KEVIN T. KELLY AND QLIVER SCHULTE

THE COMPUTABLE TESTABILITY OF THEORIES
MAKING UNCOMPUTABLE PREDICTIONS

1. INTRODBUCTION

Consider a naively Popperian (1968) picture of scientific inquiry. A
scientific theory may entail various observations in light of background
information and what has been observed so far. To test the theory, the
scientist sequentially derives predictions and checks them against the
data as it comes in. When a mismatch is detected, the theory is rejected.
Otherwise, the theory “passes muster” and is retained until such time
as it is refuted. In general, we say that a scientist refutes a theory with
certainty just in case no matter how the data comes in for eternity, the
scientist eventually rejects the theory if it is false, and fails ever to
reject it if it is true. According to this conception, refutation with
certainty is a standard of success for scientific methods rather than a
relation between theory and evidence.

Suppose that a computer refutes a given theory with certainty. Then
according to the simple picture of inquiry just described, it would seem
as though the computer must be able to derive each prediction made
by the theory. For suppose otherwise. Then either the computer fails
to derive any prediction from the theory for a given time (an error of
omission) or the computer faltaciously derives a prediction that differs
from the one genuinely entailed by the theory (an error of commission).
If the computer is guilty of an error of omission, it must simply guess
whether the (unknown) prediction of the theory would have agreed
with the data, and for any guess made, the data can be arranged so
that it is the wrong one. If the computer is guilty of an error of
commission, the data may either agree with the erroneous prediction
or agree with the theory. In the former case, the computer will forever
fail to reject the theory when it is false, and in the latter case the
computer will reject the theory when it is true. In each case, the
computer fails to refute the theory with certainty.

Now suppose that the predictions made by a given theory are impos-
sible for any computer to derive. Then each computer program for
deriving predictions from the theory is guilty of infinitely many errors
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of omission or commission; for if it were guilty of only finitely many,
its program could be “patched” with a finite lookup table correcting
its mistakes, contradicting the assumption that no computer program
correctly derives the theory’s predictions.

A natural and important question now arises. Must it be possible for
a computer to correctly derive all the predictions of a theory if the
theory is to be effectively refuted with certainty? Or is there some
other way to effectively refute a theory with certainty even though no
computable method can derive all of its predictions and even though
any given prediction made by the theory might be false for all we know
a priori? The question is not merely theoretical, since there is increasing
interest in the computability of prediction in physical theories."

The surprising answer to our question, which will be seen to follow
from a classic result of Hilbert and Bernays concerning the implicit
definability of arithmetical truth, is that there is a universal hypothesis
that is effectively refutable with certainty and that uniquely predicts
the outcome of each observation for etermity, but whose predictions
are in a precise sense infinitely impossible to derive by computational
means. The methodological moral of this result is clear. There is a more
powerful way for computable inquiry to proceed than by sequentially
deriving predictions from a theory and then checking them against the
data as it arrives.

Refutation with certainty is just one notion of successful inguiry.
Verification with certainty is another. Or, following Peirce (1935), Rei
chenbach (1949), and Putnam (1963), we might demand that inquiry
stabilize to the truth without ever achieving certainty (i.e. it is always
possible so far as the scientist knows that his current verdict on the
hypothesis might be taken back tomorrow, although after some finite
time it will never again be taken back). One may now ask ifor each
such notion of successful inquiry how uncomputable the predictions of
the theory under investigation can be if computable inquiry is to be
successful in that sense. In this paper we establish a complete table of
the relations between different forms of computable inguiry and differ-
ent forms of computable derivability of predictions, We also examine
the converse questions: how computably untestable can a theory be, if
its predictions are compuiably derivable in a given sense? One easy
consequence of our results is that there exists a computable method
whose reliability cannot be matched even by Bayesian agents of a highly
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idealized sort.” This raises the question whether Bayesian method
should be viewed as an aid or as a hindrance to finding the truth.

2. EMPIRICAL HYPOTHESES AND PREDICTION

An empirical hypothesis makes claims about what will be observed,
perhaps for eternity, We will suppose that there is at most a countable
infinity of possible observations at a given time. We will also suppose
that these possible observations can be effectively encoded by elements
of some effectively decidable set O C @, where o denotes the set of all
natural numbers. For example, these numbers might be Gédel numbers
of observation statements in some formalized language or code numbers
representing finite vectors of dial readings. At each stage of inquiry
another observation is recorded. If inquiry were to continue forever;
an infinite sequence & of observations (natural numbers) would be
received, Let O represent the set of all infinite sequences of code
numbers in O. Each & € O will be referred to as a data stream, We
will also be interested in finite sequences of observations drawn from
0. Let &, = g(n) denote the item occurring in position # of &. Let 0"
denote the set of all sequences of length n of members of O, Let O%
denote the set of all finite sequences of objects drawn from O.

An empirical hypothesis is a proposition whose truth or falsity depends
only on the actual data stream. For example, ‘“3 will be seen by stage
5” is an empirical hypothesis, since its truth depends only on the
structure of the actual data stream. Hence, an empirical hypothesis
may be identified with the set of all possible, infinite data streams for
which it is true. An empirical hypothesis is a subset 7 of O”. Of course,
most such “hypotheses™ cannot be expressed in a countable language.
In this paper, we will focus on hypotheses expressible in a language of
special interest, namely, elementary arithmetic.?

Hypothesis 3 is empirically complete just in case it entails a unique,
unconditional prediction for each stage of inquiry. In other words, 3%
is empirically complete just in case for some e, 9 = {g}. More typically,
a theory is empirically incomplete and entails predictions only given
what has already been observed.” We will let (, o) denote the predic-
tion that o will be observed at stage n. Define, for cache € O*, nE
and ¢ & O
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Fig. 1. Prediction entailment.

PREDg (e, n, 0) (or, altematively, ¥, ek (n, 0)) & for each
e € %, if & extends e then e(n) = o.

Then we may say that ¢, e entail that o will be observed at stage n. In
other words, 9, ek (n, o) just in case each data stream that makes
both e and # true has o in position #. If no data stream in # extends
e, then for all (r, 0), #, ek (n, 0}. Thus, the prediction of 3 given e
at time n is not uniguely determined if # is inconsistent with e (no
-element of  extends e}. In all other cases, however, if %, ek (n, 0),
then ¢ is the unique prediction entailed for stage n by # and e.

Consider the problem of determining, for a given observation o and
stage n, whether # predicts o at n given e. This is a purely formal
problem posed by the empirical theory . We are interested in how
the difficulty of this formal problem relates to the difficulty of determin-
ing the truth value of 7 by empirical means. We will consider various
senses of determining the truth about 7 in the next section,

3. HYPOTHESIS TEST METHODS AND RELIABILITY

Let hypothesis # C O“ be given. A hypothesis test method is just a
function @ that takes a finite data segment e as input and that conjec-
tures 0, 1, or ? to indicate its guess about the truth value of #, where ?
represents refusal to draw a conclusion. We will focus on computable
test methods, though some of our negative results extend to hyper-
arithmetical test methods,” One may think of the test method a as
reading increasing initial segments of an infinite data stream &. Let g|n
denote the finite, initial segment of ¢ of length n + 1, so that « succes-
sively sees |0, |1, ]2, .. ..
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Fig. 2. The situation of a test method.

There are various senses in which a hypothesis test method might be
said to be reliable. We will consider the following, where it is always
assumed that £ C O%.

a verifies € with certainty & for every e € 0%, s €H &
at some stage 7, a(g|n) =1 and for cach stage m <n,
a(elm)=17.

o refutes X with certainty & for every e € 0°, e € H & at
some stage n, a(eln)=0 and for each stage m < n,
a(elm)=1.

