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Abstract

Many distinct theories are compatible with current experience. Scientific realists recom-
mend that we choose the simplest. Anti-realists object that such appeals to “Ockham’s
razor” cannot be truth-conducive, since they lead us astray in complex worlds. I ar-
gue, on behalf of the realist, that always preferring the simplest theory compatible
with experience is necessary for efficient convergence to the truth in the long run, even
though it may point in the wrong direction in the short run. Efficiency is a matter of
minimizing errors or retractions prior to convergence to the truth.



0.1 Realism and Ockham’s Razor

There are infinitely many, incompatible theories consistent with any finite amount of
experience, so how can we choose among them? The answer is easy: apply “Ockham’s
razor”.

In choosing a scientific hypothesis in light of evidential data, we must fre-
quently add to the data some methodological principle of simplicity in order
to select out as “preferred’ one of the many different possible hypotheses,
all compatible with the specified data (Sklar 1977; p. 100).

Why be guided by simplicity? Scientific realists would like to say something like this.

. . . [A]mong the . . . theories consistent with our observational data, some
are better explanations than others in virtue of their greater simplicity or
elegance or unifying power and . . . these virtues are indications that those
theories are true (Papineau 1997; p. 9, my emphasis).

Great! But there’s a catch.

. . . [T]he connection between simplicity and truth seems so dubious. ...[I]f
no argument can establish such a connection, what reasons do we have in
the first place for invoking simplicity in our mechanism for choosing (Sklar
1977; p. 132)?

Indeed, how could there be such a connection? A fixed bias toward simplicity (or toward
anything else) can no more indicate truth than a broken thermometer can indicate
temperature. An indicator has to be sensitive to what it indicates, but Ockham’s razor
favors simplicity no matter what. At least the errors incurred by Ockham’s razor are
corrected, eventually, by future experience.

It is this feature that makes the rule, “Adopt the simplest hypothesis com-
patible with the present data,” seem more innocuous than might first ap-
pear. For even if we do make this choice, we are not stuck with it, in the
sense that ongoing experimentation can “test” our choice and, conceivably,
reject it in favor of some more complex hypothesis (Sklar 1977; pp. 132-33).

But that doesn’t explain much, since a mistaken presumption that the world is complex
would also be corrected, eventually, by future experience. Nor does it help to stack the
deck in favor of simplicity in advance.

All we have to say is that the simpler laws have the greater prior probabil-
ities (Jeffreys 1985; p. 47).1

1There can be a prior bias toward simple worlds even when there is no prior bias toward simple
theories. Suppose there are two theories, a “Ptolemaic” one with lots of free parameters and a “Coper-
nican” theory with none. We are urged to “keep the door open” to the simple theory by assigning it
a real-valued probability greater than zero (perhaps far less than the prior probability of the complex
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To preach beyond the converted, realists need to explain how simplicity leads to the
truth better than other biases without presupposing, in a narrowly circular manner,
the very bias whose efficacy is to be explained.2 My purpose in this paper is to provide
such an explanation, along the following lines. Yes, every prior bias is corrected by
future experience in the long run. And yes, simplicity cannot indicate truth in the
short run unless we presuppose that the truth is likely to be simple. Nonetheless, I
will show that conformity with Ockham’s razor is necessary for arriving at the truth
as efficiently as possible in the long run, where efficiency is a matter of minimizing
worst-case, cumulative epistemic costs, such as errors or retractions of earlier theories
prior to convergence.3 So to reject Ockham’s razor as a principle of theory choice is to
reject the most efficient possible means for finding the truth.

0.2 The Main Results

An empirical problem is assumed to consist of a question together with a presup-
position, which specifies the range of possible worlds over which success “matters”,
for whatever reason (cf. Lewis 1996 for a list of reasons). To eliminate nuisance cases,
it is assumed, throughout, that the presupposition is consistent, in the sense that it
does not rule out all worlds. Each world determines a unique, correct answer to the
question and a potentially infinite input stream that is fed, bit by bit, to the scientist
or learner. I assume nothing at all about the set of possible inputs except that they
are presented in discrete stages of inquiry. In particular, they need not be linguistic,
symbolic, or even consciously accessible by the agent. A method or learning disposi-
tion maps each finite sequence of inputs compatible with the problem’s presupposition
to potential answers to the question or to the uninformative output ‘?’ that indicates
unwillingness to choose an answer. A method solves a problem just in case it con-
verges (stabilizes eventually) to the correct answer to the question in each relevant

theory). But that implies that each parameter setting of the complex theory is infinitely less probable
than each parameter setting of the simple theory (i.e., there is an infinite, prior bias toward simple
worlds). Suppose that the simple theory entails the data but the complex theory does so only when the
parameter is set to a special value (e.g., Ptolemy had to assume that the epicycles of superior planets
are synchronized with the deferent of the sun). Then the (subjective) likelihood of the data given the
complex theory is infinitesimal, whereas that given the unified theory it is unity. By Bayes’ theorem,
the complex theory gets mauled (Rosenkrantz 1983), and we say that “it would be a miracle if it were
true. But the miracle, as Hume would say, is in ourselves, rather than in the world, because we started
out with an infinite personal bias in favor of simple worlds over complex ones; a bias packaged as
“fairness” at the level of theories. When the data are random, the story is similar, if less extreme: the
simpler theory is favored to the extent that prior probability is not concentrated over high-likelihood
parameter values in the disunified theory.

2Absent such an explanation, it is tempting to diagnose realism as a case of wishful thinking, in
which our desire for simple theories is confused with evidence that such theories are true (van Fraassen
1980).

3The approach builds upon a transfinite generalization due to R. Freivalds and C. Smith (1993) of
the concept of “trial-and-error predicates” introduced by H. Putnam (1965). Putnam’s idea is explored
topologically in (Kelly 1996) and is applied to issues in the philosophy of science in (Schulte 1999a,
1999b, 2000, 20001).
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possibility.
A method solves a problem under a finite resource bound if the total cognitive

costs incurred in each possibility never exceed the bound. This idea is extended to
infinite resource bounds in sections 4, 5, and 6. An efficient solution to a problem
solves the problem under the least achievable resource bound.4 The cognitive costs
entertained in this study are retractions (“taking back” an earlier answer) and errors
(producing a mistaken answer). Thus, one may speak of retraction-efficiency and
of error-efficiency. A problem is efficiently solvable just in case it has an efficient
solution in either sense.

Ockham’s razor says something like: never output an answer in a problem unless
it is the simplest answer compatible with current experience.5 An answer is as simple
as its simplest worlds. So what makes a world simple? Notoriously, there is nothing
intrinsic to an isolated world that makes it simple. Consider a world in which every
input is green and another world in which the inputs turn blue at some stage i. For
if “grue” means “green up to i and blue thereafter” and “bleen” means “blue up to i
and green thereafter”, a world’s description is “bent” in the grue/bleen language just
in case it is “straight” in the blue/green language and conversely (Goodman 1983).
Hence, simplicity is often thought to be a mere matter of taste or of description. If the
realist is to explain how simplicity helps us find the truth, however, simplicity must
somehow be anchored in the structure of empirical problems, themselves. That is just
the approach I will follow. Consider, for example, the question whether the color of the
inputs will ever change. There is a structural sense in which constantly colored worlds
are simpler than worlds of changing color in this problem: the experience presented
by a constantly colored world always agrees with the experience presented by some
changing color world, but each changing color world eventually stops agreeing with all
constantly colored worlds. One might describe the situation like this: in constantly
colored worlds, Nature eternally “reserves the right” to present an “anomaly” later by
exhibiting a color change, but in changing color worlds she eventually exercises her
right to change the color and never gets an opportunity to make the world appear
constantly colored thereafter.

The example suggests a problem-relative notion of degrees of simplicity. A
world has simplicity degree zero if it presents experience that verifies an answer to
the question (i.e., it ends up exercising all of Nature’s options to present anomalies)
so it is as “misleading” as the problem allows a world to be.) Inductively, world w
has simplicity degree n + 1 if there are abribrarily long periods of time during which
worlds of simplicity n that fail to satisfy the same answer as w present the same
experience as w. Hence, simpler worlds are more constant, not in themselves, but in
the problem-relative, methodological sense that they constantly refrain from exercising
Nature’s options to present anomalies. The approach is extended to infinite simplicity
degrees in sections 7 and 8, which involves some subtle modifications of the preceding

4This gloss is oversimplified: an efficient solution must also solve each subproblem of the original
problem under the least achievable bound (sections 5, and 6).

5This statement is right in spirit, but requires some subtle correction when the problem requires an
infinite retraction bound (cf. section 8).
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sketch. The following propositions all hold for the fully general versions of the concepts
presented in detail there.

Here is the main result of the paper, which establishes the intended connection
between simplicity and truth.

Proposition 1 If a method solves a problem retraction-efficiently or error-efficiently,
then the method complies with Ockham’s razor in the problem.

The proof is presented in Appendix I.6 The approach is Leibnizian. Yes, Ockham’s
razor leads to disaster in complex worlds and has led us into painful retractions in the
past (Laudan 1981), so we imagine we can improve upon it by sometimes preferring
complex hypotheses over simple ones. However, that leads to still more retractions
in other complex worlds, so Ockham’s razor is, after all, the most efficient possible
strategy for finding the right answer (cf. section 3 for some simple examples).

Proposition 1 vindicates both sides of the realism debate. The anti-realist is correct
that Ockham’s razor cannot be shown to indicate truth in the short run without begging
the question and that any initial bias is compatible with long-run convergence. But
the realist can respond, without begging the question or appealing to other primitive
principles of “rationality” or “confirmation”, that efficient convergence in the long run
singles out Ockham’s razor uniquely.

Proposition 1 cannot be strengthened in the case of error-efficiency, for the error-
efficient solutions to a problem are precisely the solutions that comply with Ockham’s
razor. Hence, Ockham’s razor exhausts the short-run, methodological consequences of
error-efficiency.

Proposition 2 If a method solves an efficiently solvable problem, then the method is
an error-efficient solution if and only if the method complies with Ockham’s razor in
the problem.

Propositon 1 can be strengthened in the case of retraction-efficiency, however, and
the result points, again, toward realism. While anti-realists may question successful
theories on general, skeptical grounds, realists see no virtue in retracting the simplest
theory unless nature provides a concrete sign (in the form of an anomaly) that it is
time to do so. The anomaly complexity of a problem is the least upper bound
on the simplicity degrees of the worlds that satisfy its presupposition (simple problems
don’t have hard anomalies that simple worlds can refuse to present.) Anomalies occur
when the anomaly complexity of the problem drops, for that is when Nature exercises
an opportunity to “veer” into an easier problem.7 The retention principle states
that one may retract in a problem only when an anomaly occurs (cf. section 7). The
retention principle cannot be deduced from error-efficiency, because skeptical retreat
to ‘?’ never counts as an error. On the other hand, the retention principle completely
characterizes retraction-efficiency.

6As are the proofs of all propositions occurring in the text.
7Cf. section 7 for a slight refinement of this definition in case of infinite simplicity. Nature may

“veer” without taking advantage of us when she does so, just as a chess player can move her bishop
without useful effect. These events are counted as “null” anomalies.
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Proposition 3 If a method solves an efficiently solvable problem, then the method
is a retraction-efficient solution if and only if the method complies with the retention
principle in the problem.

So in light of proposition 3, retraction-efficiency implies two interlocking features of
scientific practice: choosing the simplest hypothesis if you choose one at all and hanging
on to it until an anomaly indicates trouble. This rebuts the received view among
philosophers of science that a short-run theory of “confirmation” is required to explain
concrete evidential judgments because long-run reliability considerations are too weak
to do so (e.g., Earman 1992, pp. 218-219). Indeed, the only freedom that remains for a
retraction-efficient method is the amount of experience it demands before “leaping” to
the (unique) Ockham answer and even confirmation theorists tend to leave this issue
open. Bayesians locate learning speed in arbitrary, prior probablities and even Rudolph
Carnap (1950) associated it with a tweakable parameter on his inductive logic.

By propositions 1 and 3, every problem solution that satisfies the retention principle
also satisfies Ockham’s razor.8 That is somewhat surprising, for the retention principle
says nothing about the material character of the answers we choose, as long as we hang
on to them in the right circumstances; whereas Ockham’s razor restricts the material
character of our answers and says nothing about when we should retain them. The
principles are linked by the method’s guaranteed success as follows: if we must hang on
to an answer until after an anomaly, then the answer had better be right if no anomalies
occur. The Ockham answer turns out to have just this property, since simple answers
are true in simple worlds and simple worlds present fewer anomalies (all of which is
explained in detail below).

An important question remains. Efficiency implies conformity with Ockham’s razor,
but when is efficiency, itself, possible? Here is a natural, sufficient condition. When
the presupposition of a problem is false, the learning method is free to say anything
(it’s operating outside of its intended range). But wouldn’t it be nice if the method
were to converge, at least in the limit, to ‘?’ (i.e., “something’s wrong”) when the
presupposition is false, so that we would eventually know that something is wrong?
Such a method may be said to be self-disqualifying.9 Now we have:

Proposition 4 if a problem has a self-disqualifying solution, then it is efficiently solv-
able, so the preceding propositions hold non-trivially.

8The converse fails: retracting once to ‘?’ doesn’t alter the facts about convergence and doesn’t
count as a violation of Ockham’s razor.

