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Abstract

This paper concerns the extent to which uncertain propositional reasoning can
track probabilistic reasoning, and addresses kinematic problems that extend the
familiar Lottery paradox. An acceptance rule assigns to each Bayesian credal
state p a propositional belief revision method Bp, which specifies an initial be-
lief state Bp(⊤), that is revised to the new propositional belief state B(E) upon
receipt of information E. An acceptance rule tracks Bayesian conditioning when
Bp(E) = Bp|E

(⊤), for every E such that p(E) > 0; namely, when acceptance
by propositional belief revision equals Bayesian conditioning followed by accep-
tance. Standard proposals for uncertain acceptance and belief revision do not
track Bayesian conditioning. The “Lockean” rule that accepts propositions above
a probability threshold is subject to the familiar lottery paradox (Kyburg 1961),
and we show that it is also subject to new and more stubborn paradoxes when
the tracking property is taken into account. Moreover, we show that the familiar
AGM approach to belief revision (Harper 1975 and Alchourrón, Gärdenfors, and
Makinson 1985) cannot be realized in a sensible way by any uncertain acceptance
rule that tracks Bayesian conditioning. Finally, we present a plausible, alternative
approach that tracks Bayesian conditioning and avoids all of the paradoxes. It
combines an odds-based acceptance rule proposed originally by Levi (1996) with a
non-AGM belief revision method proposed originally by Shoham (1987).
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1 An Old Riddle of Uncertain Acceptance
There are two widespread practices for modeling the doxastic state of a subject—
as a probability measure over propositions or as a single proposition corresponding
to the conjunction of all propositions the subject believes. One straightforward way
to relate propositional belief to probabilistic belief is to accept only propositions of
probability one. However, that skeptical approach severely restricts the scope and
practical relevance of propositional reasoning, so it is natural to seek a more liberal
standard for acceptance. One natural idea, called the Lockean rule in honor of John
Locke, who proposed something like it, is to accept all and only the logical consequences
of the set of all sufficiently probable propositions, whose probabilities are no less than
some fixed threshold t strictly less than one.

Alas, however the threshold for acceptance is set, the Lockean rule leads to ac-
ceptance of inconsistency, a difficulty known as the lottery paradox (Kyburg 1961).
Suppose that the threshold is 2/3. Now consider a fair lottery with 3 tickets. Then the
degree of belief that a given ticket loses is 2/3, so it is accepted that each ticket loses.
That entails that no ticket wins. With probability one some ticket wins, so that propo-
sition is also accepted. The conjunction of the accepted propositions is contradictory.
In general, if t is the threshold, a lottery with more than 1/(1 − t) tickets suffices for
acceptance of inconsistency.

2 Two New Riddles of Uncertain Acceptance
The lottery paradox concerns static consistency. But there is also the kinematic ques-
tion of how to revise one’s propositional belief state in light of new evidence or supposi-
tions. Probabilistic reasoning has its own, familiar revision method, namely, Bayesian
conditioning. Mismatches between propositional belief revision and Bayesian condi-
tioning are another potential source of conundrums for uncertain acceptance. Unlike
the lottery paradox, these riddles cannot be avoided by the expedient of raising the
probabilistic standard for acceptance to a sufficiently high level short of full belief.

For the first riddle, suppose that there are three tickets and consider the Lockean
acceptance rule with threshold 3/4, at which the lottery paradox is easily avoided.
Suppose further that the lottery is not fair: ticket 1 wins with probability 1/2 and
tickets 2 and 3 win with probability 1/4. Then it is just above the threshold that ticket
2 loses and that ticket 3 loses, which entails that ticket 1 wins. Now entertain the new
information that ticket 3 has been removed from the lottery, so it cannot win. Since
ruling out a competing ticket seems only to provide further evidence that ticket 1 will
win, it is strange to then retract one’s belief that ticket 1 wins. But the Lockean rule
does just that. By Bayesian conditioning, the probability that ticket 3 wins is reset to
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0 and the odds between tickets 1 and 2 remain 2:1, so the probability that ticket 1 wins
is 2/3. Therefore, it is no longer accepted that ticket 1 wins, since that proposition
is neither sufficiently probable by itself nor entailed by a set of sufficiently probable
propositions, where sufficient probability means probability no less than 3/4.

It is important to recognize that the first riddle is geometrical rather than logical
(figure 1). Let H1 be the proposition that ticket 1 wins, and similarly for H2, H3. The
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Figure 1: the first riddle

space of all probability distributions over the three tickets consists of a triangle in the
Euclidean plane whose corners have coordinates (1, 0, 0), (0, 1, 0), and (0, 0, 1), which
are the extremal distributions that concentrate all probability on a single ticket. The
assumed distribution p over tickets then corresponds to the point p = (1/2, 1/4, 1/4) in
the triangle. The conditional distribution p|¬H3 = p(·|¬H3) is the point (2/3, 1/3, 0),
which lies on a ray through p that originates from corner 3, holding the odds H1 : H2
constant. Each zone in the triangle is labeled with the strongest proposition accepted
at the probability measures inside. The acceptance zone for H1 is a parallel-sided
diamond that results from the intersection of the above-threshold zones for ¬H2 and
¬H3, since it is assumed that the accepted propositions are closed under conjunction.
The rule leaves the inner triangle as the acceptance zone for the tautology ⊤. The
riddle can now be seen to result from the simple, geometrical fact that p lies near the
bottom corner of the diamond, which is so acute that conditioning carries p outside of
the diamond. If the bottom corner of the diamond is made more blunt, to match the
slope of the conditioning ray, then the paradox does not arise.

