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1 Introduction

The approach to scientific methodology developed in my recent book The Logic of Reliable
Inquiry (LRI) shares many general features with that summarized in Larry Laudan’s
concurrently published collection of papers Beyond Positivism and Relativism (BPR).
Nonetheless, this fact might not be apparent, as my own work emphasizes mathematical
theorems, whereas Laudan’s draws primarily upon historiography. It is, therefore, of some
interest to discuss the extent of the agreement and the significance of the differences. More
generally, the discussion will (I) provide a logical analysis of the instrumental significance
of empirical meta-methodology and (II) redefine the role of logic in a post-positivistic,
naturalized approach to epistemology and scientific method.

2 Normative Naturalism

First, some important points of agreement. (1) We both view methodological principles
as hypothetical imperatives (i.e., methods are recommended as means to an end) (BPR
pp. 132-33, LRI p. 3). (2) We both identify an empirical component in these hypothet-
ical imperatives (BPR p. 133, LRI p. 5). (3) We agree that hypothetically normative
epistemology is consistent with naturalized epistemology (BPR p. 133). (4) We agree
that aims can be criticized for being unachievable (BPR p. 77, LRI pp. 158-160, p. 190).
(5) We agree that methodological norms should in some sense explain scientific progress
(BPR pp. 138-39). (6) We agree that contemporary norms need not be satisfied by ex-
emplary historical practice. Laudan’s apt term for the position just sketched is normative
naturalism. So far as this description goes, I am also a normative naturalist.

Our agreement does not end there. (7) We agree that the historicist attack on nor-
mative epistemology is founded, to some extent, on persistent positivistic dogmas, (8) we
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both question the normative force of methodological intuitions (BPR pp. 137-38), and
(9) we agree that progress is not necessarily a matter of accumulating information.

Broad agreement on normative naturalism leaves considerable room for fundamental
differences in emphasis, however. Whether a rule advances or inhibits our interests de-
pends on such substantive matters of fact as the circumstances in which it is applied, our
ability to follow it correctly, the quality of the input, and so forth. But there is evidently a
structural dimension as well, for the form of a methodological rule, like that of a computer
program, has a great deal to do with what it does and, hence, with its success or failure
in promoting our ends.

Laudan emphasizes the empirical dimension of means-ends claims. Given this em-
phasis, Laudan’s guiding metaphor for naturalized epistemology is Baconian empirical
science. Instead of deductively unpacking the formal structures of methodological rules
prior to consulting experience, he treats the rules like black boxes and recommends that
we empirically estimate the chance of success of the rule by consulting the results of
historical practice.

I prefer to emphasize the analogy between methodological rules and computational
procedures. My guiding metaphor is not Baconian inquiry, but theoretical computer
science. Computer scientists are, after all, in the business of recommending rules and
procedures based on their ability to achieve desirable goals. Of course, the means-ends
relations investigated in algorithm analysis are to some extent empirical: the algorithm
cannot be applied beyond its appropriate domain of application, the software has to
be installed correctly, it has to be free of mistakes in its code, and so forth. But the
explanatory core of such a recommendation is, nonetheless, an a priori analysis of what
a rule with a given formal structure would do in various possible circumstances if it
were correctly followed. In fact, this approach better reflects genuine practice in mature
empirical sciences. Newton’s genius was to fully unpack the geometry of orbital motion
prior to consulting experience, so that, for example, null precession over the centuries
provided an extremely accurate estimation of inverse square centripetal attraction. I
propose that the theory of computability and computational complexity can serve to
focus and to organize naturalistic methodology in much the way that geometry organized
mechanics.

The a priori version of normative naturalism that I have just described is not new.
It has been developed over the past forty years to a level of some sophistication by
computation theorists under the heading of “formal learning theory”.1 The name of the
subject is perhaps misleading, until one realizes that for computer scientists, “learning”
is a matter of reliable convergence to a correct answer to an empirical question, so that
a theory of learning is actually a general theory of the existence of feasible, reliable,

1The basic idea of providing a computational analysis of the problem of finding the truth was inde-
pendently proposed by Hilary Putnam (1963) and E. M. Gold (1965). For book length presentations, cf.
(LRI, Osherson et al. 1986, and Martin and Osherson 1998).
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empirical methods.

3 Laudan’s Program

In this section, I review Laudan’s position in some detail, marking the points at which
we differ. The discussion follows the outline of Laudan’s programmatic paper “Progress
or Rationality? The Prospects for Normative Naturalism” (BPR, pp. 125-141).

Laudan introduces normative naturalism as a response to recently popular nihilistic
views about scientific method. According to Laudan, this nihilism arises from two as-
sumptions. (1) Most great scientists have chosen rationally among alternative theories
and (2) a methodology of science is an account of unconditional or categorical rationality.
It follows that an account of scientific method must be satisfied by the practice of most
great scientists.

Laudan rejects (2), responding that scientific rationality depends on the scientist’s
methodological aims and on her current beliefs about which acts are likely to further
those aims. Our methodology should reflect our own aims and beliefs rather than those
of historical figures. Laudan then distinguishes methodological “soundness” from “ratio-
nality”. Presumably, a “sound” method really promotes our goals, whereas rationality
reflects an individual’s beliefs about what would further her own goals.

While I agree with Laudan in rejecting (2), I don’t think this maneuver responds
effectively to methodological nihilism. For example, Feyerabend’s nihilism requires neither
(1) nor (2). Rather, it is based on a straightforward means-ends argument with respect
to an aim that seems plausible in the present day, namely, progress.

We find . . . that there is not a single rule, however plausible, and however
firmly grounded in epistemology, that is not violated at some time or other.
It becomes evident that such violations are not accidental events . . .. On the
contrary, we see that they are necessary for progress (Feyerabend 1975, p. 23).

Since this argument is offered in the spirit of Laudan’s empirical normative naturalism,
it is hard to see how Laudan’s position could respond to it, except by reinterpreting the
verdicts of history. I prefer to criticize Feyerabend for claiming to have proved that no
general methodological directives exist after discrediting a few proposed examples. In
computer science, where impossibility results are routinely proved, pessimism based on
the failure of a few, particularly simple, programming attempts is not taken seriously,
and properly so. I recommend that naturalized epistemology reform itself in a similar
direction.

Moreover, I am not as eager as Laudan and other historicists to trace methodological
variation to divergent ends and beliefs. Even for scientists who share goals and beliefs (e.g.,
finding a correct answer to an empirical question), different scientific problems require
very different means for their solution. For example, Bacon’s methods of similarity and
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difference demonstrably lead to the truth when it is assumed in advance that the truth is
a conjunction of monadic predicates. When disjunctions of such predicates are relevantly
possible, more powerful methods are required (LRI, chapter 12). These strategies are very
different from strategies for estimating limiting relative frequencies. Inferring conservation
laws in particle physics suggests still other strategies exploiting the richer structure of
linear spaces (cf. Schulte 1998, 1999a, 1999b). This is analogous to the situation in
computer science. Some formal problems seem to require search, others succumb to
recursive “divide and conquer” techniques, and still others are unsolvable unless we weaken
our notions of success. If one’s aim is to get the right answer as soon as possible, it is hard
to see what sorts of interesting algorithmic principles would be suitable independently of
the specific type of empirical problem one faces. It would be more plausible to discuss
relational methodological principles that depend on the structure of the problem at hand.
That is precisely the approach of formal learning theory.

Laudan then sketches normative naturalism, as described above. He first observes
that methodological rules like “avoid ad hoc hypotheses” are really disguised hypothetical
imperatives of the form “if you want to develop theories which are very risky, then you
ought to avoid ad hoc hypotheses.”2 Such a conditional is “warranted”, according to
Laudan, if we “find” that following the recommendation is the best way we have yet
thought of to promote the intended aim. Thus, hypothetical imperatives are subject to
empirical investigation.

Laudan next addresses the obvious, skeptical charge that empirical justifications of
empirical methods are circular. Faced with this problem, other epistemologists have ad-
vocated genuinely circular, coherentist epistemologies. Laudan opts for a methodological
version of foundationalism in which a single, unobjectionable method is used to justify
more sophisticated rules, which are in turn used to justify still more sophisticated rules,
and so forth. The rule he chooses is something like maximization of expected (method-
ological) utility with respect to objective chances of success estimated using the straight
rule of induction.3

(R1) If actions of a particular sort, m, have consistently promoted certain
cognitive ends, e, in the past, and rival actions, n, have failed to do so, then
assume that future actions following the rule “if your aim is e, you ought to
do m” are more likely to promote those ends than actions based on the rule
“if your aim is e, you ought to do n” (BPR p. 135).

Laudan’s proposal bears some resemblance to Hilbert’s foundational program in mathe-
matics, for both approaches propose the use of more elementary, uncontroversial means

2I think Popper would have more plausibly preferred “if you don’t want to end up preserving a false
hypothesis for eternity, then you ought to avoid ad hoc hypotheses”.

3Laudan’s position recalls Hans Reichenbach’s familiar argument for using the straight rule of induc-
tion: if any other method works, the straight rule of induction will eventually lead us to follow that
method.
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(finitist arithmetic, the straight rule of induction) to vindicate the soundness of more
controversial means (the infinitary methods of analysis, sophisticated scientific practice).

I hasten to add that (R1) is neither a very sophisticated, nor a very interesting,
rule for choosing between rival strategies of research. But then, we would be
well advised to keep what we are taking for granted to be as rudimentary as
possible. After all, the object of a formal theory of methodology is to develop
and warrant more complex and more subtle criteria of evidential support (BPR
p. 135).

The pivotal notion of “consistently promoting” in the definition of (R1) is vague in a
manner that masks difficult questions. What if one method succeeded the only time it
was tried, while the other was tried thousands of times with a few failures? Also, what
if the current application has a rare feature on which the most successful method always
failed and on which an infrequently applied competitor always succeeded? Or even worse,
what if the current application has a feature that one can see by computational analysis
to defeat the rule even though the method has never been used in such circumstances in
the past? So although (R1) is simple, its recommendations are hardly as uncontroversial
as Laudan suggests.

Another objection, due to Robert Nola (1999), concerns Laudan’s requirement that
goal achievement be an observable variable in the historical record. Laudan’s proposal to
use method (R1) to determine the instrumentality of a method M may work for observable
goals such as maintaining consistency with the current data. But it cannot work for such
aims as truth, empirical adequacy, or even future problem solving effectiveness because
they are not observable in the historical record, and hence cannot generate instances of the
kind (R1) requires as input.4 One might use another inductive method M ′ to determine
whether such an (unobservable) goal G is, in fact, achieved, but then (R1) would not
be able to vindicate the instrumentality of M ′ with respect to the goal of determining
whether unobservable goal G is satisfied, and so forth, for chains of any finite length. So
there is no way in which to “bootstrap” up from (R1) alone to methods vindicated with
respect to aims like truth, empirical adequacy, or problem-solving effectiveness.