9The expression “whenever the presupposition is false” is trickier than it might first appear, for
although it makes sense to speak of the possibilities in P that make A false, it is unclear what the set
of worlds in which P is supposed to be. Fortunately, something more concrete suffices for our purposes.
Consider the set of all possible inputs that might eventually be seen given that the presupposition of
the problem is true. Construct all possible ω-sequences of these inputs. For each such input sequence
that is incompatible with the presupposition, construct a unique, virtual world that presents it and
that makes the presupposition false. Call the result of adding these worlds to the original problem the
completion of the problem. Now it makes sense to require that a self-disqualifying method converge
to the truth when the presupposition is true and converge to ‘?’ otherwise in the completed problem.
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In other words, the deductions of Ockham’s razor from efficiency and of the retention
principle from retraction-efficiency stand unless it is impossible to determine the falsity
of our empirical presuppositions even in the ideal limit of inquiry.10

0.3 Efficiency Arguments for Ockham’s Razor

Before proceeding to general definitions and proofs, it is helpful to consider some simple
examples that illustrate the basic ideas.

Uniformity of nature. Recall the question whether the color of the observations
will ever change. The simplest answer, both intuitively and according to the concept of
simplicity sketched above, is that the color will remain constant. Here is a Leibnizian
argument for complying with Ockham’s razor (Schulte 1999a, b). Suppose you can
answer the question in the limit, but you violate Ockham’s razor at some stage. The
only way to do so is to guess that the color will change prior to seeing it change. Nature
is free to present the same color for as long as it takes to get you to conclude that it
will never change, on pain of converging to the wrong answer if it never changes. That
counts as one retraction. Nature is now free to change the color, forcing you to revise to
the non-uniform answer (on pain of converging to the wrong answer) for a total of two
retractions.11 Had you followed Ockham’s advice, however, you would have retracted
at most once in the worst case (i.e., when the first color change occurs). Hence, any
deviation from Ockham’s razor results in an extra retraction in the worst case.12

The argument derives strict adherence to Ockham’s razor entirely from the slender
premise that we want to converge to the truth as efficiently as possible. Moreover, it
does not beg the question by presuming that the world is simple or that it is probably
simple— the reasoning is entirely worst-case, so each world counts as much as any other.
In this respect, the argument recalls Popperian (1968) themes. Boldly conjecturing the
simplest hypothesis compatible with experience is the most efficient possible means
for converging to the truth, but there is no sense in which the simplest answer is
better supported, better confirmed, more probable, more important, or otherwise more
“weighty” than any other answer in the short run.

The argument’s loyalty to uniform color evaporates if the empirical problem is
altered. For example, if one asks whether the world is eternally grue, then the same
argument recommends that we output the grue answer first. But according to the
preceding definition of simplicity, the grue answer is the methodologically simplest
answer in this problem (the grue world withholds anomalies forever but the constantly

10The condition is not necessary for efficiency. For example, let A0 = “the input stream will converge
to 0” and let A0 be the only answer to problem P , so that every possible input stream converges to 0.
Then P is trivially solvable with 0 retractions, but P has no self-disqualifying solution (cf. Kelly 96,
chapter 4).

11Note the tension between minimizing retractions and converging to the right answer.
12The idea of counting retractions prior to convergence was employed for purely logical ends by Hilary

Putnam in (1965). Counting retractions as a definition of the intrinsic difficulty or complexity of an
empirical problem has seen a great deal of study in computational learning theory. A good reference
and bibliography may be found in (Jain et al. 1999).
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green world doesn’t), so the argument defends Ockham’s razor after all. That is as
it should be, for if the realist’s explanation of the efficacy of Ockham’s razor is to be
robust over problem variations, simplicity must adapt itself to the underlying contours
of a wide range of potential problems.13

The efficiency argument generalizes to problems of higher complexity if a slight
complication is attended to. Suppose that the color begins with green and alternates
between green and blue at most twice. Ask what the color will be after the last change.
The simplest answer is that the current color will be the last, since the simplest worlds
in light of current experience are those in which the color never changes again. Hence,
the obvious Ockham method solves the problem with at most two retractions (each color
change is an anomaly). But suppose you deviate from Ockham’s advice by persisting
with “green” upon receiving the successive inputs (green, blue) and that you comply
with Ockham’s razor thereafter. In the worst case, the observations are (green, blue,
blue, . . ., green) and you say (green, green, blue, . . ., green, . . .), so you retract at most
twice. That matches Ockham’s performance, so it seems that Ockham’s razor is not
deducible from retraction efficiency even in problems requiring just two retractions.

The trouble is that efficiency is not simply a matter of overall resource consump-
tion. It is a matter of always minimizing resource consumption “from now on”, for
otherwise “slush funds” accumulated from past shenanigans can conceal future ineffi-
ciency. Consider the subproblem in which the input sequence (green, blue) has just
been received. This subproblem is solved by Ockham’s razor with just one retraction
(when blue flips back to green). But since you say “green” upon seeing (green, blue),
a sufficiently long run of blue experience will force you to revise to “blue” (on pain of
converging to the wrong answer), after which Nature is free to flip the color back to
green, eliciting two retractions. So the efficiency argument works again if we require
that the method minimize worst-case retractions in each subproblem, where the sub-
problem rooted at finite input sequence σ is just like the original problem except that
the method starts at the end of σ (so no retractions occur until σ is extended) and
all possible worlds incompatible with σ are deleted.14 The efficiency argument now
generalizes to n color changes. If we know in advance that the color may shift at most
n times, then retraction-efficiency (in each subproblem) requires that we never guess
more shifts than we have seen and that the currently observed color will be the last.

Polynomial degree. In the context of curve fitting, simplicity is often identified
with low polynomial degree. Suppose we know that the degree of the true curve is
at most n and that we can specify an arbitrary value of the independent variable

13It has been objected that anybody who speaks grue-ese would ask a grue question, so that simplicity
depends on vocabulary after all (cf. Chart 2000 and Schulte 2000 for a response). If the thesis is that
grue speakers couldn’t even understand a question about color, then it is plainly false, since the terms
are interdefinable. If it is, rather, that grue speakers have a psychological propensity to ask questions
about uniform grueness rather than uniform greenness, then it is irrelevant to the thesis that simplicity
is conceptually anchored in the branching structure of the scientific problem one faces.

14This requirement is analogous to subgame perfection in game theory. Schulte (1999a, 1999b)
derives Ockham’s razor at each stage by imposing time admissibility in conjunction with minimaxing
errors, but time admissibility forces the agent to output a possible answer to the question at each stage
of inquiry, which seems too strict when outputs are viewed as full beliefs.
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and receive a measurement of the dependent variable whose error is less than a fixed,
nonzero bound ε. The problem is to find the true degree of the curve. If we guess
the lowest degree compatible with experience, at most n retractions are required, for
each curve of order k + 1 eventually presents inputs incompatible (up to ε error) with
all curves of order k. Now suppose that an order higher than 0 (constant functions)
is guessed first. Nature can present inputs drawn from a constant function until the
method retracts to the answer “degree = 0”. As long as the data currently presented
do not touch the border of the ε envelope around a curve of order k, there exists a
curve of order k + 1 from which the same data could have been presented up to error
ε. Using this fact, Nature can force the method to rectract n more times for a total of
n + 1 retractions. So one is obligated, on grounds of efficiency, to prefer the simplest
degree compatible with experience. The simplest worlds in this problem are worlds in
which the true law is constant. Successive anomalies occur when the observed data
points fall outside of the ε envelope of every curve of lower order.15

Unity. Copernican astronomy, Newtonian physics, the wave theory of optics, evo-
lutionary theory, and chaos theory all won their respective revolutions by providing
unified, low-parameter explanations of phenomena for which their competitors required
many. I cannot, of course, show that this kind of simplicity leads to the right answer
when two answers are compatible with the same experience for eternity, for then no
method driven entirely by experience could be guaranteed to arrive at the right answer.
So assume a principle of “plenitude” stating that if the world is disunified, Nature is
obligated to show us some (possibly obscure) violations of the misleading regularities
eventually. This dodges the question of how to choose among theories that are indis-
tinguishable in principle, but even if there are such theories, the more pervasive and
interesting question is why we should prefer the unified theory when disunified alter-
natives are still compatible with experience received so far (Churchland 1981). If there
are but n such regularities under consideration, then by an argument similar to those
already given, one must choose the most unified theory compatible with experience
(i.e, the theory that implies that all of the regularities compatible with the current
inputs will remain unviolated forever). For otherwise, Nature can maintain all of the
regularities until we retract and adopt the most unified theory. Thereafter, Nature can
elicit one more retraction for each of the n regularities (by making it appear to be true
until we “take the bait”) for a total of n + 1 retractions; but if we are always guided
by a taste for unity, we succeed with at most n retractions in each possibility.

Conservation laws in particle physics (Schulte 2001). It is both intuitive and
a matter of standard practice (Ford 1963) to propose the most restrictive conservation
laws consistent with the currently observed reactions. But what does such practice
have to do with finding the right answer as efficiently as possible? Suppose there are

15Popper (1968) observed that lower polynomial degrees are more “falisifiable” than higher degrees,
but he never explained how preferring the most falsifiable hypothesis helps us find the truth. The
preceding argument provides such an explanation: it minimizes retractions prior to convergence. For
a different explanation of the merits of simplicity in curve fitting, cf. (Forster and Sober 2001). Their
proposal is based on the Akaike criterion for statistical model selection. As my proposal is not explicitly
statistical, providing a systematic comparison of the two ideas is not trivial.
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n types of particles. Then each possible reaction may be represented by an n-vector
of positive integers (each component corresponds to the total number of particles of a
given kind coming out of the reaction minus the total number going in). A conservation
law assigns some conserved quantity to each particle type and specifies that the total
quantity going into each reaction equals the total quantity coming out (Valdez-Perez
and Erdmann 1994). Hence, the conservation law determined by a given assignment is
consistent with all and only those possible reactions that are orthogonal to the assign-
ment. Accordingly, each nontrivial conservation law determines an n − 1 dimensional
subspace of the original vector space. Positing more conserved quantities determines
lower-dimensional subspaces. The most restrictive conservation theory compatible with
the observations is then the least-dimensional subspace containing the observed reac-
tions (i.e., the span of the observations restricted to vectors with integral coordinates).
Always guessing the integral span of the observed reactions is guaranteed to succeed
with at most n retractions (one retraction each time the dimension of this subspace
increases), but choosing a less restrictive law before it is necessary to do so risks more
retractions (Nature is free to exhibit only reactions compatible with the current span
until the method retracts to a smaller subspace). Worlds in which the tightest such
theory survives forever are simplest and anomalies occur when the dimensionality of
the observed reactions increases.

0.4 A Transfinite Efficiency Argument

The preceding problems are all solvable under finite retraction bounds, but the effi-
ciency argument can be extended to a wide range of problems for which no such bound
exists. To see how, suppose that there is a curtain behind which there may be at most
one box that may contain some particles. If the box exists, it is revealed, eventually,
at a time of Nature’s choosing (prior to the removal of any eggs) and after the box
is revealed, Nature must reveal each egg in the box, without replacement, at times
of her own choosing. The size of the revealed box provides a visual upper bound on
how many eggs it can contain. The question is simply whether there is a box behind
the curtain and, if so, how many eggs it contains (a more interesting version with the
same structure: “will we ever discover an upper bound on the number of kinds of sub-
atomic particles and if so, what are the finitely many conservation laws governing their
interactions?”). The Ockham hypothesis prior to seeing the box is that no box exists.

There is no finite, a priori bound on the number of retractions required to solve
the whole problem (a box of any size might appear), so the finitely bounded efficiency
arguments presented above do not apply. But the least, infinite retraction bound,
ω, is achieved by every solution (by definition, convergence implies at most finitely
many retractions). So it seems that one cannot derive Ockham’s razor from efficient
convergence using infinite bounds, either.

R. Freivalds and C. Smith (1993) have devised an ingenious solution to this dilemma.
Counting retractions up to an infinite, ordinal number is indeed trivial, but counting
down from such a number is not— because there are no infinite, descending chains
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of ordinal numbers. Assume that there is an accountant who manages the learner’s
resources. The accountant begins with some initial, possibly infinite, ordinal allotment
of funds. Occasionally, she makes unit withdrawals to cover the retractions performed
by the method (assume that each retraction costs one unit) and specifies the current
account balance at each stage. The accountant is required to be empirical, in the
sense that her actions depend only on the inputs currently available to the learner.16

If the total sum withdrawn in each world matches the total number of retractions
performed by the learner in that world, say that the accountant covers the learner’s
retractions. When a unit is withdrawn from limit ordinal funds λ, the balance must
somehow be reduced to an ordinal less than λ. Since λ − 1 is undefined in standard
ordinal arithmetic, it is up to the accountant to decide what the new balance will be.
But she does so at her peril, for if she selects a value that is too low, the learner may
needlessly run out of funds prior to convergence, in which case she and the learner
fail as a team. Tentatively, say that a method solves a problem with α-bounded
retractions just in case the method solves the problem and there exists an accountant
whose allotment is initialized to α whose withdrawals cover the method’s retractions.
A problem is solvable with α-bounded retractions just in case there exists a method
that solves it with α-bounded retractions. The retraction complexity of a problem
is the least ordinal bound under which the problem is solvable.

