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Abstract

Belief revision theory concerns methods for reformulating an agent’s epistemic state when

the agent’s beliefs are refuted by new information. The usual guiding principle in the

design of such methods is to preserve as much of the agent’s epistemic state as possible

when the state is revised. Learning theoretic research focuses, instead, on a learning

method’s reliability or ability to converge to true, informative beliefs over a wide range of

possible environments. This paper bridges the two perspectives by assessing the reliability

of several proposed belief revision operators. Stringent conceptions of “minimal change”

are shown to occasion a limitation called inductive amnesia: they can predict the future if

and only if they cannot remember the past. Avoidance of inductive amnesia can therefore

function as a plausible and hitherto unrecognized constraint on the design of belief revision

operators.



0.1 Introduction

According to the familiar, Bayesian account of probabilistic updating, full beliefs change

by accretion: in light of new information consistent with one’s current beliefs, one’s new

belief state is the the result of simply adding the new information to one’s current beliefs

and closing under deductive consequence. Inductive generalizations that extend both

one’s current beliefs and the new information provided are not licensed, although the new

information may increase the agent’s degree of belief in such a proposition.1 This account

breaks down when new information contradicts the agent’s current beliefs, for accretive

updating leads, in this case, to a contadictory belief state from which further accretion can

never escape. Belief revision theory aims to provide an account of how to update full belief

so as to preserve consistency when one’s current beliefs are refuted by the new information

provided. Belief revision theory has attracted attention in a number of areas, including

data base theory (Katsuno and Mendelson 1991), the theory of conditionals (Boutilier 93;

Levi 96; Arlo-Costa 1997), the theory of causation (Spohn 1988, 1990; Goldszmidt and

Pearl 94), and game theory (Samet 1996).

A belief revision operator is a rule for modifying an agent’s overall epistemic state in

light of new information. An agent’s epistemic state determines an assignment of degrees

of implausibility to possible worlds. The agent’s belief state is taken to be the proposition

satisfied by all and only the possible worlds of implausibility degree zero. Proposed belief

revision operators differ markedly as to how they update the overall epistemic state, but

they all agree about how to revise the current belief state: the new belief state is the

proposition satisfied by all and only the most plausible possibilities satisfying the newly

1A broadly Bayesian perspective is not bound to identify inductive methodology with updating by

conditionalization. Genuinely inductive expansions may be justified by decision-theoretic considerations

based on epistemic utility (e.g., Levi 81).
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received information. According to this rule, the character of the revised belief state

depends on the character of the agent’s initial epistemic state. If all possible worlds

are assigned implausibility degree zero, the agent starts out as a tabula rasa with vacuous

beliefs and updates by mere accretion, without taking any inductive risks. At the opposite

extreme, consider an agent whose initial epistemic state is maximally refined, in the sense

that all possible worlds are assigned distinct degrees of implausibility. Such an agent starts

out fully convinced of a complete theory and retains this conviction until the theory is

refuted, at which point she replaces it with the complete theory of the most plausible

world consistent with the new information. The new theory may differ radically from

its predecessor. Described this way, belief revision sounds like a process of “eliminative”

induction, in which a “bold conjecture” is retained until it is refuted, after which it is

replaced with the first alternative theory (in a subjective “plausibility ranking”) that is

consistent with the new information provided (Popper 68; Kemeny 53; Putnam 63; Gold

67; Earman 92). Between these two extremes are agents with moderately refined initial

states whose inductive leaps from one theory to another are correspondingly weaker.

The belief revision literature has focused on the aim of minimizing change in the

agent’s epistemic (or belief) state when new information contradicting the agent’s beliefs

is received. The similarity between belief revision and eliminative induction suggests a

natural, alternative aim for belief revision: namely, to arrive at informative, true, empirical

beliefs on the basis of increasing information. This aim is largely unexplored in the

belief revision literature,2 but it has long been the principal focus of formal learning

theory, the study of processes of sequential belief change that are reliable, or guaranteed

to stabilize to true, informative beliefs on the basis of increasing information. The purpose

of this paper is to bring learning theoretic analysis to bear on a variety of iterated belief

2It is raised, informally, in (Gärdenfors 1988).
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revision operators proposed by Spohn (1988), Boutilier (1993), Nayak (1994), Goldszmidt

and Pearl (1994), and Darwiche and Pearl (1997).3 A very simple model of learning is

employed, in which the successive propositions received by the agent are true reports

of successive outcomes of some discrete, sequential experiment. An inductive problem

specifies (1) what counts as a sufficiently informative belief state and (2) how the outcome

sequence might possibly evolve in the unbounded future. The agent’s task is to stabilize

to sufficiently informative, true beliefs about the outcome sequence, for each outcome

sequence admitted by the inductive problem.

The investigation yields an interesting mixture of positive and negative results. Some

of the operators are empirically complete, in the sense that for each solvable learning prob-

lem, there exists an initial epistemic state for which the operator solves it. Others restrict

reliability, in the strong sense that there are solvable learning problems that they cannot

solve no matter how cleverly we adjust their initial epistemic states. All of the restrictive

belief revision operators considered can have their initial epistemic states adjusted so that

they remember the past, and nearly all of them can be adjusted to eventually predict the

future. So such an operator has the odd property that it can remember the past perfectly

but then it cannot eventually predict the future and it can eventually predict the future,

but then it forgets some of the past. I refer to this limitation as inductive amnesia. Induc-

tive amnesia is the sort of thing we would like rules of rationality to protect us from rather

than impose on us.4 Avoiding it can therefore function as a well-motivated constraint on

proposed methods and principles of belief revision.

3For earlier applications of learning theoretic analysis to belief revision theory, cf. (Martin and Osh-

erson 1995, 1996) and (Kelly, Schulte and Hendricks 1996).
4The fact that the operators can all be programmed to possess perfect memory blocks the response

that inductive amnesia is a matter of resource bounds rather than a defect in the updating rules subject

to it.

3



Among the inductively amnestic belief revision operators, it is of interest to determine

which are more restrictive than others. To answer these questions, I introduce a hierarchy

of increasingly difficult inductive problems based on the number of applications of Nel-

son Goodman’s (1983) “grue” operation, which reverses the binary outcomes in a data

stream from a given point onward. For each of the belief revision operators considered, I

determine the hardest problem in this grue hierarchy that it can solve, obtaining, thereby,

an objective measure of its reliability.

It might be expected that a global consideration such as eventually finding the truth

would impose only the loosest short-run constraints on concrete belief revision procedures.

However, sharp and unexpected recommendations are obtainable. For example, some

proposed belief revision operators are equipped with a parameter α, which is the amount

by which the implausibility of a possibility is increased when the possibility is refuted.

Lower values of α may be interpreted as more stringent notions of “minimal” change since

they correspond, in a sense, to less distortion of the original epistemic state.5 Two of these

operators (Spohn 1988, 1990; Darwiche and Pearl 1997) turn out to fail by the second

level of the grue hierarchy if α = 1 but succeed over the entire, infinite grue hierarchy if

α is incremented to 2. So although the difference between 1 and 2 is innocuous in light

intuitive coherence and symmetry considerations, it marks an infinite improvement in

learning power. It will be argued, moreover, that this result reflects a deep, epistemological

tension between memory and prediction faced by iterated belief revision operators of the

sort under consideration.

The purpose of this paper is not to argue that reliability considerations always win

5The parameter α may also be viewed as an assessment of the quality or reliability of the input infor-

mation. Under that interpretation, the following results concern the minimal quality of data necessary

for finding the truth.
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when they conflict with coherence, symmetry, or minimality of belief change. As in every

case of conflicting aims, a personal balance must be sought. But if the ultimate balance is

subjective, structural conflicts between intuitive rationality considerations and reliability

are objective. The isolation and investigation of such conflicts is therefore a suitable

aim for objective, epistemological analysis. The following results are preliminary and

subject to generalization and refinement along a number of dimensions. Nonetheless, they

illustrate how reliability analyses can usefully and routinely be carried out for proposed

theories of iterated belief revision.

0.2 Ordinal Implausibility

Let W be a set of possible worlds.6 The agent’s epistemic state at a given time is modelled

as an implausibility assignment (IA), which is a (possibly partial) ordinal-valued function

r defined on W .7 Possibilities that are not even in the domain of r are “beyond possible

consideration” in the strong sense that they will never be consistent with the agent’s belief

state, no matter what information the agent might encounter in the future. For a given

world w, let [w]r, [w]≤r , and [w]<r denote, respectively, the set of all worlds equally, no

more, or less implausible than w.

A proposition is identified with the set of all possible worlds satisfying it. The full

belief state of r is defined to be the proposition satisfied exactly by the possible worlds of

implausibility zero.

b(r) = r−1(0).

6The approach adopted in this section follows Spohn (1988).
7It is not generally accepted that degrees of implausibility are well-ordered. This assumption will be

dropped in section 0.8.
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Define the minimum degree of implausibility of worlds in E as follows:

rmin(E) = min{r(w) : w ∈ E ∩ dom(r)}.

It will also be convenient to refer to the lowest degree of implausibility that is strictly

greater than the implausibility of each world in E:

rabove(E) = min{α : ∀w ∈ E ∩ dom(r), r(w) < α}.

If α ≤ β then −α + β denotes the unique γ such that α + γ = β (i.e., −α + β is the order

type of the “tail” that remains when the initial segment α is “deleted” from β). Given

implausibility assignment r, we may define r(.|E) to be an ordinal valued function with

domain dom(r) ∩ E such that for each w in this domain:

r(w|E) = −rmin(E) + r(w).

Then rmin(A|E) and rabove(A|E) may be defined as follows:

rmin(A|E) = (r(.|E))min(A).

rabove(A|E) = (r(.|E))above(A).

0.3 Some Iterated Belief Revision Operators

An iterated belief revision operator takes an IA r together with an input proposition E

and returns an updated IA r′.

I will analyze the following examples. Perhaps the most obvious idea is simply to

eliminate refuted worlds from one’s ranking and to lower all the other worlds, keeping

intervals of relative implausibility fixed, until the most plausible world touches bottom.

This is what Spohn (1988) refers to as the conditional implausibility ranking given the

data.
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Definition 1 (conditioning) r ∗C E = r(.|E).

Conditioning throws away refuted worlds, so it cannot recover when later data con-

tradict earlier data. The remaining proposals boost the implausibility of refuted worlds

rather than disposing with them altogether. An idea very similar to conditioning retains

the refuted worlds but sends them all to a safe “point at infinity” never to be seen again

unless past data are contradicted by future data. It will prove interesting to analyze a

generalization of this proposal in which all refuted worlds are assigned a fixed ordinal α.

Definition 2 (The “all to α” operator)

(r ∗A,α E)(w) =



r(w|E) if w ∈ dom(r) ∩ E

α if w ∈ dom(r)− E

↑ otherwise.

Another proposal boosts all refuted worlds just above all the non-refuted worlds, main-

taining intervals of implausibility among refuted worlds and among non-refuted worlds

but not between the two classes.

Definition 3 (The lexicographic operator)

(r ∗L E)(w) =



r(w|E) if w ∈ dom(r) ∩ E

rabove(E|E) + r(w|W − E) if w ∈ dom(r)− E

↑ otherwise.

A variant of this operator was defined by Spohn (1988), who rejected it because it is

irreversible, fails to commute (the resulting IA depends on the order in which the data

arrive) and places extreme importance on the data (the refuted worlds are put above all

the non-refuted worlds rather than being shuffled in). Against these considerations, S.

M. Glaister (1997) has argued that a generalization of this rule due to Nayak (1994) is

uniquely characterized by plausible symmetry conditions.
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At the opposite extreme, consider the operator that drops the lowest worlds consistent

with the new information to the bottom level, and that rigidly elevates all other worlds

by one step, keeping their relative positions to one another fixed.

Definition 4 (The “minimal” operator)

(r ∗M E)(w) =



0 if w ∈ E ∩ b(r(.|E))

r(w) + 1 if w ∈ dom(r)− (E ∩ b(r(.|E)))

↑ otherwise.

In a sense, this is the minimum alteration of the epistemic state consistent with the

principle that one’s new belief state be the set of all most plausible possibilities consistent

with the new information. Boutilier’s “natural operator” (1993) generalizes this operator

to apply to total pre-orders on worlds rather than IAs.8 Spohn (1998) describes an

operator of this kind and rejects it. It doesn’t fare better in terms of reversibility and

commutativity and, in Spohn’s opinion, places too little importance on the data, since the

operator can easily end up admitting possibilities excluded by the information received

at the previous stage.

Spohn recommends, instead, the following kind of operator. As usual, sort the worlds

at each level into those that are refuted by the current evidence and those that are not.

Lower both groups of worlds, preserving distances within the two groups, until the lowest

worlds in each group are at the bottom level. Now raise all of the refuted worlds together

so that the lowest refuted words end up at level α.9 Spohn shows that this rule can be

8Boutilier’s operator is considered in section 0.8 below. Boutilier also considers the problem of updat-

ing on conditionals, which is not addressed in this paper.
9This is actually a special case of Spohn’s proposal. In general, Spohn’s rule updates on a partition

of possible worlds, with a separate α for each cell of the partition. It is assumed that one such α is zero.

Here I present only the special case of binary partitions.
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represented as updating a nonstandard probability measure by Jeffrey’s rule, so long as

there are but countably many possible worlds mapped to each degree of implausibility.

The rule is also shown by Spohn to be both reversible and commutative (if α is understood

to be an adjustable parameter). Nor is it as “extreme” as the preceding rules. But

according to this rule, the implausibility of a refuted world may actually go down when

it is refuted, if α is less than the world’s current implausibility.

Definition 5 (The Jeffrey operator)

(r ∗J,α E)(w) =



r(w|E) if w ∈ dom(r) ∩ E

r(w|W − E) + α if w ∈ dom(r)− E

↑ otherwise.

Goldszmidt and Pearl (1995) and Darwiche and Pear (1996) propose an interesting

modification of Spohn’s Jeffrey conditioning operator. Instead of dropping the refuted

worlds to the bottom level before elevating them by α, the new proposal lifts the refuted

worlds by α from their current position, whatever that might be. Since refuted worlds

cannot backslide from their current position, I refer to this as the “ratchet” method.

Definition 6 (The ratchet operator) Let α be an ordinal.

(r ∗R,α E)(w) =



r(w|E) if w ∈ dom(r) ∩ E

r(w) + α if w ∈ dom(r)− E

↑ otherwise.

Proponents of different belief revision operators have in mind different conceptions of

minimal change and different assessments of the relative importance of minimality as

opposed to other symmetry conditions. Such debates may be irresolvable. My purpose

is to shift the focus of such debates to the relative abilities of the various operators to

generate true, informative beliefs; a natural goal that distinguishes sharply and objectively

between the above proposals.
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0.4 Iterated Implausibility Revision as Inductive In-

quiry

Iterated belief revision involves successive modifications of one’s epistemic state as succes-

sive input propositions are received. Iteration of a belief revision operator over a sequence

of propositions is defined recursively as follows:

r ∗ () = r.

r ∗ (E0, . . . , En, En+1) = (r ∗ (E0, . . . , En)) ∗ En+1.