Perhaps the most serious objection to Laudan’s proposed, meta-methodological pro-
gram is that for all its emphasis on means and ends, it doesn’t explain what would be
achieved by a chain of meta-methods, each of which oversees the performance of its pre-
decessor. Although his program holds out the hope of replacing intuition mongery with

4Laudan seems to miss this point. After dismissing “transcendent” goals like finding the truth as
appropriate aims for science, Laudan writes: “My own proposal . . . is that the aim of science is to secure
theories with a high problem-solving effectiveness. From this perspective, science progresses just in case
successive theories solve more problems than their predecessors” (BPR p. 78). In this passage, Laudan
plays loosely with modality and tense, both of which are crucial to any discussion of the problem of
induction. How many problems a theory actually solved in the past is observable. How many problems
it could solve given more ingenuity and time is not. But “effectiveness” concerns the latter, dispositional
concept, not the former, empirical one.
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objective means-ends relations, this standard of intelligibility is not applied reflexively to
his own program.

In spite of these objections, the idea of using one inductive method to empirically
justify another as a means to a goal raises interesting logical and epistemological issues
when it is presented with sufficient generality and without the encumbrance of Laudan’s
empiricistic and foundational commitments. In Section 9 below, I employ learning theo-
retic techniques to establish a priori when reliable meta-methodological chains of various
kinds are possible and what can be accomplished by them.

Laudan next observes that his naturalistic approach eliminates the need to base
methodology on “methodological intuitions”. I agree with that, but this feature of natural-
ism is independent of Laudan’s strongly empirical approach to naturalistic methodology.
The computationally informed naturalism I advocate is both instrumental and largely a
priori, appealing not to historical data but to the respective formal structures of the par-
ticular empirical problem addressed and of the various methods that might be employed
to solve it.

Although Laudan understands the primary aim of methodology to be the empirical
justification of methodological rules as means for local, observable ends, he is also in-
terested in explaining scientific progress as the result of repeatedly achieving such ends
through time. I prefer a more direct approach, in which progress is viewed as an aim in
its own right. Learning theory is directly concerned with such hypothetical imperatives as
“if you want to converge to the truth (in a given sense) then use method M.”5 Laudan’s
conceptual detour through more proximate aims is thereby eliminated.

A key feature of Laudan’s position is its emphasis on axiology, or the appropriateness
of goals. This emphasis stems from Laudan’s desire to rout methodological relativism, for
he realizes that viewing methodological norms as hypothetical imperatives opens the door
to relativism with respect to goals. Laudan’s response is to claim that the appropriateness
of scientific ends is itself an objective fact, since (a) appropriate ends must be feasible and
(b) appropriate ends must have been reflected in the history of science (BPR pp. 157-
58). This gives rise to a “reticulated” account of justification in which changing theories
of feasibility lead to changes in aims which lead to changes in methods, which lead to
changes in theories, etc. (Laudan 1984 pp. 79-80).

I agree strongly with Laudan’s emphasis on feasibility of aims. Feasibility is a matter
of problem solvability by agents of a given kind. Some empirical problems are unsolvable
even by logically omniscient agents. Others are solvable by logically omniscient agents, but
not by computable agents. Still others are solvable by computable agents, but not by any
agent with a finite memory store, and so forth. Learning theorists are keenly interested
in discerning the general features of empirical problems that make them solvable in one

5Its focus on diachronic utilities separates learning theoretic analysis from other a prioristic approaches
to normative naturalism, such as Isaac Levi’s methodology of maximizing expected true content (Levi
1983).
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sense rather than another.
I also agree, to some extent, with Laudan’s requirement that aims share some conti-

nuity with the past. Such sensitivity to practice is essential if the theory of computability
is to yield relevant results. When computer scientists face such ill-defined problems as
“planning” or “learning”, they cannot begin to apply computability theory until they as-
sociate the informal problem with a spectrum of mathematically precise models of what
“planning” or “learning” require. It is understood that this extra-theoretical process of
explication must reflect, to some degree, actual planning and learning behavior. Actual
behavior needn’t turn out to be an optimal solution, but it should at least appear to have
been directed toward a solution to some mathematically precise problem in the spectrum.
It is always open, in a computation theoretic analysis that yields highly counterintuitive
results, to question whether the formal problem addressed reflects what people actually
want to accomplish.

But practice is not supreme. Computability analysis, by its very nature, forces one to
turn a logical microscope on the problem under study, to an extent that intuitive, philo-
sophical, or historical discussions rarely achieve. When practice and analysis disagree, it
is possible that theory has unearthed structural possibilities that never would have come
to light in the historical record because historical figures didn’t notice it either. That is
why I oppose Laudan’s particular emphasis on history in the philosophy of science, an
emphasis which has been the received view in the field for some decades. If the philosophy
of science is to earn its keep, it should do more than report back to scientists what they
actually do. It should, like science itself, open new and exciting possibilities. History may
suggest plausible goals and methods, but these suggestions are merely suggestions.

4 Elements of Learning Theory

Although formal learning theory is sometimes thought to be rather forbidding in detail,
it is refreshingly simple in outline.6 For all the scientist knows (or cares) the actual
world may be one of many relevantly possible worlds. Each relevantly possible world
responds to the scientist’s acts with inputs through time. The scientist is capable of
responding to these inputs in different ways. If the scientist’s task is to determine whether
a given hypothesis is empirically adequate, she may respond to the inputs with successive
test outcomes (accept, reject) or with successive assignments of degrees of belief or of
confirmation to the hypothesis in question. Any task involving such responses about a
given hypothesis will be referred to as a hypothesis assessment problem.

In other circumstances, the scientist starts not with a hypothesis but with a question
to be answered. Some hypotheses will be relevant to this question and a question may for
our purposes be identified with its potentially relevant answers. An answer to the question

6For book length expositions, cf. (LRI, Osherson et al. 1986, Martin and Osherson 1998).
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is a potentially relevant answer that is also correct (e.g., true or empirically adequate).
Such tasks are called hypothesis generation or discovery problems.

In either case, the scientist hopes to converge, in some sense, to a correct output;
whether it be a correct assessment of a given hypothesis or a correct answer to a given
question. Many scientific discoveries have resulted from happy accidents, but methodology
is about guaranteed or reliable success, meaning success over a “broad” range of relevant
possibilities. To summarize, learning theory concerns the ability of a method or strategy
to converge to a correct output (test result or relevant hypothesis) over a specified range of
relevant possibilities. An empirical problem is a specified range of possibilities, together
with a hypothesis to assess or a question to answer. Thus, learning theory concerns
solutions to and the solvability of various empirical problems.

5 Strategic Goals for Hypothesis Assessment

Much variation is possible within the vague framework just described. The Socratic spirit
demands that such vague terms as “relevant possibility”, “success”, and “convergence”
be provided with precise explications at the outset. Learning theory follows a different
approach, providing a scale or spectrum of clear interpretations rather than a single one.
This leads to a range of different types of scientific goals, each of which having a unique,
epistemological character.

For example, consider the case of hypothesis assessment. Very ambitiously, one might
hope for a method guaranteed to produce the truth value of the hypothesis by some
time established in advance. But such ambitions usually cannot be achieved in science.
More leniently, one might hope for a method that eventually halts with the truth value
of the hypothesis. This is called decision with certainty. Decision with certainty is an
empirical analogue of the computational concept of “decidability”. But whereas many
interesting formal problems are computationally decidable with certainty, the point of the
classical problem of inductive generalization is that most general empirical hypotheses
are not. At this point, the axiology of feasibility recommends moving to a weaker goal.
Popper’s original idea was that universal generalizations can nonetheless be refuted with
certainty even though they cannot be verified with certainty. Similarly, purely existential
hypotheses can be verified with certainty but not refuted with certainty.

Unfortunately for Popper’s original idea, most scientific hypotheses are not really
refutable with certainty either. Notoriously, a hypothesis can be saved from refutation
by tinkering with the rest of the theory. And even in an idealized, empirical setting
in which experimental outcomes are unproblematically theory-independent, probability
estimates are logically consistent with any data in the short run, even if such an estimate
is understood to imply a limiting relative frequency of outcomes in the future data. The
same is true of the hypothesis that there are only finitely many types of elementary
particles to be discovered, the hypothesis that a system is chaotic as opposed to orderly,
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and the hypothesis that a given sequence is produced by a Turing machine rather than
by some uncomputable process.

Popper’s response (1968) was to reconceive falsificationism as an injunction against
coddling pet views rather than as a criterion of success. An alternative option is to weaken
the criterion of success again, so that certainty is never required, whether the hypothesis
is true or false. For example, one might require only that a method stabilize to the state
of correctly rejecting or accepting the hypothesis under assessment without necessarily
halting or providing a sign that it has done so. It is natural to call this standard decision
in the limit. As Peirce and James emphasized, limiting convergence, unlike convergence
with certainty, allows for an appealingly fallible sense of methodological success, according
to which following the method is guaranteed, eventually, to reach a correct answer, but
certainty is never forthcoming because there is never any guarantee that the method will
not change its conjecture after seeing the next datum. Within the comfortable confines
of a viable research paradigm, the possibility of a major crisis is a mere, philosophical
curiosity. But from the outside looking in, the history of science is a history of broken
certainties and no amount of “inductive support” or other holy incantation can ensure
that the same will not happen again. At best, we can hope that inquiry is organized so
as to eliminate surprises after some future time that will not be recognized as such.7

Hypotheses about limiting relative frequency, computability, or the finite divisibility
of matter are not decidable in the limit either. This remains true of limiting relative
frequencies even if we assume a priori that the limit of the observed frequencies exists.
Feasibility demands yet weaker aims. It turns out that a hypothesis specifying a particular
value for a limiting relative frequency is refutable in the limit given that the limit exists,
where limiting refutation requires convergence to rejection just in case the hypothesis is
true and limiting verification requires convergence to acceptance just in case the hypothesis
is false. Computability and finite divisibility are verifiable in the limit. Also, if chances are
understood to entail limiting relative frequencies, the existence of an “unbiased” statistical
test is also equivalent to verifiability or refutability in the limit, depending on whether
the “rejection” zone is defined with a strict or a non-strict inequality (LRI, Chapter 4).

Limiting verification and refutation are very weak, in the sense that the vacillations
witnessing nonconvergence may come with arbitrary rarity. Surely, we would like to do
better. But if there were an a priori bound on how long one must wait to see the next
vacillation, if it occurs at all, this bound would allow one to construct a limiting decision
procedure, which is impossible in the examples mentioned. So again, I agree with Laudan’s
feasibility condition: if limiting verification is possible and limiting decision is not, then
don’t demand an upper bound on the frequency of a limiting verifier’s rejections when
the hypothesis under test is false.