Recall the example of the curtain that may conceal an egg-box. Suppose we follow
the obvious Ockham method, guessing that there is no box until it is seen and guessing
the observed number of eggs thereafter. An accountant starting with allotment ω
can withdraw a unit and decrement to n when a box (of size n) is observed and can
withdraw one more unit for each egg observed thereafter. Since we already know that
no finite allotment suffices, the problem’s retraction complexity is exactly ω. The
idea generalizes in a natural way to higher ordinals. For example, putting the box-and-
curtain problem behind another curtain gives rise to a problem of retraction complexity
ω + 1, and so forth.

Now it is possible to derive Ockham’s razor from efficiency in the box-and-curtain
problem. A method is retraction-efficient just in case it solves the problem under the
least feasible retraction bound in each subproblem. Suppose that a method believes in
the box before it is seen and that the accountant’s initial allotment is the least feasible
value ω (by the preceding argument). Nature is free to withhold the box until the
method retracts to the view that there is no box (on pain of failing to converge to the
right answer). Nature can continue to withhold the box until the empirical accountant
withdraws a unit to cover the retraction and decrements the allotment to some finite n
to balance the infinite books. Now Nature is free to exhibit a box of size n + 1 and to
withhold eggs until the method converges to “empty box”. Nature can exact another
retraction for each of the n + 1 eggs that might fit in the box, for a total of n + 2
retractions, but the total withdrawal is at most n + 1. Since allotment ω suffices to
solve this problem, the method that violates Ockham’s razor is not retraction-efficient.

16Given the input stream, the accountant can reconstruct the behavior of the learner by simulating
the learner on the inputs, so it is not necessary to pass the learner’s acts to the accountant directly.
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0.5 Retraction Efficiency Defined

The preceding concept of retraction-efficiency is too lenient to yield proposition 1 in
its full generality, for consider the following variant of the box-and-curtain problem.
Keeping everything else the same, add the presupposition that the box will eventually
appear. This problem is easier than the original version, because one can solve it with-
out having to “leap” to the risky conclusion that there is no box after a sufficiently long
run of box-less experience. Now consider a method that violates Ockham’s razor by
guessing “two eggs” a priori and that follows the obvious Ockham strategy thereafter.
The initial retraction can be covered by a unit withdrawal when the accountant decre-
ments the initial allotment of ω to the observed box size. Thereafter, everything works
as usual. Since no finite retraction bound suffices to solve this problem, the method
is retraction-efficient in each subproblem in spite of its a priori violation of Ockham’s
principle.

The trouble is that both versions of the problem have retraction complexity ω,
but the “box for sure” version is easier than the “possibly no box” version because the
appearance of the box is certain in the former, but constitutes an anomaly with respect
to uniformly box-less experience in the latter. A natural remedy is to introduce a new
quantity ←−ω less than ω and greater than each finite n, from which no withdrawal may
be taken.17 The easy version of the problem can be solved under allotment←−ω , because
the answer “no eggs” can be retained when the box is observed, so when the box is
observed, the accountant can decrement ←−ω to the observed box size without making a
withdrawal. More generally, let ←−λ be a new number strictly between limit ordinal λ
and each ordinal β < λ and let the extended ordinals be the result of adding these
new numbers to the ordinals.18 For accounting purposes, it suffices to specify how to
subtract finite quantities from extended ordinal allotments.19 Let ←−λ − k be undefined

17A more direct solution is to allow no withdrawals from limit ordinals, so that the easy version
has retraction complexity ω and the hard version has retraction complexity ω + 1. That works fine
for retraction complexity, but it makes a mess of the deduction Ockham’s razor from error efficiency
(propositions 1 and 3) and destroys the natural analogy between error and retraction complexity
(proposition 5).

18 I picture
←−
λ as follows. Surely, there is enough in the infinite tail of λ to extract the tiny quantity

n. However, removing n inflicts “indefinite, finite damage” on the tail, resulting in
←−
λ (think of the

damaged tail as being foggy or indeterminate, like a quantum state). Until this foggy “damage” is
“amputated” to leave a clean, ordinal “stump”, no further withdrawals from the tail are possible.The
foggy injury to

←−
λ doesn’t infect any ordinal initial segment β < λ of

←−
λ , so after the removal of n, it is

possible to decrement
←−
λ to any such β. Since β has an undamaged tail, it is now possible to withdraw

another finite quantity from its tail.
19 Although it is not necessary for the following results, it is interesting and natural to extend ordinal

arithmetic to the extended ordinals by extended ordinal recursion as follows, where osup(S) denotes
the ordinal supremum of the set S.

−→α = osup{α};
s(α) = α + 1 if α is ordinal and = α otherwise;

α + (β + 1) = s(α + β);

α + λ = osup{−→α + β : β < λ and β is ordinal};
α +
←−
λ =

←−−−
α + λ;
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(we don’t want to withdraw funds from non-ordinal allotments anyway). To compute
α − k, for arbitrary ordinal α and natural number k, first write α as the unique sum
λ + n, where λ is a limit ordinal, and then return ←−λ if n > k and return the ordinal
λ+(n−k) otherwise. The only additional assumption regarding the extended ordinals
is the distribution law: ω · ←−λ = ←−−ω · λ.20 The new numbers suggest revised accounting
rules:

1. after a unit is withdrawn from ordinal α, the new balance may not exceed α− 1;

2. balance ←−λ may be decremented to any extended ordinal <
←−
λ ;

3. no withdrawal may be taken from balance ←−λ .

One more refinement is required if we are to deduce Ockham’s razor from efficiency,
for suppose that a method starts out with the non-Ockham answer “two eggs” and the
initial allotment is ←−ω . The method can retract to “no eggs” when the box is seen and
now the accountant cannot make an immediate withdrawal. But she can, nevertheless,
decrement ←−ω to n + 1 when a box of size n is observed, using the surplus unit later as
a “slush fund” to cover the needless retraction of “two eggs”.

Once again, the culprit is undue tolerance for slush funds in the proposed defini-
tion of efficiency. A natural remedy is to require that that the accountant be stingy,
in the sense that she never allocates more funds than necessary in subproblems of
lower retraction complexity.21 Now, the original version of the problem has retraction
complexity ω, whereas the easy version has complexity←−ω < ω, so the concept of retrac-
tion complexity is sensitive enough to distinguish the two problems.22 Furthermore,

α · (β + 1) = (α · β) + β;

α · λ = osup{−→α · β : β < λ and β is ordinal};
α · ←−λ =

←−−
α · λ.

Extended ordinal exponentiation is defined analogously. Here are some examples:
−→←−
λ = λ (arrows

cancel); k +
←−
λ =

←−
λ (any finite quantity can be extracted for free from the head of damaged ordinal);←−

λ + k =
←−
λ (a fixed, finite quantity can’t repair the indefinite, finite damage inflicted when a finite

quantity is removed from the tail of an infinite ordinal);
←−
λ + λ′ = λ + λ′ (since any finite quantity

can be extracted from the head of λ′, it suffices to repair the indefinite, but finite damage in
←−
λ );

←−
λ +
←−
λ

′
= λ+

←−
λ

′
=
←−−−−
λ + λ′ (there is enough in the head

←−
λ

′
to repair the tail of λ, but the tail of

←−
λ

′
is

still damaged);
←−
λ ·λ′ = λ ·λ′ (there is no last copy of

←−
λ in the product so each tail is fixed by the head

of its successor);
←−
λ · (β + 1) = (λ · β) +

←−
λ =

←−−−−−−−−
λ + (β + 1) (each copy of

←−
λ is repaired by its successor,

except for the last); λ ·←−λ ′
=
←−
λ ·←−λ ′

=
←−−−
λ · λ′ (if λ · λ′ has its tail damaged, the damage is not in any of

the copies of λ since each is repaired by its successor, so the damage must be in the manner in which
the undamaged copies of λ are ordered, namely λ′).

20The distribution law is used below only in the theory of error complexity. Notice that it is one of
the clauses in the recursive definition of multiplication presented in footnote 19. Its intuitive motivation
in terms of damage is given in the gloss of the last example in footnote 19.

21Another obvious remedy is to require that retractions be covered by immediate withdrawals. But
that strict requirement is not feasible when we turn to the deduction of Ockham’s principle from error-
efficiency since errors, unlike retractions, cannot be noticed immediately by an empirical accountant.

22We already know that ω suffices for the hard problem and that←−ω suffices for the easy one. We also
know that no finite n suffices for either. The argument that the retraction complexity of the original
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retraction-efficiency implies Ockham’s razor in the revised problem, for suppose that
the method starts out with “one egg” under allotment ←−ω . Nature is free to exhibit
a box of size 0. The stingy accountant must decrement the allotment immediately to
0 without withdrawing a unit from ←−ω , so no withdrawals can ever be made to cover
the eventual retraction of “one egg”. Finally, Ockham’s razor is still deducible in the
original version of the problem. For suppose that the method outputs an answer en-
tailing that there is a box prior to seeing the box. Nature can withhold the box until
the method retracts to “no box” and the accountant decrements ω. If the accountant
decrements ω to some finite n, then the earlier argument works. If she decrements ω
to ←−ω , Nature presents a box of size 0 and the stingy accountant must decrement ←−ω
immediately to 0 without withdrawing a unit, so the second retraction (of “no box”)
is never covered by a withdrawal.

I close the section with a precise definition of the concept of retraction complexity
that has just been outlined. Accountant C covers the retractions of method M in
world w starting from finite input sequence σ just in case the total withdrawal by C
in w after σ is at least as great as the total number of retractions by M in w after σ. The
retraction complexity r(P ;σ) of problem P given σ is the least extended ordinal
α such that some method solves the subproblem of P rooted at σ under retraction
bound α (solution under bound α remains to be defined). If there is no such α, then
let r(P ;σ) = ∞. Say that C is α-retraction-stingy in P at σ just in case for each
extension τ of σ such that r(P ; τ) < α, C allots ≤ r(P ; τ) on τ . Now define: M solves
the subproblem of P rooted at σ under retraction bound α just in case M solves
the subproblem of P rooted at σ and there is an accountant C such that

1. for each world w in P that presents σ, C covers the retractions of M in w starting
from σ,

2. C allots α at σ, and

3. C is α-retraction-stingy in P at σ.23

Say that M is retraction-efficient in P just in case r(P ;σ) < ∞ and for each
σ compatible with P , M solves the subproblem of P rooted at σ under retraction
bound r(P ;σ).24 No method is retraction-efficient if it is impossible to solve P under

problem exceeds ←−ω is similar to the deduction of Ockham’s razor. Nature can withhold the box until
the method converges to “no box”. Now a box of size 0 can be exhibited. The stingy accountant must
immediately decrement ←−ω to 0, without making a withdrawal from ←−ω , so the inevitable retraction of
“no box” is never covered by a withdrawal.

23The definition is an extended ordinal recursion (the extended ordinals are well-ordered). When
α = 0, the third condition becomes vacuous, so the base case is well-defined.

24One might expect that stinginess does the work of requiring retraction-efficiency in each subprob-
lem, but that is not so: another way to hide violations of Ockham’s razor is to make unnecessary
withdrawals to cover future violations of Ockham’s razor. For suppose that there is a box of size three
on the table and that prior to seeing any eggs God happens to tell us that the box contains at most one
egg. The retraction-stingy accountant decrements the allotment immediately to unity and withdraws
one unit. The method now leaps to the conclusion that the box has one egg, violating Ockham’s razor.
Nature withholds eggs until the method retracts to “no eggs” and then shows the egg, eliciting two re-
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an extended ordinal bound, so say that P is efficiently solvable given σ just in case
r(P ;σ) <∞.

0.6 Error-Efficiency Defined

Solution under error bound α is defined just like its contraction counterpart, except for
the following, two amendments.

1. the accountant’s total withdrawal in a world after σ must be as great as the total
number of errors committed from the end of σ (inclusive) onward;25

2. the accountant may withdraw any finite number of available units at one time.

The first condition is obvious. The second arises from an essential difference between
retractions and errors: retractions are directly observable by the (empirical) accountant,
whereas errors are not.26 Like the learner, the accountant must wait for a concrete
empirical anomaly indicating potential trouble with the learner’s current output.27

Since Nature is free to withhold the sign as long as she pleases, the learner may produce
an answer arbitrarily often before the occurrence of the sign indicates trouble. It makes
sense, therefore, to allow the accountant to withdraw a lump sum covering all prior
stages at which the current theory was output when the sign finally appears. Indeed,
it is necessary to do so, for consider the simple question whether there is a ball behind
the curtain. If one insists upon unit withdrawals, as in the retraction case, then this
problem is not solvable under any extended ordinal error bound α; an unattractive
result.28 Given lump sum withdrawals, initial allotment ω suffices, for if the ball

tractions in the subproblem rooted at God’s announcement, but the accountant can withdraw another
unit when the egg appears, covering all the retractions, so the method succeeds with the fewest possible
retractions in the overall problem. It does not do so in the subproblem rooted at God’s announcement,
however, since at most one unit can be withdrawn in that subproblem (recall that the withdrawal at
the announcement does not count in the corresponding subproblem).

25Recall that we start counting retractions only after the end of σ. That is because errors occur “at
an instant”, whereas retractions and withdrawals are essentially extended across successive stages of
inquiry.

26Some authors have excluded error avoidance as a constraint on scientific method because it is no
easier for a third party to tally the scientist’s errors than it is for the scientist to avoid making them
(cf. Donovan et al. 1992). But that conclusion is premature, as is clear from proposition 2.