A belief revision agent starts out with an initial epistemic state r and sequentially updates

her beliefs using a belief revision operator ∗, so we may identify the agent with a a pair

(r, ∗), which I refer to as an implementation of ∗. Such an agent determines a unique map

from finite sequences of input propositions to new belief states as follows:

(r, ∗)((E0, . . . , En)) = b(r ∗ (E0, . . . , En)).

In general, an inductive method is a rule that produces an empirical hypothesis in response

to a finite sequence of input propositions:

f((E0, . . . , En)) = Bn+1.

Inductive methods are the usual objects of learning theoretic analysis. Since an imple-

mentation (r, ∗) of a belief revision operator ∗ is a special kind of inductive method, it is

directly subject to learning theoretic analysis.

0.4.1 Data Streams

Suppose a scientist who uses an inductive method f is faced with the task of studying the

successive outcomes of experiments on some unknown system. We will suppose that the
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outcomes are discretely recognizable, and hence may be encoded by natural numbers.

The data stream generated by the system under study is just an infinite tape on which

the code numbers of the successive outcomes of the experiment are written. The first

datum arrives at stage 0, so a data stream is a total function e defined on the natural

numbers. Let U denote the set of all data streams. An empirical proposition is a subset

of U . In other words, the truth of an empirical proposition supervenes on the actual data

stream.

Consider the scientist’s idealized situation at stage n of inquiry. At that stage, she

observes that the outcome for stage n is e(n) and updates on the empirical proposition

[n, e(n)], which is defined to be the set of all data streams e′ such that e′(n) = e(n). The

initial segment of the data stream scanned by stage n is

e|n = (e(0), . . . , e(n− 1)).

The length of of this sequence is defined to be n:

lh(e(0), . . . , e(n− 1)) = n.

The tail of the data stream remaining to be scanned from stage n is:

n|e = (e(n), e(n + 1), . . .).

By stage n, the scientist updates on the sequence of empirical propositions

[[e|n]] = ([0, e(0)], . . . , [n− 1, e(n− 1)]).

Then her inductive method’s output at stage n is just

f([[e|n]]) = f(([0, e(0)], . . . , [n− 1, e(n− 1)])).

Note that [[e|n]] is not the same thing as the empirical proposition

[e|n] = {e′ ∈ U : e|n is extended by e′},
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which states that the finite outcome sequence e|n has occured. Rather, [e|n] is the in-

tersection of all the propositions [i, e(i)] occurring in the sequence of propositions [[e|n]].

Now that these distinctions are clear, I will simplify notation by writing

f(e|n) = f([[e|n]]).

0.4.2 Empirical Questions

Inquiry has two cognitive aims, seeking truth and avoiding error.10 Seeking truth involves

relief from ignorance. One simple way to specify nontrivial content is to partition pos-

sibilities and to require that the outputs of the method eventually entail the true cell of

this “target” partition. We may think of the partition as an empirical question and the

cells of the partition as the potential answers to the question. Let Θ0 denote the singleton

partition {{e} : e ∈ U}, which corresponds to the hardest empirical question “what is

the complete empirical truth?” and let Θ1 denote the trivial question {U}, answered by

vacuously true beliefs.

0.4.3 Reliability in the Limit

Given an empirical question Θ, one may hope that one’s method is guaranteed to halt with

a correct answer to Θ. But no bell rings when science has found the truth,11 suggesting

the weaker requirement that inquiry eventually stabilize to a correct answer to Θ, perhaps

without ever knowing when it has done so. Then we say that the method identifies an

answer to Θ on e, or that the method identifies Θ on e for short.

It is not enough that a method happen to stabilize to the right answer in the actual

world: scientific success should be more than opinionated luck. Reliability demands that

10William James (1948), (Levi 1981).
11This charming phrase is from William James (1948).
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a method succeed over some broad range K of possible data streams. One may think of

K as the domain of the agent’s initial epistemic state (i.e., the set of worlds that the agent

might possibly admit as serious possibilities in the future). But one may also conceive

of K simply as a range of possibilities over which the method can be shown to succeed,

so that the method is more reliable insofar as K is larger (weaker). When the method

identifies Θ on every data stream in K, we say that it identifies Θ given K. In the special

case when the target partition is Θ0, one may speak simply of identifying K.

Definition 7

1. Method f identifies partition Θ given K just in case for each e ∈ K, for all but

finitely many n, e ∈ f(e|n) ⊆ Θ(e).

2. Method f identifies K just in case f identifies Θ0 given K.

Identification of K requires that inquiry eventually arrive at complete, true beliefs both

about the future and the past. One may weaken this requirement by countenancing in-

correct or incomplete memories of the past, so long as these do not compromise predictive

power. Then it will be said that the method projects K.

Definition 8 Method f projects K just in case for each e in K and for all but finitely

many n, ∅ 6= f(e|n) ⊆ [n|e].

If projection looks forward, we may also look backward and ask if the method’s conjecture

at each stage consistently entails the data received thus far.

Definition 9 Method f remembers K just in case for each e in K, for each n, ∅ 6=

f(e|n) ⊆ [e|n].

Clearly, f identifies K just in case f remembers K and f projects K. Intuitively, it

seems as though perfect memory would only make reliable projection of the future easier.
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But for some of the belief revision operators introduced above, perfect memory prevents

projection, as will be apparent shortly.

0.4.4 Identifiability, Restrictiveness and Completeness

Let M be the set of all inductive methods and let M ′ ⊆ M . Think of M ′ as a a proposed

architecture or restriction on admissible inductive methods. For example, M ′ may reflect

someone’s “intuitive” ideas about rationality (e.g., that f = (r, ∗), for some choice of

r, ∗). Then we may say that partition Θ is identifiable by M ′ given K just in case there

is an f ∈ M ′ such that f identifies Θ given K, and similarly for the identifiability or

projectability of K by M ′. When M ′ = M , the explicit reference to M will be dropped.

Architecture M ′ is inductively complete just in case each identifiable partition Θ is

identified by some method in M ′. Otherwise, M ′ is inductively restrictive, in the sense

that it prevents us from solving inductive problems we could have solved by other means.12

In a similar manner, we may speak of completeness and restrictiveness with respect to

function identification, projection, or memory. Restrictiveness raises serious questions

about the normative standing of a proposed account of rational inquiry, since it seems

that rationality ought to augment rather than inhibit the search for truth.13

The main question before us is whether insistence on a particular belief revision op-

erator * is restrictive (i.e., prevents us from answering inductive questions we could have

answered otherwise). Let M∗ denote the set of all inductive methods that implement the

plausibility revision operator * (i.e., M∗ = {(r, ∗) : r ∈ IA}). I say that * is complete or

restrictive (in any of the above senses) just in case M∗ is.

12The term “restrictiveness” is due to Osherson et al. (1986).
13The principle that restrictiveness calls into qusestion the normative standing of rules of rationality is

enunciated in (James 1948) and (Putnam 1963). This principle motivates much learning theoretic work

(e.g., Osherson et al.1986, Kelly 1996).
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Some of the belief revision operators introduced above are restrictive. But their re-

strictiveness is manifested in a curious way: they are complete with respect to projection

and they are complete with respect to memory, but they are restrictive with respect to

identification. In other words, such operators can be implemented to remember or to

project the future, but cannot be implemented to do both. Such a method will be said to

suffer from inductive amnesia. Inductive amnesia implies that those who don’t want to

repeat history should forget it!

Since restrictiveness is a matter of preventing the solution of solvable learning prob-

lems, it is useful to characterize the set of solvable problems. Identifiability has an elegant

topological characterization. Let K be a collection of data streams. Recall that for finite

sequence ε, [ε] = {e ∈ U : ε is extended by e}. A K-fan is a proposition of form [ε] ∩K.

Then we say S is K-open (or open in K) just in case S a union of K- fans. S is K-closed

just in case K − S is K-open.

Proposition 1 (characterization theorem for partition identification) Let Θ[K]

denote the restriction of partition Θ to K (i.e, {C ∩ K : C ∈ Θ}). Then Θ is iden-

tifiable given K just in case Θ[K] is countable and each cell in Θ[K] is a countable union

of K- closed sets.14

Proof: (Kelly 96). a

The characterization of function identifiability is even simpler:

Proposition 2 (characterization theorem for identification) The following propo-

sitions are equivalent:

1. K is identifiable; 2. K is projectable; 3. K is countable.

Proof: In Appendix I. a
14I.e., each cell is Σ0

2 in the Borel hierarchy over K (Kelly 96).
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Projectability and identifiability are equivalent with respect to the collection of all

possible inductive methods, but not when we restrict attention to methods implementing

an inductively amnestic revision operator *.

0.4.5 Counting Retractions

No scientist likes to retract. The social stigma associated with retraction reflects the

painful choices and costly conceptual retooling that scientific revolutions entail (Kuhn

1970). If partition Θ is identifiable, we can ask whether some method identifies Θ with

an a priori bound n on the number of retractions performed prior to convergence.

Definition 10

1. retractions(f, e) = |{k : f(e|k + 1) 6⊆ f(e|k)}|.

2. Method f identifies K with n retractions just in case f identifies K and for each e

in K, retractions(f, e) ≤ n.

3. The set K is identifiable with n retractions just in case there is a method f such

that f identifies K and for each e in K, retractions(f, e) ≤ n.

Identification with n retractions has a natural characterization in terms of Spohn’s im-

plausibility assignments independently of any choice of operator, a pleasant and revealing

connection between learning theory and belief revision.

Proposition 3 (characterization of n retraction identifiability) Partition Θ is iden-

tifiable given K with at most n retractions just in case there is an r such that rng(r) =

{0, . . . , n}, K ⊆ dom(r), and for each cell C ∈ Θ, for each k ≤ n,

1. C is open (and hence clopen) in r−1(k) and
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2.
⋃k

i=1 r−1(i) is closed in dom(r).

Proof: In Appendix I. a

Data stream e is isolated in S ⊆ U just in case for some n, [e|n] ∩ S ⊂ {e} (i.e., {e}

is open in S).

Proposition 4 (characterization of n retraction function identifiability) The set

K of data streams is identifiable with n retractions just in case there is an r such that

rng(r) = {0, . . . , n}, K ⊆ dom(r) and for each e ∈ K, e is isolated in [e]≤r .

Proof: In Appendix I. a

0.5 Some Diachronic Properties of Implausibility Re-

vision

Three diachronic properties of implausibility revision operators have particular relevance

for reliability considerations. The first requires that the operator always produce new

beliefs consistent with the current datum and the domain of the current IA. All belief

revision theorists insist on this requirement and all the operators under consideration

satisfy it.

Definition 11 (local consistency) The pair (r, ∗) is locally consistent just in case for

all (A1, . . . , An+1) such that dom(r ∗ (A1, . . . , An)) ∩ An+1 6= ∅,

An+1 ∩ b(r ∗ (A1, . . . , An+1)) 6= ∅.

The next property requires preservation of the implausibility ordering among worlds sat-

isfying all the input propositions received so far. This does not entail that the ordinal

distances between such possibilities are preserved (gaps may appear or disappear).
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Definition 12 (positive order-invariance) The pair (r, ∗) is positively order-invariant

just in case for all (A1, . . . , An) such that n > 0, for all w, w′ ∈ dom(r) ∩ A1 ∩ . . . ∩ An,

1. w, w′ ∈ dom(r ∗ (A1, . . . , An)) and

2. r(w) ≤ r(w′) ⇔ (r ∗ (A1, . . . , An))(w) ≤ (r ∗ (A1, . . . , An))(w′).

A stricter property requires preservation of the ordinal distances among worlds consistent

with all the data received so far.

Definition 13 (positive invariance) The pair (r, ∗) is positively invariant just in case

for all (A1, . . . , An) such that n > 0, for all w, w′ ∈ dom(r) ∩ A1 ∩ . . . ∩ An,

1. w, w′ ∈ dom(r ∗ (A1, . . . , An)) and

2. r(w)− r(w′) = (r ∗ (A1, . . . , An))(w)− (r ∗ (A1, . . . , An))(w′).

Local consistency and positive order-invariance say nothing about what to do with worlds

that do not satisfy E. One requirement, reflecting high respect for the data, demands

that each world satisfying E be strictly more plausible than every world failing to satisfy

E. This property goes much farther than the requirement that the updated belief set

b(r ∗E) entail E. It governs the overall implausibility structure concerning even remotely

plausible worlds.

Definition 14 (positive precedence) The pair (r, ∗) is positively precedent just in case

for all (A1, . . . , An), for all w ∈ dom(r)∩A1∩ . . .∩An, for all w′ 6∈ dom(r)∩A1∩ . . .∩An,

1. w′ ∈ dom(r ∗ (A1, . . . , An)) and w′ 6∈ dom(r ∗ (A1, . . . , An)) or

2. w, w′ ∈ dom(r ∗ (A1, . . . , An)) and (r ∗ (A1, . . . , An))(w′) > (r ∗ (A1, . . . , An))(w).
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For each of the properties just defined, we say that ∗ has the property just in case (r, ∗)

has the property, for each IA r.

Local consistency, positive order-invariance and positive precedence are logically in-

dependent. Together, they force a belief revision operator to behave in a manner that

makes a great deal of sense if sufficiently informative truth is the goal of inquiry. Consider

an operator with all three properties. It starts out with a fixed IA r on worlds. Upon

updating on E, positive precedence requires that all the non-E worlds are either weeded

out altogether (they are not even in the domain of (r ∗ E) or are sent to a “safe” place

beyond all the E worlds). By positive order-invariance, the E worlds remain ranked as

they were before (the ordinal intervals between two E-worlds may stretch or contract,

however). By local consistency, the lowest of these E-worlds must drop to the bottom of

the revised IA. As inquiry proceeds, such an operator continues to weed out non-E worlds

and to conjecture the most plausible remaining worlds, according to a fixed implausibility

ranking, so eventually the actual world migrates to the bottom of the ranking and the

operator’s belief state is true forever after. The informativeness of this true belief state

will depend on how informative the individual “levels” r−1(k) of r are at the outset.

In light of the preceding discussion, it is natural to say that (r, ∗) enumerates and

tests just in case (r, ∗) is locally consistent, positively order-invariant, and positively

precedent.15 Then we have:

Proposition 5 If partition Θ is identifiable given K then there exists an r such that

1. rng(r) ⊆ ω and

15This kind of procedure has long been entertained under a variety of headings. In the philosophy

of science it has been referred to as the method of bold conjectures and refutations (Popper 1968) or as

the hypothetico-deductive method (Kemeny 1953, Putnam 1963). In the learning theoretic literature it is

referred to as the enumeration method (Gold 1967).
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2. for each ∗ such that (r, ∗) enumerates and tests, (r, ∗) identifies Θ given K.