If it is not assumed that a limiting relative frequency exists, a hypothesis asserting

7I think of this as the core of truth in Popper’s “deductivism”. The same sentiment is reflected in
Reichenbach’s “pragmatic vindication” of the straight rule.
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that it exists with a given value is not even verifiable in the limit.8 This leads, by
the axiology of feasibility, to even more attenuated notions of success. Gradual decision
requires that the real values assigned to the hypothesis by the method approach the truth
value of the hypothesis, possibly without ever actually reaching it. Gradual decidability
is in fact equivalent to limiting decidability, because a gradual decision procedure can be
converted into a limiting decision procedure by means of accepting or rejecting according
to whether the gradual method’s output exceeds or fails to exceed a cutoff (e.g., 0.5).
The one-sided versions of gradual decision are strictly more lenient than their limiting
analogues, however.9 Gradual verification requires that the outputs approach unity just
in case the hypothesis is true and gradual refutation requires that the outputs approach
zero just in case the hypothsis is false. In fact, limiting relative frequency is gradually
verifiable but not gradually refutable.

6 The Long Run in the Short Run

Limiting success occasions the natural objections (a) that the limit is too long to wait
for and (b) that limiting correctness provides insufficient constraints on what to believe
in the short run. These objections can be met, to some extent, by requiring that no
reliable method converge as fast as our method in each relevant possibility and faster in
some relevant possibility, in which case our method may be said to be data minimal. To
demand the truth faster than a data-minimal method can provide it is to demand the
impossible.

As Kuhn emphasized, it is both practically and cognitively costly to retool when
a theory is retracted. Taking this concern seriously, we would prefer reliable methods
that not only minimize convergence time, but retractions as well. Note that a single
retraction could occur arbitrarily late, so convergence time and number of retractions are
two different considerations.

It turns out to be too strict to require that no reliable method performs more retrac-
tions in any relevant possibility and fewer in some relevant possibility (Schulte 1999a), for
this is only possible when the potential answers to an empirical question are all decidable
with certainty, and hence there is no genuine problem of induction. Suppose, however,
that there is an a priori bound on the number of retractions required prior to conver-
gence. In the case of hypotheses that are refutable with certainty, at most one vacillation
is required: start out accepting and then reject when the hypothesis is refuted. The
hypothesis that exactly one star of a given mass exists is decidable in the limit with at
most two retractions: reject until a star of that mass is encountered and then accept until
another one is encountered. When such a bound exists, it is natural to insist on methods

8The same is true for any specification of a closed interval of such values.
9Thus, a gradual refuter and a gradual verifier cannot always be assembled into a gradual decision

procedure (cf. LRI Chapter 4). This contrasts with the limiting case.
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that decide the hypothesis in question in the limit, that minimax retractions and that are
data minimal with respect to all limiting decision procedures.

In “The Will to Believe”, William James (1948) remarked that finding the truth is
different from avoiding error and that the two aims are usually in tension. Data minimality
suggests the aim of finding the truth, since a method that refuses to conjecture a potential
answer to the question at hand could not possibly have converged to the right answer yet,
whereas a method that produces a potential answer consistent with the data might have
already succeeded. Minimizing retractions suggests the aim of avoiding error, since a
method that witholds judgment until the evidence is conclusive performs no retractions
at all.

Reliability, data-minimality, and minimaxing mind changes can jointly impose strong
requirements on methodology in the short run. To illustrate this point, suppose we know
either that each stage will be green, or that at some finite stage n, green will give rise to
blue forever after, in which case we may say that each stage is “grue(n)”. If these are
the only relevant possibilities, then the unique data-minimal, mind-change-minimaxing,
limiting decision procedure is the one that conjectures that all stages are green until seeing
a blue outcome (say at stage n), after which the method conjectures forever after that
each stage is grue(n).10 The same result obtains if we consider as relevant possibilities
all hyper-grue predicates of the form grue(n0, n1, . . . nk), where k ≤ m, for some fixed m
(Schulte 1999b). The predicate grue(n0, n1, . . . nk) means green through stage n0, blue
from then through stage n1, green from then through stage n3, etc. If the fixed bound m
is dropped, then success with bounded retractions is impossible.

One may think of decision with a bounded number of retractions as a criterion of
success in its own right (Case and Smith 1983, LRI), where decision with n retractions re-
quires that the method decide the hypothesis in the limit, vacillating between acceptance
and rejection (or vice versa) at most n times. When retractions are being counted, it turns
out to matter what one’s leading conjecture is. For example, refutation with certainty
is equivalent to decision with at most a single retraction, starting with acceptance, for a
method that refutes with certainty starts out accepting the hypothesis and then, when
trouble is encountered, retracts its former conjecture and replaces it with rejection. Simi-
larly, verification with certainty is equivalent to decision with at most a single retraction,
starting with rejection. What about decision with certainty? Since decision implies both
verification and refutation, decision with certainty is equivalent to decidability with at
most one retraction starting with an arbitrary conjecture (either acceptance or rejection).
As we allow more retractions, we therefore arrive at generalized notions of verification,
refutation, and decision. For example, decidability with at most two retractions starting
with acceptance allows the method to begin with acceptance, change its mind thereafter

10This method performs at worst one retraction and is data-minimal since whatever it conjectures it
possibly converges to, but failing to make a conjecture would fail to be data-minimal and conjecturing
any grue(n) prior to the green hypothesis might require two retractions (one from grue(n) to green and
another from green to some grue(n′)) (Schulte 98).
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to rejection, and finally switch back to acceptance. Once all the allowed retractions are
used up, the method’s output is certain.

7 Learning Theoretic Questions

Laudan’s normative naturalism focuses on hypothetical imperatives for particular method-
ological principles and on the feasibility of particular aims. From a learning theoretic
viewpoint, the former question concerns the relation “M solves problem P”. The latter
concerns the property “problem P is solvable”, which is definable as the existence of a
method M solving problem P .

Hypothetical imperatives and feasibility axiology work in tandem. Methodological
understanding is obtained by formally solving for the strongest aim in the hierarchy of
convergent goals that can be satisfied for a given empirical problem. Thus, the hierarchy
of goals can be viewed as a kind of classification system for empirical problems. All of the
problems within a given classification are in a precise sense “methodologically equivalent”,
giving rise to intuitively similar methodological difficulties and calling out for similar sorts
of solutions.

The ability to formally isolate the strongest aim achievable for a given empirical prob-
lem addresses a weakness in Laudan’s empirical version of normative naturalism. It is
very difficult to show by means of empirical data that no stronger aim could have been
realized for a given problem. Thus, Laudan adopts an empiricistic stance and asks history
only if a known method was observed to do better. Learning theoretic negative results
cover all possible methods, and hence allow one to show that no possible method could
have done better. This is precisely the role that computability theory plays in computer
science.

Once one has seen a good number of solvability and non-solvability results, one wishes
to know if there is an elegant structural characterization of solvability. That is, one desires
a purely structural property Φ (making no explicit reference to methods or to success)
such that an arbitrary problem P is solvable just in case it has Φ. Such results are
called characterization theorems. Since they provide necessary and sufficient conditions
for the possibility of reliable inquiry, they might be viewed as logically valid transcendental
deductions.

Characterizations of the concepts of assessment introduced above are easily presented
(cf. LRI, Chapter 4). Assume a given set of relevant possibilities to be specified. Assume,
also, that the hypothesis is not globally underdetermined, in the sense that the same infinite
input stream arises from worlds in which it is respectively true and false (else no possible
method could find the truth value of the hypothesis in each relevant possibility). Such
a hypothesis is verifiable with certainty just in case each relevant possibility satisfying
the hypothesis eventually presents inputs whose occurrence entails that the hypothesis is
true. A hypothesis is refutable with certainty just in case its complement is verifiable with
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certainty, and is decidable with certainty just in case it is both verifiable and refutable
with certainty. At the next level, a hypothesis is verifiable in the limit just in case it
is a countable disjunction of hypotheses that are refutable with certainty. A hypothesis
is refutable in the limit just in case its complement is verifiable in the limit, and is
decidable in the limit just in case it is both verifiable and refutable in the limit. A
hypothesis is gradually verifiable just in case it is a countable conjunction of hypotheses
that are verifiable in the limit. It is gradually refutable just in case its complement is
gradually verifiable and is gradually decidable just in case it is decidable in the limit.
Thus, each notion of reliable success corresponds to a structural recipe for building up all
the hypotheses for which that sense of success is achievable.

These results illustrate the grain of truth in the positivists’ attempt to relate “cog-
nitive significance” to logical form. If hypotheses are expressed in a first-order language
and if the input stream presents all the true, quantifier-free sentences in the language,
and if each object is named by some constant in the language, then the quantifier prefix
of the hypothesis determines the senses in which it can be reliably assessed. Specifically,
quantifier-free hypotheses are decidable with certainty, existential hypotheses are verifi-
able with certainty, universal hypotheses are refutable with certainty, hypotheses with
quantifier prefix ∃∀ are verifiable in the limit, hypotheses with quantifier prefix ∀∃ are
refutable in the limit, finite, boolean combinations of existential and universal hypotheses
are decidable with bounded retractions and hence in the limit, hypotheses with quantifier
prefixes of form ∃∀∃ are gradually refutable and hypotheses with prefixes of form ∀∃∀
are gradually verifiable. But none of this is a function of logical form per se; nor is it
a characterization of meaning. It is a contingent relationship between logical form and
levels of achievable reliability, where the contingency relating the two is an assumption
about the kind of data that would arise in a given relevantly possible world.

A simple structural characterization of decision with bounded retractions can also
be given (LRI, Chapter 4). Hypotheses that are verifiable with certainty are decidable
with one retraction starting with rejection and refutability with certainty characterizes one
retraction starting with acceptance. Decision with n+1 retractions starting with rejection
is possible exactly when the hypothesis under test can be expressed as the disjunction of
a verifiable hypothesis with a hypothesis that is decidable with n retractions starting with
acceptance. Dually, decision with n + 1 retractions starting with acceptance is possible
when the denial of the hypothesis can be decided with the same number of retractions,
starting with rejection.

8 Historicism Reconsidered

Verification and refutation with certainty can be understood in two very different ways.
Refutation with certainty requires that the data logically contradict the hypothesis and
verification with certainty requires that the data logically entail the hypothesis. Thus,
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refutation and verification are logical entailment relations. So when it is discovered that
a hypothesis is neither verifiable nor refutable with certainty, one response is to look for a
“generalized” entailment relation (degree of confirmation or inductive support) that does
hold between the data and the hypothesis.

But as suggested above, refutation and verification with certainty may also be viewed
as success criteria for empirical methods, just as they are viewed as success criteria for
formal methods in mathematical logic and computability theory. The shift in type is
important. Success criteria are goals (ends) rather than methods (means). So on this
perspective, intuitive or historical arguments for the propriety of a fixed method (general-
ized entailment relation) give way to objective, computation theoretical arguments about
achievability of the various goals. When it is discovered that a hypothesis is neither veri-
fiable nor refutable, it is natural to move to weaker criteria of success that are achievable
(e.g., limiting and gradual success).