27It should not be supposed that errors are always verifiable, as in the egg-box problem. If the
question is whether the inputs will converge to green or to blue and it is known a priori that they
will alternate between green and blue at most n times, then the accountant will provisionally conclude
that “convergence to green” was an error when a blue input is received, even though “convergence to
green” is not conclusively refuted by the blue input. Hence, the accountant may have to over-withdraw.
For suppose the method says “convergence to green” for a long time and then says “convergence to
blue” once before converging to “convergence to green”. Then when the blue observation is seen, the
accountant may agree with the learner that “convergence to green” is an error and cover all the putative
errors with a huge lump withdrawal, when in fact only one error is committed.

28For suppose there is no ball. Then since there is no infinite descending chain of ordinal allotments
and at most one unit is withdrawn at each decrement, the accountant withdraws at most j units in
the limit. Also, since the learner succeeds, she converges eventually to “no ball”. Nature is now free
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appears at stage n, it suffices to withdraw the lump sum n from ω when the ball
appears. Error bound ←−ω does not suffice, however,29 so the error complexity of the
problem, under the proposed definition, is exactly ω.

0.7 Simplicity, Complexity, and Anomalies Defined

Relative to problem P , each world w will be assigned an extended ordinal simplicity
degree s(w;P ). In accordance with the approach sketched earlier, this will be done
so that worlds that present fewer potential anomalies (relative to P ) will be assigned
lower simplicity degrees.

It helps to introduce a few auxiliary concepts that can be defined in terms of such
simplicity degrees. The simplicity degree s(A;σ, P ) of answer A in problem P is
defined as the least upper (extended ordinal) bound on the simplicity degrees of the
worlds presenting inputs σ in which A is correct in w. The anomaly complexity
s(P ;σ) of problem P given finite input sequence σ is defined as the least upper bound
on the simplicity degrees of the worlds in P that present σ.30 World simplicity will
be defined so that anomaly complexity determines retraction and error complexity as
follows.

Proposition 5 Let s(P ;σ) <∞. Then

1. r(P ;σ) = s(P ;σ).

2. e(P ;σ) = ω · s(P ;σ).

3. Hence, P is efficiently solvable just in case s(P ) <∞.

An intriguing corollary of proposition 5 is that each retraction is worth ω errors:
e(P ;σ) = r(P ;σ) ·ω. That is because Nature can elicit arbitrarily many errors from us
by coaxing us to converge to the wrong answer before revealing the crucial experience
that leads us to retract it.

The definition of world simplicity is by recursion on the extended ordinals. Here is
the base case.

to withhold the ball until the learner outputs “no ball” at least j + 2 times before presenting the ball.
When the ball is presented, stinginess demands that the allotment drop immediately to zero, with a
withdrawal of at most one unit. Hence, the total withdrawal is at most j + 1, but at least j + 2 errors
were committed by the learner.

29For suppose the accountant does not decrement ←−ω prior to seeing the ball. Nature is free to
withhold the ball until the learner converges to “no ball”. Then when the ball is revealed, stinginess
forces the accountant to decrement ←−ω immediately to zero. Since no withdrawal is possible from ←−ω ,
the total withdrawal is zero, so the errors are never covered. Now suppose that the accountant does
decrement ←−ω prior to seeing the ball, say to k. No withdrawal is allowed from ←−ω . Nature is free to
withhold the ball until the learner converges to “no ball” and produces that answer at least k+1 times.

30Anomaly complexity generalizes two standard, topological complexity concepts (cf. Kechris 1991).
Cantor-Bendixson rank corresponds to ordinal anomaly complexity when the problem is maximally
refined (each answer is compatible with exactly one input stream). Kuratowski’s difference hierarchy
corresponds to ordinal anomaly complexity when the question has two answers (yes or no). Anomaly
complexity refines both by adding non-ordinal complexity classes and allows for questions that are
neither binary nor maximally refined.
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A is 0-verified by σ in P just in case each world w in P that presents σ satisfies
A.

s(w;P ) = 0 just in case w presents some finite sequence σ that 0-verifies some
answer to P .

The first clause is straightforward: 0-verification is just verification (relative to the
presupposition of P ). The second clause says that worlds of simplicity 0 (i.e., worlds
of maximum complexity in P ) are just the worlds that eventually verify some answer.
That is intuitive in light of the examples, for recall the problem of a visible egg-box of
size n. The least simple worlds in this problem are those in which the box is full, at
which time the answer “n eggs” is verified.

Now for the inductive case. We are entitled to assume that β-verification and
s(w;P ) = β are already defined for all extended ordinals β < α. It is also defined
whether s(w;P ) < α or whether s(w;P ) ≥ α, since both depend only on values of
s(w;P ) less than α. Begin by generalizing the concept of verification as follows:

A is α-verified by σ in P just in case each world w in P that presents σ such
that s(w;P ) ≥ α satisfies A.

Hence, α-verification is just verification relative to the additional presupposition that
the actual world is at least α-simple. The idea is of interest in its own right. Think
of “Normal” science (Kuhn 1996) as waiting for verification relative to a tacit simplic-
ity presupposition. Scientific revolutions occur when this simplicity presupposition is
undermined, after which we must wait for another answer to be verified relative to a
weaker simplicity presupposition.

The inductive case of the definition of simplicity can be understood by “working
backward” from proposition 5.1. Suppose that some answer A is α-verified, where α is
an ordinal. If we output A under allotment α, we are safe from bankruptcy, so far as
retractions are concerned, for if A is false, a future drop in ordinal complexity provides
both a signal to retract A and an opportunity for the stingy accountant to withdraw a
unit from α to cover the retraction.

When α = ←−λ , however, it is not necessarily safe to output α-verified answer A,
because the drop in anomaly complexity that signals potential trouble for A does not
afford a chance to make a withdrawal. But it is safe to output A if we already know
that it will be safe, in the sense of the preceding paragraph, to output A when the
problem’s complexity finally drops to an ordinal value. Say that a possible extension
τ of σ is α-dry given σ just in case for each τ ′ extending σ and properly extended by
τ , if s(P ; τ ′) < α then s(P ; τ ′) is non-ordinal. So if α is non-ordinal, one never gets a
chance to make a withdrawal along τ after σ has been received. Hence, it is only safe to
output an answer under a non-ordinal allotment←−λ at σ if the answer is s(P ; τ)-verified
in each ←−λ -dry extension of σ. Now define:

s(w;P ) = α just in case s(w;P ) ≥ α and w eventually presents σ such that:

s1. Aw is α-verified by σ in P and
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s2. if α is not an ordinal, then for each τ that is α-dry in P given σ, Aw is
s(P ; τ)-verified by τ in P .

If there is no such extended ordinal α, let s(w;P ) =∞.
An anomaly of severity α occurs when the anomaly complexity of P drops from

ordinal value α to some lower value. This implies that the simplest worlds have all
been eliminated, so the reason for thinking that one’s previous answer was simplest
has been undercut. There is a sense in which reductions in non-ordinal complexity
may also be viewed as anomalies, but only in a methodologically “benign” sense, for
the simplest answer can never change when non-ordinal complexity drops. Since the
anomaly complexity of a problem never drops in its simplest worlds, these are the
worlds that are “uniformly” anomaly-free, which explains why they are the simplest.
Also, the anomaly complexity of a problem is the least upper bound on the severity
degrees of potential anomalies, as its name suggests. The retention principle, which
characterizes retraction-efficiency according to proposition 3, requires that retractions
occur only when anomalies occur.

To illustrate these concepts, consider the problem in which we are required to
determine whether there is a box behind the curtain and, if so, how many eggs it
contains. Worlds in which there is a box of size n containing k eggs have simplicity
degree n− k. When a box of size n has been seen and k eggs have been observed, the
anomaly complexity of the problem is n − k. Hence, the complexity of the problem
eventually drops to the actual world’s simplicity, and each drop from an ordinal value
is an anomaly. The most severe such anomaly is when the box is first observed, which
is an anomaly of order ω. When the kth egg is seen in a box of size n, an anomaly
of order n− k occurs. The world in which there is no box has simplicity ω, making it
the simplest world, so the whole problem has complexity ω. At each anomaly a new
answer emerges as the simplest answer compatible with experience.

Next, consider the variant of the preceding problem in which we only have to count
the number of eggs behind the curtain, without saying whether or not there is a box.
Consider the world in which no box exists. This world←−ω -verifies “no eggs”. Moreover,
each ←−ω -dry τ is a finite input sequence along which the box appears at the last stage
if it appears at all. Prior to seeing the box along such a sequence, the answer “no
eggs” is←−ω -verified. Since no eggs are revealed until after the box appears, “no eggs” is
n-verified when a box of size n appears. Hence, clause (s2) is satisfied, so the simplicity
of the no box world is←−ω rather than ω. Since this is the simplest world in the problem,
the complexity of the problem is also←−ω . The appearance of a box of size n reduces the
problem’s anomaly complexity from ←−ω to n, but does not count as an anomaly since
←−ω is not an ordinal. Intuitively, the appearance of the box is not disturbing in this
problem, since such an appearance is already built into the problem’s presuppositions
a priori.
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0.8 Ockham’s Razor Defined

The most natural statement of Ockham’s razor is to output an answer in response to
finite input sequence σ only if it is among the simplest answers compatible with σ. This
principle is necessary for both error and retraction-efficiency.31 On the other hand, it
is not sufficient for either kind of efficiency, even in problems in which the simplest
answer in light of current experience is always unique. For example, suppose that we
will eventually either see a box or hear a bell, but not both. If we see a box, we must
report the number of eggs in the box. If we hear a bell, the right answer is to report
the time at which the bell rings. The answer “empty box” is the unique, simplest
answer a priori32 but no method that outputs this answer is either error-efficient or
retraction-efficient.33

The preceding problem has no simplest worlds a priori. This situation is epistem-
ically “unstable”, since a simplest world is destined to emerge eventually34, at which
time the overall complexity of the problem will drop. It is, therefore, natural to require
that we output an answer only if it is (the unique) simplest-world answer, where an
answer is a simplest-world answer given σ just in case the problem has simplest worlds
given σ and the answer is correct in all such worlds.35 This principle is sufficient36 for
both error and retraction-efficiency, but it is not necessary. To refute necessity, modify
the box and curtain problem so that it is guaranteed that the box will occur and the
question is whether it contains an even or odd number of eggs. An efficient solution
may output “even” a priori, (since the answer “even” needn’t be retracted after the
box appears), but “even” is not a simplest-world answer, since there are no simplest
worlds in the problem prior to seeing the box.

Another idea is to output an answer only if it is the uniquely simplest answer in
light of experience. Unfortunately, this principle is neither necessary nor sufficint for
efficiency.37 The right principle lies somewhere between choosing arbitrarily among

31Necessity is an immediate corollary of propositions 1 and 7.
32Its simplicity degree is ←−ω .
33For suppose we output “empty box” a priori. Then Nature is free to ring the bell right away.

The stingy accountant must decrement immediately to zero without making a withdrawal, so our
retraction/error is never covered.

34I.e., when the finite σ witnessing the world’s maximum simplicity is experienced.
35Equivalently, the simplest-world answer given σ is the (unique) answer that is s(P ; σ)-verified given

σ.
36Sufficiency is an immediate corollary of propositions 1 and 7.
37The preceding, even/odd example shows that it is not necessary. To show that it is not sufficient

requires a rather tortured example, which indicates how finely the logical hairs must be split to obtain
proposition 2. Suppose that there is a box behind the curtain and that a bell may ring at stage 2.
The question is whether the bell rings at stage 2 and if not, how many eggs the box contains, and
if it contains at least one egg, what the size of the box is. The answer “0 eggs” has simplicity ←−ω a
priori. The answer “box of size n with k eggs” has simplicity n− k a priori. Finally, the answer “bell
at stage 2” has simplicity 0 a priori. Hence, “0 eggs” is the unique, simplest answer a priori (by a
long shot). Suppose we output “0 eggs” a priori. Then Nature is free to ring the bell at stage 2. The
stingy accountant must decrement the allotment of ←−ω units immediately to 0 so we go bankrupt when
revise “0 eggs” to “bell at stage 2”. Had we stalled with ‘?’ until after stage 2, however, we could have
succeeded under retraction bound ←−ω .

18



simplest answers and waiting until some simplest worlds compatible with experience
emerge and experience singles out one of them. It allows one to output an answer A
that is not yet a simplest world answer if it has already been verified that A will be
the uniquely simplest answer just prior to the next anomaly. Accordingly, say that A
is the Ockham answer in problem P given finite input sequence σ just in case

o1. A is s(P ;σ)-verified by σ in P and

o2. if s(P ;σ) is non-ordinal, then for each τ that is s(P ;σ)-dry in P given σ, A is
s(P ; τ)-verified by τ in P .

The preceding definition is closely related to the definition of world simplicity: one
need only replace α with s(P ;σ) and Aw with A. The latter substitution is necessary
to yield a methodological principle, since the learner doesn’t know a priori what the
actual world w is.

The Ockham answer is unique, if it exists, so there is no need for extra principles
that select among several Ockham answers.

Proposition 6 If s(P ;σ) <∞, then there is at most one Ockham answer in P given
σ.

The version of Ockham’s razor that is assumed in propositions 1 and 2 is: in problem
P , output answer A in response to finite input sequence σ only if A is the (unique)
Ockham answer in A given σ. The reader may verify that the intuitive instances of
Ockham’s razor illustrated in section 3 are all instances of this general version. Also, the
Ockham answer concept is logically sandwiched between the two, plausible, alternative
formulations just considered.

