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1 Introduction

These notes present a new, axiomatic theory of Ockham’s razor and empirical
simplicity, with applications to the philosophy of science, statistical model se-
lection, and machine learning. The theory, itself, is simple, as is its motivation.
Suppose that the truth is an unknown polynomial law of form:

y =
∑
i≤N

αix
i.

Let S denote the set of all i ≤ N such that αi is non-zero. Then:

y = pS(x) =
∑
i≤N

αix
i.

Most would agree that pS is more complex than pS′ if S′ ⊂ S. Is that a
mere, aesthetic judgment or does it have a deeper, epistemological basis? We
recommend the latter alternative. It is well-known that inductive inference
is non-monotonic, in the sense that more premises may result in the retrac-
tion of conclusions based on less information. Consider the linear polynomial
y = α1x+ α0 and the quadratic polynomial y = α2x

2 + α1x+ α0. Since i ∈ S
implies that αi is non-zero, each i ∈ S is detected eventually, as experience
increases, but might be undetectable in the short run. Scientists refer to the
detection of i ∈ S as an ith-order effect. The coefficients αi might be arbitrarily
small, making the ith-order effect arbitrarily hard to detect, but it is detectable
eventually. Assuming that the scientist can converge to the true polynomial
form from increasing data, nature has a strategy to force the scientist to as-
cend through an arbitrary, ascending sequence S1 ⊂ . . . ⊂ SN of finite sets of
effects. For since science can converge to the truth, nature can present data
from the zero constant function S1 = ∅ until science decides that S = ∅. Then
nature can choose α0 > 0 sufficiently small that the data presented before might
have been true, so science will pick up the 0-order effect eventually and retract
to S2 = {0}. Then nature can set α1 > 0 to be so small that the data pre-
sented before might have been true, etc., up to arbitrary N . In philosophical
parlance, each retraction corresponds to a problem of induction and the prob-
lem of inferring S poses a nested problem of induction. The proposal is that
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empirical simplicity is a map of the nested problems of induction inherent in
a given theoretical inference problem. It is widely thought that simplicity is a
context-dependent whim, exhibiting itself sometimes as minimization of entities,
sometimes as smoothing of curves, sometimes as minimizing causes, sometimes
as maximizing symmetries, etc. But that pessimistic conclusion is premature.
Simultaneity depends upon reference frame, but that does not make it a sub-
jective will-o-the wisp—Einstein isolated the exact laws by which simultaneity
depends upon one’s inertial reference frame. In a similar spirit, it is proposed
that empirical simplicity is a univocal concept that manifests itself differently
depending systematically upon the semantic and informational structure of the
theoretical problem under consideration.

2 Information, Questions and Problems

Let W be a set of parameters describing the relevantly possible states of the
world, so far as inquiry is concerned. We refer to them as possible worlds,
without taking any metaphysical stand on whether there exist possible worlds
distinct from the actual world. In probability theory, one speaks rather mis-
leadingly of the sample space.

Information states are propositional, so they are modeled as sets of possi-
ble worlds. It is not assumed that information states are closed under finite
conjunction (intersection) or disjunction (union), since information may arrive
in a particular way— e.g., as a rectangle or a metric ball in the joint variable
space—and a finite intersection of balls is not a ball unless one ball is included
in all the others. Instead, we require that for each true, finite conjunction of
information states, there is a true information state that entails the conjunction.
An information basis I is a collection of subsets of W such that

1. For each w ∈W , there is information state E ∈ I such that x ∈ E.

2. If w ∈ E1 ∩E2 for E1, E2 ∈ I then there is information E3 ∈ I such that
w ∈ E3 and E3 ⊂ E1 ∩ E2.

Let O be the closure of I under arbitrary union. Let T denote the topological
space (W,O). Call T the information topology generated by I. The elements
of O are called open sets or, more appropriately, verifiable propositions, since
elements of O are the propositions that, if true, are logically entailed, eventually,
by true information. Let Iw denote the set of all E ∈ I such that w ∈ E. In
other words, Iw is the set of all possible information states true in w.

A question Q is a partition of W into answers. Let Hw be the unique answer
to the question that contains (i.e., is true in) w. An empirical problem P is a
triple (W, I,Q), such that I is an information base and Q is a question.

3 Restrictions

Restrictions capture the acquisition of new information. For E ∈ I:
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Definition Restrictions

W |E = E;

I|E = {E′ ∈ I : E′ ⊆ E};
Q|E = {H ∩ E : H ∈ Q};

Lemma 1. I|E is an information basis for W |E.