Limiting goals, such as decision in the limit, are different from verification and refu-
tation with certainty because it is no longer an option to view limiting success criteria
as fixed logical relations that determine when to reject or to accept a given hypothesis.
For example, one limiting method may converge to the truth on a given data stream
faster than another such method does, and thereby converge more slowly on some other
data stream, so the two methods disagree for some arbitrary length of time on both data
streams. The logic of efficient, limiting convergence does not favor one solution over the
other, leaving ample room for hunches, predilections, and scientific “bon sense”, so long
as they do not inhibit the strategic goal of finding a correct answer as soon as possible.

Viewing verification and refutation with certainty as success criteria, rather than as
generalized logical relations, leads to a reconception of the debate between historicism
and logic. First of all, one argues for a generalized notion of entailment by a process
of explication or reflective equilibrium, which is a kind of spiral process of correcting
the explication with practice and correcting practice with the explication. This leaves
methodology open to the plausible charge that it is merely armchair sociology in logical
dress. Since learning theory focuses on objective, computational questions about the
solvability of empirical problems, it does not invite this objection.

Portraying scientific method as a fixed, generalized entailment relation also occa-
sions the objection that following such recommendations would have precluded scientific
progress when the social character and costs of inquiry are considered (Feyerabend 1975).
Such arguments cannot be directed a logical approach to scientific method based on learn-
ing theory, because they are learning theoretic arguments. In fact, many of the results of
learning theory can be viewed as formally grounded Feyerabendian critiques of particular
methodological proposals (LRI, Osherson, et al. 1986, Martin and Osherson 1998). Such
critiques have the form that some empirical problem would have been solvable had the
recommendation not been insisted upon. A computational critique of the rule of rejecting
a theory when it is logically contradicted by the data will be discussed in detail below.

Finally, the logical relation conception of methodology invited Kuhn’s nihilism con-
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cerning the logic of scientific change. Kuhn’s basic argument in The Structure of Scientific
Revolutions (1962) is that in major episodes of scientific change, no logical relation or gen-
eralization thereof holding between theory and evidence rationally compels one to drop the
theory when it is dropped, so the change is arbitrary. According to Kuhn, the momentous
empirical question facing a scientist is not the correctness of a given hypothesis, but the
viability of her paradigm. Viability is a vague matter, but it has something to do with the
potential of the paradigm to generate puzzles and solutions to them. Piece-meal viability
means something like: for each new anomaly that a competitor can handle at the time,
there exists an articulation of the paradigm that resolves it. Uniform viability is more
ambitious, requiring that the paradigm possess some as-yet unknown articution that will
once for all absorb all new anomalies handled by competing theories (e.g., the “end of
science” foretold by some advocates of the fundamental particle paradigm in physics).11

Piece-meal viability is of ∀∃ form, and is therefore refutable in the limit, whereas uniform
viability is of ∃∀ form and is therefore verifiable in the limit. Barring a priori bounds on
how long it would take to find such an articulation, neither question is decidable in the
limit (cf. Kelly et al. 1997). Recall that in order to verify a hypothesis H in the limit,
a method must reject H infinitely often if H is false. So whereas it is not arbitrary that
a limiting verifier perform these rejections at some times or other, it is up to the method
rather than to logic when, exactly, they occur. Nonetheless, there are still normative
recommendations to be made on a logical basis, for some methods will fail even to verify
the hypothesis in the limit and others will converge more slowly than necessary. Thus,
the absence of an objective compulsion to drop the paradigm at a particular time is ex-
plained by, rather than raising a difficulty for, the learning theoretic logic of the paradigm
selection problem.

The ultimate, historicist argument is relativism. Relativism is a danger to the gener-
alized logical relation conception of methodology for the obvious reason that others may
reject the proposed relation in light of different, culturally informed intuitions. Since
there is no further reason for following the relation, the discussion ends there. On the in-
strumental approach, there can at least be agreement about the possible circumstances in
which various methods would work, even when there are differences in aim and in beliefs
about what the actual circumstances are.

It might be thought that relativism poses a serious problem for learning theory nonethe-
less, for how can we converge to the truth, even if we want to, if meaning and truth
change in incommensurable ways through time? But there are still intelligible, strategic
goals that do not presuppose translatability across scientific revolutions, so long as we do
not measure progress in terms of increasing content (which requires content comparisons

11Kuhn explicitly rejects uniform viability as a goal, since it would reduce the subject to trivial textbook
exercises that could not be published. But as a cognitive, rather than a career goal, it would clearly be
more desirable than piece-meal viability. For example, Hubert Dreyfus’ (1979) objection to the strong
A.I. program is that each bit of human behavior can be duplicated by a computer program, but no single
program will ever duplicate all of human behavior due to scaling problems.
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across incommensurable languages) or verisimilitude (which requires a fixed metric defined
across incommensurable languages).12 We might require, for example that science even-
tually stabilize the truth value of the hypothesis under investigation and then learn what
it is. Or we might require, more weakly, that whatever the truth value is in the future,
we eventually always know what it is. This raises another Feyerabendian sort of question:
would it injure the power of inquiry to require that the truth value eventually stabilize?
The answer is affirmative (LRI Chapter 14, Kelly and Glymour 1992), so learning theory
provides a logical argument in favor of inducing incommensurable changes.

The historicist quarrel with logic is actually a quarrel with the “generalized logical
relation” approach to methodology.13 Reconceiving refutation as the first success criterion
in a sequence of ever weaker criteria leads to a logical perspective on methodology that
embraces the central premises of the historicist position without drawing the nihilistic
conclusions.

9 What Empirical Naturalism Can and Cannot Do

The core of Laudan’s epistemological program is the idea of using one empirical method to
investigate the conditions under which another method will succeed in achieving a given
goal. I criticized Laudan for depicting such inquiry as a search for empirical correlations
between means and ends, since such ends as achieving empirical adequacy are not directly
observable in the historical record. Furthermore, I objected that Laudan’s correlational
approach leaves no room for a priori computational analysis of the conditions under which
a method would succeed. Finally, I objected that for all the emphasis on means and ends,
Laudan did not say what could be accomplished by methods assessing methods assessing
methods. But the general idea is of sufficient interest to warrant a fresh approach.

Suppose we are interested in finding out whether a given method will succeed. This
question has several empirical dimensions. If we ignore the structure of the method and
treat it as a black box, as Laudan seems to suggest, then it is an empirical question even
to determine what the method would direct us to do in a given situation. But if we
look at what the method is, and if a precise sense of convergent success is specified, then

12Indeed, Miller’s (1974) counterexample shows that verisimilitude metrics cannot even be preserved
under translation. The moral is that metrical concepts should be avoided in defining progress (Mormann
1988). Learning theoretic success criteria are topological rather than metrical, and hence are not subject
to this objection.

13It is not easy to pin down contemporary Bayesianism on this issue. Decision theoretic analyses of
method, along the lines of Levi (1983), are explicitly instrumental. “Bayesian confirmation theory”,
based exclusively on the concept of updating by conditionalization, is instrumental insofar as one takes
the diachronic Dutch book argument or the “almost sure” convergence theorems seriously. But it is
increasingly fashionable not to do so. Many advocates of conditioning view limiting convergence as a
useless idealization, while others object that diachronic Dutch book arguments are invalid. Without such
arguments, conditioning is recommended as an explication of practice.
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in principle14 it is an a priori matter to determine the set of seriously possible future
trajectories along which the method succeeds (in the specified sense). Call this set the
presupposition of the method (relative to the intended sense of success).15 Once a method’s
presupposition has been determined a priori, the problem of empirical meta-methodology
reduces to determining whether the presupposition of the method under investigation is
actually true. In what follows, I will assume that methods are transparent to the meta-
methods investigating them, so the meta-methods merely assess the presuppostions of the
methods they investigate.

The pressing means-ends question raised by empirical, normative naturalism is, then,
what one could do with methods that check the presuppositions of methods that check
the presuppositions of methods. . . . Could one, for example, by looking only at what the
meta-methods do, converge to a correct conjecture about the original hypothesis H? If
not, then it is hard to see what the point of all the assessing is supposed to be. In such
a case, one might say that the sequence represents a vicious empirical regress of the sort
condemned by skeptics like Sextus and Hume. But if there is a strategy for assembling
the conjectures of the meta-methods in the chain into a single conjecture that converges
to the truth, then the chain can be used to achieve a cognitive goal and the regress may
be exempted from the charge of pointlessness.

If the converse is also true (i.e., a single method that succeeds in a given sense can
be turned into a given kind of meta-methodological chain of methdods), then we may
say that the chain is informationally or methodologically equivalent to the single method.
Methodological equivalence imposes some discipline on our epistemological hopes in much
the way that the concept of energy imposed discipline on our hopes for perpetual motion
machines. There is no question of a meta-methodological chain allowing us to do the
impossible (i.e., to construct a single method that succeeds in an unachievable sense). But
a meta-methodological chain could do far worse than to be methodologically equivalent
to the best sort of solution that a given problem admits, just as a heat engine may fall
far short of being perfectly efficient in terms of energy transfer. The degree of viciousness
of an epistemic regress may be viewed as the extent to which the sense of success to
which the chain is equivalent falls short of the best achievable sense of success. For
example, if there exists a certain refutation procedure, then a chain equivalent to a limiting
decision procedure is inefficient, but less so than a chain equivalent to a limiting refutation
procedure.

For a simple example of a methodological equivalence, consider the following situation.
We throw method M1 at the problem of trying to refute H with certainty given background
knowledge K. But M1 works only when an empirical presupposition P1 is satisfied. Meta-

14In practice, of course, the method may be too difficult to analyze using computation theoretic tech-
niques, as in the mundane case of an ordinary word processing program with thousands of features. But
the kinds of methodological principles that come up in philosophical discussions are much more amenable
to formal analysis than the average word processor program is.

15In LRI and (Osherson et. al. 1986) the presupposition of a method is called its scope.
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method M2 is supposed to refute with certainty whether this presupposition is, indeed,
satisfied. Meta-method M2 actually does refute the presupposition P1 of M1 with certainty
given K. Now suppose that we only observe what the two methods conjecture through
time, without looking at the data they receive. What could we tell about H?

Without saying more, not much. For suppose M1 is a crazy method that alternates
forever between acceptance and rejection without ever looking at the data, and suppose
that M2 rejects no matter what, without looking at the data. Then M1 fails on every data
stream in K so P1 is unsatisfiable. And M2 is correct on every data stream in concluding
that P1 is false, so M2 refutes P1 with certainty given K, as required. But one could
conclude nothing about H from watching these two methods, since they both say the
same thing no matter what they observe, and therefore erase all of the information in the
data. According to the above criterion, such a pair represents a vicious empirical regress.