Proposition 7 Let s(P ;σ) < ∞. Then each of the following statements implies its
successor, but not conversely.

1. A is the simplest world answer in P given σ;

2. A is the Ockham answer in P given σ;

3. A is one of the simplest answers in P given σ.38

Furthermore, the fine distinctions matter only in subproblems of non-ordinal complex-
ity. So in most cases, “choose the simplest hypothesis” suffices.

Proposition 8 If s(P ;σ) is an ordinal, then the following statements are equivalent:

1. A is the simplest world answer in P given σ;

2. A is the Ockham answer in P given σ;

3. A is the uniquely simplest answer in P given σ.
38The implications are proved in Appendix I. The even/odd example witnesses the failure of both

converses.
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0.9 Piece-meal Efficiency Defined

Although proposition 4 provides an appealing, sufficient condition for deriving Ock-
ham’s razor from efficiency, it is counterbalanced by the following, rather strong, nec-
essary condition:

Proposition 9 If a problem is efficiently solvable, then there is a world compatible
with the problem in which some answer to the problem is eventually verified.

It follows, for example, that the problem of counting the total number of color changes
is not efficiently solvable under the presupposition that the color changes at most
finitely often, for no count is ever completely verified. Hence, the presupposition is not
decidable in the limit.39

In some such cases, Ockham’s razor can still be derived from piece-meal efficiency
(Schulte 2001). A solution to a problem is piece-meal efficient just in case it minimizes
retractions in each decision problem determined by an answer to the question. The
decision problem determined by answer A in P is the problem whose answers are A
and ¬A, where ¬A denotes the complement of A with respect to the presupposition
of P . The definition of efficiency must also be adjusted so that producing any answer
in P incompatible with A is understood as an output of ¬A, so that changing one’s
mind immediately from one such answer to another does not count as a retraction.
Similarly, producing some answer A′ distinct from A counts as an error only if answer
A is correct. Now suppose that the learner violates Ockham’s razor in the decision
problem determined by the answer “n color changes” (under the preceding conventions
for interpreting other answers). One may argue, in the usual way, that the learner is
not efficient in this decision problem, so the learner is not piece-meal efficient in the full
problem. The same argument applies to the unrestricted versions of the curve fitting
and particle conservation law problems.

In light of proposition 9, piece-meal efficiency is achievable only if each answer or
its complement is verified in some world. That is not always the case. For example,
suppose it is known in advance that the observations will change color only finitely
often and the question is what the final color will be. The simplest answer seems to be
that the convergent color will be the current color (i.e. that the color will be uniform
from now on), but piece-meal efficiency does not require us to produce it .40 There is
a natural refinement of the problem that is piece-meal solvable: just ask how often the
color changes and what the initial color was. Piece-meal efficiency dictates choosing
an answer in the refined problem that entails that the current color will be the last.
That approach, however, depends upon the selection of a refined subproblem, and the

39To see why, Nature is always free to stop showing us new color changes until the learner takes
the bait (on pain of converging to the wrong answer) and concludes that the color will change only
finitely often. Then Nature can display another color change. In the limit, the presupposition that the
color changes at most finitely often is false but the learner doesn’t converge to “false”. As Kant might
have put it, the presupposition’s truth value lies “beyond all possible experience”. Indeed, the finite
divisibility of matter was one of Kant’s antinomies of pure reason (cf. Kelly 1996, chapter 3).

40This problem is analogous in structure to the problem of inferring limiting relative frequencies from
sequential test outcomes (cf. Salmon 1967).
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“naturalness” of the choice may depend, tacitly, upon the very simplicity intuitions we
would like efficiency to explain.
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0.11 Appendix I: Proofs of Main Propositions

Finite input sequence τ extends finite input sequence σ just in case σ is no longer
than τ and each entry in σ agrees with the corresponding entry in τ . Also, τ properly
extends σ just in case τ extends σ but is not identical to σ. Let P |σ denote the
restriction of P to worlds in P that present σ. If α is an extended ordinal, then let −→α
denote the least ordinal ≥ α. Hence,

−→←−
λ = λ. Let Vα(A;σ, P ) abbreviate “A is α-verified

by σ in P”. Let e(w,M ;σ) denote the total number of errors committed by M in w from
the end of σ onward, let r(w,M ;σ, P ) be the total number of retractions performed
by M in w after the end of σ and let u(w,C;σ, P ) be the total units withdrawn by C
after the end of σ. Let σ ∗ x denote the concatenation of input x onto the end of finite
input sequence σ.

Nature can exact a retraction shortfall of k from C,M in the subproblem of P
rooted at σ just in case there exists a w in P |σ such that r(w,M ;σ, P )−u(w,C;σ, P ) >
k. Say that C is committed to covering the retractions of M in P at σ just in case
C is determined never to leave a shortfall unless she runs out of funds; i.e., for each w
in P |σ, if r(w,M ;σ, P ) > u(w,C;σ, P ) then for some τ extending σ in w, C(τ) allots
0. Commitment to covering errors or time can be defined similarly.

The following methods and accountants will be mentioned below.

M0(σ) outputs the (unique) Ockham answer A given σ, if there is one, and outputs
‘?’ otherwise.

C0(σ) allots s(P ;σ) and withdraws exactly one unit at σ if an anomaly occurs at
σ.

C1(σ) allots ω · s(P ;σ) and withdraws n = the length of σ if an anomaly occurs
at σ.41

All lemmas cited in the following proofs may be found in appendix II.
Proof of proposition 1, retraction case. Suppose that M violates Ockham’s

razor on finite input sequence σ. Suppose for reductio that M is retraction-efficient
in P , so s(P ;σ) = α < ∞ and M solves the subproblem rooted at σ under retraction
bound α, by proposition 5. Hence, there is an accountant C such that in each world w
in P |σ,

a. M converges to the correct answer for w and

b. C covers the retractions of M in w starting from σ and

c. C(σ) allots α and

d. C is α-retraction-stingy in P at σ.
41The lump withdrawals are possible because the only ordinal allotments are limit ordinal allotments.
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This implies statements (a, b, c) in the antecedent of proposition 10.
Case A: α is an ordinal. Then M(σ) = A but ¬Vα(A;σ, P ), so let w in P |σ be such

that w does not satisfy A and s(w;P ) = α. Then by (a), M eventually retracts A on
some τ properly extending σ in w. Hence, by (b), C must withdraw at least one unit
in w after receipt of σ. Let δ be the first moment properly extending σ in w such that
all withdrawals by C in w precede δ and A is retracted at least once along δ after σ.
Let u be the total withdrawal in w after σ, so u is also the total withdrawal along δ
after σ. Hence, C(δ) allots < α. By proposition 18 there are three cases.

Case A.1: C(δ) allots ←−α . Then u ≤ 1 since at most one unit may be withdrawn
at a stage. Since s(w;P ) = α, proposition 10 implies that Nature can exact at least
a unit shortfall from C,M in the subproblem rooted at δ. Since the unit withdrawal
along δ after σ is matched by a retraction in the same interval, Nature can exact a unit
shortfall from C,M in the subproblem rooted at σ. Contradiction.

Case A.2: C(δ) allots β such that there exists k > 0, −→β +k = α. Then by proposition
10, Nature can exact a shortfall of at least k units from C,M in the subproblem rooted
at δ. Also, u ≤ k, just balancing the shortfall in the subproblem rooted at δ. But a
retraction also occurs after σ along δ, so Nature can exact a unit shortfall from C,M
in the subproblem rooted at σ.

Case A.3: C(δ) allots β such that for each k > 0, −→β + k < α. Then by (d)
and proposition 10, Nature can exact an arbitrarily large shortfall from C,M in the
subproblem rooted at δ. Choose this shortfall to be u + 1, so Nature can exact a unit
shortfall from C,M in the subproblem rooted at σ.

Case B: α is not an ordinal. Let M(σ) = A. If ¬Vα(A;σ, P ), revert to case A.
Else, there exists an α-dry θ given σ in P such that ¬Vs(P ;θ)(A; θ, P ). So we may
choose w′ in P |θ such that s(w′;P ) = s(P ; θ) and w′ does not satisfy A. Nature is
free to continue presenting inputs from w′, so eventually M converges to Aw′ (by a)
and hence retracts A, say at θ′ ∗ x properly extending σ. Since efficiency requires the
minimization of retractions in each subproblem, the accountant must eventually make
a withdrawal in the subproblem rooted at θ′ to account for this retraction, say at δ
extending θ′ ∗ x. By (c, d) and proposition 5, C always allots the current anomaly
complexity on inputs extending σ. So since θ is α-dry given σ and α is non-ordinal,
C makes no withdrawal along θ after the end of σ. Hence, δ properly extends θ. So
C(θ) allots < s(w′;P ) = s(P ; δ). By proposition 10, Nature can exact a unit shortfall
in the subproblem rooted at θ and, hence, in the subproblem rooted at σ, since no
withdrawals occur along θ after σ. a.

Proof of proposition 1, error case. Suppose that M fails to be patiently
Ockham, say on finite input sequence σ. Then M(σ) = A, where A is not Ockham
in P given σ. Suppose for reductio that M is error-efficient in P , so M solves the
subproblem rooted at σ under retraction bound α, where ω · s(P ;σ) = α < ∞ by
proposition 5. Hence, there is an accountant C such that in each world w in P |σ,

a. M converges to the correct answer for w and

b. C covers the errors of M in w starting from σ and
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c. C(σ) allots α and

d. C is α-error-stingy in P at σ.

This implies statements (a, b, c) in the antecedent of proposition 11.
Case A: α is an ordinal. Then M(σ) = A but ¬Vα(A;σ, P ). Let w in P |σ be such

that w does not satisfy A and s(w;P ) = α. So by (a), M commits an error in w at σ,
in the subproblem of P rooted at σ. Hence, by (b), C must withdraw at least one unit
in w after σ (recall that errors at the root of a subproblem must be accounted for).
Let δ be the first moment in w after σ at which a withdrawal is taken. Hence C(δ)
allots < α, by (c). By (b, d) and proposition 11, Nature can exact an arbitrarily large
shortfall from C,M in the subproblem rooted at δ, so the shortfall can be chosen to
exceed the amount withdrawn along δ after σ, contradicting (b).

Case B: α is not an ordinal. Let M(σ) = A. If ¬Vα(A;σ, P ), revert to case A. Else,
there exists an α-dry θ given σ in P such that ¬As(P ;θ)(A; θ, P ). So we may choose
w′ in P |θ such that s(w′;P ) = s(P ; θ) = γ and w′ does not satisfy A, so an error is
committed by M in w′ at σ. The accountant C must eventually make a withdrawal in
the subproblem rooted at σ to account for this error, say at δ properly extending σ.
By (b, d) and proposition 5, C allots s(P ;σ′), for each σ′ compatible with P . So since
θ is α-dry given σ and α is non-ordinal and the backarrow operation distributes over
products, C cannot make a withdrawal along θ after the end of σ. Hence, δ properly
extends θ. So C(δ) allots < γ = s(w′;P ) = s(P ; δ). So by (d) we may apply proposition
11 to exact from C,M a shortfall greater than the total amount withdrawn between
the end of σ and the end of δ. a

Proof of proposition 2. Given proposition 1, it suffices to show that each solution
to efficiently solvable P that satisfies Ockham’s razor is error-efficient. Let M satisfy
the principle and solve P . Method M never outputs an answer unless M0 does. Hence,
M produces no more errors than M0. So by proposition 14, the errors of M are covered
by C1. By proposition 11, C1 is s(P )-stingy, so M is error efficient. a

Proof of proposition 3. For the “only if” side, suppose that M solves P . Suppose
that M violates the retention principle on finite input sequence σ ∗ x compatible with
P . Then M(σ) = A, M(σ∗x) 6= A. For reductio, suppose that M is retraction efficient
and let C witness this fact. By proposition 5 and the reductio hypothesis, (*) C(δ)
allots s(P ; δ) <∞ for each δ compatible with P .

Case A: s(P ;σ) is not an ordinal. Since σ ∗ x is compatible with P , let w be in
P |σ ∗ x.

Case A.1: suppose that for all τ extending σ ∗ x in w, s(P ; τ) is not an ordinal.
Then by (*), C never gets to make a withdrawal in w after σ ∗ x, so C does not cover
the retractions of M in the subproblem rooted at σ ∗ x. Contradiction.

Case A.2: suppose that there is a τ extending σ ∗ x in w such that s(P ; τ) is an
ordinal. Choose τ ′ to be the least such. Then by (*), C cannot make a withdrawal to
cover the retraction at σ∗x until after τ ′. Since s(P ; τ ′) is an ordinal, we may choose w′

in P |τ ′ such that s(w′;P ) = s(P ; τ ′). The retraction occurs in w′, so Nature is free to
present inputs from w′ after σ ∗x until C makes a withdrawal, say at δ extending σ ∗x.
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By choice of τ ′ and (*), δ properly extends τ ′. Then C(δ) allots < s(w′;P ) = s(P ; δ).
So (by the reduction hypothesis and proposition 10) it is possible for Nature to exact
at least a unit shortfall from C,M in the subproblem rooted at δ. Since no withdrawals
are made before δ in the subproblem rooted at σ (by *), there is a shortfall of at least
one unit in the subproblem rooted at σ in w′. Contradiction.