Proof: In Appendix II. a

Now suppose that (r, ∗) is locally consistent and positively order-invariant but does

not satisfy positive precedence. Then the method still maintains a fixed ranking of im-

plausibility over the E worlds, but some non-E world w may fail to rise above all the E

worlds. Hence, it is possible for them to return, eventually, to the bottom of the ranking

as inquiry continues. When this happens, the belief state of the agent no longer entails

E, so E is “forgotten”. It is not difficult to choose particular initial epistemic states that

lead such a method to forget. Inductive amnesia is the much less trivial situation in which

every initial epistemic state that ensures that the method reliably predicts the future also

causes it to forget some past datum.

Although ∗R,n does not satisfy positive precedence, it satisfies a weakened version of

positive precedence. To define the property, first define the difference set of all positions

on which two data streams differ:

∆(e, e′) = {i ∈ ω : e(i) 6= e′(i)}.

Then define Hamming distance to be the size of the difference set.

ρ(e, e′) = |∆(e, e′)|.

Finally, define restricted Hamming distance as the number of positions up to k at which

two data streams differ:

ρk(e, e
′) = |∆(e, e′) ∩ {0, . . . , k − 1}|.

Now we have:

Proposition 6 (climbing lemma) Suppose r(e), r(e′), n are finite. Then

(r ∗R,n [[e|k]])(e)− (r ∗R,n [[e|k]])(e′) ≤ (r(e)− r(e′))− nρk(e, e
′).
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Proof: By induction on ρk(e, e
′). a

The operator ∗J,n lacks this property because possibilities may backslide upon refuta-

tion, making its convergent behavior much more difficult to analyze.

The following properties, like local consistency, are axioms of the AGM theory of

belief revision (Gärdenfors 88) and are satisfied by all the belief revision operators under

consideration.

Definition 15 (timidity and stubbornness) The pair (r, ∗) is timid [stubborn] just in

case for each (A1, . . . , An+m) such that (An+1 ∩ . . . ∩ An+m) ∩ b(r ∗ (A1, . . . , An)) 6= ∅,

b(r ∗ (A1, . . . , An)) ∩ (An+1 ∩ . . . ∩ An+m) ⊆ [⊇]b(r ∗ (A1, . . . , An+m)).

A timid method refuses to draw conclusions that go beyond the data unless its current

belief state is refuted. A stubborn method retains its current beliefs until they are refuted.

Together, these properties force full belief to evolve by mere accretion (according to the

standard Bayesian approach) until one’s full beliefs are refuted by new information. All

enumerate-and-test operators are timid and stubborn16 and are also complete inductive

architectures (proposition 5), which provides something of a reliabilist motivation for

timidity and stubbornness. But when positive precedence is dropped in favor of a more

“minimal” conception of epistemic change, timidity and stubbornness assume a more

sinister aspect, serving a pivotal role in each of the negative arguments presented below.17

Proposition 7 Table I in figure 1 specifies which of the above properties hold of the

16Positive invariance keeps unrefuted worlds at the bottom of the ranking below all other non-refuted

worlds. Positive precedence sends all refuted worlds permanently above the non-refuted worlds. And

local consistency ensures that the lowest of the non-refuted worlds stay down, so we have timidity and

stubbornness.
17This observation raises the very interesting question whether belief revision theorists should be so

keen to preserve the accretive, Bayesian image of inquiry when the belief state is not refuted.
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Table I C L R,α J, α A, α M

pos. order-invariance yes yes yes yes yes yes

pos. invariance yes yes yes yes yes no

local consistency yes yes yes yes yes yes

positive precedence yes yes no no no no

timidity yes yes yes yes yes yes

stubbornness yes yes yes yes yes yes

Table II C L R,α J, α A, α M

positive precedence yes yes yes yes yes no

Figure 1: Proposition 7

operators under consideration regardless of the choice of r and of α. Table II in figure 1

summarizes the changes in the first table when it is assumed that α ≥ rabove(dom(r)).

Proof: Induction on the stage of inquiry and some simple examples. a

0.5.1 Inductive Completeness Theorems

The following completeness result follows immediately from propositions 5 and 7 above.

Proposition 8 (complete partition identification operators) If partition Θ is iden-

tifiable given K, then ∗C , ∗L, ∗B, ∗R,ω, ∗J,ω, ∗A,ω can identify Θ given K.

The next result concerns operators that are complete architectures for identification with n

retractions. Recall that problems solvable with n retractions can be packed into an initial

epistemic state whose highest level is n (proposition 3). Operators ∗A,n+1, ∗C , ∗L, ∗R,n+1,

and ∗J,n+1 safely launch refuted worlds above all non-refuted worlds in such an ordering.

22



Since the truth drops at least one level at each retraction, convergence occurs by the nth

retraction.

Proposition 9 (n retraction completeness for partitions) If partition Θ is identi-

fiable given K with at most n retractions, then ∗C , ∗L, ∗R,n+1, ∗J,n+1, ∗A,n+1 can identify Θ

given K with at most n retractions.

Proof: In Appendix II. a

The following results concern the narrower problem of function identification.

Proposition 10 (complete function identification operators) If K is identifiable

(i.e., projectable) then

1. K is identifiable by ∗C, ∗L, ∗J,ω, ∗A,ω, ∗R,2, and

2. K is projectable by ∗R,1, ∗J,1.

Proof: In Appendix II. a

Most of these equivalences follow from the preceding proposition and concern operators

that boost refuted possibilities above all “live” possibilities. A surprising exception is the

fact that ∗R,2 is a complete function identification architecture.18 To prove completeness,

one must construct, for each K, an epistemic state r such that (r, ∗R,2) identifies K. By

way of illustration, here is how it can be done in the special case in which all elements of

K are finite variants of one another. Given a fixed data stream e0 we can construct an

epistemic state

rH
e0

(e) = ρ(e0, e)

on K, where it will be recalled that ρ(e0, e) is the Hamming distance between e0 and e,

which is just the number of positions i such that e0(i) 6= e(i). This “Hamming” state has

18It is left open whether this can be extended to the case of partition identification.
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the nice property that a data stream e′ that is k steps below the true data stream e differs

from e in at least k positions. When α = 2, e′ moves up with respect to e at least two

steps each time one of the k differences between e and e′ is seen, so e′ ends up at least

one step above e after all of these positions have been observed. The full completeness

theorem is proved by means of a generalization of this construction.

0.6 The Grue Hierarchy

To show that a methodological recommendation restricts reliability, one must find an

otherwise solvable problem that the recommended method fails to solve, no matter how

its initial epistemic state is arranged. This end is served admirably by an unfamiliar

application of a familiar idea due to the philosopher Nelson Goodman (1983).19 Let

0 represent a “green” outcome and let 1 represent a “blue” outcome. Then a “gruen”

outcome is either a green outcome by stage n or a blue outcome after stage n. The

everywhere green data stream is the everywhere 0 sequence and the everywhere gruen

sequence is a sequence of n 0s followed by all 1s. More generally, let ¬b denote the

Boolean complement of b. Let B denote the set of all Boolean-valued data streams. Then

if e ∈ B, let ¬e denote the outcome stream in which each outcome occurring in e is

reversed (i.e., (¬e)(n) = ¬e(n)). Now define the grue operation as follows:

e ‡ n = (e|n)¬(n|e).

In other words, (e ‡ n)(i) = e(i) if i < n and = ¬e(i) otherwise.

19Goodman was not interested in constructing unsolvable inductive problems. His purpose was to show

that the constancy of the data stream is not preserved under translation (from the “green” to the “grue”

language), and hence that no purely logical theory of scientific confirmation can underwrite a bias in

credibility for constant data streams.
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Grue operations are commutative:20

(e ‡ n) ‡m = (e ‡m) ‡ n.

Also, gruing twice in the same place yields the original data stream. Hence, each composed

grue operation can be represented by the set S of positions that have grue operations

applied an odd number of times. Let e ‡ S denote the (unique) data stream that results

from applying, in any order, any odd number of grue operations at positions in S and any

even number of grue operations (possibly zero) at all other positions.

Now given K ⊆ B, we can define a hierarchy of ever more complex inductive problems

as follows:

Definition 16 (The Grue Hierarchy) Let K ⊆ B.

1. gn(K) = {e ‡ S : |S| = n and e ∈ K}.

2. Gn(K) =
⋃

i≤n gn(K).

3. Gω(K) =
⋃

i<ω gn(K).

The even grue hierarchy Gn
even(K) is defined similarly, except that (1) is replaced with:

gn
even(K) = {e ‡ S : |S| = 2n and e ∈ K}.

The distinction between the even and the full grue hierarchies is important for some of the

belief revision operators under consideration, but it makes no difference to identifiability

when no extra constraints are imposed on the scientist’s inductive method:

Proposition 11 For all n ∈ ω, e0 ∈ B,

20Let G denote the closure under composition of the set of grue all functions: {(. ‡ k) : k ∈ ω}. Then

(G, ◦) is an Abelian group in which each element is its own inverse.
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1. Gn(e0), G
n
even(e0) are identifiable with n retractions but not with n− 1 retractions.

2. Gω(e0), G
ω
even(e0) are identifiable but not under any fixed bound on the number of

retractions performed.

Proof: In Appendix I. a

0.7 The Main Result

The following proposition determines exactly which problems in the grue hierarchy and

in the even grue hierarchy each of the operators under consideration can solve.

Proposition 12 (The grue scale) The table in figure 2 specifies which problems in the

grue and even grue hierarchies generated from an arbitrary e0 each of the operators under

consideration can identify. The classifications are optimal, in the sense that no lower

value of α than the one reported suffices for identification of the corresponding problem.

Proof: Propositions 10 and 17 in Appendix II, proposition 20 in Appendix III, and

propositions 27, 28, 29, and 30 in Appendix IV. a

Most of the positive results in the table follow from more general completeness results

already discussed. Noteworthy exceptions are the abilities of ∗J,1 and ∗R,1 to identify

Gω
even(e0). This contrasts markedly with the situation in the full grue hierarchy, in which

these operators all fail by level three. The situation is quite different for ∗M and ∗A,n,

which see no improvement in the even grue hierarchy (proposition 28.2). The problem

Gω
even(e0) is just the set of all finite variants of a given data stream e0. The evolution of

∗J,1 and of ∗R,1 in this problem can be pictured as follows. Suppose the method starts

out with an initial epistemic state ranking each data stream according to its Hamming

distance from a given data stream e0. Suppose e is the truth. Then the set of data streams

26



problem M A, α J,α R,α L C

Gω(e0) no α = ω α = 2 α = 2 yes yes

...
...

...
...

...
...

...

Gn(e0) no α = n + 1 α = 2 α = 2 yes yes

...
...

...
...

...
...

...

G2(e0) no α = 3 α = 2 α = 2 yes yes

G1(e0) no α = 2 α = 2 α = 1 yes yes

G0(e0) yes α = 0 α = 0 α = 0 yes yes

Gω
even(e0) no α = ω α = 1 α = 1 yes yes

...
...

...
...

...
...

...

Gn
even(e0) no α = n + 1 α = 1 α = 1 yes yes

...
...

...
...

...
...

...

G2
even(e0) no α = 3 α = 1 α = 1 yes yes

G1
even(e0) no α = 2 α = 1 α = 1 yes yes

G0
even(e0) yes α = 0 α = 0 α = 0 yes yes

Figure 2: Proposition 12
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rotation.eps

Figure 3: Learning as hypercube rotation

differing from e0 only where e0 differs from e may be viewed as a finite dimensional hyper-

cube whose dimensionality matches the total number of differences between e0 and e (cf.

the upper part of fig. 3). Think of this hypercube as resting balanced on the vertex

labelled with e0. To find the initial implausibility of a vertex, find the shortest path from

the bottom of the cube to that vertex. It is shown (proposition 30) that the sequential

operation of both ∗J,1 and ∗R,1 can be viewed as the rigid rotation of the hypercube from

one vertex to another on a direct path to the true (originally uppermost) vertex e. After

e is rotated to the bottom, the rotation stops and the method has converged to the truth!

The pleasing image of learning as rigid hypercube rotation cannot be extended to the

full grue hierarchy. Indeed, no matter where we insert the single data stream ¬e0 into the

restriction of the Hamming ranking to G2
even(e0), ∗J,α fails even when α = 2.

Proposition 13 For each r ⊇ rH
e0
|G2

even, (r, ∗J,2) does not identify G2
even(e0) ∪ {¬e0}.

Proof: Appendix III. a

By way of illustration, consider how the hypercube’s rotation is spoiled in the special

case in which α = 1. If we insert ¬e0 into an infinite level of the Hamming ranking, then

by positive invariance, it never falls the infinite distance to the bottom of the ranking,

since the infinitely many elements of G1(e0) occurring lower than ¬e0 are never all refuted.

So suppose we insert ¬e0 at a finite level. Then ¬e0 is below some other data stream e

agreeing with ¬e0 as far as we please. If e happens to be the truth, then the cube rotates

as usual until ¬e0 arrives at the bottom, along with some vertex e′. By timidity and

stubbornness, ¬e0 remains at the bottom until it is seen to disagree with e. During this
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time, e′ will be refuted and will rise one step along with all the nodes that disagree with e at

the currently observed position. Since ¬e0 still remains at the bottom, positive invariance

prevents e and the data streams agreeing with e at the currently scanned position from

dropping. Thus, instead of fully rotating onto a new vertex, the cube partially tips up

so that an edge is parallel to the floor (cf. the lower part of fig. 3). This carries some

currently refuted unit variant v of e up, just even with e. Since v never again differs from

e (its single difference from e has already been used up), no future data will ever drop e

below v. So if the method succeeds in lowering e to the bottom, it will also lower v to the

bottom, and hence will have forever forgotten the datum refuting v.

By proposition 13, the initial state ∗J,2 employs to identify Gω(e0) cannot be an ex-

tension of the Hamming ranking over Gω
even(e0). Instead I employ a ranking based on

grue distance, or the number of grue operations required to transform one data stream

into another (cf. Appendix III).21 Define the grue set for two data streams as follows:

Γ(e, e′) = {n ∈ ω : [n = 0∧e(n) 6= e′(n)]∨[n > 0∧¬(e(n−1) = e′(n−1) ⇔ e(n) = e′(n))]}.

The terminology is justified by the following fact.

Proposition 14 Γ(e, e′) is the least S ⊆ ω such that e′ can be obtained from e by applying

grue operations only at positions in S.

Proof: Omitted. a

Now define the grue distance on B as follows:

γ(e, e′) = |Γ(e, e′)|.
21This idea is familiar in computer science as a way to compress image files. Instead of recording the

intensity of each pixel separately, one records the places at which intensity changes, which saves space if

many adjacent pixels have the same intensity.
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In light of the preceding proposition, grue distance is the least number of grue operations

required to transform e into e′. It is readily verified that grue distance is an extended

metric over B. The initial epistemic state on B induced by grue distance from e0 is just:

rG
e0

= γ(e0, e
′).

For an algebraic perspective on the relationship between rG
e0

and rH
e0

, define the Hamming

and grue orders as follows (figure 0.7):

1. e′ ≤e0
G e′′ ⇔ Γ(e0, e

′) ⊆ Γ(e0, e
′′).