The situation changes, however, if both methods aspire to refute with certainty, in the
sense that they outwardly appear to be refuting their respective hypotheses with certainty
even if they really aren’t. More precisely, say that M1 aspires to refute H with certainty
given K just in case K entails that M1 starts out accepting and retracts at most once. We
may also speak of aspirations to verify with certainty given K, verify in the limit given
K, etc. For example, M aspires to decide in the limit given K just in case on each data
stream satisfying K, M converges either to acceptance or to rejection.

Now suppose that M1 aspires to refute H with certainty given K and that meta-
method M2 refutes with certainty given K whether the aspirations of M1 will actually be
realized. Then we can construct a method M that decides H given K with two retractions
starting with acceptance that succeeds just by watching what M1 and M2 do. Method M
may be defined as follows. Make M start out accepting. Thereafter:

1. M accepts when M1 agrees with M2.

2. M rejects when M1 disagrees with M2.

To see that M works as claimed, suppose that K is satisfied. There are four easy cases
to consider:

1. P1 and H are satisfied: then M1, M2 always accept so M always does so as well,
with no retractions.

2. P1 is satisfied but H is not: then M accepts until M1 rejects and continues to reject
thereafter, using one retraction.

3. H is satisfied but P1 is not: since M1 is an aspiring refuter, M1 starts with acceptance
and can retract at most once, so since P1 is not satisfied, it must be that M1

eventually reverses its initial acceptance to a rejection. Meta-method M2 correctly
reverses its initial acceptance to a rejection as well. So M converges to acceptance
after at most two retractions, starting with acceptance.
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4. Neither H nor P1 is satisfied: again, M1 can only have failed by never reversing
its initial acceptance to a rejection. Meta-method M2 eventually reverses its initial
acceptance to a rejection. So M converges to rejection after at most one retraction.

In each case, M converges to the right conjecture about H using at most two retractions,
starting with acceptance.

What if M1 aspires to verify H given K and M2 verifies the presupposition of M1

given K? Then exactly the same construction again implies that H is decidable with
two retractions starting with acceptance. The situation is similar if we have a refuter
of verification or a verifier of refutation. In either of these cases, the result is the same
except that M starts with rejection rather than acceptance.

So for aspiring methods, refutation of refutation and verification of verification im-
ply two retraction decidability starting with acceptance and refutation of verification
and verification of refutation imply two retraction decidability starting with rejection.
Methodological equivalence requires the converse implications as well. Let us consider
whether they hold in the present example. Suppose that M decides H given K with at
most two retractions starting with acceptance. Can we construct M1, M2, P1, such that
M1 aspires to refute H given K and does so under presupposition P1 and M2 refutes P1

given K? It is up to us to choose the both the presupposition P1 and the methods M1

and M2.
Here is how to do it. Choose P1 as the (naturalistic, methodological) proposition that

M retracts at most once. Let M1 be the aspiring refuter (given K) that watches M and
accepts until M retracts once, rejecting thereafter whatever else M does. Let M2 start
with acceptance and then reject, with certainty, when M retracts for the second time.
Evidently, M2 refutes P1 with certainty given K. Moreover, M1 refutes H with certainty
under presupposition P1, because when P1 is satisfied, M1 converges correctly to whatever
M converges to. If P1 is not satisfied, then M uses its second retraction and converges to
acceptance, but M1 incorrectly converges to rejection. Thus, M1 refutes H with certainty
if and only if P1 is satisfied. The converses of the claims for verification of verification,
refutation of verification, and verification or refutation are similar. So we have arrived at
a simple example of a meta-methodological equivalence theorem:

Proposition 1 The following situations are methodologically equivalent:

1. There are two methods M1, M2 such that

(a) M1 aspires to verify [refute] H with certainty given K and does so under pre-
supposition P1, and

(b) M2 refutes [verifies] P1 with certainty given K.

2. H is decidable given K with at most two retractions, starting with rejection.
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The analogous proposition in which M starts with rejection and the aspirations of M1 and
M2 mismatch is also true.

Let us now generalize the preceding analysis along two dimensions at once. We will
move from a single meta-method to an arbitrary, finite chain of meta-methods, each of
which second-guesses the presuppositions of its predecssor. And we may as well also
allow each method in the chain to succeed under a fixed bound on retractions. When is
such an attenuated meta-methodological situation possible? Just when there is a single
method that uses the sum of the retractions of all the methods in the chain and whose first
conjecture depends in a systematic manner on what the methods in the chain achieve. The
exact statement of the equivalence is as follows. For convenience of notation in dealing
with chains, let P0 henceforth denote the original hypothesis H under investigation.

Proposition 2 The following situations are methodologically equivalent:

1. There exists a finite chain M1, . . . ,Mk of methods such that

(a) for each i < k, method Mi+1 aspires to decide Pi given K with ni+1 retractions
starting with ci+1, and does so under presupposition Pi+1, and

(b) K entails Pk, the presupposition of the final method in the chain.

2. There exists a single method M that decides P0 with n1 + . . . + nk retractions given
K, starting with conjecture c, where c is “reject” if an odd number of the ci are
“reject”, and c is “accept” otherwise.

The general proof of this proposition, and of all those that follow, is given in the Appendix.
By way of illustration, consider a situation in which M1 decides H with two retractions
starting with acceptance, M2 decides the presupposition of M1 with three retractions
starting with rejection and M3 decides the presupposition of M2 with one retraction
starting with acceptance without presuppositions. The result tells us that this is possible
exactly when there is a single, presuppositionless method M that uses 2 + 3 + 1 = 6
retractions. Method M uses at most six retractions because it retracts once each time
one of the component methods retracts. Since an odd number of the three methods start
out rejecting, so does M .

The preceding analysis provides a clear motivation for empirical meta-methodology.
It does not give us something for nothing (nothing could). Rather, adding more empir-
ical meta-methods to the chain amounts to an even epistemological trade in which the
sense of success is weakened (more retractions are countenanced) in exchange for weaker
methodological presuppositions. Although it does not show up in the statement of the
proposition, another such trade-off concerns time to convergence, for it will typically take
longer for the single method constructed from the chain to converge than it would have
taken M1 to converge when its narrower presupposition is satisfied. Whether this trade
is rational will depend upon the plausibility of the presuppositions and on the costs of
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retractions and delayed convergence. This is where history, individual psychology, and
external cirumstances figure in. Logic presents the possible options and the systematic
trade-offs among them.

The result just presented assumes that each meta-method in the chain succeeds with
bounded retractions. What could we do with a finite, meta-methodological sequence of
limiting decision procedures for which no such bounds exist? Assuming that the methods
in the chain are all guaranteed to converge to acceptance or to rejection, we could turn
the whole sequence into a single method that also decides the original hypothesis in the
limit. One may describe the situation by saying that limiting decidability is preserved or
closed under finite meta-methodological regresses.

Proposition 3 The following situations are methodologically equivalent:

1. There exists a finite chain M1, . . . Mk of methods such that

(a) for each i < k, method Mi+1 aspires to decide Pi in the limit given K and does
so under presupposition Pi+1 and

(b) Pk, the presupposition of the final method in the chain, entails K.

2. There exists a single method M that decides P0 in the limit given K.

Before, we saw that bounded retraction meta-methodology trades retractions for weaker
presuppositions and delayed convergence. The same is true here, except that the increase
cannot be measured by a uniform bound as in the bounded retraction case (proposition
2).

10 Empirical Naturalism Without Foundations

In the finite meta-methodological chains considered in the preceding section, the method
at the end of the chain serves as an anchor or foundation for the entire chain, since it
is required to succeed in every serious possibility. This is reminiscent of Laudan’s idea
of picking a single method to anchor the process of empirically investigating what other
empirical methods can do. But what if there is no foundation for the chain? What if
every method in the chain has empirical presuppositions and more methods can always
be added, on demand, to assess them? Theln there is nothing to science but assessments
of assessements of assessments, without end. That is not to say that scientists ever use
infinitely many meta-methods all at once. The relevant infinity is potential rather than
actual: in the face of yet another challenge to her reliability, the scientist is disposed
to respond with yet another meta-method to test the presuppositions of the method
challenged.
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The instrumental question, once again, is what one could do with a potentially infinite
chain of methods, each of which investigates the presupposition of its predecessor. Sup-
pose, then, that there is a (potentially) infinite sequence of meta-methods, each of which,
say, refutes the presupposition of its predecessor with certainty under some presupposi-
tion. Moreover, suppose that none of the methods in the chain works without empirical
presuppositions. Inquiry floats on an infinite abyss of presuppositions.

It is natural to assume that although no method works without presuppositions, the
presuppositions tend to get weaker, so that for each i ≥ 1, Pi entails Pi+1. Call such
a sequence increasingly reliable. In other words, even though there is no “foundational”
method, the infinite sequence is nonetheless directed in the sense that each successive
meta-method is at least as reliable as the method it assesses.

When is an infinite, foundationless, increasingly reliable chain of aspiring refutation
meta-methods possible? Whenever H is refutable with certainty by a single, “super-
method” that succeeds over the disjunction of all the nested presuppositions. Thus,
we can say that refutation with certainty is closed under infinite, increasingly reliable
regresses.

Proposition 4 The following situations are methodologically equivalent:

1. There exists an infinite chain M1, . . . Mk, . . . of methods such that

(a) for each i ≥ 0, method Mi+1 aspires to refute Pi with certainty given K and
does so under presupposition Pi+1,

(b) for each i ≥ 0, Pi entails Pi+1, and

(c) K entails (P1 ∨ . . . ∨ Pn ∨ . . .).

2. H is refutable with certainty given K.

A result of this kind is double-edged. On the one hand, an infinite, meta-methodological
chain of refuting methods is not pointless, since it is equivalent to a single refutation
method that has weaker presuppositions than any method in the chain. But in another
sense it may seem pointless, since we could have used the equivalent, single method to
begin with! There is, however, increasing interest in the philosophy of science these
days in “local” or “piece-meal” methodology (e.g., Mayo 1996). The preceding result
says that adding more and more “local” refuting methods when challenged can add up
to performance methodologically equivalent to having a single refuting method, without
committing one’s self to a single method handling all possible contingencies from the
outset. Since scientists do not really commit themselves to fixed methods for eterminty,
the applicability of learning theoretic analysis is thereby greatly enhanced.

What could we do with an infinite, nested, sequence of verification methods? One
might well expect a similar closure result, to the effect that an infinite, increasingly reliable
chain of verifiers adds up to a verifier. But this is far from being the case, for an infinite,
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meta-methodological chain of certain verifiers is equivalent to an infinite chain of limiting
refutation methods! It also turns out that an infinite chain of limiting refutation methods
is equivalent to a single limiting refutation method, so limiting refutation, like certain
refutation, is closed under infinite, increasingly reliable meta-methodological chains. Since
the power of limiting decision lies between that of certain verification and of limiting
refutation, it should come as little surprise that infinite chains of limiting deciders are
also equivalent to having a single limiting refuter. Thus, limiting refutatability is a fairly
robust necessary condition for the existence of increasingly reliable meta-methodological
regresses. These results cannot be improved to equivalence with an infinite, increasingly
reliable chain of limiting verifiers, since even a single limiting verifier can succeed on
hypotheses that are not refutable in the limit (LRI).