« decides ¢ with certainty & o verifies and refutes % with
certainty,

Refutation with certainty corresponds to the Popperian ambition
discussed in the introduction. It demands that no matter how the data
comes in, the method refrains from drawing any conclusion until 7 is
in fact inconsistent with the data, after which the method eventually
realizes this fact and concludes 0, So if @ refutes 9 with certainty, then
as soon as « produces its first 0 after never producing anything but
?'s, the user can be certain that 3 is false. It is important to keep in
mind that refutation with certainty requires that the method succeed
on every possible data stream, for it is trivial to refute a hypothesis with
certainty on a single, fixed data stream: just output the truth value of
# forever, without even looking at the data provided. Verification with
certainty requires that the method eventually conjecture 1 after an
unbroken sequence of ?’s if and only if the hypothesis is true. Decision
with certainty is reminiscent of Plato’s demand that inquiry eventually
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yield the correct truth value with certainty no matter whether the
hypothesis is true or false (Kelly and Glymour 1992).
We will also entertain some limiting criteria of success:

a verifies F in the limit © Ye€ 0, s € F & there is a
stage n such that for all later stages m, a(s|m) = 1.

a refutes 3 in the limit & Ye€E0®, e & ¥ & there is a
stage n such that for all later stages m, a(elm) =0,

a decides # in the limit < « verifies and refutes % in the
Limit.

Decidability in the limit requires of a method that it eventually stabilize
to the truth value of the hypothesis under test. Such a method is
guaranteed to stop changing its mind eventually, but there is no a priori
bound on when this might be or on how many times the method will
change its mind. This sort of “failibilism” was proposed as an aim of
science by Peirce (1935), Reichenbach (1949), and later, in a cotnpu-
tational context, by H. Putnam (1965) and E. M, Gold (1965).° Ver-
ification and refutation in the limit are even weaker, “one-sided” crite-
ria of success which serve as limiting analogues of verification and
refutation with certainty, respectively (Osherson et al., 1986). Vei-
ification in the lmit requires that the method stabilize to 1 when the
hypothesis is true, and do anything else (i.e. stabilize to 0 or vacillate
forever between 0 and 1) otherwise. Refutation in the limit requires
that the method stabilize to 0 when the hypothesis is false and do
anything else otherwise. Finally, define:

verifiable
refutable
decidable

€ is computably [with certainty}

in the limit

there is a total, computable assessment method « such that

verifies
o | refutes

o f[wu‘h cermmtyJ ‘
decides

in the limit

B
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4. EFFECTIVE DEDUCTION OF PREDICTIONS

For each of the above senses of empirical testability, there is a parallel
sense of effective testability for formal relations. In general, let § C o
and let M be a Turting machine.

M verifies § with certainty &
for each n € w, n €S & M|[n| eventually halts with output
1.

M refutes S with certainty &
for each n € w, n & S & M[n] eventually halts with output
0.

M decides S with certainty &
M verifies and refutes § with certainty.

M verifies S in the limit & foreachn€w, nes &
M [n] generates an infinite sequence stabilizing to 1.

M refutes S in the limit & foreachn€w, nE S
M [n] generates an infinite sequence stabilizing to 0,

M decides S in the limit & M verifies and refutes S in the
limit,

Then as in the empirical case, we define:

verifiable
S is | refutable | with certainty &
decidable
verifies
there is a Turing machine M such that M refutes | S with
decides
certainty,
verifiable
S is refutable in the limit &
decidable
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verifies

g machine M such that M | refures | S in the lmit.

decides

he theory of computability, sets verifiable with certainty are said to
recursively enumerable (r.e.), sets that are refutable with certainty

aid fo be co-r.e. and sets that are decidable with certainty are said
to be recursive. Similarly, sets that are verifiable in the limit are said
- to be limiting r.e., sets that are refutable in the limit are said to be
“co-limiting r.e. and sets that are decidable in the limit are said to be
imiting recursive.

5. DERIVABILITY GIVEN TESTABILITY

We may now ask a systematic sct of precise Guestions about the relation-
ship between the inductive testability of hypotheses and formally testing
whether a given prediction follows from % and e. For example, if ¥
is computably refutable with certainty, must PRED; be verifiable with
certainty (r.e.)? Or if % is verifiable in the limit, must PREDy also be
verifiable in the limit? Theorem 5.1 (cf. Figure 3) answers every ques-
tion of this sort, both for the case in which % is empirically complete
and for the general case, in which % may fail to make any prediction
about what will be observed at a given time. The left-most column of
the table lists the various notions of computable hypothesis testability
defined in Section 3. For each such sense of testability, the table speci-
fies a general upper bound on the sense in which predictions can be
cffectively derived from such a theory, in the sense that every problem
of the specified sort has predictions at least as easy to derive as the
table says. It may be that some problems of the specified kind have
predictions ecven easier to derive than is indicated,” but the table’s
results are the best possible, in the sense that for each cell in the table,
there exists a hypothesis that is cffectively testable in the required
sense, but whose predictions are as hard to derive as any that are
derivable in the sense given by the table. The relevant sensc of “as
hard as” will be defined rigorously in Section 7.C below.

What does Theorem 5.1 say about the intuitive notion that science
should proceed by deriving successive predictions from a theory and
checking them against the data? This intuition is strongly supported
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Theorem 5.1 Best upper bound on the sense in which PREDyyis decidable
Given sense in which . .
#is computably testable] #is empirically complete General case
as an empirical o PR o
hypothesis Qs finite | O isinfinite § O is finite 0 is infinite
decidable % S W/Z’// decidable | refutable
o with certainty 7/ Impossible / with certainty | with certainty
d verifigble / unless 101> / refutable refutable
o
ig with certainty //////////// #8 with certainty | with certainty
g refutable decidable verifiable ‘
Q with certainty g with certainty | none with certainty | none
decidable decidable refutable
o | in the limit | with certainty | none in the limit  |none
4 verifiable | decidable refutable
E‘l in the limit | with certainty | none in the limit | none
E refutable
=} f)inthefimit ] none none none none

Fig. 3. Theorem 5.1.

when 2 is empirically complete and O is finite, for then it must be
computably decidable with certainty whether % predicts o at n given
e, even if ¥ is only computably verifiable in the limit. The intuition is
still supported to some extent in the general case when O is finite, for
mn that case it must at least be verifiable with certainty whether %
predicts o at n given e, if # is to be refutable with certainty.

But the situation changes when O is infinite. For example, even when
# is computably decidable with certainty, it may not be possible to
verify with certainty whether ¢ predicts o at n given e. But the most
curious result of all is the one alluded to in the introduction, namely,
that for some empirically complete ¢ that is computably refutable with
certainty, it is not even refutable or verifiable in the limit whether %
predicts o at n given e. This is remarkable because ¥ commits itself to
a unique prediction at each stage of inquiry and for all we know a
priori, any one of these predictions might turn out wrong. Moreover,
3 is such that no Turing machine can determine or even enumerate
all the predictions made by J¢. Nonetheless, some Turing-computable
method can refate # with certainty, so no matter how the data comes
in, the method rejects 3 if and only if % is false. Evidently, this
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method cannot proceed by deriving the next prediction from % and then
comparing the result with what is observed. There is a more powerful
way for computable scientific inquiry to proceed, so far as finding the
truth is concerned.®

6. THE ARITHMETICAL HIERARCHY

It is both technically useful and conceptually revealing to have one
general way to characterize the complexities of both hypotheses and
prediction sets. It turns out that the recursion-theoretic arithmetical
hierarchy provides just the right scale for our purposes.” The basic idea
behind the arithmetical hierarchy is to classify computational intracta-
bility in terms of the number of alternations between universal and
existential quantifiers sufficient to define a given relation in terms of
some effectively decidable relation.

Let 3 C (0" X &, In other words, % is an m + k-ary relation with
m data-stream arguments and & numeric arguments. R will be said to
be a fype (m, k) relation. Of particular interest to us is the fact that ¥
is a type (1, 0) relation and PREDg; is a type (0, 3) relation. Thus, if
we classify the computational complexity of all relations of type (m, k)
at once, we can compare the complexities of % and PREDs on the
same scale,

Say that a type (m, k) relation R is recursive or decidable with certainty
just in case there exists a Turing machine M such that when M is
provided with s infinite, “read only” tapes listing its infinite arguments
and an ordinary work tape listing its X numeric arguments, M eventually
halts with 1 if R holds of the arguments provided and halts with 0
otherwise. Observe that even though M is provided with tapes listing
infinite functions as inputs, M can scan only some finitc segment of
cach such tape before making its decision.

