Gn

even(z)

6 Positive Results

If the results were all strongly negative, they would provide little guidance for belief
revision theory. The good news is that many of the methods introduced in the belief
revision literature are much more powerful than one might expect. It is not too surprising
that methods sending refuted possibilities to infinity are reliable, since such methods can
implement the obvious, Popperian procedure (described above) of enumerating possible
outcome streams and believing the first in the enumeration that is consistent with the
data so far:

Proposition 5 ∗L, ∗A,ω, ∗J,ω, ∗R,ω are complete identification strategies, and hence can
identify Gω(z).

The more difficult and interesting question is whether strong learning performance can
be achieved even when α is set low, so that refuted possibilities get interleaved with
nonrefuted ones. This raises the possibility that refuted possibilities will work their way
back down to the bottom of the ranking, in which case the fact that the possibility was
refuted will have been forgotten. Clearly, this will happen for some unfortunate selections
of the initial epistemic state σ. The question is whether there exist specially structured
epistemic states that guarantee sufficient learning power when α is low.

Memory is facilitated by compressed epistemic states. In the extreme case, an epis-
temic state that puts all possibilities at the bottom level makes any of the above methods
into a Bayesian tabula rasa that always believes exactly what it has observed (so long
as the data are all mutually consistent with the range of the initial epistemic state).
Prediction is facilitated by rarified epistemic states. On this side, the extreme case is an
epistemic state that places a unique world at each level (i.e. an enumeration of complete
hypotheses). All of the above methods can predict Gω(z) when started with such a state,
but they may forget when refuted possibilities are “boosted” to a level lower than the
truth. The challenge in obtaining the positive results is to strike a happy balance between
these two extremes, so that strong inductive leaps are performed without risking memory



loss. Since there are infinitely many infinite data streams to juggle, programming the
initial epistemic state to optimize learning power proves to be an interesting problem.
The surprising result is that the value α = 2 suffices for ∗J,α and ∗R,α to identify Gω(z).

Proposition 6 ∗J,2, ∗R,2 can identify Gω(z).

In fact, ∗R,2 can be shown to be a complete identification strategy (the question is cur-
rently open for ∗J,2).

The positive argument for ∗J,2 employs an initial state σ on which the behavior of
the method (σ, ∗J,2) is exactly that of the simple, Popperian method discussed above.
That method is trivially computable in constant time even though naively simulating
the rule’s definition requires manipulation of infinite structures. This illustrates how
even the revision of infinite epistemic states can be computationally trivial if the initial
epistemic state is carefully selected.

Moving to the even tail reversal hierarchy,

Proposition 7

1. all of the preceding positive results continue to hold when Gn(z) is replaced with
Gn

even(z).

2. Furthermore, ∗J,1, ∗R,1 can identify Gω
even(z).

The initial epistemic state σ that makes ∗J,1 and ∗R,1 succeed on this problem has the
following structure: σ(z) = 0 and for each data stream e ∈ Gω

even(z) (i.e., each finite
variant of z), σ(e) = the number of distinct positions n such that z(n) 6= e(n). The
evolution of the method ∗J,1 initialized on this initial epistemic state may be represented
as the rigid rotation of a k-dimensional cube from vertex to vertex until the vertex labeled
with the true data stream is rotated into the bottom-most position, so the rule ∗J,1 may
be viewed as enforcing a strong symmetry condition on the evolution of σ. It can also be
shown that the result of adding just the everywhere one data stream ¬(z) at any level
in σ interrupts this rotation and causes the cube to lie down on an edge forever after, so
the method fails to converge to the complete truth.

Further positive results include the following:

Proposition 8

1. ∗M can identify G1
even(z) and G1(z).

2. ∗A,n can identify Gn
even(z) and Gn(z).

3. Each of the methods discussed can identify {z} = G0
even(z) = G0(z).

The first of these results indicates that the learning power of Boutilier’s method is en-
hanced when non-well-ordered epistemic states are entertained, illustrating the possibility
that structural constraints on epistemic states may restrict learning power. The second



result matches the corresponding negative result for ∗A,n. The third result is trivial: ini-
tialize any of the methods discussed with an epistemic state whose range contains only z.
Now the reported positive results meet up with the negative results, providing a complete
picture of the relative powers of the methods under discussion over problems of the forms
Gβ(z) and Gβ

even(z) where β ≤ ω.

7 Discussion

If the various methods of iterated belief revision are thought of as notions of “minimal
change” in the given epistemic state subject to the requirement of consistently incor-
porating new information then the results just reviewed indicate how stricter notions
of “minimal change” (i.e., coherence) can compromise learning power (i.e., reliability).
Methods ∗M ′ , ∗A,1, ∗J,1 fail at level 1 of the tail reversal hierarchy. Methods ∗M , ∗A,2, ∗R,1

fail at level 2. Method ∗A,n fails at level n. But ∗L, ∗A,ω, ∗J,2, ∗R,2 succeed at each level.
These results also illustrate how learning theoretic analysis can yield strong recom-

mendations in the design of concrete belief revision methods. Consider the question of
setting the “boost parameter” in the methods ∗S,α and ∗R,α. Prima facie, it seems a
matter of small consequence whether α = 1 or α = 2, but this tiny cost in minimizing
epistemic change is occasioned by an infinite leap in learning power.8

Also, ∗M ′ cannot identify G1(z), so the assumption that implausibility degrees are
well-ordered weakens the learning power of Boutilier’s “natural” method. This illustrates
how learning theoretic analysis can provide a critique of structural assumptions about the
nature of the epistemic state relative to other structural assumptions about how revision
should proceed.

The results also illustrate how the analysis of belief revision methods can enrich learn-
ing theoretic analysis. Themes such as inductive amnesia, the duality between prediction
and memory, detailed algebraic analysis of the hypothesis enumeration, and the impor-
tance of even vs. odd numbers of tail reversals do not arise naturally in learning theory
alone. They arise only in light of the particular methodological constraints proposed by
belief revision theorists.

Many questions remain. Is ∗J,2 complete? What about problems that are not subsets
of Gω(z)? How about problems that do not require identification of empirically complete
theories? Or paradigms in which information about successive outcomes can arrive in
any order (the negative arguments would be unaffected)? Is it possible to solve for the set
of all initial states for which a method ∗ solves a given problem (this would correspond
to a kind of “transcendental deduction” of belief revision theory)? These questions are
both interesting and nontrivial.

8Those who view α as an indication of the epistemic force of the data themselves may view α = 2 a
critical level of epistemic force at which learning power experiences an infinite increase.
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