Proposition 5 The following situations are methodologically equivalent:

1. There exists an infinite chain M1, . . . Mk, . . . of methods such that

(a) for each i ≥ 0, method Mi+1 aspires to verify Pi with certainty given K and
does so under presupposition Pi+1,

(b) for each i ≥ 0, Pi entails Pi+1, and

(c) K entails (P1 ∨ . . . ∨ Pn ∨ . . .).

2. Situation 1, with decision in the limit replacing refutation in the limit.

3. Situation 1, with certain verification replacing refutation in the limit.

4. P0 is refutable in the limit given K.

Corollary: in conditions (1-3), Pi can be chosen to be of form H∨Ri, where Ri is refutable
with certainty given K, so all of the Mi can be chosen to converge to the truth given that
H is true.

The preceding result assumes that P0 = H entails P1, so that M1 converges to accep-
tance when H is true. If this condition is dropped, (1) and (2) become equivalent both
to the existence of a limiting refuter of a certain verifier and to the existence of a certain
verifier of a limiting refutation procedure. These “mixed” chains do not collapse into
anything more elementary, and may be viewed as criteria of success in their own right.16

Infinite, nested chains of certain refuters are equivalent to certain refutability and
infinite, nested chains of certain verifiers are equivalent to limiting refutation. Is there
some kind of infinite, meta-methodological chain that characterizes limiting decision?
Here is one example of such a constraint. Say that M converges as fast as M ′ given K

16The proof of this generalization is left to the reader. Hypotheses assessable by “mixed” chains of this
sort are Boolean combinations of hypotheses that are verifiable in the limit. The complexities of such
hypotheses are characterizable in the finite difference hierarchy over Σ0

2.
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just in case for each data stream e satisfying K, for each stage k of inquiry, if M ′ has
converged by k, so has M .

Proposition 6 The following situations are methodologically equivalent:

1. There exists an infinite chain M1, . . . Mk, . . . of methods such that

(a) for each i ≥ 0, method Mi+1 aspires to decide Pi in the limit and does so under
presuppositon Pi+1,

(b) For each i ≥ 1, Pi entails Pi+1,

(c) K entails (P2 ∨ . . . ∨ Pn . . .), and

(d) for each i ≥ 1, Mi+1 converges as fast as Mi given K.

2. H is decidable in the limit given K.

This result may be understood, intuitively, as follows. Increased reliability requires a
method to cope with more possibilities, which delays convergence. So requiring the suc-
cessive meta-methods in the sequence to have nondecreasing reliability and also nonin-
creasing convergence time implies that reliability eventually stops increasing after some
point in the sequence. The tail of the sequence provides no further essential information
after that point leaving us with what is essentially a finite sequence of limiting decision
methods (proposition 3).

11 Empirical Naturalism without Foundations or Di-

rection

The preceding section provided an analysis of unfounded epistemic regresses. But it
still assumed that the infinite, empirical regress is at least directed, in the sense that
the meta-methods are increasingly reliable. What if we drop that assumption as well? Is
foundationless, directionless meta-methodology necessarily pointless, in the sense that one
could not turn the conjectures of the methods into a recognizable notion of convergence
to the truth?

If no further conditions are added, then the answer is affirmative, since every hypoth-
esis whatsoever possesses such a chain; so such a chain cannot be equivalent to methods
succeeding in any of the convergent senses defined above.

Proposition 7 Every H has an infinite chain M1, . . . Mk, . . . of methods like the one
described in proposition 4, except that the nesting condition is dropped.

The argument is simple: every method succeeds over some set (possibly empty) of relevant
possibilities. So every infinite sequence of methods starting with acceptance and using
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at most one retraction witnesses the preceding proposition. Such chains are, therefore,
extreme examples of vicious or pointless empirical regresses so far as reliable convergence
to the right answer is concerned.

Are there further conditions we can impose on the methods in the undirected chain in
order to end up with a condition equivalent to limiting decidability? Consider the following
two properties. (1) A meta-method is positively [negatively] reliable given K just in case
it never converges to acceptance [rejection] incorrectly on any data stream satisfying K.
Let Ai+1 denote the proposition that Mi+1 eventually stabilizes to acceptance and let
Ri+1 denote the proposition that Mi+1 eventually stabilizes to rejection. Then positive
[negative] reliability requires that Ai+1 [Ri+1] entail Pi [¬Pi]. A meta-methodological
chain is positively [negatively] reliable just in case each meta-method occurring in it is.
(2) Another, possible property of infinite meta-methodological chains is positive [negative]
covering. A chain positively [negatively] covers K just in case K entails (A2 ∨ An ∨ . . .)
[(R2 ∨Rn ∨ . . .)].

The positive [negative] covering and reliability conditions do not imply objective direct-
edness in the sense that methods get more reliable farther out in the chain. Convergence
to acceptance [rejection] implies truth, and every data stream is accepted [rejected] in
the limit by some meta-method in the sequence, but that implies neither that later meta-
methods accept more than earlier ones nor that later methods commit fewer errors than
earlier ones. Indeed, a later method might reject every data stream. So these properties
steer clear both of foundations and of directedness (i.e., increasing reliability).

Nonetheless, such a non-directed, foundationless chain exists precisely when the hy-
pothesis is decidable in the limit by a single method! And the same is true even if the
methods in the chain merely decide in the limit rather than refuting with certainty. So
under suitable conditions, even unfounded, undirected meta-methodology can have an
appealing point. 17

Proposition 8 The following situations are methodologically equivalent:

1. There exists an infinite chain M1, . . . Mk, . . . of methods such that

(a) for each i ≥ 0, method Mi+1 aspires to refute [verify] Pi with certainty given
K and does so under presuppositon Pi+1,

(b) the chain is positively [negatively] reliable, and

(c) the chain positively [negatively] covers K.

2. There exists an infinite chain M1, . . . Mk, . . . of methods such that

17The same result also holds for an infinite meta-methodological sequence of verifiers that are negatively
reliable and whose eternal rejection propositions cover K. Simply follow the proof for the refutation case,
substituting dual notions where appropriate.
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(a) for each i ≥ 0, method Mi+1 aspires to decide Pi in the limit given K and does
so under the presuppositon Pi+1,

(b) the chain is positively [negatively] reliable, and

(c) the chain positively [negatively] covers K.

3. P0 is decidable in the limit given K.

12 Refutations of Refutations and the Logic of Dis-

covery

The preceding, meta-methodological characterizations of limiting decidability relate in an
interesting way to the problem of discovery. Recall that a “discovery method” outputs
propositions in response to new data and that an empirical question specifies a range of
possible answers. Say that a method answers such a question in the limit just in case
after some finite time it always produces a true conjecture that entails a correct possible
answer to the question.

When the potential answers partition the relevant possibilities, it is well known that
the question is answerable in the limit if and only if each potential answer is decidable in
the limit (LRI, Chapter 9). Combining this fact with the preceding results yields

Proposition 9 A question is answerable in the limit given K just in case each potential
answer has a meta-methodological sequence S satisfying one of the following conditions:

1. S is a finite sequence of limiting decision procedures, the last of which has a presup-
position covering K.

2. S is an infinite, nested sequence of limiting decision procedures whose presupposi-
tions cover K, such that each later method is guaranteed to converge at least as fast
as any preceding method, given K.

3. S is an infinite sequence of positively [negatively] reliable refuting [verifying] methods
whose acceptance [rejection] sets jointly cover K.

4. S is an infinite sequence of positively [negatively] reliable limiting decision procedures
whose acceptance [rejection] sets jointly cover K.

Thus, even foundationless, undirected meta-methodology suffices for (and indeed is equiv-
alent to) the existence of a method that answers the question in the limit. This result
provides some logical vindication of Popper’s otherwise perplexing faith that refutations
of refutations of refutations without end ultimately add up to convergence to the truth
in the limit.
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13 Computable Methodology

The constructions occurring in the proofs of the above results are all computable (cf.
the Appendix). So if the infinite meta-methodological sequences they operate upon are
effectively presented, the result of composing the construction with the effectively pre-
sented meta-methodological sequence is a single, computable method that succeeds in the
required sense. More precisely, say that meta-methodological sequence M1, . . . ,Mn, . . . is
computable just in case there exists a computable function C such that for each i and for
each finite data sequence ε,

C(i, ε) = Mi(ε).

Thus, all of the above propositions continue to hold when the meta-methodological se-
quences and the methods equavalent to them are required to be computable.

This situation is not untypical. Since both computability theory and learning theory
study similar criteria of problem solution, it often happens that results holding for “ideal”
or “logically omniscient” methods can easily be transformed into closely analogous results
concerning computable inquiry.

The same cannot be said for the alternative tradition in methodology, which mod-
els scientific method as a generalized entailment relation reflecting “confirmation” or
“empirical support”. According to that view, methodological norms are not based on
computationally achievable aims, but on the maintenance of logical relations that compu-
tational agents cannot maintain, so that computational strategies are judged normatively
deficient.

This tendency to model methodological norms using uncomputable logical relations is
one of the most persistent features of the positivistic legacy. The sine qua non of logical
positivism was a sharp distinction between questions depending on matters of fact and on
mere relations of ideas. In methodology, this translates into a sharp distinction between
empirical methods, which face inductive skeptical arguments, and formal methods, which
do not. It has therefore seemed acceptable to deal with the problem of induction in its
own right, reserving formal considerations like computability as an afterthought.

But once again, learning theory invites a very different viewpoint, despite its strongly
logical character. If Hume had an excuse for thinking that all formal problems should be
decidable a priori (since relations of ideas fall under the gaze of the mind’s eye), we, as
heirs to Gödel’s legacy, do not. The message of Gödel’s logical revolution is that from
the viewpoint of a computational agent, formal problems are for all intents and purposes
empirical, since a computer can no more see to the end of its computational process than
a scientist can gaze at the indefinite future of her discipline. Indeed, when the formal
problem appears to the computational agent to pose the problem of induction, the result
is uncomputability! The easiest example of an undecidable formal problem is the halting
problem, which requires one to determine whether a given Turing machine halts on a
given input. The epistemic dimension of the problem is obvious: no matter how long
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the program has refused to return an output, it may nonetheless do so at the very next
moment. Although the unsolvability of the halting problem is not usually proved by
means of this skeptical argument, it can be (cf. LRI and Kelly and Schulte 1995a), and
such a proof does much to clarify the structural analogy between the problem of induction
and uncomputability.