2. e′ ≤e0
H e′′ ⇔ ∆(e0, e

′) ⊆ ∆(e0, e
′′).

These orderings are isomorphic copies of the inclusion ordering on the power set of ω

and hence are isomorphic Boolean algebras, but they label this structure very differently

(e.g., adjacent elements of the grue algebra are complements in the Hamming algebra).

Moreover, by proposition 14, Gω(e0) is the union of the finite levels of rG
e0

, whereas the

union of the finite levels of rH
e0

, is just Gω
even(e0).

The method (rG
e0

, ∗J,2) identifies Gω(e0) in an intuitively attractive manner. It starts

out assuming that the true data stream is e0. When it encounters a surprise at stage

n, it then assumes that the true data stream is e0 ‡ n, and so forth, adding successive

grue operations to e0 only when the data require them (propositions 20.2 and 19). Recall

that ∗J,2 has the objectionable property that a possibility can become more plausible

when it is refuted if only very implausible worlds are refuted by the current datum.

The implausibility assignment based on grue distance prevents this possibility from ever

occurring over possibilities in Gω
even. This assignment has the property that, at each

stage prior to convergence, a highly plausible (degree 0 or 1) possibility is refuted. Since

α = 2, all refuted possibilities are pushed up at least one step by ∗J,2. When α < 2,
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refuted possibilities do not rise when the agent’s current beliefs are not refuted, so the

same argument does not work and in fact cannot be made to work since even the very

easy problem G1(e0) is not identifiable by ∗J,1.

Turning to the negative results, it is remarkable that ∗M , ∗J,1 and ∗A,1 cannot even

identify G1(e0) (proposition 28), and hence cannot cope with the possibility of even a

single reversal in the data stream! Operator ∗R,1 survives just one level higher, failing

on G2(e0) (proposition 27). Operator ∗A,α compares unfavorably with ∗J,α and ∗R,α,

because ∗A,n+1 fails on Gn+1(e0), for each n, whereas ∗J,2 and ∗R,2 succeed on Gω(e0). By

proposition 11, Gn(e0) can be solved with just n retractions by the obvious method that

starts out conjecturing e0 and that refuses to believe in grue operations until they are

observed. The negative results imply that this sensible behavior cannot be obtained from

∗M , ∗J,1 or ∗A,1, no matter how cleverly the initial epistemic state is arranged.

By the following proposition, nearly all of the negative results in the table are examples

of inductive amnesia.

Proposition 15 Let e0 ∈ B.

1. All of the operators under consideration can remember the past.

2. All of the operators under consideration can project Gω(e0) so long as α > 0. Among

these, only M fails to be a complete projector.

Proof: propositions 18, 20, and 10. a

Inductive amnesia illustrates a fundamental, epistemic dilemma for iterated belief

revision operators. Recall that belief revision theory can be stretched in two directions.

Lumping all possible worlds together at one level of implausibility makes a belief revision

agent behave like an accretive tabula rasa that takes no inductive risks and never has

its beliefs contradicted so long as the successive data are mutually consistent. Spreading
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worlds out at distinct levels of implausibility makes belief revision look more like Popper’s

methodology of bold conjectures and refutations. The former extreme secures perfect

memory at the price of refusing to predict the future, whereas the latter guarantees

convergence to correct predictions at the price of possibly forgetting the past when α is

low. A crucial epistemological question for belief revision theory is therefore to find the

least α for which these competing demands are jointly satisfiable for a given empirical

problem. Perhaps the most striking result of this investigation is that the operators ∗J,α

and ∗R,α enjoy an infinite jump in reliability when α is incremented from one to two. For

α ≥ 2, the methods succeed over the entire, infinite, grue hierarchy. For α < 2, neither

can cope with more than two grue operations.

0.8 Dropping Well-ordering

So far, it has been assumed that epistemic states well-order the possible worlds in their

domains, since epistemic states assume ordinal values. This assumption is not generally

accepted in the belief revision community, and it is centrally involved in the proof that

∗M fails on the easy problems G1
even(e0) and G1(e0). Since ∗M has a straightforward

extension to a wide class of non-well-ordered epistemic states (Boutilier 94), we should

examine whether its modest learning abilities improve in this more general formulation.

Let R = (D,≤) be a totally ordered set. Let min(R,E) denote the set of all minimial

elements of E ∩D. For present purposes, an epistemic state is a total order R = (D,≤)

such that D ⊆ U and for each proposition E ∈ {U}∪{[i, k] : i, k ∈ ω}, min(R, E) 6= ∅. In

other words, an epistemic state is a total order on data streams that has a least element

and in which each observation of an outcome (consistent with the domain of the order)

has a least element. The associated belief state of R is given by b(R) = min(R,U). Upon
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receiving new information [i, k], ∗M updates the epistemic state R1 = (D1, <1) producing

a new state R2 = (D2, <2), such that

1. min(R2, U) = min(R1, [i, k]) (which is nonempty) and

2. for all e, e′ ∈ D1− min(R1, [i, k]), e ≤2 e′ ⇔ e ≤1 e′.

In other words, ∗M brings min(R1, [i, k]) to the bottom of the new state and rigidly raises

all the rest of the worlds so that the lowest are immediately above min(R1, [i, k]) in the

revised ordering. An inductive method implementing ∗M is a pair of form (R, ∗M). Now

we have:

Proposition 16 Generalize ∗M and epistemic states as just described. Then:

1. G1(e0), G
1
even(e0) are identifiable by ∗M .

2. G2(e0), G
2
even(e0) are not identifiable by ∗M .

Proof: in Appendix IV. a

So the learning power of ∗M improves slightly in the more general setting in which the

well-ordering assumption is dropped. This result illustrates how learning theoretic analysis

can be employed to criticize controversial assumptions about the nature of epistemic

states.

The well-ordering assumption is also involved in the negative results concerning ∗A,n,22

∗J,1, and ∗R,1. But these operators were originally defined only on ordinal-valued epistemic

states (Goldszmidt and Pearl 94; Darwiche and Pearl 97; Spohn 88), and it is unclear

how they should be extended to arbitrary, totally ordered states.23

22Ordinal-valued implausibilities are required for the proofs of propositions 24 and 26.
23If, more modestly, degrees of implausibility are taken to be numbers in a non-well-ordered system

(e.g., rationals, reals, or nonstandard reals) then all of these operators are enumerate-and-test operators
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0.9 Conclusion

The normative principles of belief revision theory have been motivated by intuition, coher-

ence, and symmetry considerations. The natural question whether following such a rule

would help or hinder the formulation of informative, true beliefs has largely been ignored.

Once this question is entertained, interesting and unanticipated issues emerge, such as (i)

inductive amnesia, (ii) the essential tension between compression and rarefaction in the

epistemic state, (iii) the pivotal significance of the value α = 2 for the resolution of this

tension, (iv) the idea of generating epistemic states from operations on data streams or

as ranks in Boolean algebras, (v) the utility of grue distance for improving the reliability

of belief revision operators, (vi) the appealing portrayal of induction as rigid rotation of a

hypercube, (vii) the image of tail reversals in data streams “derailing” this rotation and

(viii) the relevance for reliability of well-ordered degrees of implausibility. These issues

are not drawn from a priori intuitions. They are rigorously derivable from the straightfor-

ward aim of reliably arriving at sufficiently informative truths from increasing empirical

data. As such, they can serve as well- motivated constraints on theories of rational belief

revision.

The results of this study should be expanded and generalized. It is left open, for

example, whether ∗J,2 and ∗R,2 are complete architectures for partition identification. The

rest of the results could be cast in more general settings, in which the order of the data

may be scrambled, experimental acts may be performed, meaning shifts are possible, and

so forth.24 But even the simplified, narrow setting of the present study illustrates how a

if the domain of the initial epistemic state is confined to the [0, 1) interval, and hence are empirically

complete (proposition 5).
24(Kelly 1996) provides illustrations of how such generalizations might proceed. Osherson and Martin

(1995, 1996) develop a reliability analysis of belief revision operators using logical languages.
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systematic logical analysis founded on the aim of finding true, informative beliefs can serve

as a powerful and interesting constraint on belief revision theorizing; a constraint that, it

is hoped, will become as familiar to belief revision theorists as the usual representation

and equivalence results are today.
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0.12 Appendix I: Proofs of Characterization Theo-

rems

Proof of proposition 2 1 ⇒ 3 follows from proposition 1. 3 ⇒ 1: Suppose K is

countable. Then Θ0[K] has countably many cells. Moreover, each cell {e} ∈ Θ0[K] is

K-closed, since U −{e} =
⋃{[ε] : ε 6⊂ e}. Hence, by proposition 8, Θ0 is identifiable given

K, so K is identifiable.

Proof of 1 ⇒ 2. Immedate. 2 ⇒ 1. Suppose that method f projects K. Now define

method g, which identifies K, as follows.

g(ε) =


[ε] ∩ [lh(ε)|e] if ∃e, ∅ 6= f(ε) ⊆ [lh(ε)|e]

{e′} otherwise,

where e′ is an arbitrary element of [ε].a

Proof of proposition 3 (⇒) Suppose (i) f identifies Θ given K with n retractions. Define

for each e ∈ K: (ii) r(e) = k ⇔ retractions(f, e) = k. Thus, (iii) rng(r) = {0, . . . , n}

and K = dom(r). Let C ∈ Θ. (1) Suppose for reductio that C is not open in r−1(k).
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Then some e ∈ K ∩ r−1(k) ∩ C is a limit point of K ∩ r−1(k) − C. So for each i there

is an ei ∈ r−1(k) − C such that ei|i = e|i. Let w = the least m, such that for all

m′ ≥ m, f(e|m′) = f(e|m), so by statement i above, f(e|w) ⊆ C and by ii, f uses a full k

retractions along e by stage w. But since ew /∈ C and ew|w = e|w, there is a w′ > w such

that f(ew|w) ⊆ C but f(ew|w′) ⊆ K − C. Hence, f performs more than k retractions

along ew. Contradiction. So (iv) C is open in r−1(k).

(2) Define: G = {ε ∈ ω<ω : f performs at least k + 1 retractions by the end of ε}.

Then
⋃k

i=1 r−1(i) = {e ∈ dom(r) : retractions(f, e) ≤ k} = K−⋃{[ε] : ε ∈ G}. Hence, (v)⋃k
i=1 r−1(i) is closed in dom(r). The proposition is established by iii, iv and v.

(⇐) Deferred to proposition 9. a

Proof of proposition 4 (⇒) Let r be as guaranteed by proposition 3. Let e ∈ K. So

there exists a k ≤ n such that r(e) = k. Since {e} is open in r−1(k), ∃n∀m ≥ n, [e|m] ∩

r−1(k) = {e}. Also,
⋃k−1

i=1 r−1(i) is closed in dom(r). So ∃n′∀m ≥ n′, [e|m]∩⋃k−1
i=1 r−1(i) =

∅. So ∀m ≥ max(n, n′), [e|m] ∩ ⋃k
i=1 r−1(i) = {e}. Hence e is isolated in [e]≤r .

(⇐) Deferred to proposition 9. a

Proof of proposition 11 Proof of (1). For the Gn(e0) case, let r−1(i) = Gi(e0), for each

i ≤ n. For the Gn
even(e0) case, let r−1(i) = Gi

even(e0). Observe that for each e ∈ r−1(i),

{e} is isolated in [e]≤r and apply proposition 4.

For the negative claim, assume for reductio that g succeeds on Gn+1(e0) with n mind-

changes. Feed to g data drawn from e0 until a stage k0 is reached at which g outputs {e0},

which g must do since e0 ∈ Gn(e0). Then proceed by feeding e1 = e0 ‡ k until g outputs

{e1}. This procedure can be continued until n+1 grue operations have been applied. But

then n+1 retractions are perfomed by g on the resulting data stream en+1. Contradiction.

The negative argument for Gn
even(e0) is similar except that we let ei+1 = (ei ‡ k) ‡ k + 1.
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Proof of (2). The following method identifies Gω(e0): enumerate the whole set and

output the first data stream in the set that is consistent with the finite outcome sequence

ε seen so far. The negative claim follows from part (1). a

0.13 Appendix II: Completeness Proofs

Proposition 17 For each e, {e} is identifiable with 0 retractions by ∗M , ∗A,0, ∗J,0, ∗R,0.

Proof: Choose r so that dom(r) = {e} and r(e) = 0. a

Proposition 18 Let e0 ∈ B. ∗M can project Gω(e0).

Proof: Let dom(r) = {e0,¬e0}, let r−1(0) = {e0} and let r−1(1) = {¬e0}. If e ∈ Gω(e0),

then e is a finite variant of either e0 or ¬e0. It is easy to check that (r, ∗M) succeeds. a

Proof of proposition 5 Suppose Θ is identifiable given K. By proposition 1, we may

suppose that for each cell Cj ∈ Θ[K], there exists a countable union Bj =
⋃∞

i Sj
i of K-

closed sets such that Bj ∩K = Cj ∩K. Enumerate {Sj
i ∩K : i, j ∈ ω} as R0, . . . , Rn, . . ..

Define (i) r(e) = (µi)(e ∈ R′
i). Evidently, rng(r) ⊆ ω. Let ∗ be such that (r, ∗) enumerates

and tests. Hence, (r, ∗) is locally consistent, positively invariant, and satisfies positive

precedence. It remains to show that (r, ∗) identifies Θ given K. Let e ∈ K. Since the Ri

cover K, r(e) is defined and e ∈ Rr(e). Since each Ri is K-closed, so is [e]<r =
⋃r(e)−1

i=0 Ri. So

U− [e]<r is K-open. So there is a set S of finite sequences such that K− [e]<r = K∩⋃
ε∈S[ε].

Since e ∈ K − [e]<r , there is a k such that e|k ∈ S. So since dom(r) = K, we have for

each k′ ≥ k, (ii) [e]<r ∩ [e|k′] = ∅. By ii and positive precedence, we have that e ∈

dom(r ∗ [[e|k′]]) and for each e′ ∈ [e]<r , (iii) either e′ 6∈ dom(r ∗ [[e|k′]]) or (r ∗ [[e|k′]])(e) <

(r ∗ [[e|k′]])(e′). Since e ∈ [e|k′], we have by positive order-invariance that for each e′′ ∈

dom(r ∗ [[e|k′]])− [e]<r , (iv) (r ∗ [[e|k′]])(e) ≤ (r ∗ [[e|k′]])(e′′). But by local consistency, (v)
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(r ∗ [[e|k′]])−1(0) 6= ∅. By iii-v, we have (vi) e ∈ b(r ∗ [[e|k′]]) = (r, ∗)(e|k′). Let C be the

cell of Θ to which e belongs. It remains only to establish that (vii) b(r ∗ [[e|k′]]) ⊆ C. Let

e′ ∈ dom(r)− C. Then e′ /∈ Rr(e) ⊆ C, so (viii) r(e) 6= r(e′).

