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Abstract

Simplicity has long been recognized as an apparent mark of truth in
science, but it is difficult to explain why simplicity should be accorded such
weight. This chapter examines some standard, statistical explanations of
the role of simplicity in scientific method and argues that none of them
explains, without circularity, how a reliance on simplicity could be con-
ducive to finding true models or theories. The discussion then turns to a
less familiar approach that does explain, in a sense, the elusive connection
between simplicity and truth. The idea is that simplicity does not point at
or reliably indicate the truth but, rather, keeps inquiry on the cognitively
most direct path to the truth.

1 Introduction

Scientific theories command belief or, at least, confidence in their ability to predict
what will happen in remote or novel circumstances. The justification of that
trust must derive, somehow, from scientific method. And it is clear, both from
the history of science and from the increasing codification and automation of
the scientific method both in statistics and in machine learning, that a major
component of that method is Ockham’s razor, a systematic bias toward simple
theories, where “simplicity” has something to do with minimizing free parameters,
gratuitous entities and causes, independent principles and ad hoc explanations
and with maximizing unity, testability, and explanatory power.

Ockham’s razor is not a bloodless, formal rule that must be learned—it has
a native, visceral grip on our credence. For a celebrated example, Copernicus
was driven to move the earth to eliminate five epicycles from medieval astronomy
(Kuhn 1957). The principal problem of positional planetary astronomy was to ac-
count for the apparently irregular, retrograde or backward motion of the planets
against the fixed stars. According to the standard, Ptolemaic theory of the time,
retrograde motion results from the planet revolving around an epicycle or circle
whose center revolves, in turn, on another circle called the deferent, centered on
the earth. Making the epicycle revolve in the same sense as the deferent implies
that the planet should be closest or brightest at the midpoint of its retrograde
motion, which agrees with observations. Copernicus explained retrograde mo-
tion in terms of the moving earth being lapped or lapping the other planets on
a cosmic racetrack centered on the sun, which eliminates one epicycle per planet
(figure 1). Copernicus still required many superimposed circles to approximate
elliptical orbits, so the mere elimination of five such circles may not seem very
impressive. But there is more to the story than just counting circles. It happens
that the retrograde motions of Mars, Jupiter, and Saturn occur precisely when
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Figure 1: Ptolemy vs. Copernicus

the respective planet is in solar opposition (i.e., is observed 180◦ from the sun)
and that the retrograde motions of Mercury and Venus occur at solar conjuc-
tion (i.e., when the respective planet is 0◦ from the sun). Ptolemy’s epicycles
can be adjusted to recover the same effect, but only in a rather bizarre manner.
Think of the line from the earth to the sun as the hand of a clock and think of
the line from the center of Saturn’s epicycle to Saturn as the hand of another
clock. Then retrograde motion happens exactly at solar opposition if and only
if Saturn’s epicycle clock is perfectly synchronized with the sun’s deferent clock.
The same is true of Mars and Jupiter. Furthermore, Mercury and Venus undergo
retrograde motion exactly at solar opposition just in case their deferent clocks are
perfectly synchronized with the sun’s deferent clock. In Ptolemy’s theory, these
perfect synchronies across vast distances in the solar system appear bizarre and
miraculous. On Copernicus’ theory, however, they are ineluctable, geometrical
banalities: the earth passes an outer planet exactly when the earth crosses the
line from the central sun to the planet passed. So Copernicus’ theory crisply
explains the striking synchronies. Copernicus’ theory is also severely tested by
the synchronies, since it would be refuted by any perceived deviation from exact
synchrony, however slight. Ptolemy’s theory, on the other hand, merely accom-
modates the data in an ad hoc manner by means of its adjustable parameters.
It seems that Copernicus’ theory should get some sort of reward for surviving
a test shirked by its competitor. One could add clockwork gears to Ptolemy’s
theory to explain the synchronies, but that would be an extra principle receiving
no independent confirmation from other evidence. Copernicus’ explanation, on
the other hand, recovers both retrograde motion and its correlation with solar
position from the geometry of a circular racetrack, so it provides a unified expla-
nation of the two phenomena. Empirical simplicity is more than mere notational
brevity—it implies such red-blooded considerations as explanatory power (Har-
man 1965), unity (Kitcher 1982), independently confirmable principles (Friedman
1983, Glymour 1980) and severe testability (Popper 1968, Mayo 1996).

Another standard example of Ockham’s razor in action concerns the search
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for empirical laws (figure 2). Any finite number of observations can be connected

Figure 2: inferring polynomial degree

with a polynomial curve that passes through each, but we may still prefer a
straight line that comes close to each point. It is, perhaps, more tempting in this
case to identify simplicity with syntactic length or complexity of the law, since
α0x

0 + α1x
1 + . . . αnx

n is obviously more verbose than α0x
0 + α1x

1. But one
can also say that the complex law merely accommodates the data by having an
independent, adjustable parameter for each data point, whereas when the two
parameters of the simple law can be estimated with a few data, providing an
explanation of the remaining data points. The complex law is also less unified
than the simple law (the several coefficients receive isolated support from the
data points they are set to account for) and is less visually “uniform” than the
simple law.

Ockham’s razor does the heavy lifting in scientific theory choice, for no other
principle suffices to winnow the infinite range of possible explanations of the avail-
able data down to a unique one. And whereas simplicity was once the theorist’s
personal prerogative, it is now a mathematically explicit and essential component
of contemporary statistical and computational techniques for drawing conclusions
from empirical data (cf. Mitchell 1977, Duda et al. 2001). The explicitness and
indispensability of Ockham’s razor in scientific theory selection raises a natural
question about its justification. Epistemic justification is not just a word or a
psychological urge or a socially sanctioned, exculpatory ritual or procedure. It
should imply some sort of truth-conduciveness of the underlying process by which
one’s trust is produced. An attractively ambitious concept of truth-conduciveness
is reliable indication of the truth, which means that the process has a high chance
of producing the true theory, whatever the truth happens to be, the way a prop-
erly functioning thermometer indicates temperature. But Ockham’s razor is more
like a trick thermometer whose reading never changes. Such a thermometer can-
not be said to indicate the temperature even if its fixed reading happens to be
true. Neither can a fixed bias toward simplicity immediately indicate the truth
about nature—unless the truth is alreadyknown to be simple, in which case there
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would be no need to invoke Ockham’s razor by way of justification.1

Ockham’s razor has a good excuse for failing to reliably indicate true theories,
since theory choice requires inductive inference and no inductive inference method
can be a truth-indicator: each finite set of data points drawn with bounded
precision from a linear law is also compatible with a sufficiently flat parabola, so
no possible data-driven process could reliably indicate, in the short run, whether
the truth is linear or quadratic. A more feasible concept of truth-conduciveness
for inductive inference is convergence in the limit, which means that the chance
that the method produces the true theory converges to one, no matter what
the true theory might be.2 Convergence to the truth in the limit is far weaker
than short-run truth-indication, since it is compatible with the choice of any finite
number of false theories with arbitrarily high chance before settling on the correct
one. Each time a new theory Tn+1 is produced with high chance, the chance of
producing the previous candidate Tn must drop precipitously and one may say
that the output is retracted. So convergence in the limit differs from reliable
indication by allowing any finite number of arbitrarily precipitous retractions
prior to “locking on” to the right answer. Assuming that the true theory is
polynomial, Ockham’s razor does converge in the limit to the true polynomial
degree of f(x)—each polynomial degree lower than the true degree is ruled out,
eventually, by the data (e.g., when new bumps in the true law become noticable),
after which the true theory is the simplest theory compatible with experience.
Think of successively more complex theories as tin cans lined up on a fence, one
of which (the true one) is nailed to the fence. Then, if one shoots the cans from
left to right, eventually the nailed can becomes and remains the first can in line
that has not yet been shot down. The familiar trouble with this explanation
of Ockham’s razor is that convergence in the long run is compatible reliance on
any alternative bias for any finite duration (Salmon 1967). For example, guess
an equation of degree 10 with the hope that the coefficient is so large that the
thousand bumps will be noticed early—say in a sample of size 1000. If they aren’t
seen by then, revert back to Ockham’s razor, which succeeds in the limit. Hence,
convergence in the limit is feasible in theoretical inference, but it does not single
out simple theories as the right theories to produce in the short run.

To summarize, the justification of Ockham’s razor poses a puzzle. Ockham’s
razor can’t reliably indicate the true theory in the short run, due to the prob-
lem of induction. And although Ockham’s razor does converge to the truth
in the ideal limit of inquiry, alternative methods producing very complex the-
ories are also truth-conducive in that very weak sense as well (Salmon 1967).

1This updated version of Plato’s Meno paradox is underscored in machine learning by the
“no free lunch theorems” (Wolpert 1996).

2This concept is called convergence in probability in probability theory and consistency in
statistics.
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So short-run indication is too strong to be feasible and long-run convergence is
too weak to single out Ockham’s razor. It remains, therefore, to define a sense
of truth-conduciveness according to which it can be argued, without circularity,
that Ockham’s razor helps one find the truth better than alternative methods
that would produce arbitrarily complex theories now. Absent such a story, Ock-
ham’s razor starts to look like an exercise in wishful thinking—the epistemic sin
of inferring that reality is simple because the true theory of a simple world would
have pragmatic virtues (e.g., explanatory power) that one would like it to have.
Such doubts motivate a skeptical or anti-realist attitude toward scientific theories
in general (van Fraassen 1981).

This paper reviews the standard explanations of Ockham’s razor, which fall
into two main groups. The first group invokes a tacit, prior bias toward sim-
plicity, which begs the question in favor of Ockham’s razor. The second group
substitutes a particular notion of predictive accuracy for truth, based on the sur-
prising fact that a false theory may make more accurate predictions than the
true one when the truth is complex. That evidently fails to explain how Ock-
ham’s razor finds true theories (as opposed to useful models). Furthermore, when
predictions concern the outcomes of interventions on the world, even the argu-
ment for predictive accuracy fails.3 Since neither approach really explains how
Ockham’s razor leads to true theories or even to accurate policy predictions, the
second part of the paper develops an entirely new explanation: Ockham’s razor
does not point at the truth, even with high probability, but it does help one
arrive at the truth with uniquely optimal efficiency, where efficiency is measured
in terms of such epistemically pertinent considerations as the total number of
errors and retractions of prior opinions incurred before converging to the truth
and the elapsed times by which the retractions occur. Thus, in a definite sense,
Ockham’s razor is demonstrably the uniquely most truth-conducive method for
inferring general theories from particular facts—even though no possible method
can be guaranteed to point toward the truth with high probability in the short
run.

2 The Argument from Bayes Factors

Bayesian statisticians assign probability-valued degrees of belief to all the propo-
sitions in some language and then “rationally” update those degrees of belief by
a universal rule called conditionalization.4 If pt(T ) is your prior degree of belief

3For candid discussions of the shortcomings of the usual explanations of Ockham’s razor as
it is used in machine learning, cf., for example, (Domingos 1999) and (Mitchell 1997).

4Not all Bayesians accept updating by conditionalization. Some Bayesians recommend ac-
cepting hypotheses altogether, in which case the degree of belief goes to one. Others recommend
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that T at stage t and if E is new evidence received at stage t + 1, then con-
ditionalization says that your updated degree of belief that T at t + 1 should
be:

pt+1(T ) = pt(T | E).