Let 2 be a type (m, k) relation. To eliminate tedious repetitions and
subscripts, let X denote a k-vector of natural numbers and let & denote
an m-vector of data streams, so that we may write 93(&, %) instead of
Rell], ..., elm], x1,...,x.), where each gli] € O”. Now define:

REIHE B is recursive

Re3D O there is an FE 3.9 such that
for each & € (0°Y", 1 € w*,
R(8, X) & Fxx+1 such that 1 HE, £, x4, 1).
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Verifiable

Refutable in ]
¢ in the limit

the limit

Decidable in
the limit

Verifiable

Refutable .
with certainty

with certainiy

Decidable
with certainty

Fig. 4, The arithmetical hierarchy.

ReNMe1RES
REA SR, NI,

In other words, a relation in =5 may be defined as follows:
RE, DS Y. . HAE, Eox, .0, X

where & is recursive and the quantifier prefix involves no more than
n— 1 alternations between I’s and V’s. Relations in TI2 are similar,
except that the leading quantifier is universal. Relations in A} can be
defined both ways. Bvidently, A2, 39, TI2 C AY,,, 39,,, TI%,,. The
arithmetical hicrarchy theorem says that these inclusions are all proper

(cf. Section 7). ‘
Our interest in the arithmetical hierarchy stems from the fact that it

jointly characterizes the complexity of deductive and scientific infer-
ence. Regarding deductive problems, we have the following, exact
correspondence (cf. Figure 4):

PROPOSITION 6.1 (E. M. Gold and H. Putnam 1965). Let S C .
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[verifiable T 3¢
(a) § is | refutable | with certainty & S € | 119

| decidable | A?

(verifiable 59
(b) S 18 | refutable | in the limit& § € Hg

| decidable | A

On the empirical side, we have the exactly analogous result.

PROPOSITION 6.2 (E. M. Gold and H. Putnam 1965), Let #C O,
where O is recursive.

verifiable 3¢
(a) #'is computably | refutable | with certainty & e | 119
decidable Al
verifiable pRY
(b) #€ is computably | refutable | in the limit& e | 9.
decidable A3

Proof. For a proof in an explicitly empirical setting, cf. (Kelly 1993)®&

7. PROOF OF THEOREM 5.1

In light of Propositions 6.1 and 6.2, we may now restate theorem 5.1
in the form in which it will be demonstrated (cf. Fig. 7).

The table presented in Fig. 5 is more informative than the one
presented in Fig. 3, for the negative results in lines (c—f) say not only
that there is no 112 bound on deducing consequences from %, but that
there is no bound at any level in thie arithmetical hierarchy that covers
all cases. In fact, something worse will be shown; namely, that there is
an empirically complete theory % for which there is no arithmetical
bound on PREDg, and yet % is computably refutable with certainty.
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Theorem 5.1 Best arithmetical bound on PRED 4

Given arithmetical

bound on g7 His empirically complete General case

1. 0 is finite {2. 0 isinfinite 3. O is finite |4, O is infinite

Al Al %I%W A9 Y
unless lO0l=1

A ) EEE
§le|] nf A9 none x) none

d A3 | A7 none g aone
g’ of 2 At none g none
il n none none none none

Fig, 5. Theorem 5.1.

The proof of Theorem 5.1 will proceed in a series of lemmas, First,
we show that the excluded cases 1.a, 1.b, 2.a, and 2.b cannot arise,
Then we establish the general upper bounds given in the table. Finally,
for each bound given in the table, we show that no lower bound
holds in general. Assume in each of the following results that # C O°.
Whenever we speak of an infinite data stream g, it is to be assumed
that e € O, whenever we mention a finite data sequence e, e € O,
and whenever we speak of a datum o, 0 € Q. Also, let #* denote the
sequence consisting of # repeated k times, and let #* denote the infinite
sequence that is constantly n. Finally, let e*e’ denote the concatenation
of e and ¢’.

7.A. Impossible Cases

The following lemma accounts for all the impossible cases in the table.
The argument is simply a formal version of the classical argument for
inductive scepticism that has echoed through the works of Plato, Sextus
Empiricus, William of Ockham, David Hume, Karl Popper, and many

41



KEVIN T. KELLY AND OLIVER SCHULTE

aconjectures 1

Fig. 6. Lemma 7.A.1.

others. We attribute it to Sextus because his rendition is both ancient
and particularly clear.™

LEMMA 7.A.1 (Sextus Empiricus). If there is more than one possible
observation at each stage and 7 is empirically complete, then % is not
computably (or non-computably) verifiable with certainty.

That is, if |0} > 1 and & € O then {g} & 3.

Proof. By Proposition 6.2, it suffices to show that {&} is not comput-
ably verifiable with certainty, Let « be an arbitrary test method. Feed
successive initial segments of & to o until & conjectures 1. If this never
happens, « fails to produce 1 on £ and hence fails to verify {&} with
certainty. If it does happen, say at stage n, then let 7 be just like &
except that 7,4 # &, and 7,4 € O. This is possible since 10]>1. a
conjectures 1 on 7 # g, and hence does not verify {g} with certainty. B

7.8B. Upper Bounds

LEMMA 7.B.1. If & is refutable with certainty and O is finite, then
PREDy is verifiable with certainty.
That is, if O is finite and % € 117 then PRED, & 39,

Proof. Suppose O is finite and % € I17. Let computable « refute %
with certainty. We construct a procedure for verifying PRED g with
certainty. Given the triple (e, x, 0), proceed as follows: if length(e) > x,
then return 1 if ¢, = 0 and go into an infinite loop otherwise. Else,
proceed in stages as follows. Begin at stage x. At stage x + &, construct
the tree of all extensions e’ of e of length x + k. This is possible because
O is finite. Run & on each initial segment of each such ¢’, labelling that
“node” of the tree with &’s conjecture. Say that e is dead < there is
an initial segment of e along which & conjectures only ?’s followed by
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x istagex+2
Case: (e, x, 0) & PREDy,

-3 ce 9

® dead puths
QO non-dead paths

Fig. 7. Lemma 7.B.2.

a 0. If there is a non-dead path e’ of length x + % such that ¢! # o, then
g0 to stage x + & + 1. Otherwise, halt the entire process and return 1.

(=) Suppose (e, x, 0) € PREDg. Then for each ¢ € 3 such that
cxtends e, £, = 0. Suppose for reductio that our procedure goes through
infinitely many stages on input (e, x, 0). Then at each stage %, there is
a non-dead e’ of length & extending e. Since O is finite, the tree of all
such finite paths is finitely branching, so by Kénig’s lemma, there is an
infinite path & through the tree, each initial segment of which is non-
dead. Since o refutes  with certainty, & € %. By construction, &, # o
and ¢ extends e, 80 (e, x, o) & PREDg,, contrary to assumption. So the
procedure halts correctly with output 1. (<) Suppose that (e, x,
0)& PRED . Then for some ¢ € % such that £ extends e, 8, # 0. Since
« refutes ¢ with certainty, each initial segment of = is non-dead,
so the procedure goes through infinitely many stages and returns no
output. ]

LEMMA 7B.2. If OC w and ¢ is verifiable with certainty, then
PREDyg is refutable with certainty,
That is, if O C @ and % € £7 then PREDg < 115,

Proof. Let O C @ and let € %7. Let computable « verify % with
certainty. We construct a procedure to refute PRED,, with certainty,
On input (e, x, 0), the procedure simulates & sequentially on an effec-
tive enumeration (e[0], e[1], . .., e[n], .. .) of the set of all finite exten-
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MM NN Z e

Fig. 8. Lemma 7.B.2.

sions of e, of length = x until some efi] is found such that efil. + o
and a returns an unbroken sequence of ?’s followed by a 1 when applicd
to successive initial segments of e[i] (say that such a sequence yields
verification). Then the procedure halts and returns 0.

(=) Suppose that (e, x,0) E PREDg,. Then there is no & € # such
that ¢ extends e and &, % 0. Since o verifies # with certainty, there is
no & such that =, # o and some initial segment of ¢ yields verification,
Hence, the procedure never halts with an output.