Moreover, one may entertain limiting notions of success when a formal problem is
not computably decidable. For example, the halting problem is computably verifiable
with certainty and its complement is computably refutable with certainty. Similarly, non-
halting is refutable with certainty even though it is not verifiable with certainty. The
limiting concepts of success are represented as well. For example, determining whether a
given Turing program computes a total function is computably refutable in the limit but
is not computably verifiable in the limit. Moreover, solvability in each of these attenuated
senses can be characterized in terms of alternating quantifiers, in just the manner indicated
above for empirical problems.18

Since learning theory’s treatment of induction is parallel to the approach to formal
problems in the theory of computability, it should come as little surprise that learning
theory leads to a precise account of the power of computable inquiry. On this approach,
computable inquiry may be viewed as posing a two-fold problem of induction, an external
one, reflecting the degree of interleaving of the data streams for and against the hypoth-
esis through time, and an internal one, corresponding to the interleaving of epistemically
possible future trajectories of one’s own internal computations (i.e., to uncomputabil-
ity). Accordingly, the respective characterizations of empirical problem solvability and of
computability in terms of quantifier alternations can be neatly assembled into a character-
ization of computable problem solvablility (LRI Chapter 7). Methodological approaches
based on Bayesian updating, on the other hand, assume an ideal account of probabilistic
coherence that is uncomputable over sufficiently rich formal languages. It is impossible
to integrate computability considerations into such an account without compromising the
required sense of coherence.

I claimed, above, that learning theory’s uniformly instrumental perspective on formal
and empirical methodology yields logical arguments for Feyerabendian conclusions. One
such critique concerns the proposal, shared by Bayesians and Popperians alike, that a
hypothesis should be rejected when it becomes inconsistent with the data. There are
familiar historicist objections to this principle based on Duhem’s thesis that no hypothesis
is ever really refuted. But let us suppose for the sake of argument that the data are
perfectly reliable and that the hypothesis really is ideally refutable with certainty: if it
is false, the data will eventually say so. Wouldn’t the consistency principle be rationally
mandated in this case? After all, hanging onto a refuted hypothesis delays convergence
to the truth, so a method obeying the norm would weakly dominate a method that did
not in convergence time.

18Cf. also (Putnam 1965) and (Hajek 1978).
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But what if the consistency problem is uncomputable, so that it is impossible for a
computer to verify whether the current data are consistent with it? One might suppose
that we are are rescued from such cases by feasibility: we cannot be required to do the
impossible. But escape isn’t that easy. The rule requires that we never hold onto a
hypothesis that is refuted, not that we decide consistency. Even if the full consistency
problem is effectively unverifiable, we can still effectively satisfy the rule by erring on
the side of caution and rejecting unrefuted hypotheses. But another goal is finding the
truth. The question is whether there are problems in which the two goals clash for
computable methods in the following sense: either can be computably achieved by itself,
but no computable method achieves both. In that case, the consistency condition would
no longer accelerate convergence to the truth: it would prevent convergence to the truth.
So insisting on the rule would have effects entirely contrary to its intended function.

The answer is resoundingly affirmative: one can construct an empirical hypothesis
that a computer can refute with certainty, but such that no method that always maintains
consistency with the data succeeds even gradually; even if the method is, in a precise sense
(i.e., hyperarithmetically definable) infinitely more powerful than a computable method
(LRI Chapter 7, Kelly and Schulte 1995b).

An interesting corollary of this result is that any such method whose (hyperarithmeti-
cally definable) subroutine for detecting logical consistency is insulated from the empirical
data as a separate “subroutine” fails to achieve anything close to what a mere Turing ma-
chine can do, namely, refute the hypothesis with certainty. So the very idea that theorem
proving can be functionally isolated from empirical information radically restricts the po-
tential power of computable science! This last vestige of the traditional, methodological
dichotomy between matters of fact and relations is mistaken.

This is the kind of result I had in mind when I distinguished methodological discoveries
from reflections on existing practice. The proof is based on a construction involving
mathematical concepts that historical scientists had no idea about, since the theory of
comutability hadn’t been invented yet. Combing through the history of science will never
yield such an insight (unless scientists do the logical work themselves so that historians
can read about it in the historical record). Whether such logical possibilities will be
realized in future scientific inquiry is hard to say. But here I agree entirely with Laudan:
it is the objective, means-ends relations that matter. Whether or not the relationship has
arisen in practice has to do with evidence for the relation (which in this case is established
a priori) rather than with its normative force.

14 Conclusion

This paper provides some idea of the similarities and differences between two divergent
images of normative naturalism. The first emphasizes structural analysis of the conditions
under which a method would succeed, whereas the second focuses on historical surveys of

29



apparently successful applications of a method in the past. I explained how the a priori
approach provides a compelling role for logic in post-positivistic, naturalized methodology
that embraces, rather than resists, much of the historicist critique of positivism and that
avoids the inherent conservatism of historical surveys. I also presented a new, logical
framework in which to distinguish useful empirical regresses from “vicious” ones. An
important feature of this analysis is that useful empirical regresses can be unfounded
and undirected, in the sense that later methods may fail to be more reliable than earlier
ones. Finally, I illustrated how logic can be used to provide computational critiques of
methodological principles whose instrumentality is obvious when computability is ignored.

Logic is not all there is to normative naturalism. But neither is history. As history,
itself, suggests, scientific success demands detailed attention to the mathematical implica-
tions of the structures under investigation. Learning theory is just normative naturalism
informed by this lesson.
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16 Appendix

Proof of Proposition 2: (1) ⇒ (2): Suppose we are given a finite meta-methodological
sequence ((M1, P1), . . . , (Mk, Pk)) such that each Mi is an aspiring ni retraction decision
procedure given K, M1 decides H with n1 retractions starting with c1 under presupposi-
tion P1 and for each i from 1 to k− 1, Mi+1 decides Pi with ni+1 retractions starting with
ci+1 under presupposition Pi+1. Moreover, let Pk include all serious possibilities in K.

We must construct a single method M that decides H with n1 + . . . + nk retractions
over K starting with c, where c = “accept” if the proposition that no method in the
sequence ever rejects entails that H is correct, and is c = “reject” otherwise.

The construction of M is as follows. M simulates all the methods in the sequence
on the finite sequence of data input so far. Then M calculates its current conjecture by
setting b := the number of methods among M1, . . . ,Mk that currently reject. If b is even,
M accepts, and M rejects otherwise.

Let data stream e satisfying K be given. Since each method in the sequence uses
at most a finite number of retractions and there are only finitely many such methods,
there is a stage m after which each method Mi has stabilized to its ultimate conjecture
ui. We may now reason by “backward induction” as follows. Since Mk’s presupposition
is trivially satisfied, uk is correct. So if uk is rejection, and Mk−1 is an aspiring nk−1

retraction decision procedure, Mk−1 converges to the wrong answer, so we may reverse
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uk−1 and we agree with uk−1 otherwise. Call this corrected conjecture vk−1. Now vk−1

is correct, so if it is reject we reverse uk−2 and otherwise agree with uk−2 to obtain the
corrected conjecture vk−2. Proceeding in this way, we ultimately obtain the corrected
v1, which correctly indicates whether e satisfies H. Since one reversal occurs for each
“rejection” occurring in (u1, . . . , uk) and since two reversals cancel, the correct conjecture
u1 is “accept” just in case an even number of “reject” conjectures occur in (u1, . . . , uk).
So M converges to the correct answer.

Observe that M retracts only when the number of rejecting methods in the sequence
changes from even to odd. In the worst case, each method in the sequence retracts at a
different time (if two retract simultaneously, M does not retract). So at worst, M retracts
n1 + . . . + nk times.

M starts with the leading conjecture c1 of M1 if there are an even number of retractions
among the initial conjectures c2, . . . , cn of the meta-methods and starts out with the
reversal of c1 otherwise. But by the backward induction argument, this is the correct
conjecture about H if all of the conjectures c1, . . . , ck are correct for data stream e.

(2) ⇒ (1): Induction on the binary examples provided in proposition 1. To see how
to generalize the construction, consult the proof of proposition 8. a

Proof of Proposition 3: (1) ⇒ (2): Given the chain, the backwards induction con-
struction used to prove proposition 2 works here as well.

(2) ⇒ (1): In the other direction, suppose M decides H in the limit given K. Then
extend M with k meta-methods, all of which accept no matter what.

Proof of Proposition 4: (1)⇒ (2): Suppose we are given an infinite sequence ((M1, P1), . . . ,
(Mi, Pi), . . .) of methods, such that each Mi is an aspiring refuter given K and for each
i > 0, Mi+1 refutes Pi with certainty under presupposition Pi+1 (where H = P0). Also,
suppose that for each i ≥ 0, Pi entails Pi+1 and that the Pi cover K. We must construct
a single M that refutes H with certainty given K. The construction is as follows. M
starts out accepting and rejects if any method Mi in the chain ever rejects. Evidently,
M aspires to refute given K. So it suffices to show that M converges to the right answer
given K.

Let e satisfy K. Since the presuppositions cover K, let k be least such that e satisfies
Pk. Case A: k = 0. Then all the Pi are satisfied so for each i ≥ 1, Mi never rejects. Thus,
M always accepts, which is correct because P0 = H is satisfied. Case B: Suppose k > 0.
Then for each i < k, Pi is false and Pk is true. Hence, for each i < k, Mi converges to
the wrong answer and, hence, converges to acceptance. Mk converges to the right answer
about Pk−1, and hence rejects. Thus, M converges correctly to rejection.

(2) ⇒ (1): Let M refute H with certainty given K. Let M = M1 and for each i > 1,
let Mi accept no matter what. a

Proof of Proposition 5: (3) ⇒ (2) ⇒ (1): Immediate, since a certain verifier is a
limiting decider which is, in turn, a limiting refuter.
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(1)⇒ (4): Let P0 denote H. Suppose we are given an infinite sequence ((M1, P1), . . . , (Mi, Pi), . . .)
of meta-methods, such that for each i ≥ 1, method Mi is an aspiring limiting refuter given
K, and for each i ≥ 1, Mi+1 refutes Pi in the limit under Pi+1. Also, suppose that for
each i ≥ 0, Pi entails Pi+1 and that the Pi cover K. We must construct a single M that
refutes P1 in the limit given K.

The constructed method M works as follows. Let f(0), f(1), . . . , f(k), . . . be an in-
finitely repetitive enumeration of the natural numbers. Initialize counter p := 0. On the
first k data points, suppose that p := i. Feed the first k data points to Mf(i)+1 and see if
Mf(i)+1 accepts. If so, increment p := i+1 and accept, and otherwise leave p set to p := i
and reject.