It follows from the conditionalization rule that:

pt+1(T ) = (pt(T ) · pt(E | T ))/pt(E).

An important feature of the rule is that one’s updated degree of belief pt+1 de-
pends on one’s prior degree of belief pt(T ), which might have been strongly biased
for or against T prior to collecting any evidence about T whatever. That fea-
ture suggests an easy “justification” of Ockham’s razor—just start out with prior
probabilities biased toward simple theories. Then, if simple theories explain the
data about as well as complex ones, the prior bias toward the simple theory passes
through the updating procedure. But to invoke a prior bias toward simplicity to
explain a prior bias toward simplicity evidently begs the main question at hand.

A more promising Bayesian argument for Ockham’s razor centers not on the
prior probability pt(T ), but on the term pt(E | T ), which corresponds to the
rational credence conferred on E by theory T . (cf. Jeffreys 1961, Rosenkrantz
1983, Myrvold 2003). According to this explanation, Ockham’s razor does not
demand that the simpler theory T1 start out ahead of its complex competitor T2;
it suffices that T1 pull ahead of T2 when evidence E compatible with T1 is re-
ceived. That sounds impressive, for the conditional probability pt(E | T ) is often
thought to be more objective than the prior probability pt(T ), because pt(E | T )
reflects the degree to which T “explains” E. But that crucially overstates the
case when T has free parameters to adjust, as when Ockham’s razor is at issue.
Thoroughly subjective Bayesians interpret “objective” probabilities as nothing
more than relatively inter-subjective degrees of belief, but a more popular, al-
ternative view ties objectivity to chances. Chances are supposed to be natural,
objective probabilities that apply to possible outcomes of random experiments.
Chance will be denoted by a capital P , in contrast with the lower-case p denoting
degrees of belief. Bayesian statisticians link chances to evidence and to action
by means of the direct inference principle (Kyburg 1977, Levi 1977, Lewis 1987),
which states that degrees of belief should accord with known chances, given only
admissible5 information E ′:

pt(E | P (E) = r ∧ E ′) = r.

updating on partially believed evidence. Others recommend updating interval-valued degrees
of belief, etc. Others reject its coherentist justification in terms of diachronic Dutch books.

5Defining admissibility is a vexed question that will be ignored here.
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If theory T says exactly that the true chance distribution of X is P , then by the
direct inference principle:

pt(E | T ) = P (E),

which is, indeed, objective. But if T is complex, then T has adjustable parameters
and, hence, implies only that the true chance distribution lies in some set, say:
{P1, . . . , Pn}. Then the principle of direct inference yields the weighted average:

pt(E | T ) =
n∑

i=1

Pi(E) · pt(Pi | T ),

in which the weights pt(Pn | T ) are prior degrees of belief, not chances. So
the objective-looking quantity pt(E | T ) is loaded with prior opinion when T is
complex and that potentially hidden fact is crucial to the Bayesian explanation
of Ockham’s razor.

A standard technique for comparing the posterior probabilities of theories is
to look at the posterior ratio:

pt(T1 | E)

pt(T2 | E)
=

pt(T1)

pt(T2)
· pt(E | T1)

pt(E | T1)
.

The first quotient on the right-hand-side is the prior ratio, which remains constant
as new evidence E is received. The second quotient is the Bayes factor, which
accounts for the entire impact of E on the relative credence of the two theories
(Kass and Raftery 1995).

To guarantee that p(T1 | E) > p(T2 | E), one must impose some further,
material restrictions on coherent degrees of belief, but it can be argued that the
constraints are presupposed by the very question whether Ockham’s razor should
be used when choosing between a simple and a complex theory. That places
the Bayesian explanation of Ockham’s razor in in the same class of a priori
metaphysical arguments that includes Descartes’ cogito, according to which the
thesis “I exist” is evidently true each time one questions it. First of all, a Bayesian
wouldn’t think of herself as choosing between T1 and T2 if she started with a strong
bias toward one theory or the other, so let pt(T1) ≈ pt(T2). Second, she wouldn’t
be choosing between two theories compatible with E unless simple theory T1

explains E, so that P (E) ≈ 1. Third, she wouldn’t say that T2 is complex unless
T2 has a free parameter i to adjust to save the data. She would not say that
the parameter of T2 is free unless she were fairly uncertain about which chance
distribution Pi would obtain if T2 were true: e.g., pt(Pi | T2) ≈ 1/n. Furthermore,
she would not say that the parameter must be adjusted to save E unless the
chance of E is high only over a narrow range of possible chance distributions
compatible with T2: e.g., P0(E) ≈ 1 and for each alternative i such that 0 < i ≤

8



n, pi(E) ≈ 0. It follows from the above assumptions that the prior probability
ratio is approximately 1 and the Bayes’ factor is approximately n, so:

pt(T1 | E)

pt(T2 | E)
≈ n.

Thus, the simple theory T1 ends up more probable than the complex theory T2 in
light of evidence E, as the complex theory T2 becomes more “adjustable”, which is
the argument’s intended conclusion. When the set of possible chance distributions
{Pθ : θ ∈ R} is continuously parameterized, the argument is similar, except that
the (discrete) weighted sum expressing pt(E | T2) becomes a (continuous) integral:

pt(E | T2) =

∫
Pθ(E) · pt(Pθ | T2) dθ,

which, again, is weighted by the subjective degrees of belief pt(Pθ | T2).
Each of the above assumptions can be weakened. It suffices that the prior

ratio not favor T2 too much, that the explanation of E by T1 not be too vague,
that the explanation of E by T2 not be too robust across parameter values and
that the distribution of degrees of belief over free parameters of T2 not be focused
too heavily on the parameter values that more closely mimic the predictions of
T1.

The Bayes factor argument for Ockham’s razor is closely related to standard
paradoxes of indifference. Suppose that someone is entirely ignorant about the
color of a marble in a box. Indifference over the various colors implies a strong
bias against blue in the partition blue vs. non-blue, whereas indifference over blue
vs. non-blue implies a strong bias against yellow. The Bayes factor argument
amounts to plumping for the former bias. Think of the simple theory T0 as “blue”
and of the complex theory T2 as “non-blue” with a “free parameter” ranging over
red, green, yellow, etc. and assume, for example, that the evidence E is “either
blue or red”. Then, by the above calculation, the posterior ratio of “blue” over
“non-blue” is the number n of distinguished non-blue colors. Now consider the
underlying prior probability over the refined partition blue, red, green, yellow,
etc. It is apparent that “blue” is assigned prior probability 1/2, whereas each
alternative color is assigned 1/2n, where n > 1. Hence, the complex theory starts
out even with the simple theory, but each complex possibility starts out with a
large disadvantage. Thus, although “red” objectively “explains” E just as well as
“blue” does, the prior bias for “blue” over “red” gets passed through the Bayesian
updating formula and begs the question in favor of“blue”. One could just as well
choose to be “ignorant” over blue, red, green, yellow, etc., in which case “blue”
and “red” end up locked in a tie after E is observed and “non-blue” remains
more probable than “blue”. So the Bayes factor argument again comes down to
a question-begging prior bias in favor of simple possibilities.

9



One can attempt to single out the simplicity bias by expanding the Bayesian
notion of rationality to include “objective” constraints on prior probability: e.g.,
by basing them on the length of Turing machine programs that would produce the
data or type out the hypothesis (Jeffreys 1961, Rissannen 2007, Li and Vitanyi
1993). But that strategy is an epistemological red herring. Even if “rationality”
is augmented to include an intuitively appealing, formal rule for picking out some
prior biases over others, the real question regarding Ockham’s razor is whether
such a bias helps one find the truth better than alternative biases (cf. Mitchell
1997). To answer that question relevantly, one must explain, without circular
appeal to the very bias in question, whether and in what sense Bayesians who
start with a prior bias toward simplicity find the truth better than Bayesians
starting with alternative biases would. There are two standard strategies for
justifying Bayesian updating. Dutch Book arguments show that violating the
Bayesian updating rule would result in preference for combinations of diachronic
bets that result in a sure loss over time (Teller 1976). But such arguments do
not begin to establish that Bayesian updating leads to higher degrees of belief in
true theories in the short run. In fact, Bayesian updating can result in a huge
short-run boost of credence in a false theory: e.g., when the the parameters of
the true, complex theory are set very close to values that mimic observations
fitting a simple alternative. Perhaps the nearest that Bayesians come to tak-
ing theoretical truth-conduciveness seriously is to argue that iterated Bayesian
updating converges to the true theory in the limit, in the sense that p(T | En)
converges to the truth value of T as n increases.6 But the main shortcoming with
that approach has already been discussed: both Ockham and non-Ockham initial
biases are compatible with convergent success in the long run. In sum, Bayesians
either beg the question in favor of simplicity by assigning higher prior probabil-
ity to simpler possibilities, or they ignore truth-conduciveness altogether in favor
of arguments for coherence, or they fall back upon the insufficient strategy of
appealing to long-run convergence.

3 The Argument from Over-fitting

Classical statisticians seek to justify scientific method entirely in terms of objec-
tive chances, so the Bayesian explanation of Ockham’s razor in terms of Bayes
factors and prior probabilities is not available to them. Instead, they maintain a
firm focus on truth-conduciveness but lower their sights from choosing the true
theory to choosing the theory that yields the most accurate predictions. If the-
ory T is deterministic and observation is perfectly reliable and T has no free

6Even then, convergence is guaranteed only with unit probability in the agent’s prior prob-
ability. The non-trivial consequences of that slip are reviewed in (Kelly 1996).
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parameters, then prediction involves deducing what will happen from T . If T
has a free parameter θ, then one must use some empirical data to fix the true
value of θ, after which one deduces what will happen from T (e.g., two observed
points determine the slope and intercept of a linear law). More generally, fixing
the parameter values of T results only in a chance distribution Pθ over possi-
ble experimental outcomes. In that case, it is natural to use past experimental
data E ′ to arrive at an empirical estimate θ̂(T,E ′) for parameter θ. A standard

estimation technique is to define θ̂(T,E ′) to be the value of θ that maximizes

Pθ(E
′). Then θ̂(T,E ′) is called the maximum likelihood estimate or MLE of T

(given outcome E ′) and the chance distribution Pθ̂(T,E′) is a guess at the proba-
bility of future experimental outcomes E. The important point is that theory T
is not necessarily inferred or believed in this procedure; The aim in choosing T is
not to choose the true T but, rather, the T that maximizes the accuracy of the
estimate Pθ̂(T,E′) of P ∗. Classical statisticians underscore their non-inferential,
instrumentalistic attitude toward statistical theories by calling them models.

It may seem obvious that no theory predicts better than the true theory, in
which case it would remain mysterious why a fixed bias toward simplicity yields
more accurate predictions. However, if the data are random, the true theory
is complex, the sample is small, and the above recipe for using a theory for
predictive purposes is followed, then a false, overly simplified theory can predict
more accurately than the true theory—e.g., even if God were to inform one that
the true law is a degree 10 polynomial, one might prefer, on grounds of predictive
accuracy, to derive predictions from a linear law. That surprising fact opens the
door to an alternative, non-circular explanation of Ockham’s razor in terms of
predictive accuracy. The basic idea applies to accuracy in general, not just to
accurate prediction. Consider, for example, a marksman shooting at a target.
To keep our diagrams as elementary as possible, assume that the marksman is a
Flatlander who exists entirely in a two-dimensional plane, so that the target is
one-dimensional. There is a wall (line) in front of the marksman and the bull’s
eye is a distinguished point θ∗ on that line. Each shot produced by the marksman
hits the wall at some point θ̂, so it is natural to define the squared error of shot
θ̂ as (θ̂ − θ∗)2 (figure 3.a). Then for n shots, the average of the squared errors
of the n points is a reflection of the marksman’s accuracy, because the square
function keeps all the errors positive, so none of them cancel.7 If one thinks of
the marksman’s shots as being governed by a probability distribution reflecting
all the stray causes that affect the marksman on a given shot, then one can
explicate the marksman’s accuracy as the expected or mean squared error (MSE)

7One could also sum the absolute values of the errors, but the square function is far more
commonly used in statistics.
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of a single shot with respect to distribution P :

MSEP (θ̂, θ
∗) = ExpP (θ̂ − θ∗)2.