(<;) So suppose that (e, x, 0) & PREDy. Then for some & € X ex-
tending e, . # o. Since a verifies % with certainty, some initial segment
of & of length greater than x yields verification. Hence, the procedure
eventually halts with output 0. &

LEMMA 7.B.3, If O is finite and % is verifiable in the limit, then

PREDy, is refutable in the limit,

That is, if O is finite and 5¢ € %9 then PRED, € I19.

WProof. let O lge finite and let computable « verify # in the limit,
e provide a 3% definition of PRED %, from which it follows that

PRED, is T13: ’

{e,x,0) € PRED ., &

An=x, Jo' + 0, Fe' € 0" such that e, =o' and
VYm =n,

de" € O™ extending e’ such that

Vi such that n< k <m, a(e’fk) = 1.

The quantifiers over finite data sequences are all bounded because 0"
and O™ are finite (since O is finite). Hence, only the quantifiers Jn
and Vm = n are unbounded. All other relations involved are recursive
s0 we have a 3.2 expression. We now verify that the definition is correci,t
(cf. Fig. 9).

(=) Suppose (e, x, 0) € PREDyg. Then by the definition of PRED,
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@ oconjectures 0

O aconjectures 1

stabilizes to 1.

AR

ee H

Fig. 9. Lemma 7.B.2,

there is an & € 3 such that & extends e and &, # 0. Since o verifies #
in the limit, 3n ¥m =n a(e|m) = 1. So In such that ¥m = n Yk such
that n << m =<k, a(e|k) = 1. So the right-hand side of the definition is
satisfied. (<) Suppose the right-hand side of the definition is satisfied.
Then for some ¢’ of length # = x such that e,# o, we have that there
is always a longer extension e’ of ¢’ along which « conjectures 1 after
stage n, so there are infinitely many such ¢”, of ever greater length.
Since ( is finite, the infinite tree of all such ¢" is finitely branching, so
by Konig’s lemma, it has an infinite path e along which « always
conjectures 1. Since « verifies # in the limit and stabilizes to 1 on &,
g € #. But since e, # o, we have by the definition of PREDs, that
{e,x, 0} € PREDyg,. |

LEMMA 7.B.4, If O is finite and # is empirically complete and ¥ is
verifiable in the limit, then PREDg is decidable with certainty,
That is, if O is finite and {e} € 23 then PRED,; € A,

Proof. Suppose O is finite and {e} € %3, Then by Proposition 6.2.b,
let computable « verify {¢} in the limit. Then (*) 7 = £ & 3n such that
for all m = n, a(r|m) = 1. Let n’ be the least such » along e. In virtue
of (*), e is the unique infinite path on which « makes only finitely many
non-zero conjectures. Let m € w and let length(e) < m. Define:

e is m-dead & VYe' € O™, if ' extends e then 3k such that
n'<k<mand a(e'|k)=0.
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By (*), it is immediate that:
(A) For each m =0, V kelk is not m-dead.

We also have:

(B) If k= n' then there is an m = k such that for each e € O,
if e # elk then e is m-dead,

For suppose otherwise. Then for each m = k there is an efm]e O™
extending e such that o conjectures only 1 after position & on e[m]. Let
T = {efm]: m = k}. Since O is finite, T is a finitely branching, infinite
tree. By Konig’s lemma, T has an infinite path . So for each m = k
a(r|m) = 1. Since a verifies {s} in the limit, 7 = &. But since each
element of T extends e, 7 extends e. Also, length(e) = & and e # g(k,
s0 T # €, which is a contradiction. Hence, we have (B).

To compute &, use a to effectively label the finitely branching tree
O*, from bottom to top, level by level, until for some m, the tree is
labelled up to level m, and it is effectively verified (by exhaustion) that
there is a unique path e of length # that is not m-dead., (By A and B,
e = &|n). Return ¢, (=s,). |

Proof of Theorem 5.1, Upper Bounds, General Case. The upper
bounds reported in line (a) of Theorem 5.1 follow from those reported
in (b} and (c) and the upper bound reported in the finite case of (d)
follows from that reported in the finite case of (). The upper bounds
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reported in (b) both follow from Lemma 7.B.2. The upper bound
reported in the finite case of (c} follows from Lemma 7.B.1. The upper
bound reported in the finite case of (e) follows from Lemma 7.B.3.

Empirically Complete Case. The finite O cases of lines (¢) and (d)
follow from (e). The finite O case of (e} follows from Lemma 7.B.4.
This establishes all the upper bounds given in Theorem 5.1, We now
show that these upper bounds are the best general upper bounds pos-
sible.

7.C. The Upper Bounds are Optimal

We assume a fixed Gédel numbering of the Turing machines, and we let
¢; denote the (possibly partial) unary function on the natural numbers
computed by machine M;. Also, if §C @® and R C ", define

S =,, R = there is a total recursive function f: »* — »” such
that for each ¥ € w*, §(%) & R(f(¥)).

Then it is said that S is many-one reducible to R. 1t is immediate that
for each n, 32, IS, and A? are closed downward under =,,. That is, if
R is in one of these classes and S <, R, then § is also in the class, A
relation R is complefe in a class if R is a member of the class and every
member of the class is many-one reducible to R, A complete relation
in a class may be thought of as a “most complex” member of the class.
For example, define:

K = {i: ¢:(i) 1s defined}.
T ={i: 3 ¢; is total}.

K is called the “halting problem”. K is %3-complete and K is II5-
complete. Also, T is TI3-complete.'’ We will see (Lemma 7.C.5 below)
that both TI — 52 and 3 — II;, are non-empty. Hence, if a relation §
is complete in Xo[I17], then the relation does not belong to the dual
class TIS[Z0].

We have seen, for example, that if 3¢ is A} then PREDg is I1§. To
show that this upper bound on PRED g is optimal, we must prove that
there is an 9 such that % is A} but PREDy is as complex as a I19
function can possibly be (i.e. PREDy is complete in 113). For this, it
suffices to show that K <, PRED.

LEMMA 7.C.1. There is an # C »® that is computably decidable with
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Fig. 11. Lemma 7.B.5.

certainty but whose predictions are as hard as possible to derive, given
that they are computably refutable with certainty (so the predictions of
- 3¢ are not computably verifiable with certainty).

That is, there is an 5 C w® such that

(1) %eAland
(2)  PREDgis complete in 9 (and hence PRED,, & =D.

Proof, Define:
8 € H S (4, * 0> Po(0) halts within &g, StEps).

(1) is evident. (2) Let f(x) = ((x), x, 0). Clearly, f is computable and
total. Let K denote the halting problem. We show that
* € K& f(x) € PREDy, which yields K =,, PRED,,. (=) Suppose
* € K. Then for each k € w, ¢.(x) does not halt in % steps. Suppose
£ & J and e = x. Then by the contrapositive of the definition of ,
&, =0. Hence, ((x), x,0) € PRED,,. (<) Suppose x € K. Then for
some k, ¢.(x) halts within & steps. Let 7 be the data stream that starts
with x and that has & in each successive position. 7 € ¥ because @ (x)
halts in k& steps, but 7, # 0. So ((x), x, 0) & PRED.,. |

LEMMA 7.C.2. There is an #C 2® that is computably verifiable with
certainty but whose predictions are as hard as possible to derive, given
that they are computably refutable with certainty (so the predictions of
#€ are not computably verifiable with certainty),

That is, there is an % C 2% such that

()  #e3?and
(2)  PREDgy is complete in 11§ (and hence PRED;, & 9.
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Proof. Define & € #© 3k such that [(VK' <k, & =1) and &, =0
and (8k+1 + 0? ke K)].

(1) Since the universal quantifier is bounded, K € 2% and the leading
quantifier is 3, we have that %€ %Y. (2) Recall that 1" denotes the
everywhere 1 sequence of length n, and e*e’ denotes the concatenation
of e’ onto the end of e. Define: f(x} = (1"*0, x + 1, 0). As in the
preceding proof, we show that x € K& f(x) € PREDy, so that
K =,, PREDy. (=) Suppose x € K.