Case B: s(P ;σ) = s(P ;σ ∗ x). By case A, we may assume that s(P ;σ) is an
ordinal. So since σ ∗ x is compatible with P , we may choose w in P |σ ∗ x such that
s(w;P ) = s(P ;σ ∗ x). By the reductio hypothesis, C must withdraw a unit in w after
σ ∗ x in order to account for the retraction at σ ∗ x in the subproblem rooted at σ,
say at δ extending σ ∗ x. Hence, C(δ) allots < s(w;P ) = s(P ; δ). So (by the reductio
hypothesis and proposition 10) Nature can exact a shortfall from C,M of at least one
unit in w after δ. Since the first withdrawal occurs after σ at δ, this yields a unit
shortfall overall in the subproblem rooted at σ. Contradiction.

For the “if” side, suppose that M solves efficiently solvable P and satisfies the reten-
tion principle. Recall that C0(()) allots s(P ), and by proposition 10, C0 is s(P )-stingy
in P . By the retention principle, C0 covers the retractions of M , so (by proposition 5)
M is a retraction-efficient solution to P . a

Proof of proposition 4. Suppose that M is a self-disqualifying solution to P
and P has presupposition Q. Let ¬Q denote the complement of the presupposition in
the completed problem P ′. Now suppose for reductio that P is not solvable under any
extended ordinal retraction bound. Let the unverifiable kernel K denote the set of
all w in Q such that s(w;P ) =∞ and let P |K be the restriction of P to worlds in K.
K is nonempty, else s(w;P ) ≤ α, for some ordinal α. Let Ai denote the proposition
“M converges to an answer after at most i retractions” and let Bi denote “M converges
to ‘?’ after at most i retractions”, both taken over the completed problem P ′.

Say that a finite input sequence σ is an n-squeezer just in case

1. σ is compatible with K;

2. σ verifies no Ai given K;

3. σ verifies no Bi in the completed problem P ′;

4. σ refutes A0, . . . , An−1 and B0, . . . , Bn−1.

Construct an infinite, nested sequence of n-squeezers as follows. Base: the empty
sequence () is a 0-squeezer. Condition 1 follows from the reductio hypothesis and
proposition 5. To obtain condition 2, suppose for reductio that () verifies some Ai.
Then since M solves P and converges to an answer in i retractions in each world in
K, we have by proposition 5 that s(w;P |K) ≤ i, for each w in K. So by proposition
17, K is empty. Contradiction. For condition 3, if () verifies Bi, then Q is empty so P
is trivially solvable, contradicting the reductio hypothesis. Condition 4 is trivial when
n = 0.

Induction: suppose that σ is an n-squeezer. By condition 2, there exists a world w
in K that is compatible with σ and that makes An false. Since w is in K, and hence
is in P , Bn is also false, since Bn is true only in virtual worlds outside of P . Present
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inputs from w, continuing from where σ left off until both Bn and An are refuted,
which must happen because both are refutable and false in w. Add one more input,
if necessary, to ensure that the τ so presented properly extends σ. Then τ satisfies
conditions 1 and 4 immediately, by the choice of w. To obtain condition 2, suppose for
reductio that τ verifies some Ai. Then since M solves P , s(P |K; τ) ≤ i, by proposition
5. Hence, s(w;P |K) ≤ i, since w presents τ . So by proposition 17, w is not in K.
Contradiction. Condition 3 holds because w is in K and hence is in P and M succeeds
in P so M does not converge to ‘?’ in w. So τ is an n + 1-squeezer.

Let e be the unique input stream that extends the sequence of nested n-squeezers so
constructed. By the supervenience assumption, there is a unique world w that presents
e in the completed problem P ′. By property 4 at each stage along e, M is not a
self-disqualifying solution to P . Contradiction.

To refute the converse, let A0 = “the input stream will converge to 0” and let
A0 be the only answer to problem P . P is solvable with 0 retractions, but P has no
self-disqualifying solution (cf. Kelly 96, chapter 4). a

Proof of proposition 5. Let s(P ;σ) <∞.
Part 1: M0 solves the subproblem of P rooted at σ by proposition 12. Moreover,

C0 covers the retractions of M0, by proposition 13. For each τ , C0(τ) allots s(P ; τ), so
by the corollary to proposition 10, C0 is s(P ;σ)-retraction stingy given σ in P . Hence,
s(P ;σ) ≥ r(P ;σ). Also, s(P ;σ) ≤ r(P ;σ) is an immediate consequence of the corollary
to proposition 10.

Part 2: M0 solves the subproblem of P rooted at σ by proposition 12. Moreover,
C1 covers the errors of M0, by proposition 14. For each τ , C1(τ) allots ω ·s(P ;σ), so by
the corollary to proposition 11, C1 is ω · s(P ;σ)-retraction stingy given σ in P . Hence,
ω · s(P ;σ) ≥ r(P ;σ). Also, ω · s(P ;σ) ≤ r(P ;σ) is an immediate consequence of the
corollary to proposition 11. a

Proof of proposition 6. Suppose that A,A′ are both Ockham in P given σ and
s(P ;σ) <∞.

Case A: there exists a w presenting σ such that s(w;P ) = s(P ;σ). By condition
(o1), A,A′ are both s(P ;σ)-verified by σ, so A = A′, since answers are mutually
exclusive.

Case B: there is no w presenting σ such that s(w;P ) = s(P ;σ). Hence, s(P ;σ) is
non-ordinal. By (o2), we have (†) for each s(P ;σ)-dry θ extending σ, Vs(P ;θ)(A;σ, P )
and similarly for A′. Suppose for reductio that for each s(P ;σ)-dry θ extending σ, each
w′ in P |θ satisfies s(w′;P ) < s(P ; θ). Then s(P ; θ) is also a non-ordinal, so each unit
extension of θ is also s(P ;σ)-dry extending σ. Since σ is a s(P ;σ)-dry extension of
itself, it follows that there is no finite extension τ of σ compatible with P such that
s(P ; τ) is an ordinal. Hence, there is no finite extension τ of σ compatible with P such
that s(P ; τ) = 0. Hence, there is no world w′ in P in the subproblem rooted at σ such
that s(w′;P ) = 0. By proposition 15, s(P ;σ) =∞. Contradiction. Hence, there exists
a s(P ;σ)-dry θ extending σ such that some w′ in P |θ satisfies s(w′;P ) = s(P ; θ). By
(†), w′ satisfies both A and A′, so A = A′, since answers are mutually exclusive. a

Proof of proposition 7. Suppose that s(P ;σ) < ∞. 1 ⇒ 2: suppose that
A is the simplest-world answer given σ in P . Then there exists w in P |σ such that
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s(w;P ) = s(P ;σ) < ∞ and each such world satisfies A, so Vs(P ;σ)(A;σ, P ), which is
condition (o1). Now suppose s(P ;σ) = s(w;P ) is non-ordinal. Then for each w′ such
that s(w′;P ) = s(P ;σ), for each s(P ;σ)-dry θ, Vs(P ;θ)(Aw′ ; θ, P ). Since A is correct in
each such world w′, we have that Aw′ = A. Hence, condition (o2) holds.

2 ⇒ 3: suppose condition o1 holds for A, so that Vs(P ;σ)(A;σ, P ). Hence, there is
no w such that A is incorrect in w but s(w;P ) = s(P ;σ). Hence, there is no A′ such
that A′ is simpler than A. a

Proof of proposition 8. Suppose s(P ;σ) is an ordinal. So we may choose
s(w;P ) = s(P ;σ). We already have 1⇒ 2⇒, by proposition 7.

2⇒ 3. Suppose A is Ockham. Then Vs(P ;σ)(A;σ, P ). Hence, for each w′ such that
s(w;P ) = s(P ;σ), A is correct in w′. Hence, A is correct in w. So A is a simplest
answer in P given σ. Let A′ be another such answer. Then since the simplicity of A′

is an ordinal, A′ is correct in some world w′′ such that s(w;P ) = s(P ;σ). But since A
is correct in w′′, A = A′, since answers are mutually exclusive.

3⇒ 2. Suppose that A is the uniquely simplest answer given σ. Since some answer
is correct in w, some answer has simplicity s(P ;σ), so A has simplicity s(P ;σ). Since
no other answer has simplicity s(P ;σ) and answers partition the presupposition, we
have Vs(P ;σ)(A;σ, P ). Since s(P ;σ) is ordinal, A is Ockham given σ.

2⇒ 1. Suppose that A is Ockham. So Vs(P ;σ)(A;σ, P ). So A is correct in w and in
all w′ such that s(w′;P ) = s(P ;σ). So A is a simplest world answer given σ. a

Proof of proposition 9. Immediate consequence of propositions 5 and 15. a

0.12 Appendix II: Lemmas

Proposition 10 (fundamental retraction lemma)

Let a(σ) denote the allotment of C at σ and suppose the following:

a. M is a method that succeeds in the subproblem of P rooted at σ,

b. C is a(σ)-retraction-stingy for the subproblem of P rooted at σ,

c. C is committed to covering the retractions of M in P at σ.

d.
−−→
a(σ) + k ≤ s(P ;σ).

Then Nature can exact the specified shortfall from M,C in the subproblem rooted at σ,
under the corresponding conditions.

a(σ) k ≥ shortfall
1. ordinal 0 k
2. infinite ordinal 2 arbitrary k′

3. non-ordinal −1 k + 1
4. 1 arbitrary k′

Corollary: r(P ;σ) ≥ s(P ;σ).
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Proof of proposition: by extended ordinal induction on a(σ). Suppose (a-d).
The following constructions will be used repeatedly, as they embody the two basic
strategies Nature can use to exact retractions from M .

Nature’s ordinal trick: suppose that s(P ;σ) > β, where β is an ordinal. Then
s(P ;σ) ≥ β + 1. By proposition 15, there exists w in P |σ such that s(w;P ) = β + 1.
Nature is free to present inputs from w until some τ extending σ is reached such that
M(τ) = Aw (by a). Since β is an ordinal < β + 1, ¬Vβ(Aw; τ, P ). So there exists a
w′ in P |τ such that Aw′ 6= Aw and s(w′;P ) ≥ β. Let δ be the first stage in w′ after
which no further retractions by M or withdrawals by C occur, so δ properly extends
τ . Let u denote the total withdrawal after σ along δ and let r be the total number of
retractions after σ along δ. Then (by a), r > 0, since M(τ) = Aw 6= Aw. So if a(σ) > 0
then u > 0 (by c), so a(δ) < a(σ). Then say that w′, δ, r, s are obtained by Nature’s β
trick (from M,C in P at σ).

Nature’s non-ordinal trick: suppose that s(P ;σ) >
←−
λ , where λ is a limit

ordinal. Then s(P ;σ) ≥ λ. By proposition 15, there exists w in P |σ such that s(w;P ) =
λ. Nature is free to present inputs from w until some τ extending σ is reached such
that M(τ) = Aw (by a). Since s(w;P ) = λ, w presents τ ′ extending τ such that
Vλ(Aw; τ ′, P ). So since s(w,P ) = λ, there exists a θ extending τ ′ such that θ is←−
λ -dry in P given σ and ¬Vs(P ;θ)(Aw; θ, P ). Since θ extends τ , Vλ(Aw; θ, P ). So since
¬Vs(P ;θ)(Aw; θ, P ), s(P ; θ) < λ ≤ s(P ;σ) and there exists w′ in P |θ such that s(w′;P ) =
s(P ; θ) and Aw′ 6= Aw. Let δ be the first moment in w′ such that from δ onward in w′,
M never retracts and C never withdraws. Let u denote the total withdrawal after σ
in w′ and let r be the total number of retractions after σ in w′. Then (by a), r > 0,
since M(τ) = Aw 6= Aw. So if a(σ) > 0 then u > 0 (by c). Then say that w′, θ, δ, r, s
are obtained by Nature’s ←−λ trick (from M,C in P at σ).

Base case: a(σ) = 0.
Part 1 base: k = 0. Nature exacts a 0 shortfall because no withdrawals are possible

from a(σ) = 0.
Part 1 induction: suppose k > 0, so s(P ;σ) ≥ k. Obtain w′, δ, r > 0, u by Nature’s

k trick. Then k − 1 ≤ s(w′;P ) ≤ s(P ; δ). By the induction hypothesis, Nature can
exact a shortfall of (k − 1) from M,C in the subproblem rooted at δ. Let w′′ witness
that fact. Since a(σ) = 0, u = 0. So we have

r(w′′,M ;σ, P )− u(w′′, C;σ, P ) ≥ (r + r(w′′,M ; δ, P ))− (u + u(w′′, C; δ, P ))
= (r − u) + (r(w′′,M ; δ, P ))− u(w′′, C; δ, P ))
≥ (1− 0) + (k − 1) = k.