The MSE is standardly factored in a revealing way into a formula known as the
bias-variance trade-off (Wasserman 2004):

MSEP (θ̂, θ
∗) = BiasP (θ̂, θ

∗)2 +VarP (θ̂),

where BiasP (θ̂, θ
∗) is defined as the deviation of the marksman’s average or ex-

pected shot from the bull’s eye θ∗:

BiasP (θ̂, θ
∗) = ExpP (θ̂)− θ∗;

and the variance Varp(θ̂) is defined as the expected distance of a shot from the
average shot:

VarP (θ) = ExpP ((θ̂ − ExpP (θ̂))
2).

Bias is a systematic tendency to hit to a given side of the bull’s eye, whereas
variance reflects spread around the marksman’s expected or average shot. Even
the best marksman is subject to some variance due to pulse, random gusts of
wind, etc., and the variance is amplified systematically as distance from the tar-
get increases. In contrast, diligent aim, proper correction of vision, etc. can
virtually eliminate bias, so it seems that a marksman worthy of the name should
do everything possible to eliminate bias. But that argument is fallacious. Con-
sider the extreme strategy of welding the rifle to a steel post to eliminate variance
altogether (figure 3.b). In light of the bias-variance trade-off, the welded rifle is
more accurate than honest aiming as long as the squared bias of the welded rifle
is less than the variance of the marksman’s unconstrained aim. If variance is suf-
ficiently high (due to distance from the target, for example), the welded rifle can
be more accurate, in the MSE sense, than skillful, unrestricted aim even if the
weld guarantees a miss. That is the key insight behind the over-fitting argument.
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Welding the rifle to a post is draconian. One can imagine a range of options,
from the welded rifle, through various, successively less constraining clamps, to
unconstrained aim. For a fixed position θ∗ of the bull’s eye, squared bias goes
down and variance goes up as aiming becomes less constrained. The minimum
MSE (among options available) occurs at a “sweet spot” where the sum of the
curves achieves a mininum. Aiming options that are sub-optimal due to high bias
are said to under-aim (the rifle’s aim is too constrained) and aiming options that
are sub-optimal due to high variance are said to over-aim (the rifle’s aim is not
constrained enough).

So far, the welded rifle strategy looks like a slam-dunk winner over all com-
peting strategies—just hire an accurate welder to obtain a perfect score! But to
keep the contest sporting, the target can be concealed behind a curtain until all
the welders complete their work. Now the welded rifles still achieve zero variance
or spread, but since bias depends on the bull’s eye position θ∗, which might be
anywhere, the welding strategy cannot guarantee any bound whatever on bias.
The point generalizes to other, less draconian constraints on aim—prior to seeing
the target there is no guarantee how much extra bias such constraints would con-
tribute to the shot. One could lay down a prior probability reflecting about where
the organizers might have positioned the target, but classical statisticians refuse
to consider them unless they are grounded in knowledge of objective chance.

Empirical prediction of random quantities is closely analogous to a shoot-
ing contest whose target is hidden in advance. The maximum likelihood estimate
θ̂(T,E ′) is a function of random sample E ′ and, hence, has a probability distribu-
tion P ∗ that is uniquely determined by the true, sampling distribution Pθ∗ . Thus,
θ̂(T,E ′) is like a stochastic shot θ̂ at bull’s eye θ∗. When the MLE is taken with
respect to the completely unconstrained theory T1 = {Pθ : θ ∈ Θ}, it is known
in many standard cases that the MLE is unbiased: i.e., BiasP ∗(θ̂(T1, E

′), θ∗) = 0.
Thus, the MLE based on the complex, unconstrained theory is like the marks-
man’s free aim at the bull’s eye. How can that be, when the scientist can’t see the
bull’s eye θ∗ she is aiming at? The answer is that nature aims the rifle straight at
θ∗; the scientist merely chooses whether the rifle will be welded or not and then
records the result of the shot. Similarly, the MLE with respect to constrained
theory T0 = {Pθ0} is like shooting with the welded rifle—it has zero variance
but no guarantee whatever regarding bias. For a fixed parameter value θ∗ and
for theories ordered by increasing complexity, there is a “sweet spot” theory T
that maximizes accuracy by optimally trading bias for variance. Using a theory
simpler than T reduces accuracy by adding extra bias and is called under-fitting
whereas using a theory more complex or unconstrained than T reduces accuracy
by adding variance and is called over-fitting. Note that over-fitting is defined
in terms of the bias-variance trade-off, which is relative to sample size, and def-
initely not in terms of distinguishing genuine trends from mere noise, as some
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motivational discussions seem to suggest (e.g., Forster and Sober 1994).
To assume a priori that θ0 is sufficiently close to θ∗ for the MLE based on T0

to be more accurate than the MLE based on T1 is just another way to beg the
question in Ockham’s favor. But the choice between basing one’s MLE on T0 or on
T1 is a false dilemma—Ockham’s razor says to presume no more complexity than
necessary, rather than to presume no complexity at all, so it is up to Ockham’s
razor to say how much complexity is necessary to accommodate sample E ′. To
put the same point another way, Ockham’s razor is not well-defined in statistical
contexts until one specifies a formula that scores theories in a manner that rewards
fit but taxes complexity. One such formula is the Akaike (1973) information
criterion (AIC), which ranks theories (lower is better) relative to a given sample
E ′ in terms of the remarkably tidy and suggestive formula:

AIC(T,E) = badness of fit of T to E + complexity of T,

where theoretical complexity is the number of free parameters in T and badness
of fit is measured by: −ln(Pθ̂(T,E′)(E

′)).8

Choosing T so as to minimize the AIC score computed from sample E ′ is
definitely one way to strike a precise balance between simplicity and fit. The
official theory behind AIC is that the AIC score is an unbiased estimate of a
quantity whose minimization would minimize MSE (Wasserman 2004). That
sounds remotely comforting, but it doesn’t cut to the chase. Ultimately, what
matters is the MLE of the whole strategy of using AIC to choose a model and
then computing the MLE of the model so chosen. To get some feel for the MLE
of the AIC strategy, itself, it is instructive to return to the firing line. Recall
that the MLE based on T0 is like a shot from the welded rifle that always hits
point θ0 and the MLE based on T1 is like honest, unbiased aiming at the bull’s
eye after the curtain rises. Using AIC to decide which strategy to employ has
the effect of funneling shots that fall within a fixed distance r from θ0 exactly to
θ0—call r the funnel radius. So on the firing range, AIC could be implemented
by making a sturdy funnel of radius r out of battleship plate and mounting it
on a firm post in the field so that its spout lines up with the point θ0 (figure
4). The funnel is a welcome sight when the curtain over the target rises and θ0
is seen to line up with the bull’s eye θ∗, because all shots caught by the funnel
are deflected to more accurate positions. In that case, one would like the funnel
to have an infinite radius so as to redirect every shot to the bull’s eye (which is
decision-theoretically identical to welding the rifle to hit point θ0). The funnel is
far less welcome, however, if the intended target is barely obscured by the edge

8Recall that the MLE θ̂(T,E′) is the value of free parameter θ in theory T that maximizes
Pθ(E

′), so Pθ̂(T,E′)(E
′) is the best likelihood that can be obtained from T for sample E′. Now

recall that −ln drops monotonically from ∞ to 0 over the half-open interval (0, 1].
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θ *θ0=
accuracy improved

accuracy improved

Figure 4: Ockham funnel, best case

of the funnel, for then then accurate shots get deflected or biased away from the
bull’s eye, with possibly dire results if the target happens to be hostile (fig. 5).
In that case, one would prefer the funnel to have radius 0 (i.e., to get rid of it

θ *

θ0

accuracy improved

accuracy impaired

Figure 5: Ockham funnel, worst case

altogether).
More generally, for each funnel radius r from 0 to infinity, one can plot the

funnel’s MSE over possible bull’s eye positions θ∗ in order to portray the methods
as decision-theoretic acts with MSE as the loss and θ as the state of the world
(fig. 6).9 How, then, does one choose a funnel radius r? Proponents of AIC
sometimes speak of typical or anomalous performance, but that amounts to a tacit
appeal to prior probabilities over parameter values, which is out of bounds for
classical statisticians when nothing is known a priori about the prior location of

9For computer plots of such curves, cf. (Forster 2001).

15



r = 0 

r = 

θ
0

0

a

b

r = r
0

M
S

E

θ∗

Figure 6: Ockham funnel decision problem

the bull’s eye. One prior-free decision rule is to eliminate dominated alternatives,
but none of the options in figure 6 is dominated—larger funnels do better as
θ∗ approaches θ0 and smaller ones do better as θ∗ diverges from θ0. Another
prior-free decision rule is to choose a minimax strategy, i.e., a strategy whose
maximum MSE, over all possible values of θ∗ is minimal, over all alternative
strategies under consideration. Alas, from figure 6, it is clear that the unique
minimax solution among the available options is r = 0, which corresponds to
estimation using the most complex theory—hardly a ringing endorsement for
Ockham’s razor. There is, however, at least one prior-free decision rule that
favors a non-extremal funnel diameter 0 < r < ∞. The regret of an option at
θ is the difference between the MSE of the option at θ and the minimum MSE
over all alternative options available at θ. The minimax regret option minimizes
worst-case regret. As r goes to infinity, regret a goes up against r = 0 and as r
goes to 0 the regret b goes up against r =∞. So there must be a “sweet” value
r∗ of r that minimizes a, b jointly and that yields a minimax regret solution.
Then r∗ can be viewed as the right balance between simplicity and fit, so far
as minimax regret with respect to predictive inaccuracy is concerned. In some
applications, it can be shown that AIC is approximately the same as the minimax
regret solution when the difference in model complexity is large (Goldenschluger
and Greenshtein 2000). AIC is just one representative of a broad range of funnel-
like techniques motivated by the over-fitting argument, including cross-validation
(Hjorth 1994), Mallows’ (1973) statistic, minimum description length (Grünewald
2007), minimum message length, and structural risk minimization (Vapnik 1995).

There are, of course, some objections to the over-fitting argument. (1) The
argument irrevocably ties Ockham’s razor to randomness. Intuitively, however,
Ockham’s razor has to do with uniformity of nature, conservation laws, symmetry,
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sequential patterns, and other features of the universe that may be entirely deter-
ministic and discretely observable without serious concerns about measurement
error.

(2) Over-fitting arguments are sometimes presented vaguely in terms of “mini-
mizing” MSE, without much attention to the awkward decision depicted in figure
6 and the consequent need to invoke either prior probabilities or minimax regret
as a decision rule.10 In particular, figure 6 should make it clear that computer
simulations of Ockham strategies at “typical” parameter values should not be
taken seriously by classical statisticians, who reject prior probabilistic represen-
tations of ignorance.