Let g € 7 and let e extend 1™%0, By the definition of %, e,,, = 0.
Hence, (1™0,x+1,0) EPREDy. (<) Suppose x€K. Let 7=
1*%0*1*, where it should be recalled that 1 denotes the infinite, every-
where 1 sequence. T € #'since x € K, But 7,1 =1, so (1¥ #0, x + 1,
0) & PRED,. B

LEMMA 7.C.3. There is an # C 2 that is computably refutable with
certainty but whose predictions are as hard as possible to derive, given
that they are computably verifiable with certainty (so the predictions
of 3 are not computably refutable with certainty).

That is, there is an # C 2 such that

(§))] g € 117 and
(2) PRED is complete in 3¢ (and hence PRED;, & MY).

Proof. Define e € X Vx[xEK or g.=0]. (1) ¥, since
K €119 and there is just one universal quantifier. (2) Let 0 denote the
empty data sequence. Define f(x)=(8,x,0). We show
¥ € K& f(x) € PREDy, so K =, PREDg, (=) Suppose x € K. Let
& € . Then g, = 0. So (0, x, 0) € PREDg. (<) Suppose x € K. Then
7= 0"*1*0" € ¥ but 7, = 1 so (0, x,0) &€ PREDg. "
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LEMMA 7.C.4. There is an % C 2“ that is computably decidable in
the limit but whose predictions are as hard as possible to derive, given
that they are computably refutable in the limit (so the predictions of
# are not computably verifiable in the limit}).

That is there is an % C 2 such that

1) #eAdand
(2)  PREDg is complete in I13 (and hence PRED,, & 9.

Proof. Let P be some arbitrary set complete in II5 (e.g. the set T
defined above). Then for some R€ %7, we have that Vxe a,
P(x) & VYyR(x, y). Define:

eEHE&
if 3n such that (1"#0*1) is extended by ¢
then JnIm (1"*0*1*1™*0) is extended by & and —1R(n, m).
(1) The definition of 9 is of the form “if 3% then I, whj;:h is
cquivalent to the form “either ¥ — & or IV, which is in turn equiva-
lent both to “¥YI 7 ® or ¥ and to “IY ~1 & or ¥, Hence, # € AS,
(2) We show that P =<, PREDg. In particular, we show that for
qach nE w, P(n) & ((1")*0, n + 1, 0) € PRED,,. Evidently, the func-
tion f(n) = ((1"}*0, n +1, 0) is computable. (=) Suppose P(n). Then
Vy R(n,y). Let & € % and let & extend (1"¥*0. Then since Yy R(n ¥)
we have by the contrapositive of the definition of % and the ,facl’;
that & extends (17)*0 that 8,+1 =0, Thus, PRED % ((A™*0, n+1
0) € PRED3. (<) Suppose 1P(n). Then for some y € o, “R(n, y)j
Let 7= (1"y*0*1*(1")*(0*). Since TR(n,y), TEH But 7, =140
so ((1")*0, n + 1, 0) & PREDs. B

We have 50 far shown that for each arithmetical upper bound on
PREDg, derived above, there is an example that realizes the full com-
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plexity of that bound. We will now show that for each case in which
no arithmetical upper bound was derived, some # exists for which
PRED, is not arithmetically definable.

LEMMA 7.C.5 (Hilbert and Bernays).'” There is an empirically com-
plete J€C 2% that is computably refutable in the limit but whose predic-
tions are not even arithmetically definable,

That is, there is an & € 2% such that

(1 {e} € 119 and
(2)  Vn, PREDy, & 3.

Proof. Let { ) be a computable, 1-1 encoding of finite sequences of
natural numbers by single natural numbers so that () denotes a natural
number that uniquely and effectively encodes the finite vector %, Let

£=(g[0], ..., g[n]) be a finite vector of infinite data streams. Let {(&))
denote the infinite sequence ([0, . - - , e[n]o}, {e[0h, . . ., elnln), . . .,
&[0k, ..., &[nl,...}). Then { ) denotes the infinite sequence
(¢ ¢ 2....(},...), which is recursive. Now define

U, (%), Iy & Ak such that Turing machine i halts on
inputs £, ¥ in at most & steps of computation.

WU 1({(E)), (2, i) & Ak such that — UAEY), (K*k), ).

Thus, % is a type (1, 2) relation, The following result is a special case
of the arithmetical indexing theorem.“

{(a) For each n=1, for each ¥ 32, there is an i such that
K8, Xy & Un((EN, (&), i)

Base case: n = 1. Suppose Y€ 29. Let M; be a positive test for .
Then for all &, %, #(&, ) & Ak such that M,[&, ] halts in no more than
k steps & UT(EN), (%), i).

Inductive case. Suppose the result for all n’ < n. Let € 2%, ,. Then
for some G € 3, for all &, X, #(&, %) & Ik —1 K&, %, k). By the induc-
tion hypothesis, there is some 7 such that for all &, %, k, %(&, %, k) &
Un({(&N, (%, k), 1). Thus H(&, %) & k1 UNE, (%, k), i}. This establishes
(a). Next define:

B(x) © Un(L Y, (1), %).

Now we show the arithmetical hierarchy theorem:
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(b) for each n, 9, € 20 ~ 115,

It is evident from the definition that %2 & %2, and hence that @, & P
Now suppose for reductio that @, € 1I;). Hence, 3, € 25, By (a) there
is some b such that for all x, 9,(x) & WS W, (x), b). So in particular,
(*) Du(b) © UL N, {by, b). By the definition of @, we have
(%) Du(b) © UL ), (), b). But (*) and (**) yield B,(b) & D(b)
which is a contradiction, so we have (b). Now define:

1At U ), ), )
0 otherwise.

o), i, ) = {

For each n, 3, <,, v, 5o by (b) we have for each n, v & II3, Hence, for
each n, v& 2. Since v{{(E), i, n)) = 1 (( ), (&), i, n),1) € PREDy,,
we have that (2) Vi PREDy,; € 2.5, It remains to show that (1) {v} € IIS.
A straightforward induction establishes that

sE{Ye

() VkEw, g,=<1and

(i) Vi€w, REN* [e({@), i, 1) =1 & UL », &, )]
and

(iii) Vn,i,x € ole({(®),i,n+ 1)) =1 3k and that e({((x*
k), i, m}) = 0)].

Intuitively, condition (i) says that £ is a characteristic function, con-
dition (ii) duplicates the base case of the definition of % and condition
(iii) duplicates the inductive case of the definition of %,. Putting the
definition into prenex normal form reveals that {v} € TI3, B

LEMMA 7.C.6."* There is an enipirically complete % C w® that is
computably refutable with certainty but whose predictions are not even
arithmetically definable,

That is, there is an & € 2° such that

(1) {e}el}and
(2)  VnPRED, & 29

Proof. Let v be as in the proof of the preceding proposition.
{v} €103, so there is a recursive relation % such that for all &, £ =
vé VxAy4(s, x, v). Define:

8(x) = (s, my Yv, x, y)).

THE COMPUTABLE TESTABILITY OF THEORIES

A 32 definition for 8 would yield a 3 definition for v, since v, can be
recovered by decoding 8(x) and returning the first coordinate. So by
Lemma 7.C.5, we have that for each n, §& 3. So PRED & 39,
which establishes (2).