Case I. Suppose e′ /∈ [e|k′]. Then by positive precedence, either e′ 6∈ dom(r ∗ [[e|k′]])

or (r ∗ [[e|k′]])(e) < (r ∗ [[e|k′]])(e′). Thus, e′ /∈ b(r ∗ [[e|k′]]).

Case II. Suppose e′ ∈ [e|k′]. Then by ii, and viii, r(e) > r(e′). By positive invariance,

(r ∗CL [[e|k′]])(e′) > (r ∗CL [[e|k′]])(e), so again e′ /∈ b(r ∗ [[e|k′]]). a

Proof of proposition 9 Suppose Θ is identifiable given K with at most n retractions.

Then by proposition 3, there exists an r such that (i) rng(r) ⊆ {0, . . . n} and (ii) K ⊆

dom(r) and for each cell C ∈ Θ, for each k ≤ n, (iii) C is open (and hence clopen) in

r−1(k) and (iv)
⋃k

i=1 r−1(i) is K-closed. Let ∗ range over ∗C , ∗L, ∗R,k+1, ∗J,k+1, ∗A,k+1. By

i, k + 1 ≥ rabove(dom(r)), so by proposition 7, * generates and tests. So by proposition

5, (r, ∗) identifies Θ given K.

Let e ∈ K. It remains to show that each of these operators performs at most k

retractions along e when started out on r. Suppose that (r, ∗)(e|k) 6⊆ (r, ∗)(e|k+1). Then

b(r ∗ [[e|k + 1]]) 6⊆ b(r ∗ [[e|k]]). So there exists an e′ such that (v) (r ∗ [[e|k + 1]])(e′) = 0

but (r ∗ [[e|k]])(e′) 6= 0. So by the definition of ∗, (r ∗ [[e|k]])(e′|[k, e(k)]) = 0. So (vi)

−min{(r ∗ [[e|k]])(e′′) : e′′ ∈ dom(r ∗ [[e|k]])∩ [k, e(k)]}+ (r ∗ [[e|k]])(e′) = 0. By v and vi,

min{(r ∗ [[e|k]])(e′′) : e′′ ∈ dom(r ∗ [[e|k]]) ∩ [k, e(k)]} > 0. Hence, −min{(r ∗ [[e|k]])(e′′) :

e′′ ∈ dom(r ∗ [[e|k]]) ∩ [k, e(k)]} + (r ∗ [[e|k]])(e) < (r ∗ [[e|k]])(e), so (r ∗ [[e|k + 1]])(e) <

(r ∗ [[e|k]])(e). So we have that for each k such that (r, ∗)(e|k) 6⊆ (r, ∗)(e|k +1), (r ∗ [[e|k +

1]])(e) < (r ∗ [[e|k]])(e). But by hypothesis, r(e) ≤ n. Hence, (r, ∗) performs at most n

retractions along e. a

Proof of proposition 10 The ∗C , ∗L, ∗J,ω, ∗A,ω cases are instances of proposition 8.
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The equivalence of identifiability and projectability is due to proposition 2.

Proof that operator ∗J,1 is a complete projection architecture. Let ∗ = ∗J,1. Let K

be projectable. Then K is countable. Enumerate K as e0, e1, . . .. Let r−1(i) = {ei}. Let

e ∈ K, so for some i, e = ei. First it is established that: (i) ∀n∀i, (r ∗J,1 [[e|n]])−1(i) is

finite. This is evident by the definition of r when n = 0. Suppose statement i holds up to

n. Let m = min{(r∗ [[e|n]])(e′) : e′ ∈ dom(r∗ [[e|n]])∧e′ ∈ [n, e(n)]} and let m′ = min{(r∗

[[e|n]])(e′) : e′ ∈ dom(r∗[[e|n]])∧e′ ∈ U−[n, e(n)]}. Then by the definition of ∗, we have (r∗

[[e|n+1]])−1(i) = ([n, e(n)]∩(r∗[[e|n]])−1(m+i))∪((U−[n, e(n)])∩(r∗[[e|n]])−1(m′+i−1)),

under the convention that (r ∗ [[e|n]])−1(z) = ∅ if z < 0. This set is finite by the induction

hypothesis. So we have statement i. Next, we establish (ii) if b(r ∗ [[e|n]]) ∩ [n, e(n)] = ∅

then (r ∗ [[e|n + 1]])(e) ≤ (r ∗ [[e|n]])(e) − 1. For suppose b(r ∗ [[e|n]]) ∩ [n, e(n)] = ∅.

Then since e ∈ [n, e(n)], we have (r ∗ [[e|n + 1]])(e) = −min{(r ∗ [[e|n]])(e′) : e′ ∈

dom(r ∗ [[e|n]])∩ [n, e(n)]}+(r ∗ [[e|n]])(e) ≤ −1+ (r ∗ [[e|n]])(e). So we have ii. Next we

establish: (iii) if ∀e′ ∈ b(r ∗ [[e|n]]), n|e′ 6= n|e, then ∃m ≥ n, b(r ∗ [[e|m]])∩ [m, e(m)] = ∅.

For suppose that for all e′ ∈ b(r ∗ [[e|n]]), n|e′ 6= n|e. Suppose for reductio that for all

m ≥ n, b(r ∗ [[e|m]])∩ [m, e(m)] 6= ∅. Then by timidity and stubbornness (proposition 7),

(iv) ∀m ≥ n, b(r ∗ [[e|m]]) = b(r ∗ [[e|n]]) ∩ [n, e(n)] ∩ . . . ∩ [m− 1, e(m− 1)]. b(r ∗ [[e|n]])

is finite by statement i. So by the hypothesis of iii, there exists an m′ ≥ n such that

b(r ∗ [[e|n]])∩ [n, e(n)]∩ . . .∩ [m−1, e(m−1)] = ∅. By iv, b(r ∗ [[e|m′]]) = ∅, contradicting

local consistency and establishing iii. Next we need (v) if ∃e′ ∈ b(r ∗ [[e|n]]) such that

n|e′ = n|e, then ∃m ≥ n such that b(r ∗ [[e|m]]) = {e′′ ∈ b(r ∗ [[e|n]]) : m|e′′ = m|e}.

For by i, there is an m ≥ n such that b(r ∗ [[e|n]]) ∩ [n, e(n)] ∩ . . . ∩ [m − 1, e(m − 1)] =

{e′′ ∈ b(r ∗ [[e|m]]) : m|e = m|e′′}. But by timidity and stubbornness, b(r ∗ [[e|m]]) =

b(r ∗ [[e|n]]) ∩ [n, e(n)] ∩ . . . ∩ [m − 1, e(m − 1)], establishing v. Finally, it is shown that

(vi) if ∀e′ ∈ b(r ∗ [[e|n]]), n|e′ = n|e, then ∀m ≥ n, b(r ∗ [[e|m]]) = b(r ∗ [[e|n]]). For by
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local consistency, b(r ∗ [[e|n]]) 6= ∅. So by timidity and stubbornness, (iv) holds at each

stage m ≥ n, yielding vi.

Consider the following procedure: Start out at stage 0 with r and let n0 = 0. At

stage k, if b(r) contains no e′ such that nk|e′ = nk|e, apply iii to obtain an nk+1 such that

b(r ∗ [[e|nk+1]]) ∩ [nk+1, e(nk+1)] = ∅. Otherwise stop the procedure.

The procedure halts by stage r(e), for by ii, (r∗ [[e|nk+1]])(e) ≤ (r∗ [[e|nk]])(e)−1 (i.e.,

e drops by at least one step at each stage) and when e ∈ b(r ∗ [[e|nr(e)]]), the condition

for continuing is no longer satisfied. Let k be the last stage and let m = nk. Then by

the halting condition, we have b(r) contains an e′ such that m|e′ = m|e. By v, there is

an m′ ≥ m such that ∅ ⊂ b(r ∗ [[e|m′]]) ⊆ [m′|e] By vi, this situation remains for each

m′′ ≥ m′. So (r, ∗) projects K.

Proof that ∗R,1 is a complete projection architecture. Follow the steps in the preceding

argument. A shorter argument may be given using the climbing lemma.

Proof that ∗R,2 is a complete identification architecture. Recall that ρk(e, e
′) =

|∆(e, e′) ∩ {0, . . . , k − 1}|. We will use the fact that ρk satisfies the triangle inequality.

Suppose K is identifiable. So by proposition 2, K is countable. If e ∈ K then let

[e]K be the set of all finite variants of e in K. Since K is countable, we may enumerate

these classes as C0, . . . , Cn, . . .. For each i, choose a unique element ei ∈ Ci. For each

e ∈ K, let z(e) denote the unique w such that e ∈ Cw. Now define the IA r as follows:

r(e) = ρ(ez(e), e) + z(e). Let e ∈ K and let (i) r(e) = m and z(e) = w. Define P =

{i ≤ m : i 6= w}. If i ∈ P , then there are infinitely many m such that ei(m) 6= e(m), so

there is a ki such that ρki
(ei, e) > 2m. Moreover, there is a j sufficiently large so that

ρj(ew, e) = ρ(ew, e). Since P is finite, let k = max({ki : i ∈ P} ∪ {j}). Let k′ ≥ k. So (ii)

ρk′(ei, e) > 2m. We now establish that (iii) ∀k′ ≥ k, e′ ∈ K, e′ 6= e ⇒ (r ∗R,2 [[e|k′]])(e′) >

(r ∗R,2 [[e|k′]])(e). Let e′ ∈ K, e′ 6= e.
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Figure 5: Completeness of ∗R,2

Case I: e′ ∈ [e]≤r −[e]K (cf. fig. 5). So z(e′) 6= w. Let z(e′) = i. So by the definition of r,

(iv) ρk′(ei, e
′) ≤ ρ(ei, e

′) ≤ m. By the triangle inequality: ρk′(e, e′)+ρk′(ei, e
′) ≥ ρk′(ei, e),

so ρk′(e, e′) ≥ ρk′(ei, e) − ρk′(ei, e
′) > 2m − m = m, by ii, iv. Hence (v) ρk′(e, e′) > m.

By the climbing lemma (proposition 6), (r ∗R,2 [[e|k′]])(e) − (r ∗R,2 [[e|k′]])(e′) ≤ (r(e) −

r(e′))− 2ρk′(e, e′) < m− r(e′)− 2m ≤ 0 (by i, v), so iii obtains in this case.

Case II: e′ ∈ [e]≤r ∩ [e]K (cf. fig. 5). By choice of k, (vi) ρk′(ew, e) = ρ(ew, e). By

the triangle inequality, ρk′(e, e′) + ρk′(ew, e) ≥ ρk′(ew, e), so (vii) ρk′(e, e′) ≥ ρk′(ew, e) −

ρk′(ew, e′). By the definition of r:

r(e)− r(e′) = (ρ(ew, e) + w)− (ρ(ew, e′) + w)

= ρ(ew, e)− ρ(ew, e′)

≤ ρk′(ew, e)− ρk′(ew, e′) (by vi)

≤ ρk′(e, e′) (by vii).

So (viii) r(e)− r(e′) ≤ ρk′(e, e′). By proposition 6,

(r ∗R,2 [[e|k′]])(e′)− (r ∗R,2 [[e|k′]])(e) ≤ (r(e′)− r(e))− 2ρk′(e, e′)

≤ ρk′(e, e′)− 2ρk′(e, e′) (by viii),

which quantity is negative, so long as ρk′(e, e′) > 0.25 So it suffices for iii to show

that ρk′(e, e′) > 0. Suppose ρk′(e, e′) = 0. Then (ix) e|k′ = e′|k′. By vi, we have (x)

k′|e = k′|ew. By the case hypothesis, r(e) ≥ r(e′). So by the definition of r, ρ(ew, e)+w ≥

ρ(ew, e′) + w, so ρ(ew, e) ≥ ρ(ew, e′). So by ix, x, (xi) k′|e′ = k′|ew. But by ix, x, xi, we

25For those tracing the magic of α = 2, note that the argument would fail here if α = 1.
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have e = e′, contradicting the choice of e′. Hence, ρk′(e, e′) > 0 and we have iii under this

case.

Case III: e′ /∈ [e]≤r . Then iii follows by positive order-invariance (proposition 7) and

proposition 6. This concludes the argument for iii.

By proposition 7, r∗R,2 is locally consistent. Hence, for each k′ ≥ k, b(r∗R,2 [[e|k′]]) 6= ∅.

So by iii, we have that for each k′ ≥ k, b(r ∗R,1 [[e|k′]]) = {e}. a

0.14 Appendix III: A Positive Result for S,2

This appendix is devoted to proving that ∗J,2 can identify Gω(e0).

Definition 17 Let α be an ordinal and let e0 ∈ B. Let r = rG
e0

. Let ε be a finite boolean

sequence of nonzero length and let last(ε) denote the last item occurring in ε. Then define:

1. βα(ε, b) =



−1 if b = last(ε) ∧ lh(ε)− 1 ∈ Γ(e0, ε)

0 if b = last(ε) ∧ lh(ε)− 1 6∈ Γ(e0, ε)

α if b 6= last(ε) ∧ lh(ε)− 1 ∈ Γ(e0, ε)

α− 1 if b 6= last(ε) ∧ lh(ε)− 1 6∈ Γ(e0, ε).

2. β′α(ε, e′) = Σ
lh(ε)
i=1 β(ε|i, e′(i− 1)).

3. βr
α(ε, e′) = r(e′) + β′α(ε, e′).

Proposition 19 Let e0, r be as in the preceding definition. Let e, e′ ∈ Gω(e0). Let e[m] =

e0 ‡ {i < m : i ∈ Γ(e0, e)} and let α ≥ 2. Then

1. βr
α(e|m, e′) ≥ 0.

2. If e|m = e′|m then βr
α(e|m, e′) = |{i ≥ m : i ∈ Γ(e0, e

′)}|.

3. If e′ 6= e[m] then βr
α(e|m, e′) > 0.
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Proof: Define M = {i ∈ ω : i < m}; G = Γ(e0, e); G
′ = Γ(e0, e

′); E = {i ∈ ω : e(i) =

e′(i)}.

Proof of (1). Using the definition of βα and the fact that α ≥ 2, we have:

βr
α(e|m, e′) = r(e′) + β′α(e|m, e′)

= r(e′) + Σi∈M∩G∩Eβα(e|i + 1, e′(i))

+Σi∈(M∩E)−Gβα(e|i + 1, e′(i))

+Σi∈(M−E)∩Gβα(e|i + 1, e′(i))

+Σi∈(M−E)−Gβα(e|i + 1, e′(i))

≥ |G′| − |M ∩G ∩ E|+ 0 + |(M − E) ∩G|+ |(M − E)−G|

= |G′| − |M ∩G ∩ E|+ |M − E|

= |G′| − |M ∩G ∩ E ∩G′|+ |M − E| − |M ∩G ∩ E −G′|

≥ |M − E| − |M ∩G ∩ E|,

so it suffices to show that |M −E| ≥ |M ∩G∩E−G′|. For this we construct an injection

f from |M ∩G∩E −G′| to |M −E|. Let i ∈ M ∩G∩E −G′. So we have (i) i < m, (ii)

e(i) = e′(i), (iii) i ∈ Γ(e0, e) and (iv) i /∈ Γ(e0, e
′). Suppose for reductio that i = 0. Then

by iv, e0(i) = e′(i) and by ii, e(i) = e′(i), so e0(i) = e(i), contradicting iii. So we may

assume (v) i > 0. Define f(i) = i−1, which is evidently injective and it is also immediate

that f(i) ∈ M if i ∈ M . Suppose for reductio that f(i) = i−1 ∈ E, so e(i−1) = e′(i−1).