(3) MSE can be challenged as a correct explication of accuracy in some ap-
plications. For an extreme example, suppose that an enemy soldier is aiming
directly at you. There happens to be a rifle welded to a lamp post that would
barely miss your opponent and another, perfectly good rifle is lying free on the
ground. If you value your life, you will pick up the rifle on the ground and aim
it earnestly at your opponent even if you know that the welded rifle has lower
MSE with respect to the intended target. For that reason, perhaps, military
marksmanship is scored in terms of hits vs. misses on a human silhouette (U.S.
Army 2003) rather than in terms of MSE from a geometrical bull’s eye.

(4) Finally, the underlying sense of accurate prediction does not extend to pre-
dicting the results of novel policies that alter the underlying sampling distribution
and, therefore, is too narrow to satisfy even the most pragmatic instrumentalist.
That important point is developed in detail in the following section on causal
discovery and prediction.

10Readers familiar with structural risk minimization (SRM) may suspect otherwise, because
SRM theory is based on a function b(α, n, c) such that with worst-case chance 1− α, the true
MSE of using model T of complexity c for predictive purposes is less than b(α, n, c) (Vapnik
1995). The SRM rule starts with a fixed value α > 0 and sample size n and a fixed sequence of
models of increasing complexity and then chooses for predictive purposes (at sample size n) the
model whose worst-case MSE bound b(α, n, c) is least. Note, however, that the bound is valid
only when the model in question is selected and used for predictive purposes a priori. Since b
can be expressed as a sum of a measure of badness of fit and a term taxing complexity, SRM
is just another version of an Ockham funnel (albeit with a diameter larger than that of AIC).
Therefore, the MSE of SRM will be higher than that of the theory SRM selects at the“bumps”
in MSE depicted in figure 6. So the (short-run) decision theory for SRM ultimately poses the
same problems as the decision theory for AIC. In the long run, SRM converges to the true
model and AIC does not but, as has already been explained, long-run convergence does not
explain Ockham’s razor.
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4 Ockham’s Causal Razor

Suppose that one employs a model selection technique justified by the over-fitting
argument to accurately estimate the incidence of lung cancer from the concentra-
tion of nicotine on teeth and suppose that a strong statistical “link” is found and
reported breathlessly in the evening news. Nothing in the logic of over-fitting en-
tails that the estimated correlation would accurately predict the cancer-reducing
efficacy of a public tooth-brushing subsidy, for enactment of the policy would
change the underlying sampling distribution so as to sever the “link”. Getting
the underlying causal theory wrong can make even the most accurate predictions
about the actual population useless for predicting the counterfactual results of
enacting new policies that alter the population.

A possible response is that causal conclusions require controlled, randomized
trials, in which case the sample is already taken from the modified distribution
and the logic of over-fitting once again applies. But controlled experiments are
frequently too expensive or too immoral to perform. Happily, there is an al-
ternative to the traditional dilemma between infeasible experiments and causal
skepticism: recent work on causal discovery (Spirtes et al. 2000, Verma and
Pearl 1991) has demonstrated that there is, after all, a sense in which patterns of
correlations among several (at least three) variables can yield conclusions about
causal orientation. The essential idea is readily grasped. Let X → Y abbre-
viate the claim that X is a direct cause of Y . Consider the causal situations
depicted in figure 7. It is helpful to think of variables as measurements of flows
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Figure 7: causal situations

in pipes and of causal relation X → Y as a pipe with water flowing from flow
meter X to flow meter Y (Heise 1973). In the causal chain W → Y → X, we
have three meters connected by a straight run of pipe, so it is clear that informa-
tion about one meter’s reading would provide some information about the other
meter readings. But since W informs about X only in virtue of providing infor-
mation about Y , knowledge of X provides no further information about W than
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Y does—in jargon, X is independent of W conditional on Y . By symmetrical
logic, the same holds for the inverted chain X → Y → W . The common cause
situation W ← Y → X is the same: W provides information about X only in
virtue of providing information about the common cause Y so, conditional on Y ,
W is independent of X. So far, the situation is pretty grim—all three situations
imply the same conditional dependence relations. But now consider the common
effect W → Y ← X. In that case, W provides no information about X, since
the two variables are causally independent and could be set in any combination.
But conditional on Y , the variable X does provide some information about W
because both W and X must collaborate in a specific manner to produce the
observed value of Y . Thus, the common effect implies a pattern of dependence
and conditional dependence distinct from the pattern shared by the remaining
three alternatives. Therefore, common effects and their consequences can be
determined from observable conditional dependencies holding in the data.

There is more. A standard skeptical concern is the possibility that apparent
causal relation W → X is actually produced by a latent or unobserved common
cause W ← C → X (just as a puppeteer can make one puppet appear to speak
to another). Suppose, for example, that Z is a direct effect of common effect
Y . Consider the skeptical alternative in which Y → Z is actually produced by a
hidden common cause C of Y and Z (fig. 8). But the skeptical alternative leaves

Y

X

W

Z Y

X

W

Z

C

Figure 8: confounding hidden cause

a footprint in the data, since in the confounded situation Z and W are dependent
given Y (since W provides some information about C given Y and C, as a
direct cause of Y , provides some information about Y ). In the non-confounded
situation, the reverse pattern of dependence obtains: W is independent of Z
given Y because Z yields information about W only in virtue of the information
Z yields about Y . So it is possible, after all, to obtain non-confoundable causal
conclusions from non-experimental data.

Given the true causal theory relating some variables of interest and given an
accurate estimate of the free parameters of the theory, one can obtain accurate
counterfactual predictions according to a natural rule: to predict the result of
intervening on variable X to force it to assume value x, first erase all causal
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arrows into X, holding other theory parameters fixed at their prior values and
now use the modified theory to predict the value of the variable of interest, say Y .
Thus, for example, if X is itself an effect, forcing X to assume a value will break
all connections between X and other variables, so the values of other variables
will be predicted not to change, whereas if X is a cause, forcing X to assume
a value will alter the values of the effects of X. The moral is that accurate
counterfactual predictions depend on inferring the causal model corresponding
to the true causal relations among the variables of interest—causal hypotheses
are not merely a way to constrain noise in actual empirical estimates.

Causal discovery from non-experimental data depends crucially on Ockham’s
razor in the sense that causal structure is read off of patterns of conditional corre-
lations and there is a bias toward assuming that a conditional correlation is zero.
That is a version of Ockham’s razor, because non-zero conditional correlations
are free parameters that must be estimated in order to arrive at predictions. Ab-
sent any bias toward causal theories with fewer free parameters, one would obtain
no non-trivial causal conclusions, since the most complex theory entails a causal
connection between each pair of variables and all such causal networks imply
exactly the same patterns of conditional statistical dependence. But since the
over-fitting argument does not explain how such a bias conduces to the identifica-
tion of true causal structure, it fails to justify Ockham’s razor in causal discovery
from non-experimental data. The following, novel, alternative explanation does.

5 Efficient Pursuit of the Truth

To summarize the preceding discussion, the puzzle posed by Ockham’s razor is to
explain how a fixed bias toward simplicity is conducive to finding true theories.
The crux of the puzzle is to specify a concept of truth-conduciveness accord-
ing to which Ockham’s razor is more truth-conducive than competing strate-
gies. The trouble with the standard explanations is that the concepts of truth-
conduciveness they presuppose are respectively either too weak or too strong to
single out Ockham’s razor as the most truth-conducive inferential strategy. Mere
convergence to the truth is too weak, since alternative strategies would also con-
verge to the truth. Reliable indication or tracking of the truth in the short run, on
the other hand, is so strict that Ockham’s razor can be shown to achieve it only
by circular arguments (the Bayes factor argument) or by substituting accurate,
non-counterfactual predictions for theoretical truth (over-fitting argument).

There is, however, a third option. A natural conception of truth-conduciveness
lying between reliable indication of the truth and mere convergence to the truth
is effective pursuit of the truth. Effective pursuit is not necessarily direct or even
bounded in time or complexity (e.g., pursuit through a labyrinth of unknown
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Figure 9: three concepts of truth-conduciveness

extent). But neither is effective pursuit entirely arbitrary—gratuitous course
reversals and cycles should evidently be avoided. Perhaps, then, Ockham’s razor
is the best possible way to pursue theoretical truth, even though simplicity cannot
point at or indicate the true theory in the short run and even though alternative
methods would have converged to the truth eventually.

In the pursuit of truth, a course reversal occurs when one retracts or takes back
an earlier belief, as when Ptolemaic theory was replaced by Copernican theory.
It caused a sensation when Thomas Kuhn (1962) argued that scientific change
essentially involves losses or retractions of content and invoked the tremendous
cognitive cost of retooling entailed by such changes to explain retention of one’s
theoretical ideas in the face of anomalies. Emphasis on cognitive retooling may
suggest that retractions are a merely “pragmatic” cost, but deeper considerations
point to their epistemic relevance. (1) Potential retractions have been invoked
in philosophical analyses of the concept of knowledge since ancient times. Plato
traced the essential difference between knowledge and true belief to the stability
of knowledge in his dialogue Meno and subsequent authors have expanded upon
that theme in attempts to provide indefeasibility accounts of knowledge. For ex-
ample, suppose that one has good but inconclusive evidence E that Jones owns
a Ford when, in fact, only Smith has one and that one believes, on the basis
of E that either Smith or Jones owns a Ford (Gettier 1963). It seems that the
inferred belief is not known. Indefeasibility analyses of knowledge (e.g., Lehrer
1990) attempt to explain that judgment in terms of the the potential for retract-
ing the disjunctive belief when the grounds for the false belief are retracted. (2)
Deductive logic is monotonic, in the sense that additional premises never yield
fewer conclusions. Inductive logic is non-monotonic, in the sense that additional
premises (new empirical evidence) can undermine conclusions based on earlier ev-
idence. Non-monotonicities are retractions of earlier conclusions, so to minimize
retractions as far as finding the truth allows is to approximate deduction as closely
as finding the truth allows. (3) In mathematical logic, a formal proof system pro-
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vides a computable, positive test for theorem-hood—i.e., a Turing machine that
halts with “yes” if and only if the given statement is a theorem. The halting con-
dition essentially bounds the power of sound proof systems. But nothing other
than convention requires a Turing machine to halt when it produces an answer—
like human scientists and mathematicians, a Turing machine can be allowed to
output a sequence of revised answers upon receipt of further inputs, in an unend-
ing loop. Hilary Putnam (1965) showed that Turing machines that are allowed
to retract prior answers at most n + 1 times prior to convergence to the truth
can do more than Turing machines that are allowed to retract at most n times.
Furthermore, formal verifiability (halting with “yes” if and only if ϕ is a theo-
rem) is computationally equivalent to finding the right answer with one retraction
starting with “no” (say “no” until the verifier halts with “yes” and then retract
to “yes”), refutation is computationally equivalent to finding the right answer
with one retraction starting with “yes” and formal decidability is computation-
ally equivalent with finding the right answer with no retractions. So retraction
bounds are a natural and fundamental generalization of the usual computational
concepts of verifiability, refutability, and decidability (Kelly 2004). The idea is
so natural from a computational viewpoint that theoretical computer scientists
interested in inductive inference have developed an elaborate theory of inductive
retraction complexity (Case and Smith 1983, Freivalds and Smith 1993). (4) Fi-
nally, and most importantly, the usual reason for distinguishing epistemic from
merely pragmatic considerations is that the former are truth-conducive and the
latter conduce to some other aim (e.g., wishful thinking is happiness-conducive
but not truth-conducive). Retraction-minimization (i.e., optimally direct pursuit
of the truth) is part of what it means for an inductive inference procedure to be
truth-conducive, so retractions are a properly epistemic consideration.