Proof. Let w ∈W |E . Then w ∈ E ∈ I|E as required. Suppose w ∈ E1 ∩E2 for
E1, E2 ∈ I|E . Since E1, E2 are also in I, there is E3 ∈ I such that w ∈ E3 and
E3 ⊂ E1 ∩ E2 ⊆ E. Therefore E3 ∈ I|E .

Lemma 2. I|E is a basis for the subspace topology TE.

Proof. Let O be an open set in T and w ∈ O ∩ E. O =
⋃
α∈J

Eα for some index

set J . Therefore, we have, for some α, that w ∈ Eα ∩E. So there exists E′ ∈ I
such that E′ ⊂ Eα ∩ E. Furthermore, since E′ ⊆ E, E′ ∈ I|E . Therefore I|E
is a basis for the subspace topology TE .

Now we are in a position to define restrictions for problems:

Definition

P|E = (TE , Q|E).

4 Arrows

The basic idea is that empirical simplicity is an apt representation or road
map of the theory choice problem under consideration. Coarse-grain W into
simplicity degrees and draw arrows between such degrees to map the problem of
induction in the following sense. Draw a skeptical arrow from C to D if and only
if science faces the problem of induction in the given problem P from C to D.
Draw a benign arrow from cell C to cell D if and only if the problem of induction
obtains from C to D but the true answer to Q does not. Arrows capture changes
of epistemic state during the process of inquiry. Traversing a skeptical arrow
corresponds to observing an empirical effect that may force a retraction of the
scientist’s answer to Q. Traversing a benign arrow corresponds to a change of
epistemic state that does not require a retraction relative to Q. A generic arrow
is an arrow of either type. Arrows are problem-relative in two ways: the problem
topology determines where arrows exist; the question determines which arrows
are skeptical and which benign. Let TP, be the topology for the problem P.

Skeptical, Benign and Generic Arrows

SP(w,X) iff w ∈ bdryTP
(X \Hw);

BP(w,X) iff ¬SP(w,X) and w ∈ bdryTP
(X) \X;

AP(w,X) iff SP(w,X) or BP(w, x).
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We will omit the problem subscript where there is no ambiguity.

Remark 1. We have that AP(w,X) → w ∈ bdryTP
(X) but not the converse.

However, w ∈ bdryTP
(X) \X → AP(w,X).

Lemma 3. If E ∈ Iw then AP(w,D|E) if and only if AP|E (w,D|E). Moreover,
the type of the arrow is preserved.

Proof.

(Skeptical Case) Suppose SP(w,D|E). Then for all open nbhds O of w in T,
O ∩ E ∩D \Hw is nonempty. But since O ∩ E is an arbitrary open set of TE ,
we have that w ∈ bdryTP|E

(D \Hw) and therefore SP|E (w,D|E). The converse

is symmetrical.

(Benign Case) Suppose BP(w,D|E). Then w /∈ D|E and for every nbhd O of w
open in T, O ∩D ∩E is non-empty. As above, since O ∩E is an arbitrary open
set in TE , we have that w ∈ bdryTP|E

(D|E) \ D|E as well. By the skeptical

case, if ¬SP(w,D|E) then ¬SP|E (w,D|E). So we have that BP|E (w,D|E). The
converse is symmetrical.

The previous lemma allows us to use the original problem for the restricted
problem freely.

Lemma 4. If E ∈ Iw then AP(w,D) if and only if AP(w,D|E). Moreover, the
type of the arrow is preserved.

Proof. ⇒ Let A(w,D) and E ∈ Iw.

(Skeptical Case) Suppose S(w,D) and therefore w ∈ bdryTP
(D \ Hw). Now

suppose for a contradiction that w /∈ bdryTP
(D|E \Hw). So there is a nbhd O

of w that catches E and D \ Hw but no part of their intersection. But since
E is also a nbhd of w, O ∩ E is a nbhd of w that does not intersect D \ Hw,
contradicting S(w,D). So it must be that w ∈ bdryTP

(D|E \Hw) and therefore
S(w,D|E). Since E was arbitrary, we have shown that skeptical arrows are
preserved by information.

(Benign Case) Now suppose B(w,D) and therefore w ∈ bdryTP
(D) but w /∈ D

and w /∈ bdryTP
(D \Hw). Clearly, w /∈ D|E . If w /∈ bdryTP

(D|E) then there
is a neighborhood O of w such that O ∩ E ∩ D = ∅. But O ∩ E is also a
nbhd of w, contradicting w ∈ bdryTP

(D). So w ∈ bdryTP
(D|E). Furthermore,

if w ∈ bdryTP
(D|E \ Hw) then clearly w ∈ bdryTP

(D \ Hw), contradicting
B(w,D). So w /∈ bdryTP

(D|E \Hw) and we have that B(w,D|E). Since E was
arbitrary, we have shown that benign arrows are preserved by information.