Then by iii, iv, v, we obtain e(i) 6= e0(i), contradicting ii. Hence, f(i) ∈ M − E.

Proof of (2). Note that r(e′) = |G′|. Suppose that e|m = e′|m. For each j ≤ m, if

j ∈ M ∩ G′, then βα(e|j + 1, e′(j)) = −1 and if j ∈ M − G′, then βα(e|j + 1, e′(j)) = 0.

Hence, β′α(e|m, e′) = −|M ∩G′|. So βr
α(e|m, e′) = |G′| − |M ∩G′| = |G′−M | = |{i ≥ m :

i ∈ Γ(e0, e
′)}|.
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Proof of (3). We begin by establishing (i) βr
α(e|m, e′) = 0 ⇒ M ∩ G′ ⊆ G. Suppose

for contraposition that M ∩G′ −G 6= ∅. Let k be the least element of M ∩G′ −G. We

will construct e′′ such that βr
α(e|m, e′′) < βr

α(e|m, e′), so by 1, βr
α(e|m, e′) > 0.

The construction of e′′ proceeds as follows. If e′(k) = e(k), let e′′ be just like e′ except

that e′′(k − 1) = ¬e′(k − 1). Else, e′′ is just like e′ except that e′′(k) = ¬e′(k). This

construction is well-defined because e′(k) 6= e(k) if k = 0. Let G′′ = Γ(e0, e
′′). We now

show that (ii.a) r(e′′) ≤ r(e′) and (ii.b) β′α(e|m, e′′) < β′α(e|m, e′). Since k ∈ G′ − G, we

have (iii.a) e(k−1) = e(k) ⇔ e0(k−1) = e0(k) and (iii.b) e′(k−1) 6= e′(k) ⇔ e0(k−1) =

e0(k). So (iii.c) e(k − 1) 6= e(k) ⇔ e′(k − 1) = e′(k).

Case: e(k) = e′(k). Then k > 0 and e′′ is just like e′ except that e′′(k−1) = ¬e′(k−1).

So (iv) e(k) = e′(k) = e′′(k). So by the case hypothesis and iii.c, e(k − 1) 6= e(k) ⇔

e′(k − 1) = e(k). Hence, (v) e′′(k − 1) = e(k − 1) 6= e′(k − 1). Also, by iii.b (vi) k /∈ G′′.

Since e′′ differs from e′ only at k − 1, we also have: (vii) for all j /∈ {k, k − 1}, j ∈ G′′ ⇔

j ∈ G′. By vi, vii, and the fact that k ∈ G′, we have that |G′′| ≤ |G′|, which is just

ii.a. Let i < m. If i /∈ {k, k − 1}, then e′(i) = e′′(i) and i ∈ G′ ⇔ i ∈ G′′, so (viii)

βα(e|i + 1, e′(i)) = βα(e|i + 1, e′′(i)).

Subcase: k − 1 ∈ G′. Then k − 1 /∈ G. Using iv and v, we may calculate:

βα(e|k, e′(k − 1))− βα(e|k, e′′(k − 1)) = α− 0 ≥ 2;

βα(e|k + 1, e′(k))− βα(e|k + 1, e′′(k)) = −1− 0 = −1.

Hence by viii, β′α(e|m, e′)− β′α(e|m, e′′) ≥ 1.

Subcase: k − 1 /∈ G′. Then k − 1 ∈ G. Using iv and v, calculate:

βα(e|k, e′(k − 1))− βα(e|k, e′′(k − 1)) = (α− 1)− (−1) ≥ 2;

βα(e|k + 1, e′(k))− βα(e|k + 1, e′′(k)) = −1− 0 = −1.

47



Hence, by viii, β′α(e|m, e′)− β′α(e|m, e′′) ≥ 1, so ii.b follows in either case.26

Case: e′(k) 6= e(k). Then e′′ is just like e′ except that e′′(k) = ¬e′(k). So by the case

hypothesis, (ix) e′′(k) = e(k) 6= e′(k). Since k ∈ G′, and e′′(k) = ¬e′(k), it follows that

(x) k /∈ G′′. Since e′′ differs from e′ only at k, we also have: (xi) for all j /∈ {k, k + 1}, j ∈

G′′ ⇔ j ∈ G′. By ix, x we have |G′′| ≤ |G′|, which is just ii.a. Let i < m. If i /∈ {k, k +1},

then e′(i) = e′′(i) and i ∈ G′ ⇔ i ∈ G′′. So again viii holds. Since k ∈ G′ − G ∪ G′′, ix

yields βα(e|k + 1, e′(k))− βα(e|k + 1, e′′(k)) = α− 0 ≥ 2. So if k + 1 = m, we have by viii

that β′α(e|m, e′)− βα(e|m, e′′) ≥ 1, and hence ii.b. So we may assume that k + 1 < m.

Subcase: k + 1 ∈ G′. Then k + 1 /∈ G′′. Suppose e(k + 1) = e′(k + 1). Then

βα(e|k + 2, e′(k + 1)) − βα(e|k + 2, e′′(k + 1)) = −1 − 0 = −1. So by viii, β′α(e|m, e′) −

β′α(e|m, e′′) ≥ 2 + (−1) = 1.27 Suppose, alternatively, that e(k + 1) 6= e′(k + 1). Then

βα(e|k + 2, e′(k + 1))− βα(e|k + 2, e′′(k + 1)) = α− (α− 1) ≥ 1. So by viii, β′α(e|m, e′)−

β′α(e|m, e′′) ≥ 2 + 1 = 3.

Subcase: k + 1 /∈ G′. Then k + 1 ∈ G′′. Suppose e(k + 1) = e′(k + 1). Then

βα(e|k + 2, e′(k + 1))− βα(e|k + 2, e′′(k + 1)) = 0− (−1) = 1. Then by viii, β′α(e|m, e′)−

β′α(e|m, e′′) ≥ 2 + 1 = 3. Suppose, alternatively, that e(k + 1) 6= e′(k + 1). Then

βα(e|k+2, e′(k+1))−βα(e|k+2, e′′(k+1)) = (α−1)−α = −1. Then by viii, β′α(e|m, e′)−

β′α(e|m, e′′) ≥ 2 + (−1) = 1. So ii.b holds in both subcases.28

The next task is to establish: (xii) βr
α(e|m, e′) = 0 ⇒ G′ − M = ∅. Suppose that

k ≥ m and k ∈ G′. So k contributes one unit to r(e′). Since k ≥ m, k contributes nothing

to the sum β′α(e|m, e′). Let e′′ = e0 ‡ (G′ − {k}). Then

βr
α(e|m, e′′) = r(e′′) + β′α(e|m, e′′)

26Note that the value α ≥ 2 is critical in both cases.
27Observe that the value α ≥ 2 is critical at this step.
28The value α ≥ 2 is again critical at this step.
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= r(e′)− 1 + β′α(e|m, e′)

= βr
α(e|m, e′)− 1.

So by (1), βr
α(e|m, e′) > 0.

Finally we show that (xiii) βr
α(e|m, e′) = 0 ⇒ M ∩G ⊆ G′. Suppose that βr

α(e|m, e′) =

0. Suppose for reductio that D = (M ∩ G) − G′ 6= ∅. By the hypothesis and i, xii, we

have G′ − M = ∅ and G′ ∩ M ⊆ G ∩ M . So r(e) − r(e′) = |G| − |G′| = |D|. So if we

establish that (xiv) β′α(e|m, e′)− β′α(e|m, e) > |D|, then we have βr
α(e|m, e′) > βr

α(e|m, e),

so by (1), βr
α(e|m, e′) > 0. It therefore suffices to establish xiv.

Let D be enumerated in ascending order as {k1, . . . , kd}. Observe that e|k1 = e′|k1 so

since k1 ∈ G − G′, e(k1) 6= e′(k1). Thereafter, there is constant disagreement between e

and e′ until k2, where another reversal of sense yields constant agreement until k3, etc.

In general, we have for each j such that 1 ≤ k ≤ d: (xv) e(kj) = e′(kj) ⇔ j is even.

Also, we have by the definition of βα: (xvi) if e(kj) 6= e′(kj) then βα(e|kj + 1, e′(kj)) −

βα(e|kj + 1, e(kj)) = α − (−1) ≥ 3 (since29 α ≥ 2) and (xvii) if e(kj) = e′(kj) then

βα(e|kj + 1, e′(kj)) − βα(e|kj + 1, e(kj)) = (−1) − (−1) = 0. By xv, xvi, xvii, we have

(xviii) Σd
j=1βα(e|kj + 1, e′(kj)) − βα(e|kj + 1, e(kj)) ≥ 3(d + 1)/2 if d is odd and ≥ 3d/2

if d is even (note that 3(d + 1)/2 is the number of odd natural numbers ≤ d when d is

odd). Observe that (xix) for all d > 0, 3(d − 1)/2 > d if d is odd and 3d/2 > d if d is

even.30 We haven’t yet included in the sum terms whose indices are not in D. So let

0 < k ≤ m and suppose k − 1 /∈ D. Then by the definition of βα, βα(e|k, e(k − 1)) ≤ 0,

so we have (xx) βα(e|k, e′(k − 1)) − βα(e|k, e(k − 1)) ≥ 0. So by xviii, xix, xx, we have,

β′α(e|m, e′)− β′α(e|m, e) > d, establishing xiv and hence xiii.

29α = 2 is critical for the argument at this stage.
30The inequality is barely strict at d = 1 and would fail if α = 1, illustrating once again the critical

role of the value α ≥ 2.
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Now suppose that βr
α(e|m, e′) = 0. By i, xii, xiii, we infer that e′ = e0 ‡ {i < m : i ∈

Γ(e0, e)} = e[m], which completes the proof of (3). a

Proposition 20 Let α ≥ 2 and let e0, r, e, e
′, e[n] be as in proposition 19 and let m ∈ ω.

Then

1. (r ∗J,2 [[e|n]])(e′) = βr
α(e|n, e′),

2. (r, ∗J,2)(e|n) = {e[n]}, and

3. (r, ∗J,2) identifies Gω(e0).

Proof of (2). By proposition 19.2, βr
α(e|n, e[n]) = 0. By proposition 19.3, for all e′ 6= e[m],

βr
α(e|n, e′) > 0. So the result follows from (1).

Proof of (3). (3) is a consequence of (2), since for each e ∈ Gω(e0), there is a least n′

such that e = e[n′] and ∗J,2 is timid and stubborn. Note that (r, ∗J,2) retracts exactly n′

times prior to stabilizing to {e}.

Proof of (1). By induction on n. Let ∗ = ∗J,α. βr
α((), e′) = r(e′) + β′α((), e′) = r(e′) =

(r ∗ ())(e′). Now suppose that for each e′ ∈ Gω(e0), (r ∗ [[e|n]])(e′) = βr
α(e|n, e′). Then

since α ≥ 2, proposition 19 parts 2 and 3 yield (i) If e|n = e′|n then (r ∗ [[e|n]])(e′) =

|{i ≥ n : i ∈ Γ(e0, e
′)}| and (ii) If e′ 6= e[n] then (r ∗ [[e|n]])(e′) > 0. Now consider

(r ∗ [[e|n + 1]])(e′).

Case 1: e′(n) = e(n) Then

(r ∗ [[e|n + 1]])(e′) = (r ∗ [[e|n]])(e′|[n, e(n)])

= −min{(r ∗ [[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩ [n, e(n)]}

+(r ∗ [[e|n]])(e′).

Case 1.A: n ∈ Γ(e0, e). Hence, e[n] /∈ [n, e(n)] (recall that e[n] = e0 ‡ {i < n : i ∈

Γ(e0, e)}). So by ii, we have (iii) 0 /∈ {(r ∗ [[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩ [n, e(n)]}.
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Since e[n+1]|n+1 = e|n+1 and {i ≥ n : i ∈ Γ(e0, e[n+1])} = {n}, we obtain by statement

i that: (iv) (r ∗ [[e|n]])(e[n + 1]) = 1. Also, (v) e[n + 1] ∈ [n, e(n)], since e[n] /∈ [n, e(n)]

and n ∈ Γ(e0, e). By iii, iv, v: min{(r ∗ [[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩ [n, e(n)]} = 1.

So,

(r ∗ [[e|n + 1]])(e′) = (r ∗ [[e|n]])(e′)− 1

= βr
α(e|n, e′)− 1 (by the induction hypothesis)

= βr
α(e|n, e′) + βα(e|n + 1, e′(n)) (by the case hypotheses)

= βr
α(e|n + 1, e′).

Case 1.B: n 6∈ Γ(e0, e). Hence, e[n] ∈ [n, e(n)]. So by statement i we have: min{(r ∗

[[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩ [n, e(n)]} = 0. Hence,

(r ∗ [[e|n + 1]])(e′) = (r ∗ [[e|n]])(e′)

= βr
α(e|n, e′) + 0 (by the induction hypothesis)

= βr
α(e|n, e′) + βα(e|n + 1, e′(n)) (by the case hypotheses)

= βr
α(e|n + 1, e′).

Case 2: e′(n) 6= e(n). Then

(r ∗ [[e|n + 1]])(e′) = (r ∗ [[e|n]])(e′|B − [n, e(n)]) + α

= −min{(r ∗ [[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩ (B − [n, e(n)])}

+(r ∗ [[e|n]])(e′) + α.

Case 2.A: n ∈ Γ(e0, e). Hence, e[n] /∈ [n, e(n)]. So by statement i we obtain, min{(r ∗

[[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩ (B − [n, e(n)])} = 0. Hence,

(r ∗ [[e|n + 1]])(e′) = 0 + (r ∗ [[e|n]])(e′) + α
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= βr
α(e|n, e′) + α (by the induction hypothesis)

= βr
α(e|n, e′) + βα(e|n + 1, e′(n)) (by the case hypotheses)

= βr
α(e|n + 1, e′).