Additional costs of inquiry may be considered in addition to retractions: e.g.,
the number and severity of erroneous conclusions are a natural epistemic cost,
and the times elapsed until errors and/or retractions are finally avoided. But
retractions are crucial for elucidating the elusive, truth-finding advantages of
Ockham’s razor, for reasons that will become apparent below.

6 Empirical Simplicity Defined

In order to prove anything about Ockham’s razor, a precise definition of empir-
ical simplicity is required. The basic approach adopted here is that empirical
complexity is a reflection of empirical effects relevant to the theoretical inference
problem addressed. Thus, empirical complexity is not a mere matter of notation,
but it is relative to the kind of truth one is trying to discover. An empirical effect
is just a verifiable proposition—a proposition that might never be known to be
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false, but that comes to be known, eventually, if it is true. For example, Newton
(1726) tested the identity of gravitational and inertial mass by swinging large
pendula filled with identical weights of different kinds of matter and then watch-
ing to see if they ever went noticeably out of phase. If they were not identical in
phase, the accumulating phase difference would have been noticeable eventually.
Particle reactions are another example of empirical effects that may be very dif-
ficult to produce but that, once observed, are known to occur. Again, two open
intervals through which no constant curve passes constitute a first-order effect,
three open intervals through which no line passes constitute a second-order effect,
and so forth (fig. 10.a-c).11 Effects can be arbitrarily small or arbitrarily arcane,

(a)

(b)

(c)

Figure 10: first, second, and third order effects

so they can take arbitrarily long to notice.
Let E be a countable set of possible effects.12 Let the empirical presupposition

K be a collection of finite subsets of E. It is assumed that each element of K is a
possible candidate for the set of all effects that will ever be observed. The theo-
retical question Q is a partition of K into sets of finite effect sets. Each partition
cell in Q corresponds to an empirical theory that might be true. Let TS denote
the (unique) theory in Q that corresponds to finite effect set S in K. For exam-
ple, the hypotheses of interest to Newton can be identified, respectively, with the

11That is very close to Karl Popper’s (1968) discussion of degrees of falsifiability, except that
his approach assumed exact data rather than intervals. The difference is crucial to the following
argument.

12Effects are here assumed to be primitive. A more ambitious and explanatory approach, in
which the problem (K,Q) is presented in terms of mere observations and effects are constructed
from the topological structure of (K,Q) is developed in (Kelly 2007, 2008).

23



absence of an out-of-phase effect or the eventual appearance of an out-of-phase
effect. The hypothesis that the degree of an unknown polynomial law is n can
similarly be identified with an effect—refutation of all polynomial degrees < n.
In light of the above discussion of causal inference, each linear causal network
corresponds to a pattern of partial correlation effects (note that conditional de-
pendence is noticeable, whereas independence implies only absence of verification
of dependence). Each conservation theory of particle interactions can be identi-
fied with a finite set of effects corresponding to the discovery of reactions that
are not linearly dependent on known reactions (Schulte 2000, Luo and Schulte
2006).13 The pair (K,Q) then represents the scientist’s theoretical inference prob-
lem. The scientist’s aim is to infer the true answer to Q from observed effects,
assuming that the true effect set is in K.

Now empirical simplicity will be defined with respect to inference problem
(K,Q). Effect set S conflicts with S ′ in Q if and only if TS is distinct from TS′ .
Let π be a finite sequence of sets in K. Say that π is a skeptical path in (K,Q)
if and only if for each pair S, S ′ of successive effect sets along π, effect set S is a
subset of S ′ and S conflicts with S ′ in Q. Define the empirical complexity c(S)
of effect set S relative to (K,Q) to be a − 1, where a denotes the length of the
longest skeptical path through (K,Q) that terminates in S.14 Let the empirical
complexity c(T ) of theory T denote the empirical complexity of the least complex
effect set in T .

A skeptical path through (K,Q) poses an iterated problem of induction to a
would-be solver of problem (K,Q), since every finite sequence of data received
from a given state on such a path might have been produced by a state for which
some alternative answer to Q is true. That explains why empirical complexity
ought to be relevant to the problem of finding the true theory. Problem-solving
effectiveness always depends on the intrinsic difficulty of the problem one is trying
to solve and the depth of embedding of the problem of induction determines
how hard it is to find the truth by inductive means. Since syntactically defined
simplicity (e.g., Li and Vitanyi 1993) can, but need not, latch onto skeptical paths
in (K,Q), it does not provide such an explanation.

13Ptolemy’s theory can be tuned to duplicate Copernican observations for eternity, so the two
theories share an effect set. The proposed framework does not apply to that case unless it is as-
sumed that a Ptolemaic universe would not duplicate Copernican appearances for eternity. One
reason for ruling out the possibility of an eternally perfect illusion is that no possible method
could converge to the truth in such an empirical world, so even optimally truth-conducive meth-
ods fail in such worlds. The proposed account focuses, therefore, on empirical adequacy (i.e.,
consistency with all possible experience), rather than on inaccessible truths transcending all
possible experience.

14The reason for subtracting 1 is to assign complexity 0 to the simplest states, since each
such state S is reached by a path (S) of length 1. There is a maximum precedence path to S
because of the assumption that S is finite.
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Let e be some input information. Let Se denote the set of all effects verified by
e. Define the conditional empirical complexities c(S | e), c(T | e) in (K,Q) just
as before, but with respect to the restricted problem (Ke, Q), where Ke denotes
the set of all effect sets S in K such that Se is a subset of S.

7 Inquiry and Ockham’s Razor

The next step is to provide a precise model of inquiry concerning the problem
(K,Q). A stream of experience is an input sequence that presents some finite set
(possibly empty) of empirical effects at each stage. Let Sw denote the effect set
whose effects are exactly those presented by stream of experience w. An empirical
world for K is an infinite stream of experience such that Sw is an element of K.
Let Tw denote TSw . An empirical strategy or method for the scientist is a mapping
M from finite streams of experience to theories in Q or to ‘?’, which corresponds
to a skeptical refusal to choose any theory at the moment. Let w|i be the initial
segment of length i of empirical world w. Method M converges to the truth in
problem (K,Q) if and only if for each empirical world w for K:

lim
i
M(w|i) = Tw.

Methodological principles can be viewed as restrictions on possible scientific
strategies. For example, strategy M is logically consistent if and only if Se is a
subset of M(e), for each finite input sequence e. Strategy M satisfies Ockham’s
razor if and only if M chooses no theory unless it is the uniquely simplest theory
compatible with experience, where simplicity is relative to (K,Q), as described
above. As stated, Ockham’s razor allows for any number of counter-intuitive
vacillations between some theory T and ‘?’. A natural, companion principle
requires that one hang onto one’s current theory choice T as long as T remains
uniquely simplest among the theories compatible with experience.15 Call that
principle stalwartness. A third principle is eventual informativeness, which says
that the method cannot stall with ‘?’ for eternity. A normal Ockham method is a
method that satisfies Ockham’s razor, stalwartness, and eventual informativeness.
The first bit of good news is:

Proposition 1 Normal Ockham methods are logically consistent and converge
to the truth.

Proof. Let M be a method that is normally Ockham for (K,Q). Logical consis-
tency follows immediately from Ockham’s razor. For convergence, let w be an

15Since theories are linearly ordered by empirical complexity in this introductory sketch,
uniqueness is trivial, but the argument can be extended to the non-unique case, with interesting
consequences discussed below.
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empirical world for K. Since the effect set Sw presented by w is finite, it follows
that only finitely many effect sets in K are simpler than Sw. After some finite
stage of inquiry, the finitely many effects in Sw are presented by w and from
that point onward, Sw is the uniquely simplest state compatible with experience.
At some later stage along w, method M produces some answer to Q, by even-
tual informativeness. Ockham’s razor implies that the answer produced is TS.
Stalwartness guarantees that TS is never again dropped along w. ⊣

8 A Basic Ockham Efficiency Theorem

The trouble with proposition 1 is that Ockham’s razor is not necessary for mere
convergence to the truth: e.g., start out guessing theory T1000 of complexity 1000
without even looking at the data for 1000 stages of inquiry and then switch to
a normal Ockham strategy. Efficient convergence rules out all such alternative
strategies.

Let r(M,w) denote the total number of times along w that M produces an
output that does not entail the output produced at the immediately preceding
stage (assume that ‘?’ is entailed by every output). If e is a finite stream of
experience, define Cj(e) to be the set of all worlds w for K that extend e and
that satisfy c(Sw | e) = j. Call Cj(e) the jth empirical complexity set for (K,Q)
given e. Define rj(M | e) to be the least upper bound of r(M,w) with respect
to all worlds w in complexity set Cj(e) (the least upper bound is ∞ if no finite
upper bound exists). Thus, r(M | e) is the worst-case retraction cost of M given
e and given that the actual empirical complexity of the world is exactly j.

Next, compare alternative, convergent, logically consistent strategies in terms
of worst-case retractions, over all possible world complexities. Let e− denote the
result of deleting the last entry in e (if e is the empty sequence, then e− = e).
Let M,M ′ be two strategies. Say that M is as efficient as M ′ given e if and only
if rj(M | e) ≤ rj(M

′ | e), for each complexity set Cj(e). Say that convergent,
logically consistent strategy M is efficient given e if and only if M is as efficient
as an arbitrary convergent, logically consistent strategy M ′ that agrees with M
along e−. Inefficiency is a weak property—it entails only that M does worse
than some convergent, logically consistent competitor over some complexity set
Cj(e). A much more objectionable situation obtains when rj(M

′ | e) > rj(M | e),
for each non-empty Cj(e). In that case, say that M strongly beats M ′ given e.
Strategy M ′ is weakly beaten by M when M does as well as M ′ over each non-
empty complexity set and better in at least one. Then M ′ is strongly (weakly)
beaten given e if and only if M ′ is strongly (weakly) beaten by some convergent,
logically consistent competitor. A strong beating given e implies a weak beating
which, in turn, implies inefficiency. Each of those properties is relative to available
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information e. Say that such a property holds always just in case it holds for each
e compatible with K. It is now possible to state the most basic Ockham efficiency
theorem:

Theorem 1 Assume that (i) K is totally ordered by empirical precedence and
(ii) each theory is satisfied by a unique effect state. Define efficiency and beating
with respect to all convergent, logically consistent methods. Then the following
are equivalent:

1. M is always normally Ockham;

2. M is always efficient in terms of retractions;

3. M is never strongly beaten in terms of retractions.

The proof has three, straightforward steps.