It remains only to show that {8} € TI3. Let ({x, ¥))1 = x and ((x, y))» =
y. Given data stream e, let (@), denote the unique data stream such
that for each x € w, (a).(x) = (a(x));. We now show:

e €48} (i.c. £ = 8) & (a) ¥x 9((e)1, x, (£(x))s) and
(b) Vx’ y{y < (S(I))Z = @((8)1, X, y)]:

so there is a I19 definition of {8}. (=) Recall that Vx3y%(v, x, y). Thus
% holds if we choose the least such y: Vx9(v, x, py 9(v, x, ¥)). But by
the definition of 8, wy 9(v, x, y) = 8(x); and v= (8)1, so ¥x 4((8),, x,
(8(x)).), which is (a). And (b) follows because (8(x)). is the least y such
that G((8)1, x, y). (<) Suppose that (a) Vx %((e)1, x, ((x))2). Then
Y¥x3y 9((8)1, x, ¥). Thus (&), = v. Assuming (b), we have that for all
x, (£(x))a is the least y such that (§(v, x, ). Thus £ = §, as required.
&

Proof of Theorem 5.1, Optimality. The A? upper bounds cannot be
improved in the arithmetical hierarchy. The non-existence of bounds
in the infinite O case all follow from Lemma 7.C.6. The non-existence
of bounds in the finite O cases all follow from Lemma 7.C.5. The
infinite O, general case of (a) is best by Lemma 7.C.1. Both upper
bounds in the general case of line (b) are best by Lemma 7.C.2. The
upper bound in the finite O, general case of (c) is best by Lemma
7.C.3. The finite O, general case upper bounds given in (d) and (e)
both follow from Lemma 7.C.4, This concludes the proof of Theorem
5.1, B

8. AN EXPLANATION

It has been shown that there is an empirically complete hypothesis =
{8} such that a computable method o refutes 3 with certainty, but
the prediction function § determined by ¥ is not even arithmetically
definable, much less computable. So however the computable method
a works, it does not proceed by deriving successive predictions from
the theory on demand and checking them against the data. We can say
somewhat more than this. Define'
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H is consistent with e & there is an & € ¥ such that e extends
e,

« is consistent for ¥, 0 ©

for each finite data sequence e € O%, if ¢ i
- » if e is not i
with 3, then a(e) = 0. consistent

A method consistent for an empirically complet is rej

hypothesis as soon as the data logicallyyrefutflzjs i:?g};‘;‘:ﬁt‘gﬁ;gg:ﬁfﬂﬁ}e
if all computability is neglected, for a refuted hypothesis must be fal :
(absent any model of noise in the data). Bayesian methodologists alfe
recommend l}pdating by conditionalization as a scientific me%hodv;rz
Ln fact cqmrmtted to consistency, since the conditional probability of a

ypothesis must be 0 on any data that logically refutes it. Some Bayesi

ans ha\'n? also recommended “keeping the door ajar” b witholjr;' .
probability 0 until the hypothesis is refuted by the data, ’ e

& is conservative for ¥, O &

for each finite data se
. qUGnCeeEO*,ae ={) - i
sistent with e, (e) = #is incon

Bl'lt th.1s is rather strong medicine, For example, verification and ref

ation m the limit countenance an arbitrary nu’mber of O con'ecrte res
when the hypothesis is true, and conservatism outlaws such béhavligis
A less onerous requirement implied by conservatism is the following: .

« is weakly conservative for %
for cach £ & %, there are infini
8 itely man
oy g y v nr such that,
{i.e. a does not stabilize to 0 when 9 is true).

If o ver.zﬁes, refutes, or decides 97 either with certainty or in the limit
.then a 15 weakly conservative for . Even weaker notions of suc]:gn ;
imply wee.tk conservatism. For example, a method that outputs ratioesi
numbers in the ynit interval gradually decides 3 just in case its con'na
tures get ever closer to 1 when % is true and get ever closer ti)ec(i
otherwise, This is the sort of convergence that is often expected of

statistical methods like B i i iti izati
o tea ayesian updating by conditionalization.'® Now

PROPOSITION 8.1, If o is arithmetically definable and « is consistent

and weakly conservative for {g}, then & is arithmetically definable with
complexity no greater than that of a.

Proof. Suppose arithmetically definable @ is both consistent and
weakly conservative for {g}, O. Then define:

g, =y ¢ Jk=xJe € O such that a(e) #0and e, =y
o Vk=xVYe€ O, if a(e) # 0 then e, = y.

These definitions of & are both correct, since « returns values other
than 0 only along & by consistency and « does return values other than
0 infinitely often along & by weak conservatism. Since & is arithmetical,
and since e can be defined with one existential quantifier or with one
universal quantifier over e, the arithmetical complexity of £ does not
exceed that of a. ]

We have seen that a computable method « can refate {8} with cer-
tainty, but that 8is not arithmetically definable. Suppose, for contradic-
tion, that o is also consistent. We can readily alter « to make it both
consistent and weakly conservative: let ' simulate « on each initial
segment of e. ' conjectures 1 at a given position in e unless « conjec-
tures a 0 preceded only by ?’s on some initial segment of e, after which
' conjectures 0 on e. o’ is clearly computable since a is. So it follows
that 8 is recursive. But by Lemma 7.C.6, & is not even arithmetically
definable. So @ cannot be consistent. In other words, to refute {8} with
certainty, the computable method & must allow some time lag before
“noticing” that {8} has become inconsistent with the data.

It follows from Proposition 8.1 that no consistent, weakly conserv-
ative method for {8} is arithmetically definable. So standard methodolo-
gical recommendations like Bayesian updating can interfere with the
prospects of science even for highly uncomputable agents:"’

PROPOSITION 8.2.'® Even though some computable method can re-
fute {8} with certainty, no arithmetically definable Bayesian con-
ditionalizer can gradually decide {8}.

Proof. Let a(h, e) = P(hle), for some probability measure P such
that all conditional probabilities of form P(k|e) are defined. Suppose a
gradually decides {8}. Then « is weakly conservative « fortiori, since
a’s conjectures approach 1 on data stream 8. Also, « is consistent, by

coherence. Hence, o is not arithmetically definable, by Proposition 8.1.
]
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& {inally notices that
e diverges from &,

ef

£y
p—
e
‘/is inconsistent with &,
O O— 8

o S

'

Y

Fig. 14.

It is clear, then, that we must allow « some time delay before recogniz-
ing that & does not agree with the data received in the past. This is not
the trivial point that we must allow « some time to compute the current
prediction of {8} before moving on to the next prediction. The point is
that the computations cannot be performed in any finite amount of
time. Nonetheless, « can refute {8} with certainty. Hence, if e diverges
from 8, then for each ¢ extending e, there is some initial segment e’ of
& that @ can determine to diverge from 6.

One way of viewing the situation is that o employs an incomplete
proof system for deriving facts of the form 8(x) = y that is nonetheless
sufficiently complete in the sense just described. A more provocative
interpretation is that « requires empirical data about the future in order
to effectively determine consistency between {8} and e, so that the line
between formal and empirical inquiry is blurred, not just for computable
methods, but for all arithmetically definable methods. In fact, the pro-
vocative interpretation is supported by a closer inspection of the defi-
nition of e.

Choose the %in the proof of Lemma 7.C.6 as follows. @is the result
of translating the definition of » given in the proof of l.emma 7.C.6
into prenex normal form and then combining adjacent existential and
universal quantifiers into single quantificrs over code numbers (i.e.
VEViVnVYzVv is coded as W{(%), i, n, 7, v)).

G(e, ((X), i, n, z, v), (u, w)) &

(1) &(((®), 1, n)) €{0, 1} and

2(a) e({(x),7, 1)) =1 or —1¢p(%) halts in v computational
steps and

2(b) —e({x), i, 1)) =1 or ¢:(%) halts in w computational
steps and

3(a) e({(8), i, n + 1)) = 1 or 1e({{F*w), i,n)) = 0 and

3(b) e({® i, n + 1)) =1 or e({(E*2), i, n)) = 0
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4 is recursive. Following the definition of {8} in the proof of Lemma
7.C.6, we may define the computable method a as follows:

procedure a(e):
set n = length(e); . _
for each j < 1, do recover the pair (x;, y;) such that (%, yi) =
€. )
setd = (Xo, . ..,%,—1) (le. d= (e)1);
for each j < n, do ‘
if 9(d, i, y;) returns O within » steps of computation, then
halt with output 0
else if ¥(d, i, y;) returns 1, then for each y < y; do .
if 9(q,i,y) returns 1 within » steps of computation,
then halt with output 0
else halt with output?.

Whenever (%1, . . . X,) i, ¥;) is evaluated by &, 9 may ask tovse'e ﬁ;le
distinct positions on the data stream &, name_lz, sf*(((x), 'i:ht r)é
s({(x), i, 1)), e({{(®), i, n + 1)), s(((f_"‘_u), i, n)), and s({{¥*z), t,hn)). here
is no guarantee that these positions do not run oﬁ t e EI: o
(%1, . . . , X,) (and hence of e). In that case, o must st.all with con}eac lé ]
until e grows longer, even though e may glready diverge frqm - S0
can be viewed as waiting for future data in order to determine consis-

tency between e and {8}, as was claimed.