Parts 2, 3, 4 are trivial when a(σ) = 0.
Induction: a(σ) > 0. Assume the theorem for all σ, C ′,M ′ and for all extended

ordinals < a(σ).
Lemma I: Let τ extend σ and suppose C ′,M ′ satisfy (a, b, c) with respect to τ . If

C ′(τ) allots < s(P ; τ) ≤ a(σ) then for all M ′, Nature can exact a unit shortfall from
C ′,M ′ in the subproblem rooted at τ .
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Argue as in the proof of the corollary, calling the induction hypothesis instead of
the proposition itself since C ′(τ) allots < a(σ). a

Lemma II: Let τ extend σ. If s(P ; τ) < a(σ) then a(τ) ≤ s(P ; τ).
Suppose that τ extends σ and s(P ; τ) < a(σ). Since C is a(σ)-retraction-stingy

in the subproblem rooted at σ, it suffices to show that (*) r(P ; τ) ≤ s(P ; τ). Let
a0(ζ) = s(P ; ζ) denote the allotment of C0 on ζ. By proposition 13, C0 covers the
retractions of M0, which succeeds in the subproblem rooted at τ . It suffices for (*) to
show that C0 is a0(τ)-retraction-stingy in the subproblem rooted at τ . Let ζ extend
τ and suppose that r(P ; ζ) < a0(τ) = s(P ; τ). Suppose for reductio that s(P ; ζ) >
r(P ; ζ). So there exist M ′, C ′ witnessing this fact. Hence, (d) C ′ allots < s(P ; ζ) on ζ.
Also, (a) M ′ succeeds in the subproblem rooted at ζ, (b) C ′ is a0(ζ)-retraction-stingy
in the subproblem rooted at ζ and (c) C ′ is committed to covering the retractions of
M ′ in the subproblem rooted at ζ. Apply lemma I to exact a unit shortfall from M ′, C ′

in the subproblem rooted at ζ, which contradicts the choice of M ′, C ′. a
Part 1: suppose that a(σ) > 0 is an ordinal, k ≥ 0 and a(σ) + k ≤ s(P ;σ).
Case A: a(σ) + k is a successor ordinal. Obtain w′, δ, r, u by Nature’s a(σ) + k − 1

trick. Then u, r > 0 (by a, c) because a(σ) > 0. So (by c) a(δ) < a(σ). Then, by
proposition 16, we have three possibilities.

Case A.1: a(δ) is ordinal and a(δ)+u ≤ a(σ). Since s(P ; δ) = s(w′;P ) ≥ a(σ)+k−1,
we have a(δ)+u+k− 1 ≤ s(P ; δ). So (a, b, c) and the induction hypothesis yield that
Nature can exact a shortfall of u+k− 1 from M,C in the subproblem rooted at δ. Let
w′′ witness this fact. So we have:

r(w′′,M ;σ, P )− u(w′′, C;σ, P ) ≥ (r + r(w′′,M ; δ, P ))− (u + u(w′′, C; δ, P ))
= (r − u) + (r(w′′,M ; δ, P ))− u(w′′, C; δ, P ))
≥ (1− u) + (u + k − 1) = k.

Case A.2: a(δ) is non-ordinal and
−−→
a(δ) + u− 1 ≤ a(σ). Since s(P ; δ) ≥ s(w′;P ) =

a(σ) + k − 1, we have
−−→
a(δ) + k + u − 2 ≤ s(P ; δ). Since u, k > 0, u + k − 2 ≥ 0. So

(a, b, c) and the induction hypothesis, Nature can exact a shortfall of u + k − 1 from
M,C in the subproblem rooted at δ. Continue exactly as in case A.1

Case B: a(σ) + k is a limit ordinal λ, so k = 0. Obtain w′, θ, δ, r, u by Nature’s←−
λ trick. Suppose that there exists a moment ζ extending σ along δ such that a(ζ) <
s(P ; ζ) ≤ a(σ). Let ζ be the first such. Then by Lemma I, Nature can exact a
unit shortfall from M,C in the subproblem rooted at ζ. Since the only withdrawal
after σ along ζ occurs possibly at ζ, Nature exacts a zero shortfall in the subproblem
rooted at σ, and we are done. So we may assume w.l.o.g. that for each ζ extending
σ along δ, a(ζ) = a(σ) or a(ζ) ≥ s(P ; ζ). By lemma II, for each ζ extending σ
along δ, if a(ζ) < a(σ) then a(ζ) ≤ s(P ; ζ). Hence, for each moment ζ extending σ
along δ, either a(ζ) = a(σ) or a(ζ) = s(P ; ζ). Since u > 0, there is some ζ after
σ along δ such that a(ζ) < a(σ). Let ζ be the least such. Let ζ ′ extend ζ along
δ. If θ properly extends ζ ′, then since θ is a(σ)-dry given σ, s(P ; ζ ′) = a(ζ ′) is non-
ordinal, so no withdrawal is allowed at the next stage. Now suppose that ζ ′ extends θ.
Then s(P ; ζ ′) = s(w′;P ) = s(P ; θ) so a(ζ ′) = a(θ). So no further withdrawals occur,
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and hence u ≤ 1. Since r ≥ 1, w′ witnesses that Nature exacts a 0 shortfall in the
subproblem rooted at σ.

Part 2: suppose that a(σ) is an infinite ordinal λ+n and k ≥ 2 and that a(σ)+k =
λ + n + k ≤ s(P ;σ). Perform Nature’s (ordinal) λ + n + k− 1 trick to obtain w′, δ, r, u.
Then since a(σ) is infinite, r, u > 0. So a(δ) < a(σ).

Case A: n = 0, so a(δ) < λ. Since k ≥ 2, s(P ; δ) ≥ s(w′;P ) ≥ λ + 1. Hence, for all
k′,
−−→
a(δ) + k ≤ s(P ; δ). So by (a, b, c) and the induction hypothesis, Nature can exact

an arbitrary, finite shortfall in the subproblem rooted at δ, and hence at σ.
Case B: n > 0, so

−−→
a(δ) ≤ λ + n − 1. Since k ≥ 2, s(P ; δ) ≥ s(w′;P ) ≥ λ + n + 1.

Hence, s(P ; δ) ≥ −−→a(δ). So by (a, b, c) and the induction hypothesis (parts 2 and 4)
Nature can exact an arbitrary, finite shortfall in the subproblem rooted at δ, and hence
at σ.

Part 3: Suppose a(σ) =←−λ and k ≥ −1.

Case A: k = −1. Then
−→←−
λ − 1 = λ − 1 = ←−λ ≤ s(P ;σ). By proposition 15, there

is a w in P |σ such that s(w;P ) is an ordinal <
←−
λ . Let θ be the least moment in

w such that s(P ; θ) is ordinal. Suppose that there exists a moment ζ extending σ
and properly extended by θ such that a(ζ) < s(P ; ζ) ≤ a(σ). Then since a(P ; ζ) is
non-ordinal, for each k′, a(ζ) + k′ ≤ s(P ; ζ). So by (a, b, c) and and the induction
hypothesis, Nature can exact an arbitrary, finite shortfall in the subproblem rooted at
ζ, and hence in the subproblem rooted at σ. So we may assume, w.l.o.g., that for each
ζ extending σ and properly extended by θ, a(ζ) = a(σ) or a(ζ) ≥ s(P ; ζ). By lemma II,
for each ζ extending σ and properly extended by θ, if a(ζ) < a(σ) then a(ζ) ≤ s(P ; ζ).
Hence, for each moment ζ extending σ along prior to θ, either a(ζ) = a(σ) = ←−λ or
a(ζ) = s(P ; ζ), which is also non-ordinal. So no withdrawals occur along θ after σ.
Since s(P ; θ) < s(P ;σ) and s(P ; θ) is non-ordinal and a(θ) ≤ s(P ; θ) (by lemma II), we
have by (a, b, c) and the induction hypothesis that Nature can exact a zero shortfall in
the subproblem rooted at θ. Since no withdrawals occur after σ along θ, w witnesses
that Nature can exact a 0 shortfall in the subproblem rooted at σ.

Case B: k = 0. Then
−→←−
λ = λ ≤ s(P ;σ). Obtain w′, θ, δ, r > 0, u > 0 by Nature’s←−

λ trick. Suppose that there exists a moment ζ extending σ and properly extended by
θ such that a(ζ) < s(P ; ζ) ≤ a(σ). Then since θ is a(σ)-dry given σ, s(P ; ζ) is non-
ordinal, so we have that for each k′, a(ζ) + k′ ≤ s(P ; ζ). So by (a, b, c) and and the
induction hypothesis, Nature can exact an arbitrary, finite shortfall in the subproblem
rooted at ζ, and hence in the subproblem rooted at σ. So we may assume, w.l.o.g., that
for each ζ extending σ and properly extended by θ, a(ζ) = a(σ) or a(ζ) ≥ s(P ; ζ). By
lemma II, for each ζ extending σ along δ, if a(ζ) < a(σ) then a(ζ) ≤ s(P ; ζ). Hence,
for each moment ζ extending σ and properly extended by θ, either a(ζ) = a(σ) = ←−λ
or a(ζ) = s(P ; ζ), which is also non-ordinal. So no withdrawals occur along θ after σ.
So all the u > 0 units withdrawn in w′ are withdrawn after θ along δ. We have two
cases to consider, by proposition 16.

Case B.1: a(δ) is ordinal and a(δ) + u ≤ a(θ). Then since a(δ) < a(σ) (because
u > 0) and a(δ)+u ≤ a(θ) ≤ s(P ; θ), we have by (a, b, c) and the induction hypothesis
that Nature can exact a shortfall of u from M,C in the subproblem rooted at δ. Let
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w′′ witness that fact. Calculate

r(w′′,M ;σ, P )− u(w′′, C;σ, P ) ≥ (r + r(w′′,M ; ζ, P ))− (u + u(w′′, C; ζ, P ))
= (r − u) + (r(w′′,M ; ζ, P ))− u(w′′, C; ζ, P ))
≥ (1− u) + u ≥ 1.

Case B.2: a(δ) is non-ordinal and
←−−
a(δ) + u − 1 ≤ a(θ) ≤ s(P ; θ). Then since

a(δ) < a(σ) (because u > 0) and a(δ) + u ≤ a(θ) ≤ s(P ; θ), we have by (a, b, c)
and the induction hypothesis that Nature can exact a shortfall of u from M,C in the
subproblem rooted at δ. Continue as in the preceding subcase.

Case C: k > 0. Covered under part 4.
Part 4: Suppose a(σ) is a non-ordinal ←−λ and k ≥ 1. Then s(P ;σ) ≥ λ + 1.

Obtain w′, δ, r > 0, u > 0 by Nature’s λ + 1 trick. Then s(P ; δ) ≥ s(w′;P ) ≥ λ but
a(δ) < a(σ) =←−λ . Hence, for all k′,

−−→
a(δ)+k′ ≤ s(P ; δ), so by (a, b, c) and the induction

hypothesis, Nature can exact an arbitrary, finite shortfall from M,C in the subproblem
rooted at δ and, hence, in the subproblem rooted at σ.

Proof of corollary: Suppose for reductio that s(P ;σ) > r(P ;σ). So let M,C solve
the subproblem rooted at σ under retraction bound r(P ;σ). Proposition 18 yields three
cases.

Case: a(σ) =
←−−−−
s(P ;σ). Then by part 3 of proposition 10, Nature can exact a shortfall

of 0 + 1 from M,C in the subproblem rooted at σ. Contradiction.
Case:

−−→
a(σ) + k = s(P ;σ), for some finite k > 0. Then

−−→
a(σ) + 1 ≤ s(P ;σ), so by

parts 1 and 3 of proposition 10, Nature can exact a unit shortfall from M,C in the
subproblem rooted at σ. Contradiction.

Case:
−−→
a(σ) + k ≤ s(P ;σ), for each finite k. Then again parts 1 and 3 (or 2 and 4)

of the proposition suffice for a nonzero shortfall. Contradiction. a

Proposition 11 (fundamental error lemma)

Let a(σ) denote the allotment of C at σ and suppose the following:

a. M is a method that succeeds in the subproblem of P rooted at σ,

b. C is a(σ)-error-stingy for the subproblem of P rooted at σ,

c. C is committed to covering the errors of M in P at σ.

d. a(σ) < ω · s(P ;σ).

Then Nature can exact an arbitrary, finite, error shortfall from M,C in the subproblem
rooted at σ.

Corollary: e(P ;σ) ≥ ω · s(P ;σ).

The corollary is immediate from the proposition. The proposition is shown by
extended ordinal induction on a(σ). Suppose (a-d). Let n be the arbitrary error
shortfall we would like Nature to exact from M,C in the subproblem of P rooted at σ.
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Base case: a(σ) = 0. Then s(P ;σ) > 0, by (d). By proposition 15, let w in P |σ
satisfy s(w;P ) = 1. Nature is free to present w until some moment τ by which M
outputs Aw at least k + n times, by (a). Since s(w;P ) > 0, we have ¬V0(Aw; τ, P ). So
there exists w′ in P |τ such that Aw′ 6= Aw. Then M commits k + n + 1 errors in w′

but the withdrawal is at most a(σ) = 0, so Nature exacts an error shortfall of n from
M,C in the subproblem of P rooted at σ.

Induction: a(σ) > 0. By (d) and proposition 19, we have two cases.
Case A: There exists k > 0 and ordinal β < s(P ;σ) such that a(σ) ≤ (ω · β) + k.

Since β is an ordinal, s(P ;σ) ≥ β + 1. By proposition 15, there exists w in P |σ such
that s(w;P ) = β + 1. Nature is free to present inputs from w until some τ extending
σ is reached such that M outputs Aw at least n + k + 1 times (by a). Since β is an
ordinal < β + 1, ¬Vβ(Aw; τ, P ). So there exists a w′ in P |τ such that Aw′ 6= Aw and
s(w′;P ) = β. Let δ be the first stage in w′ after which no further errors by M or
withdrawals by C occur, so δ properly extends τ . Let e > k + n be the total number
of errors committed along δ from σ onward.

Case A.1: β = 0. Then since a(σ) ≤ k and e > k + n, w′ witnesses that Nature
exacts an error shortfall of n from M,C in the subproblem rooted at σ.