Step I. Let O be a normal Ockham strategy. Suppose that the scientist always
employs some fixed normal Ockham strategy O. Let e of length i be the finite
sequence of input data received so far. Let r ≤ i be the number of retractions
performed by O along e−. Let w be an empirical world in Cj(e). By stalwartness,
O retracts at most j times after stage i along w. Thus, rj(O | e) ≤ r + j if O
does not retract at i and rj(O | e) ≤ r + j + 1 otherwise (figure 11).
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Figure 11: sequential retractions of normal Ockham methods

Step II. Suppose that the scientist switches at stage i from normal Ockham strat-
egy O to some arbitrary, convergent, logically consistent method M that agrees
with O along e−. Suppose that Cj(e) is non-empty, so there exists skeptical path
(S0, . . . , Sj) through (K,Q). Nature can present M with an endless stream of
data extending e that presents only effects true in S0 until, on pain of failing to
converge to the truth, M converges to TS0 . Thus, if O happens to retract at stage
i, then M retracts to TS0 no sooner than i, since M(e−) = O(e−). Thereafter,
nature can present just the effects true in S1 followed by no more effects until, on
pain of failing to converge to the truth, M switches to TS1 . Iterate that argument
until M produces TSj

. Since the path is skeptical, it follows that M retracts at
least j times after (possibly) retracting to TS0 , so:

rj(M | e) ≥ r + j + 1 ≥ rj(O | e) if O retracts at i;
rj(M | e) ≥ r + j + 0 ≥ rj(O | e) otherwise.
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So for each convergent, logically consistent M agreeing with O along e− and for
each j such that Cj(e) is non-empty, we have that rj(O | e) ≤ rj(M | e). So O
is retraction efficient given e. Since e is arbitrary in the preceding argument, O
is always retraction efficient.

Step III. Finally, suppose that M violates Ockham’s razor at the last entry of
input sequence e compatible with K. Since M is logically consistent and effect
sets are totally ordered, it follows that M produces a theory T more complex
than the simplest theory TS0 compatible with e. Since that is the first Ockham
violation byM , we know thatM did not also produce Tj at stage i−1. Therefore,
M retracts at i if O does. Suppose that Cj(e) is non-empty. Let skeptical path
(S0, . . . , Sj) witness that fact. Thereafter, as in the preceding paragraph, nature
can force M to retract T back to TS0 and can then force another j retractions.
Note that O does not perform the (needless) retraction from T back to TS0 (e.g.,
the retraction from T4 to T2 in figure 12), so:
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extra retraction
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Figure 12: Ockham violator’s extra retraction

rj(M | e) ≥ r + j + 2 > r + j + 1 ≥ rj(O | e) if O retracts at i;
rj(M | e) ≥ r + j + 1 > r + j + 0 ≥ rj(O | e) otherwise.

Thus, O strongly beats M at e in terms of retractions. Suppose, next, that M
violates stalwartness given e. Then it is immediate that M retracts one extra
time in each TSi

compatible with e in comparison with O. Method M cannot
violate eventual informativeness, since that would imply failure to converge to
the truth.⊣

Unlike over-fitting explanations, the Ockham efficiency theorem applies to
deterministic questions. Unlike the Bayes factor explanation, the Ockham effi-
ciency theorem does not presuppose a question-begging prior bias in credence
toward simple worlds—every world is as important as every other. The crux of
any non-circular epistemic argument for Ockham’s razor is to explain why leaping
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to a needlessly complex theory makes one a bad truth-seeker even if that theory
happens to be true. To see how the hard case is handled in the Ockham efficiency
theorem, note that even if T4 is true in figure 12, leaping straight to T4 when
experience refutes T1 provides nature with a strategy to force one through the
sequence of theories T4, T2, T3, T4, which not only adds an extra retraction to the
optimal sequence T2, T3, T4 but also involves an embarrassing cycle away from T4

and back to T4. In terms of the metaphor of pursuit, it is as if a heat-seeking mis-
sile passed its target and had to make a hairpin turn back to it—a performance
likely to motivate some re-engineering.

Normal Ockham strategies do not dominate alternative strategies in the sense
of having a better outcome in every possibility, since an Ockham violator can
be saved from the embarrassment of an extra retraction (and look like a genius)
if nature is kind enough to provide the anticipated empirical effects before she
loses confidence in her complex theory. Nor are Ockham strategies admissible,
in the sense of not being weakly dominated by an alternative method—indeed,
every normal Ockham strategy is dominated in error times and retraction times
by a strategy that stalls with ‘?’ for a longer time prior to producing an answer.
That reflects the special structure of the problem of inductive inquiry—waiting
longer to produce an informative answer avoids more possibilities of setbacks,
but waiting forever precludes finding the truth at all. Nor are Ockham strate-
gies minimax solutions, in the sense that they minimize worst-case overall cost,
since the overall worst-case bound on each of the costs under consideration is
infinity for arbitrary, convergent methods. The Ockham efficiency property is
essentially a hybrid of admissibility and minimax reasoning. First, one partitions
all problem instances according to empirical complexity and then one compares
corresponding worst-case bounds over these complexity classes. The idea is bor-
rowed from the standard practice for judging algorithmic efficiency (Gary and
Johnson 1979). No interesting algorithm can find the answer for an arbitrarily
large input under a finite resource bound, so inputs are routinely sorted by length
and worst-case bounds over each size are compared. In the case of empirical in-
quiry, the inputs (worlds of experience) are all infinite, so length is replaced with
empirical complexity.

9 Stability, Errors and Retraction Times

Theorem 1 establishes that, in a specific sense, the normal Ockham path is the
straightest path to the truth. But the straightest path also a narrow path that one
might veer from inadvertently. Complex theories have been proposed because no
simpler theory had yet been conceived of or because the advantages of a simpler
theory were not yet recognized as such (e.g., Newton dismissed the wave theory of
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light, which was simpler than his particle theory, because he mistakenly thought it
could not explain shadows). Theorem 1 does not entail that one should return to
the straightest path, having once departed from it. For example, suppose that at
stage i− 1, method M violates Ockham’s razor by producing needlessly complex
theory T when TS0 is the simplest theory compatible with experience. Let O be
just like M prior to i and switch to a normal Ockham method thereafter. Then
at stage i, method M saves a retraction compared to O by retaining Tk—nature
can force a retraction back to Tm—but that is the same retraction O performs
at i anyway. So the justification of normal Ockham strategies is unstable in the
sense that retraction efficiency does not push an Ockham violator back onto the
Ockham path after a violation has already occurred.

The persistent Ockham violator M does incur other costs. For example, M
produces more false answers than O from stage i onward over complexity set
C0(e), since O produces no false outputs after e− along an arbitrary world in
C0(e). Furthermore, both M and O commit unbounded errors, in the worst case
over Cj(e), if Cj(e) is non-empty and j > 0. So returning to the normal Ockham
fold weakly beats persistent violation, in terms of retractions and errors, at each
violation.

It would be better to show that Ockham violators are strongly beaten at each
violation. Such an argument can be given in terms of retraction times. The
motivation is, again, both pragmatic and epistemic. Pragmatically, it is better
to minimize the accumulation of applications of a theory prior to its retraction,
even if that theory is true, since retraction occasions a reexamination of all such
applications. Epistemically, belief that is retracted in the future does not count
as knowledge even if it is true (Gettier 1963). It would seem, therefore, that more
retractions in the future imply greater distance from knowledge than do fewer
such retractions. Hence, in the sole interest of minimizing one’s distance from
the state of knowledge, one ought to get one’s retractions over with as soon as
possible.

Considerations of timing occasion the hard question whether a few very late
retractions are worse than many early ones. Focus entirely on the easy (Pareto)
comparisons in which total cost and lateness both agree. Let (j0, j1, . . . , jr) denote
the sequence of times at which M retracts prior to stage i, noting that r also
records the total number of retractions. Let σ, τ be such sequences. Say that σ
is as bad as τ just in case there is a sub-sequence σ′ of σ whose length is identical
to the length of τ and whose successive entries are all at least as great as the
corresponding entries in τ . Furthermore, σ is worse than τ if and only if σ is as
bad as τ but τ is not as bad as σ. For example, (2, 4, 8) is worse than (3, 7), in
light of the sub-sequence (4, 8). The efficiency argument for O goes pretty much
as before. Suppose that M violates Ockham’s razor at e of length i. Let O be just
like M along e− and switch to a normal Ockham strategy from stage i onward.
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Let (k1, . . . , kr) be the retraction times of both M and O along e−. Suppose that
Cj(e) is non-empty, so there exists a skeptical path (S0, . . . , Sj) through (Ke, Qe).
The hard case is the one in which O retracts at i and M does not. Since O is
stalwart at i, it follows that T = M(e−) ̸= TS0 . Nature can refuse to present new
effects until M retracts T in favor of TS0 , and can then force an arbitrarily late
retraction for each step along the path (S0, . . . , Sj). Method O retracts at most
j times over Cj(e) and retracts once at i in C0(e). Thus:

rj(O | e) ≤ (k0, k1, . . . , kr, i,∞, . . . ,∞︸ ︷︷ ︸
j

)

< (k0, k1, . . . , kr, i+ 1,∞, . . . ,∞︸ ︷︷ ︸
j

) ≤ rj(M | e).

Note that the preceding argument never appeals to logical consistency, which may
be dropped. The beating argument for stalwartness violators is easier, since one
never saves a retraction by violating stalwartness. Again, violations of eventual
informativeness are impossible for convergent methods, so now we have (cf. Kelly
2004):

Theorem 2 Assume conditions (i) and (ii) of theorem 1. Define efficiency and
beating with respect to the set of all convergent methods. Then the following are
equivalent:

1. M is normally Ockham from e onward;

2. M is efficient in terms of retraction times and errors from e onward;

3. M is never weakly beaten in terms of retractions and errors from e onward;

4. M is never strongly beaten in terms of retraction times from e onward.

A stronger version of Ockham’s razor follows if one charges for expansions of
belief or for elapsed time to choosing the true theory, for in that case one should
avoid agnosticism and select the simplest theory at the very outset to achieve
zero loss in the simplest theory compatible with experience. That conclusion
seems too strong, however, confirming the intuition that when belief changes,
the epistemically costly part is retracting the old belief rather than adopting the
new one. This asymmetry between avoiding retractions as soon as possible and
finding truth as soon as possible arises again, in a subtle way, when the Ockham
Efficiency theorem is extended from theory choice to Bayesian degrees of belief.

31



10 Extension to Branching Simplicity

Sometimes, the theories of interest are not ordered sequentially by simplicity,
in which case there may be more than one simplest theory compatible with ex-
perience. For example, suppose that the question is to find the true form of a
polynomial law. For another example, let TS be the theory that the true causal
structure is compatible with exactly the partial statistical dependencies in set
S. In the inference of linear causal structures with Gaussian error, the branch-
ing simplicity structure over models with three variables is exactly the lattice
depicted in figure 13 (cf. Chickering 2003, Meek 1995).
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Figure 13: simplicity for acyclic linear causal models

When there is more than one simplest theory compatible with experience,
Ockham’s razor seems to demand that one suspend judgment with ‘?’ until
nature winnows the field down to a unique theory. That judgment is enforced
by efficiency considerations. Suppose that, as in the causal case (figure 13), no
maximal, skeptical path is longer than another.16 Call that the no short path
assumption. Then violating Ockham’s razor by choosing one simplest theory
over another incurs an extra retraction in every non-empty complexity set, since
nature is free to make the other simplest theory appear true, forcing the scientist

16In the case of acyclic linear causal models with independently distributed Gaussian noise,
it is a consequence of (Chickering 2003) that the only way to add a new implied conditional
dependence relationship is to add a new causal connection. Hence, each causal network with n
causal connections can be extended by adding successive edges, so there are no short paths in
that application and the strong argument for Ockham’s razor holds.
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into an extra retraction. Thereafter, nature can force the usual retractions along
a path that visits each non-empty complexity set Cj(e), by the assumption that
no path is short.