Case 2.B: n 6∈ Γ(e0, e). Hence, e[n] ∈ [n, e(n)]. So by ii, we obtain: (vi) min{(r ∗

[[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩B − [n, e(n)]} > 0. Let e′′ = e[n] ‡ n. Then e′′|n = e|n

and {i ≤ n : i ∈ Γ(e0, e
′′)} = {n}. So by i, we obtain: (vii) (r ∗ [[e|n]])(e′′) = 1. Since

e[n](n) = e(n), (viii) e′′ /∈ [n, e(n)]. Since e′′ ∈ Gω(e0) = dom(r), vi, vii, viii yield

min{(r ∗ [[e|n]])(e′′) : e′′ ∈ dom(r ∗ [[e|n]]) ∩ (B − [n, e(n)])} = 1. So

(r ∗ [[e|n + 1]])(e′) = (r ∗ [[e|n]])(e′) + α− 1

= βr
α(e|n, e′) + α− 1 (by the induction hypothesis)

= βr
α(e|n, e′) + βα(e|n + 1, e′(n)) (by the case hypotheses)

= βr
α(e|n + 1, e′). a

Proof of proposition 13 Let ∗ = ∗J,2. Recall that (¬e0)(n) = ¬(e0(n)). Let r ⊇

rH
e0
|Gω

even and suppose for reductio that (r, ∗J,2) identifies Gω
even(e0)∪ {¬e0}. For each i,

let ei = (¬e0) ‡ i = (e0 ‡ 0) ‡ i ∈ G2
even(e0).

Case A: r(¬e0) ≥ ω. Then for each i, r(ei) < r(¬e0), contradicting the isolation

condition (proposition 22).

Case B: for some n ∈ ω that r(¬e0) = n. By the reductio hypothesis, there is

a k ∈ ω such that (i) (r ∗ [[¬e0|k]])−1(0) = {¬e0}. Let j = max{n + 1, k}. Then

(ii) r(ej) > n = r(¬e0) and r(ej+1) = r(ej) + 1 and (iii) ej|j = ej+1|j = ¬e0|j and

ej+1|j + 1 = ¬e0|j + 1. By timidity and stubbornness and i, iii, for each j′ such that

k ≤ j′ ≤ j + 1, (iv) (r ∗ [[ej+1|j′]])−1(0) = {¬e0}. By iv, (v) (r ∗ [[ej+1|j]])(ej) > 0. By

positive invariance and ii, (vi) (r ∗ [[ej+1|j]])(ej+1) = (r ∗ [[ej+1|j]])(ej) + 1. By positive
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invariance, iv, and iii, (vii) (r ∗ [[ej+1|j + 1]])(ej+1) = (r ∗ [[ej+1|j]])(ej+1). By iii and iv,

min{(r ∗ [[ej+1|j]])(e′) : e′ ∈ dom(r)∩ (B− [j, ej+1(j)])} ≥ 1. So since ej(j) 6= ej+1(j), the

definition of ∗ yields

(r ∗ [[ej+1|j + 1]])(ej) ≤ −1 + (r ∗ [[ej+1|j]])(ej) + 2

≤ (r ∗ [[ej+1|j]])(ej) + 1

≤ (r ∗ [[ej+1|j]])(ej+1) (by vi).

Now (j+1|ej) = (j+1|ej+1), so by positive invariance, for all k′ ≥ j+1, (r∗[[ej+1|k′]])(ej) ≤

(r ∗ [[ej+1|k′]])(ej+1). Hence, for all such k′, (r ∗ [[ej+1|k′]])−1(0) 6= {ej+1}. a

0.15 Appendix IV: Restrictiveness Proofs

Proof of proposition 16 (1) Case: G1(e0). Let R = (G1(e0)),≤) be defined so that

b(R) = {e0} and for each k, k′ > k ∈ ω, e0 ‡ k′ < e0 < e0 ‡ k (note that this condition

induces an infinite descending chain in R). It is easy to see that R is an epistemic state

and that (R, ∗M) succeeds.

Case: G1
even(e0). Let R = (G1

even(e0),≤) be defined so that b(R) = {e0} and if

|S| = |S ′| = 2 then e0 ‡ S ≤ e0 ‡ S ′ just in case min(S ′) ≤ min(S) (this condition also

induces an infinite descending chain). R is an epistemic state and (R, ∗M) succeeds.

(2) Case: G1(e0). Let ∗ = ∗M , let R = (D, <R), and suppose for reductio that (R, ∗)

identifies G2(e0). Then for some k, (i) b(R∗[[e0|k]]) = {e0}. Define e = e0‡k ∈ G2(e0). By

proposition 23, we can find k′ > k such that, letting e′ = e‡k′ ∈ G2(e0), (ii) e′ >(R∗[[e0|k]]) e.

But i, ii, and proposition 21 contradict the reductio hypothesis.

Case: G1
even(e0). Let ∗ = ∗M and suppose for reductio that R = (D, ∗) identifies

G2
even(e0). Then for some k, (i) b(R ∗ [[e0|k]]) = {e0}. Define e = e0 ‡ {k, k + 1} ∈
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G2
even(e0). By proposition 25, we can find k′ > k+1 such that, letting e′ = e‡{k′, k′+1} ∈

G2
even(e0), (ii) e′ >(R∗[[e0|k]]) e. Let e′′ = e0 ‡ {k′, k′ + 1} ∈ G2

even(e0). By proposition

21 and i, (iii) e′ ≥(R∗[[e0|k]]) e′′. Note that: (iv) e0|k = e′|k, (v) e(k) = e′(k) 6= e′′|k, and

(vi) k + 1|e′′ = k + 1|e′. By ii, iv, (vii) e′ /∈ min((R ∗ [[e′|k]]), [k, e′(k)]). By v, (viii)

e′′ /∈ min((R ∗ [[e′|k]]), [k, e′(k)]). So by iii, v, vii, viii, and clause (2) of the definition of

∗M : (ix) e′ ≥(R∗[[e′|k+1]]) e′′. So by vi and positive order-invariance (proposition 7), for all

k′ ≥ k + 1, e′ ≥(R∗[[e′|k′]]) e′′, contradicting the reductio hypothesis. a

Definition 18 e is propped up at n in r just in case for each e′ ∈ [e]<r , e′(n) 6= e(n). e is

propped up in r just in case there exists an n such that e is propped up at n in r.

Proposition 21 (propping condition for ∗M) If (r, ∗M) identifies dom(r) then for each

e ∈ dom(r), for each m, there is an m′ ≥ m such that e is propped up in (r ∗M [[e|m]]) at

m′; so in particular, e is propped up in r.

Proof: Suppose that for all m′ ≥ m, e ∈ dom(r∗M [[e|m]]) is not propped up in (r∗M [[e|m]])

at m′. Using the definition of ∗M , show by a straightforward induction on k − m that

for all k ≥ m, k′ ≥ k, e is not propped up in (r ∗M [[e|k]]) at k′. Hence, for all k ≥ m,

(r ∗M [[e|k]])(e) > 0, so (r, ∗M) does not identify dom(r). a

The following definition generalizes the notion of isolated points to the case in which

there is sufficient information after a given position n to distinguish e from all other points

in S. Observe that k-isolation is more stringent than isolation when k > 0. For example,

0∞ is isolated but not 1-isolated in {10n1∞ : n ∈ ω}.

Definition 19 e is k-isolated in S ⇔ there exists an n ≥ k such that [(k|e)|n]∩S ⊆ {e}.

Proposition 22 (isolation condition) If ∗ is positively order-invariant and (r, ∗) iden-

tifies dom(r) then for each e ∈ dom(r), for all k, e is k-isolated in [e]≤(r∗[[e|k]]); so in

particular, e is isolated in [e]≤r .
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Proof: Suppose e is not k-isolated in [e]≤(r∗[[e|k]]). Then for each n ≥ k, there is an en 6= e

such that (r ∗ [[e|k]])(en) ≤ (r ∗ [[e|k]])(e) and (k|en)|n = (k|e)|n. So by positive order-

invariance, for each n, if (r ∗ [[e|n]])(e) = 0 then (r ∗ [[en|n]])(e′) = 0. Hence, (r, ∗) does

not identify dom(r). a

Proposition 23 If ∗ is positively order-invariant and (r, ∗) identifies Gn+1(e0) ⊆ dom(r)

and e ∈ Gn(e0) then for all k, for all but finitely many j, (r∗[[e0|k]])(e) < (r∗[[e0|k]])(e‡j).

Proof: Let e ∈ Gn(e0). Then for each j, e ‡ j ∈ dom(r). Suppose that for some k there

are infinitely many distinct j such that (r ∗ [[e|k]])(e) ≥ (r ∗ [[e|k]])(e ‡ j). Then e is not

k-isolated in [e]≤(r∗[[e0|k]]). Apply proposition 22. a

Proposition 24 (stacking lemma) For all k, n, n′ ≤ n, if ∗ is positively order-invariant

and (r, ∗) identifies Gn(e0) ⊆ dom(r) and (r ∗ [[e0|k]])(e0) = 0 then there exists an en′

such that

1. en′ ∈ gn′
(e0),

2. e0|(k + 1) = en′|(k + 1) and

3. (r ∗ [[e0|k]])(en′) ≥ n′.

Proof: Assume the antecedent. Let n, k be given. We show the consequent by induction

on n′ ≤ n. When n′ = 0, (1-3) are trivially satisfied by e0. Now suppose that n′ + 1 ≤ n

and that there exist e0, . . . en′ satisfying (1-3). Since n′+1 ≤ n, (r, ∗) identifies Gn′+1(e0).

So by proposition 23, we may choose j sufficiently large so that (i) (r ∗ [[e0|k]])(en′) <

(r ∗ [[e0|k]])(en′ ‡ j) and (ii) j > max(Γ(e0, en′) ∪ {k + 1}). Now set en′+1 = en′ ‡ j. en′+1

satisfies (1, 2) because of ii and the fact that en′ does. en′+1 satisfies (3) at n′ + 1 because

of statement i and the fact that en′ does. a
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Proposition 25 If ∗ is positively order-invariant and (r, ∗) identifies Gn+1
even(e0) ⊆ dom(r)

and e ∈ Gn
even(e0) then for all k, for all but finitely many j, for all m > 0, (r∗[[e0|k]])(e) <

(r ∗ [[e0|k]])((e ‡ j) ‡ j + m).

Proof: Similar to the proof of proposition 23. a

Proposition 26 (even stacking lemma) Proposition 24 continues to hold when Gn,

gn are replaced with Gn
even, gn

even.

Proof: Similar to the proof of proposition 24, using proposition 25. a

Proposition 27 (with Oliver Schulte) For all e0 ∈ B, For all j ≥ 2, Gj(e0) is iden-

tifiable using just j retractions, but is not identifiable by ∗R,1.

Proof: The positive claim is from proposition 11. For the negative claim, suppose for

reductio that there is an IA r such that (r, ∗) identifies Gj(e0), where ∗ = ∗R,1 and j ≥ 2.

Then since e0 ∈ G0(e0) and 0 < j, there exists a least n such that (i) (r, ∗)(e0|n) = {e0}.

Then there exists a least k > n such that (ii) (r, ∗)((e0‡n)|k) = {e0‡n}, since e0‡n ∈ G1(e0)

and 1 < j. Define R = {e′′ ∈ B : |Γ(e0, e
′′)| is odd}. Since |Γ(e0, (e0 ‡ n))| = 1 is odd, we

have by statements i and ii that there is a least k′ > n such that (iii) b(r ∗ [[(e0 ‡n)|k′]])∩

Gj(e0) ⊆ R. Since k′ is least, there exists an e such that (iv.a) (r∗[[(e0‡n)|(k′−1)]])(e) = 0,

(iv.b) (r ∗ [[(e0 ‡ n)|k′]])(e) > 0, and (iv.c) e ∈ Gj(e0)−R. Since ∗ = ∗R,1, we also have31

(iv.d) (r ∗ [[(e0 ‡ n)|k′]])(e) = 1.

Case 1: k′ = n + 1. Then we may choose e to be e0, by i, iv.a. Define e′ = (e0 ‡

n) ‡ n + 1. Hence, (v.a) e′|n + 1 = (e0 ‡ n)|n + 1, (v.b) n + 1|e′ = n + 1|e0, and (v.c)

e′ ∈ Gj(e0)−R, since |Γ(e0, e
′)| = 2 and j ≥ 2.32 By v.a, v.c and the reductio hypothesis,

31This is where the value α = 1 enters the negative argument.
32This is where j ≥ 2 enters the argument.
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e′ ∈ dom(r ∗ [[(e0 ‡ n)|n + 1]]), else (r, ∗) fails to identify e′ ∈ Gj(e0). So by iii, v.a, v.c,

and the case hypothesis, (vi) (r ∗ [[e′|n + 1]])(e′) ≥ 1. By ii, iv.d, v.a, the case hypothesis,

and positive invariance, (vii) (r ∗ [[e′|n + 1]])(e) = 1. By positive invariance and v.b, vi,

vii, we have that for each m ≥ n + 1, (r ∗ [[e′|m]])(e′) ≥ (r ∗ [[e′|m]])(e0), contradicting

the reductio hypothesis.

Case 2: k′ ≥ n + 2. Then by the definition of * and iv.a, iv.b, we have (viii.a)

e(k′−2) = (e0‡n)(k′−2) = ¬e0(k
′−2) and (viii.b) e(k′−1) = ¬(e0‡n)(k′−1) = e0(k

′−1).

Let e′ be defined so that: (ix.a) e′|k′ = (e0 ‡ n)|k′, and (ix.b) k′|e′ = k′|e. By viii.a,

there exists some j ≤ k′ − 2 such that j ∈ Γ(e0, e). By viii.a,b, k′ − 1 ∈ Γ(e0, e). So

|{j ≤ k′ : j ∈ Γ(e0, e)}| ≥ 2. But by ix.a,b we also have |{j ≤ k′ : j ∈ Γ(e0, e
′)}| ≤ 2. So

by ix.b, Γ(e′, e0) ≤ Γ(e, e0). So by iv.c, (x) e′ ∈ Gj(e0). So by the reductio hypothesis and

ix.b, (xi) e′ ∈ dom(r ∗ [[(e ‡ n)|k′]]), else (r, ∗) does not identify e′ ∈ Gj
even(e0). By iv.c,

|Γ(e0, e)| is even. Hence, e agrees almost everywhere with e0. By ix.b, e′ agrees almost

everywhere with e and hence with e0. So, |Γ(e0, e
′)| is even. So e′ /∈ R. Thus, by iii, xi,

(r ∗ [[(e0 ‡ n)|k′]])(e′) ≥ 1. So by positive invariance, iv.d, ix.a, ix.b, we have that for all

m ≥ k′, (r ∗ [[e′|m]])(e′) ≥ (r ∗ [[e′|m]])(e0), contradicting the reductio hypothesis. a

Proposition 28 Let e0 ∈ B.

1. G1(e0) is identifiable by ∗R,1.

2. For all j ≥ 1, Gj(e0) is not identifiable by ∗M , ∗J,1, ∗A,1.

Proof of (1). Let ∗ = ∗R,1. Define r−1(0) = g0(e0) = {e0} and r−1(1) = g1(e0) = {e0 ‡ k :

k ∈ ω}. Then dom(r) = G1(e0). Let e ∈ G1(e0). Case: e = e0. Then by timidity and

stubbornness, we have that for each k, b(r ∗ [[e|k]]) = {e}. Case: for some n, e = e0 ‡ n.