9., ONWARD AND UPWARD

We have scen that there are hypotheses that are colmputably tcstabﬁe
in various senses, even though there is no arithmetical bound on the
problem of deriving their predictions. Bgt the story does not er‘1d the;e.
The analytical hierarchy is defined just hlse the arlthmetl.cal hleralrc .{,
except that we start out with the arithmetical sets and build c;gnir)lp ex;e)j
by quantification over functions rather than numbers. Let ca

lation of type (k, m).

P € 34 & R is arithmetically definable.
Re ZEH & there is a type (k + 1, m) relations ¥ € X such
that for each & € (0*)*, # € o™, ]
(&, %) © B7 such that (8, 1, %).
ReM S RED.
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Theorem 9.1 Best arithmetical/analytical bound on PRED 4,

Given arithmetical

bound on 47 ?{is empirically complete General case

1. Qisfinite |2, O isinfinite {3, O is finite {4, @ is infinite

7 Y,
a A? % Impossible /// A (1) ]’1{1)
o /unlcssl@:l/
- ]
0 0
% Al Aj ¥ il
al 49 a4 Al g nj
n=2|e] =P ¢ Al nd i}
£ n Aj Af nj i
n>2(g |20 nQ A0} Al A i} m

Fig, 15. Theorem 9.1.

ReAleoReT NI

Now. we solve for upper bounds on the complexity of deriving the
predictions of an arbitrary, arithmetically definable theory. The com-
plete table of such bounds is given in Theorem 9.1 (cf. Figure 14),

LEMMA 9.2. If {e} & 3} then £ € A},
Proof. Let {&} be arithmetically definable, say by th i i
relation %(e). Then S by fhe anthmetical

&(n) = m&Vr € 0, if %(r) then 7(n) = m
& 37 € O such that %(7) and (n) = m.

Hence, e € A}. B
LEMMA 9.3. If % & X, then PREDy, € L.
Proof. Let 3¢ be arithmetically definable. Recall that:
PREDy e, n,0) ©Vr e %, ife Cr then 7, = 0.
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Fig, 16. Typical elements of .

Hence, PRED, € I15. =

Let {_) denote a fixed, effective bijection from w* to @, and let [ ]
denote the inverse function from o to e*,

LEMMA 9.4. § €11} & there is a recursive relation G such that
S(x) & Y7 € o, 3n G({r|m), x).

Proof (Rogers 1987), Corollary V, p. 378. B

LEMMA 9.5. There is an #C w® such that % & 1 and PREDg is

I13-complete.
Proof. 1et Sbea 11 complete set (e.g. the set of all indices of finite

path trees (Rogers 1987)). By Lemma 9.4, there is a recursive relation
G such that

&) 1€ S as &Y€ w”, AnG{r|n), x).

Now define:

e E XSV =2, [e.] Clenr1] & length(fe,]) =n—1
& 1G([enl, £0).

Evidently, % € TI3. Now we verify that § <,, PREDy, so that PRED,
is TI}-complete. (<) Suppose x &€ S. Then by (*), 7€ @ such that
Yn, ~1G({r|n}, x). Define e[y] = (x, y, {r|1), {(7|2), ..., {r]k), .. .). For
cach y, e]y] € 9. Hence, TPRED((x}, 1,1). () Suppose x € 5. Let
g0 = x. Suppose for reductio that & € . Then Vn, [e,] C [€n+1], Dy the
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definition of . Let 7 be such that for each n =2, 7|n — 2 = [¢,]. Then
Vn, 1G([&,] £0), by the definition of #. But that contradicts (*), since
xE€S8. Hence, e € #. Since £ is an arbitrary data stream such that
8o = x, x is inconsistent with 7. Hence, PREDg((x), 1, 1). So f(x) =
((x), 1, 1) reduces S to PRED g, - |

LEMMA 9.6. There is an % ¢ 2* such that % € II3 and PRED., is I1.-
complete.

Proof. Let S be a II] complete set. Let £ € w®. We may uniquely
encode £ with a sequence r € 2¥, as follows. For each n, encode ¢, as
a binary numeral, Now write the successive digits of each numeral in
even positions, filling in with 0 in odd positions until the numeral is
entirely written down. Signal the end of the numeral by putting a 1
in the next odd position, Thus, (0,1,2...) is encoded as (0, 1,1,
1,1,0,1,...). r €2° encodes an element of ®* ¢ 1 occurs in infinitely
many distinct, odd positions of 7. Then say that 7 is significant. If 7 is
significant, then define [7 ],, = the natural number denoted by the binary
numeral occupying even positions between the nth occurrence of 1 in
an odd position and the n + 1th occurrence of 1 in an odd position.
Now following the preceding iemma, define

e€EH e is significant and Ve=2, [[s],]C[lelire] &
length({[e].]) = # — 1 & =G({[e].]. 20).

If ¢ is mgnlﬁcant then [e], is total and effective. Since significance is
113, so is 3¢ But PREDg reduces S by the argument of Lemma 9.5. B

Proof of Theorem 9.1. The analytical upper bounds of Theorem 9.1
follow from Lemmas 9.2 and 9.3. The optimality of the bounds in the
general case follow from Lemmas 9.5 and 9.6. In the empirically com-
plete cases, we have from Lemmas 7.C.5 and 7.C.6 that {»} € II and
{8} e Y and neither v nor §is in 2§. From Lemma 9.2, », § € AL, This
shows that no tighter bound than Af can be glven in the analytical
hlerarchy But we have not shown that », § are Aj-complete. In fact
no set is Aj-complete.

LEMMA 9.7." ¥n, VR C @, R is not As-complete.

Proof. Suppose, for reductio, that R is Aj-complete. Define § =
{x:3yx) =y & y&ER}. SE AL, since R is and Al is closed under
complementation and first-order quantification. Hence, there is a total
recursive f such that Vx, x € § © f(x) € R. Let ¢ = f. Suppose k € §.

THE COMPUTABLE TESTABILITY OF THEQORIES -

Then ¢,(k) = f(k) & R. Suppose k & 5. Since fis total, ¢,(k) is deﬁne
Hence, ¢p(k) ER. Thus k€SS f(K)ER. So f does not reduce S to
R. Contradiction. L

As in the empirically complete case, a computable [or arithmetically
definable] method can refute J¢ with certainty, but cannot notice imme-
diately when the hypothesis is refuted. The result holds also for kyp-
er-arithmetically definable methods (i.e. methods in A}), so Lemma 9.5
yiclds an even more powerful critique of Bayesian methodology than
did Lemma 7.C.6,

COROLLARY 9.7. There is an 7 such that
(a) % is computably refutable with certainty, but
(b) no ae 3] is consistent and weakly conservative for #, w, and
hence
(¢) no Bayesian method in £ can gradually decide .
Proof. Let 3¢, S be as defined in the proof of Lemma 9.5, so (a) is
immediate. Then (x) is consistent with # & x & S. Suppose that « is
consistent and weakly conservative for %, w. Then (*) x€S&® Ve
O%*, if e extends (x) then a(e) 0. Suppose « € %1. Then by rearrange-
ment of quantifiers, § € X{, which is a contradiction, yielding (b).*
But it was observed in Section 8 that if a Bayesian method « gradually
decides J¢, then « is consistent and conservative for ¥, w, so (c} follows.
]

10. CONVERSE RELATIONS

So far we have asked how complex PREDy, can be if  is computably
testable in a given sense. We can turn the question around and ask
how computably untestable 9 can be for a given complexity of PRED .
In the general case, it is easy to see that an arbitrarily untestable theory
can make computationally trivial predictions, since it may refuse to
entail any predictions about the future at all.