Theorem 3 (Kelly 2007) Theorem 2 continues to hold if (i) is replaced by the
no short path assumption.

Without the no short path assumption, methods that return to the Ockham path
are no longer efficient, even in terms of retraction times. Suppose that T0 and T1

are equally simple and that T2 is more complex than T1 but not more complex
than T0. Then T0 and T1 both receive empirical complexity degree 0 and T2

is assigned complexity degree 1. Suppose that method M has already violated
Ockham’s razor by choosing T1 when T0 is still compatible with experience. Alas,
sticking with the Ockham violation beats Ockham’s retreating strategy in terms
of retractions. For Ockham’s retreat counts as a retraction in C0(e). Nature can
still lure Ockham to choose T0 and can force a further retraction to T1 for a total
of 2 retractions in C1(e). But strategy M retracts just once in C0(e) and once
in C1(e). In terms of retraction times, there is a hard choice—the born-again
Ockham strategy retracts early in C0(e) and retracts more times in C1(e).

One response to the short path problem is to question whether the short path
really couldn’t be extended—if all paths are infinite, there are no short paths.
Polynomial theories can always be given another term. In causal networks, one
can always study another variable that might have a weak connection with vari-
ables already studied. A second response is that the simplicity degrees assigned
to theories along a short path are arbitrary as long as they preserve order along
the path. The proposed definition of simplicity degrees ranks theories along a
short complexity path as low as possible, but one might have ranked them as
high as possible (e.g., putting T0 in C1(e) rather than in C0(e)), in which case the
preceding counterexample no longer holds.17 That option is no longer available,
however, if some path is infinite in length and another path is finite in length.
The third and, perhaps, best response is to weaken Ockham’s razor to allow for
the selection of the theory at the root of the longer path. Violating that version
of Ockham’s razor still results in a strong beating in terms of retraction times and
methods that satisfy it along with stalwartness at every stage are never strongly
beaten. The third option becomes all the more compelling below, when it is
entertained that some retractions count more than others due to the amount of
content retracted.

17That approach is adopted, for example, in earlier work by (Freivalds and Smith 1993).
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11 When Defeat does not Imply Refutation

The preceding efficiency theorems all assume that each theory is true of just one
effect state. It follows that whenever an Ockham conclusion is defeated by new
data, it is also refuted by that data. That is not necessarily the case, as when
the question concerns whether polynomial degree is even or odd. A more im-
portant example concerns the status of a single causal relation X → Y . Figure
14 presents a sequence of causal theories that nature can force every convergent
method to produce. Focus on the causal relation between X and Y . Note that
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Figure 14: causal flipping

the orientation of the edge flips when the inferred common effect at Y is canceled
through discovery of new causal connection V −Z and is flipped in the opposite
direction by the inference of a common effect at X. The process can be iterated
by canceling the new common effect and re-introducing one at Y , etc. So, as-
suming an unlimited supply of potentially relevant variables, nature can force an
arbitrary, convergent method to cycle any number of times between the opposite
causal conclusions X → Y and Y → X.18 The causal flips depicted in figure
14 have been elicited (in probability) from the PC causal discovery algorithm
(Spirtes et al. 2000) using computer simulated random samples of increasing size
from a fixed causal model.

Note that one can no longer rely on logical consistency to force retractions
of defeated theories, so the beating argument provided for theorem 1 fails when
assumption (ii) is dropped. Happily, the beating arguments based on retraction

18In fact, it can be demonstrated that arbitrarily long causal chains can be flipped in this
way.
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times still work, which is yet another motive for considering retraction times in
addition to total retractions.

Theorem 4 (Kelly 2006) Theorems 2 and 3 continue to hold without assump-
tion (ii).

12 Extension to Randomized Scientific Strate-

gies

The preceding theorems assume that the scientist’s method is a deterministic
function of the input data. It is frequently the case, however, that randomized
or “mixed” strategies achieve lower worst-case losses than deterministic strate-
gies. For example, if the problem is to guess which way a coin lands inside of
a black box and the loss is 0 or 1 depending on whether one is right or wrong,
guessing randomly achieves a worst-case expected loss bound of 1/2, whereas
the lowest worst-case loss bound achieved by either pure (deterministic) strat-
egy is 1. Nonetheless, the Ockham efficiency argument can be extended to show
that deterministically stalwart, Ockham strategies are efficient with respect to
all convergent mixed scientific strategies, where convergence efficiency is defined
in terms of expected retractions and convergence in probability, meaning that
the objective chance (grounded in the method’s internal coin-flipper) that the
method produces the true theory goes to one as experience increases (Kelly and
Mayo-Wilson 2010).

Theorem 5 (Kelly and Mayo-Wilson 2010) All of the preceding theorems
extend to random empirical methods when retractions are replaced with expected
retractions and retraction times are replaced with expected retraction times.

Here is how it works. A method is said to retract T in chance to degree r at
stage k + 1 if the chance that T produces T goes down by r from k to k + 1.
Total retractions in chance are summed over theories and stages of inquiry, so as
the chance of producing one theory goes up, the chance of producing the remain-
ing theories goes down. Therefore, nature is in a position to force a convergent
method to produce total retractions arbitrarily close to i by presenting an infinite
stream of experience w making T true. It is readily shown that the total retrac-
tions in chance along w are a lower bound on expected total retractions along w.
It is also evident that for deterministic strategies, the total expected retractions
are just the total deterministic retractions. So, since deterministically Ockham
strategies retract at most i times given that T is true, they are efficient over all
mixed strategies as well, and violating either property results in inefficiency.
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The extension of the Ockham efficiency theorem to random methods and
expected retraction times suggests a further extension to probabilistic theories
and evidence (i.e., statistical theoretical inference). It remains an open question
to obtain a result exactly analogous to theorem 5 in the case of statistical theory
choice. It is no problem to obtain lower bounds on expected retractions and
retraction times that agree with those in the proof of theorem 5. The difficulties
are on the positive side—to define appropriate analogues of Ce(n), Ockham’s
razor, and stalwartness that allow for the fact that no statistical hypothesis is
ever strictly incompatible with the data.

13 Disjunctive Beliefs, Retraction Degrees, and

a Gettier Example

Using ‘?’ to indicate refusal to choose a particular theory is admittedly crude.
When there are two simplest theories T1, T2 compatible with the data, it is more
realistic to allow retreat to the disjunction T1∨T2 than to a generic refusal to say
anything at all—e.g., uncertainty between two equally simple orientations of a
single causal arrow does not necessarily require (or even justify) retraction of all
the other causal conclusions settled up to that time. Accordingly, method M will
now be allowed to produce finite disjunctions of theories in Q. Suppose that there
are mutually exclusive and exhaustive theories {Ti : i ≤ n} and let x be a Boolean
n-vector. Viewing x as the indicator function of finite set Sx = {i ≤ n : xi = 1},
one can associate with x the disjunction:

Tx =
∨
i∈Sx

Ti.

A retraction now occurs whenever some disjunct is added to one’s previous con-
clusion, regardless how many disjuncts are also removed. Charging one unit per
retraction, regardless of the total content retracted, amounts to the following
rule:

ρret(Tx, Ty) = max
i

yi − xi.

One could also charge one unit for each disjunct added to one’s prior output,
regardless how many disjuncts are removed, which corresponds to the slightly
modified rule:

ρdis(Tx, Ty) =
∑
i

yi −̇ xi,
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where the cutoff subtraction y−̇x assumes value 0 when x ≥ y.19 Assuming no
short simplicity paths, charging jointly for the total number of disjuncts added
and the times at which the disjuncts are added allows one to derive stronger ver-
sions of Ockham’s razor and stalwartness from retraction efficiency. The strength-
ened version of Ockham’s razor is that one should never produce a disjunction
stronger than the disjunction of all currently simplest theories (disjunctions take
the place of ‘?’) and the strengthened version of stalwartness is that one should
never disjoin a theory T to one’s prior conclusion unless T is among the currently
simplest theories.20

When there are short simplicity paths, the Ockham efficiency argument can
fail for both of the proposed retraction measures. The counterexample is remi-
niscent of Gettier’s (1963) counterexample to the justified true belief analysis of
knowledge (fig. 15). Suppose that T0 is simpler than T1 and T2 and that T2 is
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Figure 15: Gettier counterexample to Ockham efficiency

simpler than T3. Suppose that experience e is compatible with T0 and that M
produces the disjunction of (T0 ∨ T2) in response to e “because” M believes T0

on the basis of Ockham’s razor and the disjunction follows from T0. If T1 true,
then M has true belief (T0∨T2) “for the wrong reason”—a Gettier case. Suppose
that T0 is refuted. An Ockham method should now retract to (T1 ∨ T2), but

19The same formula takes a finite value for a countable infinity of dimensions as long as each
disjunction has at most finitely many disjuncts.

20It is still the case that nature can force at least n retractions in complexity set Cn and
stalwart, Ockham methods retract no more than that. If M violates the strengthened version
of Ockham’s razor, M produces a disjunction missing some simplest theory T . Nature is now
free to force M down a path of increasingly complex theories that begins with T . By the no
short paths assumption, this path passes through each complexity set, so M incurs at least one
extra retraction in each complexity set. If M violates the strengthened version of stalwartness,
then M retracts by adding a complex disjunct T . Nature is free to present a world of experience
for a simplest world, forcing M to retract disjunct T .
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M expands to T2 “because” M believed (T0 ∨ T2) and learned that ¬T0. If the
truth is T1, then both methods have 1 retraction on either retraction measure
and Ockham incurs the retraction earlier, so Ockham (barely) wins in C1(e) after
T0 is refuted. But M wins by retracting only once in C2(e), when T3 is true.21

Possible responses to the issue of short simplicity paths include those discussed
above in section 10.

14 Extension to Degrees of Belief

Bayesian agents may use their degrees of belief to choose among potential theories
(Levi 1983), but they may also regard updated degrees of belief as the ultimate
product of scientific inquiry. It is, therefore, of considerable interest to extend
the logic of the Ockham efficiency theorems from problems of theory choice to
problems of degree of belief assignment. Here are some recent ideas in that
direction.

Suppose that the theories under consideration are just T1, T2, T3, in order of
increasing complexity. Then each prior probability distribution p over these three
theories can be represented uniquely as the ordered triple p = (p(T1), p(T2), p(T3)).
The extremal distributions are the basis vectors i1 = (1, 0, 0), i2 = (0, 1, 0), and
i3 = (0, 0, 1) and all other coherent distributions lie on the simplex or triangle con-
necting these points in three-dimensional Euclidean space. A standard argument
for distributing degrees of belief as probabilities (de Finetti 1975, Rosenkrantz
1983, Joyce 1998) is that each point x off of the simplex is farther from the true
corner of the simplex (whichever it might be) than the point p on the simplex
directly below x, so agents who seek immediate proximity to the truth should
stay on the surface of the simplex—i.e., be coherent (fig. 16 (a)).