Let e satisfy K. Then by assumption, for some i ≥ 1, Pi is satisfied by e. Let k be
the least such i. Case A: Suppose that k = 0, so each Pi including P0 = H is satisfied.
Then each Mi+1 accepts infinitely often along e, since Mi+1 verifies Pi in the limit when
its presupposition Pi+1 is satisfied. Hence, the counter p is incremented infinitely often,
so M accepts infinitely often, as required. Case B: Suppose that k > 0. Then by nesting
and choice of k, H = P0, . . . , Pk−1 are not satisfied but Pk is. Hence, Mk converges to
rejection along e, say by the time n data points have been read. Since f(0), . . . , f(n), . . .
is infinitely repetitive, there is an m ≥ n such that f(m) + 1 = k. Thus, p is never
incremented past m, so M converges correctly to rejection.

(4) ⇒ (1): Suppose that M refutes H in the limit given K. We need to construct
an infinite sequence ((M1, P1), . . . , (Mi, Pi), . . .) of meta-methods, such that for each i ≥
1, meta-method Mi aspires to verify Pi−1 with certainty given K and does so under
presupposition Pi. We must also show that for each i ≥ 0, Pi entails Pi+1 and that the
Pi cover K.

The construction is as follows. For each i ≥ 0, let Ri denote the proposition that M
rejects from stage i onward. In other words,

Ri = {e ∈ K : ∀m ≥ i, M(e(0), . . . , e(m)) rejects}.

Then define

P0 = H.

Pi+1 = H ∨Ri.

For each finite data sequence (x0, . . . , xk), define

M1(x0, . . . , xk) =

{
accept if there is a j ≤ k such that M(x0, . . . , xj) accepts
reject otherwise,

and for each i > 1, define:

Mi+1(x0, . . . , xk) =


accept if M(x0, . . . , xi−1) rejects or

there is a j such that
i ≤ j ≤ k and M(x0, . . . , xj) accepts

reject otherwise.
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I now verify that the construction works. It is immediate that Pi entails Pi+1 and that
each Mi aspires to verify with certainty. To see that the Pi cover K, observe that P0

covers H and since M refutes H in the limit given K, M converges to rejection by some
finite stage so K −H is also covered by the Pi. For the corollary, observe that each Pi is
the disjunction of H with a proposition Ri that is refutable with certainty.

It remains only to check that for each i ≥ 0, Mi+1 verifies Pi with certainty under
presupposition Pi+1. Since we already know that each Mi aspires to verify given K, it
suffices to show that for each i ≥ 0, Mi+1 converges to the right answer about Pi on data
stream e ∈ K just in case e satisfies Pi+1.

Let e satisfy K. Suppose that e satisfies H = P0. Then for all i ≥ 0, Pi is satisfied,
so for each i ≥ 1, Mi must converge correctly to acceptance. But this is indeed the case,
since M accepts infinitely often along e.

Suppose that e does not satisfy H. Then since M refutes H in the limit given K, we
may choose n to be least such that for all m ≥ n, M(e(0), . . . , e(m)) rejects. Then for all i
such that 0 ≤ i < n, Pi = (H ∨Ri) is not satisfied by e and for all i ≥ n, Pi is satisfied by
e. So methods prior to n + 1 mistakenly converge to acceptance, method Mn+1 correctly
converges to rejection, and methods after n+1 correctly converge to acceptance. Each of
these facts will now be established.

Case A: 1 ≤ i < n. Hence, n > 0, so by the choice of n, we have that M(e(0), . . . , e(n−
1)) accepts. Since n− 1 ≥ i, Mi mistakenly converges to acceptance, as required.

Case B: i = n. Suppose n = 0. Then M1 converges correctly to rejection, as required.
Suppose n > 0. By the choice of n, we have that M(e(0), . . . , e(n− 1)) accepts and never
accepts thereafter. So Mn+1 converges correctly to rejection, as required.

Case C: i > n. Suppose n = 0. Then M never accepts. So M1 converges correctly to
rejection, as required. Suppose n > 0. Then i− 1 ≥ 0 and M(e(0), . . . , e(i− 1)) rejects.
Hence, Mi correctly converges to acceptance, as required. a

Proof of Proposition 6: (1) ⇒ (2): Suppose that ((M1, P1), . . . , (Mi, Pi), . . .) is an
infinite methodological chain of aspiring limiting deciders given K such that for each
i ≥ 0, Mi+1 decides Pi in the limit under presuppositon Pi+1, Pi entails Pi+1, K =
(P2 ∨ . . .∨Pn . . .), and Mi+2 converges as fast as Mi+1 given K. We need to construct an
M that decides H in the limit given K.

M assumes that all of these simulated methods have already converged. M agrees
with the conjecture of M1 if an even number of the simulated methods currently reject
and reverses the conjecture of M1 otherwise.

Let e satisfy K. Since K = (P2 ∨ . . . ∨ Pn . . .), we may choose k to be least such that
e satisfies Pk+1. Thus, there is a stage i after which Mk+1 is correct about Pk. Since
later methods converge as fast as and are as reliable as Mk+1, they correctly accept from
stage i onward. The finitely many methods M1, . . . ,Mk eventually all converge (possibly
incorrectly), by some later stage i′, since they aspire to decide in the limit given K. After
the stages k and i′ are passed, backward induction (cf. the proof of proposition 2) shows
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that M is correct.
(2)⇒ (3): In the other direction, let M decide H in the limit given K. Let M2, . . . ,Mi, . . .

all accept no matter what, without looking at the data. This trivial meta-methodological
sequence satisfies all of the required properties. a

Proof of Proposition 8: (1) ⇒ (2) is immediate. (2) ⇒ (3): Suppose we are given an
infinite sequence ((M1, P1), . . . , (Mi, Pi) . . .) of aspiring limiting decision procedures given
K, such that M1 decides H in the limit under presupposition P1 and for each i > 1, Mi+1

decides Pi in the limit under presupposition Pi+1. Also, suppose that the sequence is
positively reliable and positively covers K. We must construct a single method M that
decides H in the limit given K.

The constructed method M works as follows. Let f(0), f(1), . . . , f(k), . . . be an in-
finitely repetitive enumeration of the natural numbers. Initialize counter p := 0. After
seeing the first k data points, suppose that p = i. Feed the first k data points to Mf(i)+1

and see if Mf(i)+1 rejects. If so, increment p := i + 1, and otherwise leave p set to
p = i. Then return the current output of M1 if an even number of methods among
M2, . . . ,Mf(p)+1 reject and return the result of reversing the current output of M1 othe-
wise.

Let e satisfy K. Then by the positive covering condition, for some i ≥ 0, Pi+1 is
satisfied by e. Thus, Mi+1 converges to acceptance, say at stage j. Then since f is
infinitely repetitive, there is some stage j′ ≥ j after which p is no longer incremented. Let
m be the terminal value of p. Thus, Mm+1 has converged to acceptance by stage j′. By
positive reliability, e satisfies Pm+1. Since all of the methods are aspiring limiting decision
procedures, there is some possibly later stage j′′ by which all methods prior to Mf(p)+1

have converged. Thereafter, by the backward induction argument of proposition 2, M
conjectures correctly about H.

(3) ⇒ (1): In the other direction, suppose we are given an arbitrary method M that
decides H in the limit given K. We must construct an infinite, positively reliable sequence
((M1, P1), . . . , (Mi, Pi), . . .) of refuting meta-methods that positively covers K.

Without loss of generality, we can assume that M starts out accepting prior to seeing
any data (given a limiting decider M ′, the result M of forcing M ′ to accept prior to seeing
any data is still a limiting decider). Let O be the proposition that M retracts an odd
number of times prior to convergence and let E be the proposition that M retracts an
even number of times. Let Ri be the proposition that M retracts at most i times. Let
H = P0. Now, for each i ≥ 1, define

Pi =

{
(Ri−1 ∨O) if i is odd
(Ri−1 ∨ E) if i is even.

and define, for each finite data sequence ε,

Mi(ε) =

{
reject if M(ε) uses at least i retractions
accept otherwise.
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By construction, each Mi is an aspiring refuter given K.
Next, we must establish the positive covering condition. Since M decides H in the

limit given K, M uses only finitely many retractions on each data stream e satisfing K.
Suppose M uses j retractions on e, so e satisfies Rj and hence e satisfies Pj+1. Thus, the
Pi cover K.

To establish the positive reliability condition, suppose for arbitrary i ≥ 1 that Mi

never rejects along e. We must show that e satisfies Pi−1

Case A: suppose i = 1. Then M never retracts along e. Since M starts out accepting,
M always accepts. So since M decides H = P0 in the limit, e satisfies P0.

Case B: suppose i > 1. Then M retracts at most i − 1 times so e satisfies Ri−1. If i
is even, then Ri−1 entails (Ri−2 ∨ O), which is just Pi−1. Similarly, if i is odd, then Ri−1

entails (Ri−2 ∨ E), which is just Pi−1. So in either case, e satisfies Pi−1, as required.
It remains only to check that for each i ≥ 1, Mi refutes Pi−1 with certainty under

presupposition Pi.
When i = 1, we must show that M1 refutes P0 = H under presupposition P1 =

(R0 ∨O). Let e ∈ K.
Case A: suppose e satisfies P1 = (R0 ∨O).
Case A.1: suppose e satisfies R0. Then M never retracts and hence converges to

acceptance. Since M is correct, H = P0 is satisfied by e. Since M never retracts, M1

converges correctly to acceptance, as required.
Case A.2: suppose e satisfies O. So M retracts an odd number of times starting with

acceptance, and hence M converges to rejection. Since M converges to the right answer, e
does not satisfy H = P0. But M1 converges correctly to rejection after the first retraction
is observed, as required.

Case B: suppose e does not satisfy P1 = (R0 ∨O). Then M uses some even number of
retractions greater than zero, starting with acceptance. Thus, M accepts H in the limit,
and since M converges to the right answer, e satisfies H = P0. But since M retracts at
least once, M1 converges incorrectly to rejection, as required.

Now consider the case in which i > 1.
Case I: suppose i is odd. Then Pi = (Ri−1 ∨O).
Case I.A: suppose e satisfies Pi = (Ri−1 ∨O).
Case I.A.1: suppose e satisfies Pi−1 = (Ri−2∨E). If e satisfies O, then e satisfies Ri−2,

so Mi correctly converges to acceptance, as required. If e satisfies E, then e satisfies Ri−1,
so Mi converges correctly to acceptance, as required.

Case I.A.2: suppose e does not satisfy Pi−1 = (Ri−2 ∨ E). So e satisfies O but not
Ri−2. Since i is odd, e does not satisfy Ri−1 either, else M retracts exactly i − 1 times,
which is an even number of times. Hence, M retracts at least i times, so Mi converges
correctly to rejection, as required.

Case I.B: suppose e does not satisfy Pi = (Ri−1 ∨ O). Then e satisfies E and hence
satisfies Pi−1 = (Ri−1 ∨ E). Also, e does not satisfy Ri−1, so M retracts at least i times,
and hence Mi converges incorrectly to rejection, as required.
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Under case II, in which i is even, the same argument works, if one switches O with E
everywhere. a
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