⇐ (Skeptical Case) Suppose S(w,D|E). Then ¬B(w,D|E), w /∈ D|E and
w ∈ bdryTP

(D|E). Since w is in the boundary of the subset D|E , it is in
the boundary of D as well. Since w is not in the subset D|E it is not in D
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either. By contraposition of ⇒, we have ¬B(w,D), therefore S(w,D). (Benign
Case) Suppose B(w,D|E). Then w ∈ bdryTP

(D|E \ Hw). Since w is in the
boundary of the subset D|E \Hw, it is in the boundary of the superset D \Hw

as well. Therefore B(w,D).

5 Factorizations

It is time to draw the epistemic map of problem P = (W, I,Q). Let F partition
W . Call the elements of this partition simplicity degrees. Arrows are lifted to
simplicity degrees D,D′ ∈ F as follows:

Arrows for Reasons

S(D,D′) iff S(w,D′) for some w ∈ D;

B(D,D′) iff B(w,D′) for some w ∈ D;

A(D,D′) iff A(w,D′) for some w ∈ D.

We will make use of the set of arrow-minimal simplicity degrees. These are the
simplicity degrees for which no world has a problem of induction.

The Set of Arrow-Minimal Reasons

Min(F) = {D : (∀w) ¬A(w,D)}

Restrictions of Factorizations

F|E = {D ∩ E : D ∈ F}.

Factorization

Let the binary relation Fac(F ,P) hold if and only if for every w ∈W :

Homogeneity
w,w′ ∈ D → (S(w,D′)→ S(w′, D′)) ∧ (B(w,D′)→ B(w′, D′)).

Minimality
(∃E ∈ Iw) ({Dw ∩ E} ∈ Min(F|E)).

Theorem 1. Fac(F ,P)→ Fac(F|E ,P|E).

Proof.

(Homogeneity) Let w,w′ ∈ D and E ∈ Iw ∩ Iw′ . Suppose S(w,D′). By Ho-
mogeneity, S(w′, D′). By Lemma 4, S(w,D′|E) and S(w′, D′|E). The case of
the benign arrow is identical. So information preserves Homogeneity.

(Minimality) By Minimality, for all w ∈ W there is information O ∈ Iw
such that for all w′ ∈ W |O, ¬A(w′, D|O). By Lemma 4, for all w′ ∈ W |O∩E ,
¬A(w′, D|O∩E) and Minimality is satisfied.
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Theorem 2. Arrows are a strict partial order over cells.

Proof.

(Asymmetry) Suppose A(D,D′) and A(D′, D). Let w ∈ D and E ∈ Iw. By
Homogeneity, we have that A(w,D′). By the arrow we know that E catches
some point w′ ∈ D′. By Homogeneity, we have that A(w′, D). Since E ∈ Iw′

as well, we have by Lemma 4 that A(w′, D|E). So for all E, we have that
A(D′|E , D|E) and therefore D ∩ E /∈ Min(F|E), contradicting Minimality.

(Transitivity) Suppose A(D,D′) and A(D′, D′′). By Asymmetry, D 6= D′′. Let
w ∈ D. By Homogeneity, we have that A(w,D′). So every E ∈ Iw catches
some w′ ∈ D′. By Homogeneity, A(w′, D′′). Since E is a nbhd of w′ it catches
some point in D′′. Since E arbitrary, we have that w ∈ bdryTP

(D′′) \D′′. By
the Remark, A(w,D′′) and A(D,D′′).

Theorem 3. For all w ∈W there exists E ∈ Iw such that Dw ∩ E ⊂ Hw.

Proof. Suppose for a contradiction that for all E ∈ Iw, Dw ∩ E ∩ Hz 6=w is
nonempty. But then w ∈ D\Hw and therefore S(w,D). Then by Homogeneity
A(D,D), a contradiction by asymmetry of the partial order.

Theorem 4. Finite anti-chains are decidable.

Proof. Suppose D1, D2, D3, ... is a finite collection of distinct cells, unordered
by arrows. Let w ∈ Di. By Homogeneity, for all j 6= i we have ¬A(w,Dj).
So for all j 6= i there exist nbhds Oj of w such that Oj ∩ Dj = ∅. Since the
collection is finite, ∩

j 6=i
Oj is a nbhd of w that intersects no Dj 6=i. Furthermore,

there must be E ∈ Iw such that w ∈ E and E ⊆ ∩
j 6=i
Oj . So Di is separable from

the collection of cells Dj 6=i.
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