It is natural to extend that static argument to the active pursuit of truth in
terms of total Euclidean distance traversed on the surface of the simplex prior to
convergence to the truth (fig. 16 (b)). As in section 8, nature has a strategy to
force each convergent Bayesian arbitrarily close to i1, then arbitrarily close to i2
and then all the way to i3. Each side of the triangular simplex has length

√
2,

so if one adopts
√
2 as the unit of loss, then nature can force retraction bound

k in complexity set Ck(e), just as in the discussion of theory choice. Therefore,
the path (p, i2, i3) is efficient, since it achieves that bound. Furthermore, suppose
that method M favors complex theory T2 over simpler theory T1 by moving from
p to q instead of to i2. Then nature can force M back to i2 by presenting simple
data. So the detour through q results, in the worst case, in the longer path

21To see why short paths are essential to the example, suppose that there were a theory T4

more complex than T1. Then M would also retract twice in C2 and Ockham would complete
the retraction in C1 earlier.
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Figure 16: distance from the truth vs. efficient pursuit of the truth

(p,q, i2, i3) that hardly counts as an efficient pursuit curve (q is passed twice,
which amounts to a needless cycle).

An ironic objection to the preceding argument is that the conclusion seems
too strong—efficiency measured by total distance traveled demands that one start
out with full credence in the simplest theory and that one leap immediately
and fully to the newly simplest theory when the previous simplest theory is
refuted. Avoidance of that strong conclusion was one of the motives for focusing
on retractions as opposed to expansions of belief in problems of theory choice,
since movement from a state of suspension to a state of belief is not counted as
a retraction. Euclidean distance charges equally for expansions and retractions
of Bayesian credence, so it is of interest to see whether weaker results can be
obtained by charging only for Bayesian retractions.

One approach is to define Bayesian retractions as increases in entropy, defined
as:

M(q) = −
∑
i

qi log2 qi.

That is wrong, however, since the circuit path (i1, i2, i1) seems to incur two large
retractions, but entropy remains constantly 0. A more sophisticated idea is to
tally the cumulative increases in entropy along the entire path from p to q, rather
than just at the endpoints. But that proposal still allows for “retraction-free”
circuits around the entropy peak at the midpoint (1/3, 1/3, 1/3) along a path of
constant entropy. The same objection obtains if entropy is replaced with any
alternative scalar field that plausibly represents informativeness.

Another idea is to measure the retractions from p to q in terms of a popular
measure of separation for probability distributions called the Kullback Leibler
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(KL) divergence from p to q:

KL(q|p) =
∑
i

qi log2
qi
pi
.

KL divergence is commonly applied to measure motions on the simplex in Bayesian
experimental design, where the idea is to design the experiment that maximizes
the KL divergence from the prior distribution p to the posterior distribution q
(Chaloner and Verdinelli 1995). It is well known that KL divergence is not a true
distance measure or metric because it is asymmetrical and fails to satisfy the tri-
angle inequality. It is interesting but less familiar that the asymmetry amounts to
a bias against retractions: e.g., if p = (1/3, 1/3, 1/3) and q = (.999, .0005, .0005)
then KL(p|q) ≈ 5.7 and KL(q|p) ≈ 1.6. Unfortunately, KL divergence cannot
be used to measure retractions after a theory is refuted because it is undefined
(due to taking log(0)) for any motion terminating at the perimeter of the simplex.
But even if one approximates such a motion by barely avoiding the perimeter, KL
divergence still charges significantly more for hedging one’s bets than for leaping
directly to the current simplest theory. For example, if p = (.999, .0005, .0005),
q = (.0001, .5, .4999), r = (.0005, .9995, .0005), then the KL divergence along
path (p, r) is nearly 10.9, whereas the total KL divergence along path (p,q, r) is
around 17.7.

Here is a different approach, motivated by a fusion of logic and geometry, that
yields Ockham efficiency theorems closely analogous to those in the disjunctive
theory choice paradigm.22 The simplex of coherent probability distributions over
T0, T1, T2 is just the intersection of the unit cube with a plane through each of
the unit vectors (fig. 17). The Boolean vectors labeling vertices of the unit
cube are the labels of the possible disjunctions of theories (the origin 0 = (0,0,0)
corresponds to the empty disjunction or contradiction). To extend that picture to
the entire unit cube, think of Tx as a fuzzy disjunction in which theory Ti occurs
to degree xi. Say that Tx is sharp when x is Boolean and say that y is sharp when
y is a unit vector. Each vector y in the unit cube can also be viewed as a fuzzy
assignment of semantic values to the possible theories. Define the valuation of Tx

in y to be the inner product: τy(Tx) = y · x =
∑

i yi · xi. If y and Tx are both
sharp, then τy(Tx) is the classical truth value of Tx in y and if p is a probability
and Tx is sharp, then τp(Tx) = p(Tx).

23 Entailment is defined by: Tx |= Ty if
and only if τz(Tx) ≤ τz(Ty), for each vector z in the unit cube. Thus, Tx |= Ty

holds if and only if xi ≤ yi, for each i. The resulting entailment relations are
isomorphic to the subset relation over the fuzzy subsets of a 3-element set (Zadeh

22The following definitions and results were developed in collaboration with Hanti Lin.
23It is tempting, but not necessary for our purposes, to define p(Tx) = p ·x for non-sharp Tx

as well.
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Figure 17: simplex and unit cube

1965). The fully consistent disjunctions are the fuzzy disjunctions that evaluate
to 1 in some sharp assignment. They comprise exactly the upper three faces of
the unit cube. The vertices of those faces are the consistent, sharp disjunctions
of classical logic.

The formulas for retraction measures ρret and ρdis are already defined over
the entire unit cube and, hence, may be applied directly to probability assign-
ments. That is not the right idea, however, for it is natural to view the move
from (0, 1/2, 1/2) to (0, 1, 0) as a pure expansion of credence, but both retraction
measures assign retraction 1/2 in this case. As a result, efficiency once again
demands that one move immediately to full credence in T1 when T0 is refuted.

Here is a closely related idea that works. The grain of truth behind probabilis-
tic indifferentism is that the sharp disjunction T(1,1,0) = T1 ∨ T2 more faithfully
summarizes or expresses the uniform distribution (1/2, 1/2, 0) than the biased
distribution (1/3, 2/3, 0); a view that can be conceded without insisting, fur-
ther, that uniform degrees of belief should be adopted. One explanation of the
indifferentist intuition is geometrical—the components of p = (1/2, 1/2, 0) are
proportional to the components of x = (1, 1, 0) in the sense that there exists
constant c such that x = cp. To be assertible, a proposition should be fully
consistent. Tp satisfies the proportionality condition for p but is not fully consis-
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tent. Accordingly, say that Tx expresses p just in case Tx is fully consistent and
x is proportional to p. Sharp propositions cannot express non-uniform distribu-
tions, but fuzzy propositions can: e.g., T(1/2,1,0) expresses (1/3, 2/3, 0) in much
the same, natural way that T(1,1,0) expresses (1/2, 1/2, 0).

24 Each fully consistent
disjunction has a unit component, which fixes the constant of proportionality at
1/maxi pi. Thus, the unique, propositional expression of p is Tϕ(p), where:

ϕ(p)i = pi/max
i

pi.

Geometrically, ϕ(p) can be found simply by drawing a ray from 0 through p to
the upper surface of the unit cube (fig. 17).

One can now define probabilistic retractions as the logical retractions of the
corresponding, propositional expressions:

ρret(p,q) = ρret(Tϕ(p), Tϕ(q));

ρdis(p,q) = ρdis(Tϕ(p), Tϕ(q)).

In passing, one can also define Bayesian expansions of belief by permuting p and
q on the right-hand-sides of the above formulas. Revisions are then the sum of the
expansions and retractions. Thus, one can extend the concepts of belief revision
theory (Gärdenfors 1988) to Bayesian degrees of belief—an idea that may have
useful applications elsewhere, such as in Bayesian experimental design.

Both retraction measures have the natural property that if Ti is the most
probable theory under p, then for each alternative theory Tj, the move from p
to the conditional distribution p(.|¬Tj) incurs no retractions (Lin 2009). More-
over, for purely retractive paths (paths that incur 0 expansions), the disjunctive
measure is attractively path-independent:

ρdis(p, r) = ρdis(p, q) + ρdis(q, r).

Most importantly, both measures entail simplicity biases that fall short of the
implausible demand that one must leap to the currently simplest theory imme-
diately (fig. 18). For ρret, the zone of efficient moves from p to the next simplest
vertex j when nearby vertex i is refuted is constructed as follows. Let c be the
center of the simplex, let i be the vertex nearest to p, let m be the mid-point of
the side nearest p and let m′ be the midpoint of the side farthest from p (ties
don’t matter). Let v be the intersection of line pm′ with line cm. Let o be
the intersection of line iv with the side of the simplex farthest from p. Then

24A disanalogy: τ(1/2,1/2,0)(T(1,1,0)) = 1, but τ(1/3,2/3,0)(T(1/2,1,0)) = 5/6, so the expression of
a uniform distribution is also the support of the distribution, but that fails in the non-uniform
case.
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Figure 18: Two versions of Ockham’s Bayesian razor

assuming that credence in the refuted theory drops to 0 immediately, retraction-
efficiency countenances moving anywhere on the line segment connecting j and
o. For retraction measure ρdis, the construction is the same, except that v is the
intersection of cm with pj. Note that when p ≈ i, the Ockham zone for ρret is
nearly the entire half-side jm′, whereas measure ρdis allows only for movement
directly to the corner j, as is already required in the disjunctive theory choice
setting described in section 13. Thus, the extreme version of Ockham’s razor is
tied to the plausible aim of preserving as much content as possible. In practice,
however, an open-minded Bayesian never puts full credence in the currently sim-
plest theory and in that case the Ockham zone for ρret allows some leeway but
is still not liberal enough for Bayesian updating to count as efficient. In both
figures, the result q of updating p with the information that Ti is false can be
found by drawing a ray from vertex i to the opposite side of the triangle. Note
that q falls within the zone of efficiency for retraction measure ρret but not for
measure ρdisj.

The Gettier-like counterexample presented in section 13 can also arise in 4
dimensions or more for Bayesian agents when the no short path assumption fails
(just embed the example into the upper faces of the 4-dimensional unit cube and
project it down onto the 3-dimensional simplex contained in that cube). The
potential responses reviewed in section 13 apply here as well.
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15 Conclusion

This study reviewed the major justifications of Ockham’s razor in philosophy,
statistics, and machine learning, and found that they fail to explain, in a non-
circular manner, how Ockham’s razor is more conducive to finding true theo-
ries than alternative methods would be. The failure of standard approaches to
connect simplicity with theoretical truth was traced to the concepts of truth-
conduciveness underlying the respective arguments. Reliable indication of the
truth is too strong to establish without (a) trading empirical truth for accurate
prediction or (b) begging the question by means of a prior bias against com-
plex possibilities. Convergence in the limit is too weak to single out simplicity
as the right bias to have in the short run. An intermediate concept of truth-
conduciveness is effective pursuit of the truth, where effectiveness is measured in
terms of such costs as total retractions and errors prior to convergence. Then one
can prove, without circularity or substituting predictive accuracy for theoretical
truth, that Ockham’s razor is the best possible strategy for finding true theories.
That result, called the Ockham efficiency theorem, can be extended to problems
with branching paths of simplicity, to problems in which defeated theories are
not refuted, to random strategies and, except in some interesting, Gettier-like
cases, to Bayesian degrees of belief and to strategies that produce disjunctions
of theories. The ultimate goal, which has not yet been reached, is to extend the
Ockham efficiency argument to statistical inference.
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