By timidity and stubbornness: (i.a) b(r ∗ [[e|n]]) = {e0}. So by positive invariance, we

have that for all n′ ≥ n, (i.b) (r ∗ [[e|n]])(e0 ‡ n′) = 1. So by proposition 6, we have that
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for each n′′ < n, (i.c) (r ∗ [[e|n]])(e0 ‡ n′′) ≥ (n − n′′) > 1. On data e|n + 1, e0 is refuted

and moves up one level along with all data streams of form e0 ‡ n′, where n′ > n. By

i.a,b,c, e is the lowest data stream consistent with the data, so e drops to level 0. All data

streams of form e ‡ n′ such that n′ < n also drop one level with e, but fortunately, by i.c

they all end up above level 0. So b(r ∗ [[e|n + 1]]) = {e}. By timidity and stubbornness,

e remains uniquely at level 0 forever after.

Proof of (2). Case: ∗ = ∗A,1. Instance of proposition 29. Case: ∗ = ∗J,1, ∗M .

Suppose for reductio that there is an IA r such that (r, ∗) identifies G1(e0). Then there

exists a least n such that (i) b(r ∗ [[e0|n]]) = {e0}. Furthermore, (ii) ∃k ≥ n such that

∀k′ > k, (r ∗ [[e0|n]])(e0 ‡ k′) ≥ (r ∗ [[e0|n]])(e0 ‡ k); for otherwise, there would exist an

infinite descending chain of ordinals in the range of (r ∗ [[e0|n]]). By ii, there exists a

k ≥ n such that (iii) (r ∗ [[e0|n]])(e0 ‡ k + 1) ≥ (r ∗ [[e0|n]])(e0 ‡ k). Observe that: (iv)

(e0 ‡ k)|k = (e0 ‡ k + 1)|k = e0|k and (v) (e0 ‡ k + 1)(k) = e0(k) 6= (e0 ‡ k)(k). By timidity

and stubbornness and i, iv, v, (vi) ∀n′, n ≤ n′ ≤ k + 1 ⇒ b(r ∗ [[(e0 ‡ k + 1)|n′]]) = {e0}.

By iii, iv, vi and positive order-invariance (proposition 7), (vii) ∀n′, n ≤ n′ ≤ k ⇒

(r∗ [[(e0 ‡k+1)|n′]])(e0 ‡k+1) ≥ (r∗ [[(e0 ‡k+1)|n′]])(e0 ‡k) > 0. Now it is claimed as well

that: (viii) (r∗[[(e0‡k+1)|k+1]])(e0‡k+1) ≥ (r∗[[(e0‡k+1)|k+1]])(e0‡k). For consider the

case of ∗M . By v, vi and the definition of ∗M , (r∗M [[(e0‡k+1)|k+1]])(e0‡k) = (r∗M [[(e0‡k+

1)|k]])(e0‡k)+1 and (r∗M [[(e0‡k+1)|k+1]])(e0‡k+1) = (r∗M [[(e0‡k+1)|k]])(e0‡k+1)+1.

So by vii, we have viii for ∗M .

Let us turn now to the case of ∗J,1. By v, vi, min{(r ∗ [[(e0 ‡ k + 1)|k]])(e′) : e′ ∈

dom(r ∗ [[(e0 ‡ k + 1)|k]])∩ [k, (e0 ‡ k + 1)(k)]} = 0 and min{(r ∗ [[(e0 ‡ k + 1)|k]])(e′) : e′ ∈

dom(r ∗ [[(e0 ‡ k + 1)|k]]) ∩ (B − [k, (e0 ‡ k + 1)(k)])} > 0. So by v and the definition of

∗J,1, (r ∗J,1 [[(e0 ‡ k + 1)|k + 1]])(e0 ‡ k + 1) = −0 + (r ∗J,1 [[(e0 ‡ k + 1)|k]])(e0 ‡ k + 1) and

(r ∗J,1 [[(e0 ‡ k + 1)|k + 1]])(e0 ‡ k) ≥ −1 + (r ∗J,1 [[(e0 ‡ k + 1)|k]])(e0 ‡ k) + 1. So again by
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vii we have viii for ∗J,1.

Finally, since (k + 1)|(e0 ‡ k) = (k + 1)|(e0 ‡ k + 1), we have by viii and positive order-

invariance that for all k′ ≥ k+1, (r∗[[(e0‡k+1)|k′]])(e0‡k+1) ≥ (r∗[[(e0‡k+1)|k′]])(e0‡k),

contradicting the reductio hypothesis. a

Proposition 29 (restrictiveness of ∗A,n) Let e0 ∈ B.

1. G0(e0) is identifiable by ∗A,0.

2. for all n, Gn+1(e0) is identifiable by ∗A,n+2.

3. for all m > n + 1, Gm(e0) is not identifiable by ∗A,n+2.

Proof of (1). Let dom(r) = {e0} and let r(e0) = 0. Then for all k, (r, ∗J,0)(e0|k) = {e0}.

Proof of (2). By propositions 9 and 11.

Proof of (3). Suppose for reductio that (r, ∗A,n+1) identifies Gm+1(e0), with m ≥ n.

Then for some j, (i) b(r ∗A,n+1 [[e0|j]]) = {e0}. So by positive invariance and since

Gm+1(e0) ⊂ dom(r) by the reductio hypothesis, proposition 24 yields (ii) there exists

an e ∈ Gn+1(e0) − Gn(e0) such that e0|j + 1 = e|j + 1 and (r ∗ [[e0|j]])(e) ≥ n + 1.

e 6= e0, so let z be least such that e(z) 6= e0(z). So, (iii) z > j. So since z > 0,

we may define e′ to be just like e except that e′(z − 1) = ¬(e0(z − 1)). Hence, (iv)

e′(z − 1) 6= e(z − 1) = e0(z − 1). Also (v) e|z = e0|z and (vi) z|e′ = z|e. By i, v, and

the timidity of ∗A,n+1, (vii) for all x such that j ≤ x ≤ z, (r ∗A,n+1 [[e|x]])(e0) = 0. By

positive invariance and ii, v, vii, (viii) (r∗A,n+1 [[e|z]])(e) ≥ n+1. By iv and the definition

of ∗A,n+1, (ix) (r ∗A,n+1 [[e|z]])(e′) = n + 1. By vi, viii, ix, and positive invariance, (ix) for

all k′ ≥ z, (r ∗A,n+1 [[e|k′]])(e) ≥ (r ∗A,n+1 [[e|k′]])(e′). Hence, (r, ∗A,n+1) does not identify

Gn+1(e0), contradicting the reductio hypothesis. a

Proposition 30 Let e0 ∈ B.
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1. Gω
even(e0) is identifiable by ∗J,1, ∗R,1.

2. ∀m ≥ 1, Gm
even(e0) is not identifiable by ∗M .

3. G0
even(e0) is identifiable by ∗A,0.

4. Gn
even(e0) is identifiable by ∗A,n+1.

5. ∀m ≥ n,Gm+1
even(e0) is not identifiable by ∗A,n+1.

Proof of (1). Case: ∗ = ∗R,1. Let re be rH
e restricted to Gω

even(e), so for each e′ ∈

Gω
even(e), re(e

′) = ρ(e, e′). Let e be given and let e′ ∈ Gω
even(e). Define e′i so that (i.a)

e′i|i = e′|i and (i.b) i|e′i = i|e. Hence, e = e′0. Recall that Gω
even(e) is precisely the

set of all finite variants of e, so ∆(e, e′) is finite. Let m = 1+ max(∆(e, e′)). Then (ii)

for all k ≥ m, e′k = e′. I claim that ∗ satisfies the following symmetry conditions: for

each e′, e′′ ∈ Gω
even(e), (iii.a) (re ∗ [[e′|k]])(e′′) ≥ re′

k
(e′′), and (iii.b) if e′′|k = e′|k then

(re ∗ [[e′|k]])(e′′) = re′
k
(e′′). Then for each e′ ∈ Gω

even(e), for each k ≥ m, b(re ∗ [[e′|k]]) =

b(re′
k
) = {e′k} = {e′}, by ii. Thus, (re, ∗) identifies Gω

even(e). So it remains only to

establish iii.a, b. iii.a, b are immediate when k = 0. Now suppose iii.a,b hold at k. Then

(iv) b(re ∗ [[e′|k]]) = {e′k}. Let var(e′k) be just like e′k except that var(e′k)(k) = ¬(e′k)(k) =

¬e(k). ρ(var(e′k), e
′
k) = 1 and e′|k =var(e′k)|k so iii.b of the induction hypothesis yields

(v) (re ∗ [[e′|k]])(var(e′k)) = 1.

Case 1: e′(k) 6= e(k). Then var(e′k)(k) = e′(k) 6= e′k(k). So by iv, v, (vi) min{(r ∗

[[e′|k]])(e′′) : e′′ ∈ dom(r ∗ [[e′|k]]) ∩ [k, e′(k)]} = 1. Now let e′′ ∈ Gω
even(e).

Subcase: e′′(k) = e′(k). Then by the induction hypothesis and vi, (re∗[[e′|k+1]])(e′′) =

−1+(re ∗ [[e′|k]])(e′′) ≥ −1+ρ(ek, e
′′) = ρ(ek+1, e

′′) = rek+1
(e′′). When e′′|k +1 = e′|k +1,

the inequality just stated is strenghened to an equality by iii.b of the induction hypothesis,

yielding (re ∗ [[e′|k]])(e′′) = rek+1
(e′′).

60



Subcase: e′′(k) 6= e′(k). Then by the induction hypothesis, (re ∗ [[e′|k + 1]])(e′′) =

(re ∗ [[e′|k]])(e′′) + 1 ≥ ρ(ek, e
′′) + 1 = ρ(ek+1, e

′′) = rek+1
(e′′). Since e′′(k) 6= e′(k),

e′|k + 1 6= e′′|k + 1 so iii.b holds trivially in this subcase.

Case 2: e′(k) = e(k). Then (vii) e′k = e′k+1. Hence, e′(k) = e′k(k). So by iv, (viii)

min{(r ∗ [[e′|k]])(e′′) : e′′ ∈ dom(r ∗ [[e′|k]]) ∩ [k, e′(k)]} = 0. Now let e′′ ∈ Gω
even(e).

Subcase: e′′(k) = e′(k). Then by the induction hypothesis and vii, viii, (re ∗ [[e′|k +

1]])(e′′) = −0 + (re ∗ [[e′|k]])(e′′) ≥ ρ(ek, e
′′) = ρ(ek+1, e

′′) = rek+1
(e′′). When e′′|k + 1 =

e′|k + 1, the inequality is strenghened to an equality by iii.b of the induction hypothesis,

yielding (re ∗ [[e′|k]])(e′′) = rek+1
(e′′).

Subcase: e′′(k) 6= e′(k). Then by the induction hypothesis and vii, (re ∗ [[e′|k +

1]])(e′′) = (re ∗ [[e′|k]])(e′′) + 1 ≥ ρ(ek, e
′′) = ρ(ek+1, e

′′) = rek+1
(e′′). Since e′′(k) 6= e′(k),

e′|k + 1 6= e′′|k + 1 so iii.b holds trivially in this subcase.

Case: ∗ = ∗J,1. The argument is similar to the preceding one, except that the symme-

try condition iii.a,b can be strengthened to: (iii) for each e′ ∈ Gω
even(e), (re∗[[e′|k]]) = re′

k
,

which implies the success of (r, ∗) as before.33 Claim iii is immediate when k = 0.

In case 1, the induction hypothesis yields vi as well as (vi′) min{(r ∗ [[e′|k]])(e′′) : e′′ ∈

dom(r ∗ [[e′|k]])∩B− [k, e′(k)]} = 0. Subcase e′′(k) = e′(k), is as before, with an equality

replacing the inequality. In subcase e′′(k) 6= e′(k), vi, vi′, yield: (re ∗ [[e′|k + 1]])(e′′) =

−0 + (re ∗ [[e′|k]])(e′′) + 1 = ρ(ek, e
′′) + 1 = ρ(ek+1, e

′′) = rek+1
(e′′).

In case 2, the induction hypothesis yields viii as well as (viii′) min{(r∗[[e′|k]])(e′′) : e′′ ∈

dom(r ∗ [[e′|k]])∩B − [k, e′(k)]} = 1. Subcase e′′(k) = e′(k) is as before, with an equality

replacing the inequality. In subcase e′′(k) 6= e′(k), (viii, viii′) yield: (re ∗ [[e′|k +1]])(e′′) =

−1 + (re ∗ [[e′|k]])(e′′) + 1 = ρ(ek, e
′′) = ρ(ek+1, e

′′) = rek+1
(e′′).

33Condition iii implies the hypercube rotation representation of the evolution of (∗, r), as depicted in

fig. 3.
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Proof of (2). Let ∗ = ∗M . Suppose for reductio that there is an IA r such that

(r, ∗) identifies G1
even(e0). Then there exists a least n such that (i) (r, ∗)(e0|n) = {e0}.

Furthermore, (ii) ∃i ≥ n, (r ∗ [[e0|n]])((e0 ‡ i) ‡ i+2) ≤ (r ∗ [[e0|n]])((e0 ‡ i+1) ‡ i+3), else,

there would exist an infinite descending chain of ordinals in the range of (r ∗ [[e0|n]]). Let

e = (e0 ‡ i) ‡ i + 2, e′ = (e0 ‡ i + 1) ‡ i + 3, and e′′ = (e0 ‡ i) ‡ i + 3.

Case 1: (r ∗ [[e0|n]])(e′′) > (r ∗ [[e0|n]])(e′). Then by i, ii, e′′ is not propped up in

(r ∗ [[e0|n]]), contradicting the reductio hypothesis by proposition 21.

Case 2: (r∗[[e0|n]])(e′′) ≤ (r∗[[e0|n]])(e′). e0|i = e′|i = e′′|i, so by timidity and positive

order- invariance (proposition 7), (iii) (r∗[[e′|i]](e0) = 0 < (r∗[[e′|i]])(e′′) ≤ (r∗[[e′|i]])(e′).

So by timidity, stubbornness, iii and the fact that e′|i + 1 = e0|i + 1, we have: (iv)

b((r ∗ [[e′|i + 1]])(.|[i, e′(i)])) = {e0}. So e′, e′′ /∈ b(r ∗ [[e′|i + 1]])(.|[i, e′(i)]). So by the

definition of ∗M and iii, (r ∗ [[e′|i + 1]])(e′′) = (r ∗ [[e′|i]])(e′′) + 1 ≤ (r ∗ [[e′|i]])(e′) + 1 =

(r ∗ [[e′|i + 1]])(e′). So since i + 1|e′ = i + 1|e′′, positive order-invariance yields that for all

k ≥ i + 1, (r ∗ [[e′|k]])(e′′) ≤ (r ∗ [[e′|k]])(e′), contradicting the reductio hypothesis.

Proof of (3). Immdediate.

Proof of (4). Immediate consequence of propositions 9 and 11.

Proof of (5). The argument is identical to the one provided for proposition 29 except

that the appeal to proposition 24 is replaced with an appeal to proposition 26. a
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