PROPOSITION 10.1. For each (arbitrarily complex) § C w, there i8
an ¥ C 2% such that PREDg € AY and § is no more complex than 3.
Proof. Let § be an arbitrary subset of w. Define e € X e €S,
Then (e,n,0) EPREDs e, =0, so PREDy is Al. Define
xE S x” e &, So, S is no more complex than 7. |
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Moving on to the empirically complete case, there is the following,
comprehensive result:

PROPOSITION 10.2. If £ € HY then {e} € 1%
Proof. Define r E{e} & Vn, 7. = &4. ]

The 32 case follows from the I}, case by the following lemma:

PROPOSITION 10.3. Tf & € 3 then & € AL |
Proof. Since & is total, e(x) = y & Ty’ # y such that &(x) = y'. Since

g is 39, this definition of the complement of & is also %0, so & is T}

and hence is Ap. |

Now we show that the upper bound given in Proposition 9.2 is optimal
at level 1 in the hierarchy.

PROPOSITION 10.4. There is an & € 2 such that ¢ € A} but {e} is
119-complete (and hence is in I1 — 39).

Proof. Let { be the 0 constant function. ¢ is recursive. Let € I15.
So for some recursive %, £ € H© Vx 9(e,x). Define the recursive
operator ®e), =0 if %s,x) and P(e),=1 otherwise.
e € H & B(e) €{¢}, so H<,,{{} Hence, {{}is II{-complete. - |

At level 2, we have:

PROPOSITION 10.5. Let O = 2. There is an & € 2° such that & € AJ
but {e} € 113 — 23,

Proof. Let x be the characteristic function of K. Then for each x & w,
k(x) =y &y =1 and 3k ¢.(x) halts in k steps or y =0 and Yk, ¢.(x)
does not halt in k steps, Hence, x is A. Suppose {«} € %3. Then by
Lemma 7.B.4, k is recursive, which is a contradiction, since K <, .
So {x} & %5. |

{«} is not I13-complete, because no singleton is.

PROPOSITION 10.6. If |O|> 1 then for each &, {g} is not TI5-com-
plete.

Proof. Let |O|>1, x €0, and & € 0%, Define F(r) > Vn Im>n
such that 7,, = x. FE€II3. Now suppose for reductio that there is a
recursive operator ® such that for each r €2°, 1 € F& &(r) & {g}. Let
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y € O — {x}. Hence, y* & %. Let n’ be the least n such that ®(y*), #
&,. There is such an n, else ®(y“) = &, contrary to the reductio hypo-
thesis. Then there is some k such that for each 7, if 7|k = y" then
D1), = B(¥*), # &,, since ¢ must proceed locally by reading increas-
ing segments of its input (i.e. ® is continuous). Hence, ®(y**x*), #
&,. But y**x* € % contradicting the reductio hypothesis. B

We leave optimality open for levels 3 and higher. Since {e} €113 is
consistent with = being non-arithmetical (Lemma 7.5.C), the proof
strategy of Proposition 9.5 no longer applies at level 3 or higher.

11. CONCLUSION

An important task for philosophy is to expose intriguing structure in
the heart of apparent banality. It is apparently banal that science should
proceed by deriving predictions from theories and checking these pre-
dictions against the data. And yet, it has been shown that this concep-
tion (as well as the increasingly popular proposal that inquiry proceed
by Bayesian updating) severely underestimates the true potential of
effective (and even of definable) scientific methods. In fact, the relation-
ship between derivability of predictions, on the one hand, and scientific
reliability, on the other, is a complicated matter that depends crucially
on such unexpected factors as whether or not there can be infinitely
many possible outcomes of an experiment. We have presented the
complete table of such relations, together with proofs that the general
upper bounds given cannot be improved. In pursuit of these bounds,
we have been led beyond the realm of arithmetical definability.
Despite the systematic character of this study, it concerns only the
outer limits of the relations between empirical testability and formal
derivability. For example, it would be nice to know how pervasive the
phenomenon of Lemma 7.C.6 is. Is the result closely tied to the care-
fully tailored structure of the hypothesis % = {8}? Or is the existence
proof merely the tip of a hidden iceberg? Is there a hypothesis of
genuine interest to science that has the same formal properties? Similar
questions could be asked of all our existence proofs. Recent work on
computability in physics” may suggest less contrived examples, al-
though that work has yet to isolate the extremely high complexities
required to illustrate many of our results. One might also consider
variations on our notions of computable testability, involving experi-
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mentation, probability, weaker forms of computability, theory laden
data, and many other factors of interest to the philosophy of science.
But even in their highly idealized form, the results presented here can
serve to loosen up overly restrictive intuitions about how logic and
scientific inquiry must interact.

NOTES

* Oliver Schulte was supported during the course of this work by a generous schotarship
from SIEMENS AG. We also wish to thank the two anonymous reviewers for marny
helpful corrections to the original manuscript,
: F.g. (Pour-El and Richards 1980).
s By “highly idealized”, we mean hyper-arithmetically definable.
. Definability in elementary arithmetic will be introduced in Section 6.
1919:; )this sense, these results constitute an important generalization of those in (Kelly
* “Hyper-arithmetical” will be defined in Section 9 below.
5 Also see (Kelly 1991).
7 For example, let O = [0, 1} and let & € #< only finitely many (’s occur in e. Then
PRED g{e, n, 0) e, = 0, and hence is decidable with certainty, but 3 is not refutable
in the limit. For let @ be an arbitrary method. A “demon” can feed data to « as follows.
The demon feeds 0 so long as « conjectures something other than 0, and feeds 1 each
fime a conjectures 0. If o stabilizes to 0, then the data stream presented stabilizes to 1
and hence is in #. If @ conjectures a non-zero infinitely often, then infinitely many 0’s
gccur in the data stream, so it is not in 2, Hence, no a refutes 3 in the limit.
Of course, finding the truth is not the only aim of scientific inquiry. It is not our purpose
ign this paper to survey other aims, such as maintaining coherence or convincing others.
What follows is a guick sketch intended to remind the reader of the relevant definitions.
An expanded presentation may be found in any standard text on recursion theory such
as {Hinman 1978) or (Rogers 1987).

“[The dogmatists] claim that the universal is established from the particulars by means
of induction. If this is so, they will effect it by reviewing either all the particulars or only
some of them. But if they review only some, their induction will be unreliable, since it
is possible that some of the particulars omitted in the induction may contradict the
universal. If, on the other hand, their review is to include all the particulars, theirs will
be an impossible task, because particulars are infinite and indefinite. Thus it turns out,
1 think, that induction, viewed from both ways, rests on a shaky foundation” {Sextus
1985}, p. 105.

11 A1l the definitions and results presented in this paragraph are standard. An extended
Ilaz)resentation may be found in (Rogers 1987},
34frcsented in (Hinman 1970), Theorem 4.3, p. 106 or (Rogers 1987} Theorem XII, p.
' “This proof follows (Hinman 1970), pp. 106-107.
1: This proof follows (Hinman 1970), Corollary 4.5, p. 107.

These definitions generalize similar notions in (Osherson et al. 1986).
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16 (3radual decidability by a computable method is equivalent to decidability in the limit
by a computable method {we can convert a gradual decider « into a limiting decider by
simulating « and conjecturing 1 when a produces a conjecture greater than 0.5 and
conjecturing 0 otherwise), Hence, we have already obtained the bounds on PREDy; given
computable gradual decidability.

7 §t can be shown that for each Bayesian conditionalizer o and for each Borel set 3
(each arithmetically definable hypothesis is a Borel set), & gradually decides 3 over some
set 9 of data streams of probabifity 1 (in a’s prior probability measure}. Hence, even
though no arithmetically definable o gradually decides {8} over all data streams, each
such method gradually decides {8} measurc 1. We leave it to the reader to decide whether
this implies that requiring success over all data streams is too stringent (remember: a
computable method can succeed in this sense concerning {5}!) or that requiring success
with probability 1 is too lenient in infinite product spaces. Cf. (Kelly 1995}, Chapter 13.
18 This result is related to Theorem 3.7 in (Gaifman and Snir 1982).

1% We are indebted to Aleksandar Ignjatovic for this result. 1t can be strengthened to the
case of Turing reducibility using a similar argument based on the set § = fx: Ay pYx) =1}
0 Ohserve that weak conservatism could be replaced in this result with the trivial
requirement that a produce a non-zero conjecturc at some time later than stage 0 when
# is true.

2 (Pour-El and Richards 1980).
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