Case A.2: β > 0. Then since e > k + n, we have (by c) that
−−→
a(δ) + k + n < a(σ) ≤

(ω · β) + k, so
−−→
a(δ) + n < ω · β. Also, s(P ; δ) ≥ s(w′;P ) ≥ β, so

−−→
a(δ) + n < ω · s(P ; δ).

So by the induction hypothesis, Nature can exact an arbitrary error shortfall in the the
subproblem rooted at δ, and hence in the subproblem rooted at σ.

Case B: s(P ;σ) is a limit ordinal λ and a(σ) = ←−−ω · λ = ω · ←−λ . Obtain w′, θ, δ, r, s
by Nature’s ←−λ trick from M,C in P at σ (cf. proof of proposition 10). Suppose that
there exists a moment ζ extending σ and properly extended by θ such that a(ζ) <
ω · s(P ; ζ) ≤ a(σ). Then by (a, b, c) and and the induction hypothesis, Nature can
exact an arbitrary, finite error shortfall in the subproblem rooted at ζ, and hence in
the subproblem rooted at σ. So we may assume, w.l.o.g., that for each ζ extending σ
and properly extended by θ, a(ζ) = a(σ) or a(ζ) ≥ ω · s(P ; ζ).

By the following lemma, for each ζ extending σ along δ, if a(ζ) < a(σ) then a(ζ) ≤
ω ·s(P ; ζ). Hence, for each moment ζ extending σ prior to θ, either a(ζ) = a(σ) =←−−ω · λ
or a(ζ) = ω · s(P ; ζ) =

←−−−−−−−
ω · −−−−→s(P ; ζ) (by the arrow distribution rule), which is also non-

ordinal. So no withdrawals occur along θ after σ. So the u > 0 units withdrawn in w′

are withdrawn after θ along δ. Since a(θ) ≤ ω · s(P ; θ), we have that a(δ) < a(θ) ≤
ω·s(P ; θ) = ω·s(w′;P ) = ω·s(P ; δ) ≤ a(σ). So by (a, b, c) and the induction hypothesis,
Nature can exact an arbitrary, finite error shortfall from M,C in the subproblem rooted
at δ, and hence in the subproblem rooted at σ.

Lemma I: Let τ extend σ. If ω ·s(P ; τ) < a(σ) then a(τ) ≤ ω ·s(P ; τ). For suppose
that τ extends σ and ω ·s(P ; τ) < a(σ). Since C is a(σ)-error-stingy in the subproblem
rooted at σ, it suffices to show that (*) e(P ; τ) ≤ ω · s(P ; τ). Let a1(ζ) = ω · s(P ; ζ)
denote the allotment of C1 on ζ. By proposition 14, C1 covers the errors of M0,
which succeeds in the subproblem rooted at τ . Since a1(τ) = ω · s(P ; τ), it suffices for
(*) to show that C1 is ω · s(P ; τ)-error-stingy in the subproblem rooted at τ . Let ζ
extend τ and suppose that e(P ; ζ) < a1(τ) = ω · s(P ; τ). Suppose for reductio that

33



ω · s(P ; ζ) > e(P ; ζ). So there exist M ′, C ′ witnessing this fact. Hence (d) C ′ allots
< ω · s(P ; ζ) ≤ a(σ) on ζ. Also, (a) M ′ succeeds in the subproblem rooted at ζ, (b) C ′

is a1(ζ)-error-stingy in the subproblem rooted at ζ, and (c) C ′ is committed to covering
the retractions of M ′ in the subproblem rooted at ζ. Apply the induction hypothesis
to exact an arbitrary, finite error shortfall from M ′, C ′ in the subproblem rooted at ζ,
contradicting the choice of M ′, C ′. a

Proposition 12 (success lemma) If s(w;P ) <∞, then M0 converges to Aw in w.

Case A: s(w;P ) is an ordinal β. Then w presents τ such that Vβ(Aw; τ, P ). This
situation persists for each τ ′ extending τ in w, so M0 converges to Aw. Case B:
s(w;P ) = ←−λ . Then w presents τ such that (i) V←−

λ
(Aw; τ, P ) and (ii) for all ←−λ -dry

θ given τ , Vs(P ;θ)(Aw; θ, P ). Hence, s(P ; τ) = ←−λ . As before, (i) persists for each τ ′

extending τ in w, so it suffices that (ii) also persists at each τ ′ extending τ in w. So
let τ ′ extend τ in w.

Claim: if θ is s(P ; τ ′)-dry given τ ′, then θ is ←−λ -dry given τ . For suppose that θ
is s(P ; τ ′)-dry given τ ′. Then for each θ′ extending τ ′ and properly extended by θ, if
s(P ; θ′) <

←−
λ then s(P ; θ′) is non-ordinal. Also, for each θ′ extending τ and properly

extended by θ, s(P ; θ′) = ←−λ = s(w;P ) = s(P ; τ), so for each θ′ extending τ and
properly extended by θ, if s(P ; θ′) <

←−
λ then s(P ; θ′) is non-ordinal. So θ is s(P ; τ)-dry

given τ .
By the claim and by the choice of τ , each s(P ; τ ′)-dry θ given τ ′ satisfies Vs(P ;θ)(Aw; θ, P ).

So (ii) also persists after τ in w. So M0 converges to Aw in w. a

Proposition 13 (retraction covering lemma) If s(P ;σ) <∞, then C0 covers the
retractions of M0 starting from σ in each world in P |σ.

Let w be in P |σ, so s(w;P ) <∞. Since C0 makes a withdrawal every time an ordinal
allotment is dropped, it suffices to show the following claim: if τ ∗ x is presented by
w, τ extends σ, and M0(τ) 6= M0(τ ∗ x) then (a) s(P ; τ ∗ x) < s(P ; τ) and (b) s(P ; τ)
is an ordinal. Suppose that M0(τ) = A. Then (i) Vs(P ;τ)(A; τ, P ) and (ii) if s(P ; τ)
is non-ordinal then for each s(P ; τ)-dry θ extending τ , Vs(P ;θ′)(A; θ′, P ). Now suppose
that M0(τ ∗ x) 6= A. Then we have two cases.

Case A: ¬Vs(P ;τ∗x)(A; τ ∗ x, P ). Then since anomaly complexity never rises, (a)
follows from (i). Next, suppose for reductio that (b) fails, so that s(P ; τ) is a non-
ordinal. Then τ ∗ x is s(P ; τ)-dry given τ . So since M0(τ) = A, the definition of M0

implies that Vs(P ;τ∗x)(A; τ ∗ x, P ), which contradicts the case hypothesis.
Case B: s(P ; τ ∗ x) is a non-ordinal and there exists an s(P ; τ ∗ x)-dry θ′ given

τ ∗ x such that ¬Vs(P ;θ′)(A; θ′, P ). Suppose for reductio that (b) fails, so s(P ; τ) is a
non-ordinal. Then by the case hypothesis, τ ∗ x is s(P ; τ)-dry given s(P ; τ). Hence,
Vs(P ;τ∗x)(A; τ ∗ x, P ). Since M0(τ ∗ x) 6= A, the definition of M0 implies that there is
some s(P ; τ ∗ x)-dry θ′ given τ ∗ x such that ¬Vs(P ;θ′)(A; θ′, P ). But since s(P ; τ ∗ x) is
non-ordinal, θ′ is also s(P ; τ)-dry given τ , contradicting (ii). Hence, (b) s(P ; τ) is an
ordinal. So since s(P ; τ ∗ x) is not an ordinal and complexity never rises, we have (a).
a
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Proposition 14 (error covering lemma) If s(P ;σ) <∞, then C1 covers the errors
of M0 starting from σ in each world in P |σ.

Suppose s(w;σ, P ) = α. By the claim in the proof of proposition 13, C0 makes a unit
withdrawal on τ ∗ x if M0 retracts at τ ∗ x. By definition, C1 withdraws the length of
τ ∗ x if C0 makes a withdrawal on τ ∗ x. But since M0 converges to the right answer
by proposition 12, errors cease after the last retraction, so the final withdrawal by C1

covers all of them. a

Proposition 15 (no ordinal complexity gaps) If there exists w in P |σ such that
s(w;P ) < ∞, then for each ordinal β ≤ s(w;σ) there exists w′ in P |σ such that
s(w′;P ) = β.

Corollary: If s(P ;σ) < ∞, then for each ordinal β ≤ s(P ;σ), there is a w in P |σ
such that s(w;P ) = β.

For the corollary, suppose ordinal β < s(P ;σ) <∞. Since β < s(P ;σ), there is a w in
P |σ such that s(w′;P ) > β. Apply the proposition.

For the proposition, suppose there exists w in P |σ such that s(w;P ) < ∞. For
reductio, let β be an ordinal ≤ s(w;P ) and suppose that there is no w′ in P |σ such
that s(w′;P ) = β. Now argue by extended ordinal induction that (*) for each extended
ordinal γ > β, there is no w′ in P |σ such that s(w′;P ) = γ, which (together with the
reductio hypothesis) contradicts β ≤ s(w;P ).

When γ = 0, we have γ = 0 = β, so (*) is trivially true. Now suppose that
γ > β and that (*) holds for each extended ordinal γ′ < γ. Suppose for reductio that
s(w′;P ) = γ. Since s(w′;P ) ≤ γ, there exists τ extending σ such that (a) Vγ(Aw′ ; τ, P ).
Since s(w′;P ) ≥ γ, we have that for each γ′ < γ, for each τ ′ extending σ along w′, (b.i)
¬Vγ′(Aw′ ; τ, P ) or (b.ii) γ′ is non-ordinal. We are free to let γ′ = β and τ ′ = τ . Since
β is an ordinal, case (b.i) obtains, so there is a world w′′ in P |τ such that s(w′′;P ) ≥ β
and Aw′′ 6= Aw′ . By (a) and the fact that Aw′′ 6= Aw′ , we also have s(w′′;P ) < γ.
Hence, β ≤ s(w′′;P ) < γ and w′′ is in P |σ, contradicting the induction hypothesis. a

Proposition 16 (decrement lemma) If C withdraws u units after σ along δ and
allots a(σ) at σ and a(δ) at δ, then

1. a(δ) + u ≤ a(σ) if a(δ) is ordinal and

2.
−−→
a(δ) + u− 1 ≤ a(σ) otherwise.

Base case: u = 0. If a(δ) is ordinal, then a(δ) + 0 ≤ a(σ) since the allotment never

increases. If a(δ) = ←−λ then
−−→
a(δ) + 0 − 1 =

−→←−
λ − 1 = λ − 1 = ←−λ = a(δ) ≤ a(σ), since

the allotment never increases.
Induction: u > 0. Let τ ∗ x be the stage be the stage at which the last withdrawal

along δ occurs. Then a(τ) > a(τ ∗ x) ≥ a(δ).
Case: a(τ) is an ordinal and a(τ ∗ x) is an ordinal. Then a(τ ∗ x) + 1 ≤ a(τ) + 1.

By the induction hypothesis, a(τ) + (u − 1) ≤ a(σ). Hence, a(τ ∗ x) + u ≤ a(σ). So
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if a(δ) is an ordinal, then a(δ) + u ≤ a(σ). If a(δ) is not an ordinal, however, then
a(δ) < a(τ ∗ x), so

−−→
a(δ) + u ≤ a(σ).

Case: a(τ) is an ordinal and a(τ∗x) is not. Hence,
−−−−−→
a(τ ∗ x) ≤ a(τ). By the induction

hypothesis, a(τ)+u−1 ≤ a(σ), so
−−→
a(δ)+u−1 ≤ −−−−−→a(τ ∗ x)+u−1 ≤ a(τ)+u−1 ≤ a(σ),

which suffices if a(δ) is non-ordinal. If a(δ) is an ordinal, then for each k, a(δ) + k <
a(τ ∗ x), so a(δ) + u ≤ a(τ ∗ x) ≤ a(σ).

Case: a(τ) is not an ordinal. Hence, for each k,
−−−−−→
a(τ ∗ x) + k < a(τ). Hence,

−−→
a(δ) + u ≤ −−−−−→a(τ ∗ x) + u ≤ a(σ), which suffices whether or not a(δ) is an ordinal. a

Proposition 17 (infinity given infinity is infinity) Let K denote the set of all
worlds in P such that s(w;P ) = ∞. Let P |K be the restriction of problem P to
worlds in K. Then for each world w in K, s(w;P |K) =∞.

Suppose w is in K. Suppose for reductio that w presents some σ such that for each
w′ in P |σ, if Aw′ = Aw then s(w′;P ) < ∞. Then let α denote the ordinal supremum
of the set {s(w′;P ) : w′ presents σ and Aw′ 6= Aw}. Hence, s(w;P ) ≤ α + 1 < ∞,
contradiction. So for each w in K, for each σ presented by w, there exists a w′ in
(P |σ)|K = (P |K)|σ such that Aw′ 6= Aw. So for each w in K, s(w;P |K) > 0. So by
proposition 15, s(w;P |K) =∞, for each w ∈ K. a

Proposition 18 (trichotomy) Let α, β be extended ordinals. Then β < α just in
case

1. β =←−α or

2. −→β + k = α, for some finite k > 0 or

3. −→β + k < α, for each finite k.

Proposition 19 (dichotomy) Suppose α < ω · β. Then either

1. α =←−−ω · β or

2. there exists ordinal γ < β and finite k such that α ≤ (ω · γ) + k.
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