The riddle can be summarized by saying that the Lockean rule fails to satisfy the
following, diachronic principle for acceptance: accepted beliefs are not to be retracted
when their logical consequences are learned. Assuming that accepted propositions are
closed under entailment, let Bp denote the strongest proposition accepted in probabilis-
tic credal state p. So H is accepted at p if and only if Bp |= H. Then the principle may
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be stated succinctly as follows, where p|E denotes the conditional distribution p(·|E):

Bp |= H and H |= E =⇒ Bp|E |= H. (1)

Philosophers of science speak of hypothetico-deductivism as the view that observing a
logical consequence of a theory provides evidence in favor of the theory. Since it would
be strange to retract a theory in light of new, positive evidence, we refer to the proposed
principle as Hypothetico-deductive Monotonicity.

One Lockean response to the preceding riddle is to adopt a higher acceptance thresh-
old for disjunctions than for conjunctions (figure 2) so that the acceptance zone for H1
is closed under conditioning on ¬H3. But now a different and, in a sense, complemen-
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Figure 2: second riddle

tary riddle emerges. For suppose that the credal state is p, just inside the zone for
accepting that either ticket 1 or 2 will win and close to, but outside of the zone for
accepting that ticket 1 will win. The Lockean rule accepts that ticket 2 loses no matter
whether one learns that ticket 3 wins (i.e. p moves to p|H3) or that ticket 3 loses (i.e.
p moves to p|¬H3), but the lockean rule refuses to accept that ticket 2 loses until one
actually learns what happens with ticket 3. That violates the following principle:1

Bp|E |= H and Bp|¬E
|= H =⇒ Bp |= H, (2)

which we call Case Reasoning.
1The principle is analogous in spirit to the reflection principle (van Fraassen 1984), which, in this

context, might be expressed by saying that if you know that you will accept a proposition regardless
what you learn, you should accept it already. Also, a non-conglomerable probability measure has the
feature that some B is less probable than it is conditional on each Hi. Schervish, Seidenfeld, and
Kadane (1984) show that every finitely additive measure is non-conglomerable in some partition. In
that case, any sensible acceptance rule would fail to satisfy reasoning by cases. Some experts advocate
finitely additive probabilities and others view non-conglomerability as a paradoxical feature. For us,
acceptance is relative to a partition (question), a topic we discuss in detail in Lin and Kelly (2011), so
non-conglomerability does not necessarily arise in the given partition.
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The two new riddles add up to one big riddle: there is, in fact, no ad hoc manip-
ulation of distinct thresholds for distinct propositions that avoids both riddles.2 The
first riddle picks up where the second riddle leaves off and there are thresholds that
generate both riddles at once. Unlike the lottery paradox, which requires more tickets
as the Lockean threshold is raised, one of the two new riddles obtains for every possible
combination of thresholds, as long as there are at least three tickets and the thresholds
have values less than one. So although it may be tempting to address the lottery para-
dox by raising the thresholds in response to the number of tickets, even that possibility
is ruled out by the new riddles. All of the Lockean rules have the wrong shape.

3 The Propositional Space of Reasons
Part of what is jarring about the riddles is that they undermine one of the most plau-
sible motives for considering acceptance at all: reasoning directly with propositions,
without having to constantly consult the underlying probabilities. In the first riddle,
observed logical consequences H result in rejection of H. In the second riddle, propo-
sitional reasoning by cases fails so that, for example, one could not rely on logic to
justify policy (e.g., the policy achieves the desired objective in any case). Although one
accepts propositions, the riddles witness that one has not really entered into a purely
propositional “space of reasons” (Sellars 1956). The accepted propositions are mere,
epiphenomenal shadows cast by the underlying probabilities, which evolve according
to their own, more fundamental rules. Full entry into a propositional space of reasons
demands a tighter relationship between acceptance and probabilistic conditioning.

The riddles would be resolved by an improved acceptance rule that allows one to
enter the propositional system, kick away the underlying probabilities, and still end
up exactly where a Bayesian conditionalizer would end up—i.e., by an acceptance rule
that realizes a perfect, pre-established harmony between propositional and probabilistic
reasoning. The realization of such a perfect harmony, without peeking at the underlying
probabilities, is far more challenging than merely to avoid acceptance of mutually
inconsistent propositions. Perfect harmony will be shown to be impossible to achieve
if one insists on employing the popular AGM approach to propositional belief revision.
Then, we exhibit a collection of rules that do achieve perfect harmony with Bayesian
conditioning.

4 Questions, Answers, and Credal States
Let Q = {Hi : i ∈ I} be a countable collection of mutually exclusive and exhaustive
propositions representing a question to which H1, . . . , Hi, . . . are the (complete) an-

2The claim is a special case of theorem 3 in Lin and Kelly (2011).
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swers. Let A denote the least σ-algebra containing Q (i.e., the set of all disjunctions
of complete answers together with the unsatisfiable proposition ⊥). Let P denote the
set of all countably additive probability measures on A, which will be referred to as
credal states. In the three-ticket lottery, for example, Q = {H1, H2, H3}, Hi says that
ticket i wins, and P is the triangle (simplex) of probability distributions over the three
answers.

5 Belief Revision
A belief state is just a deductively closed set of propositions; but for the sake of con-
venience we identity each belief state with the conjunction of all propositions believed.
A belief revision method is a mapping B : A → A, understood as specifying the initial
belief state B(⊤), which would evolve into new belief state B(E) upon revision on in-
formation E.3 Hypothetico-deductive Monotonicity, for example, can now be stated in
terms of belief revision, rather than in terms of Bayesian conditioning:4

B(⊤) |= H and H |= E =⇒ B(E) |= H. (3)

Case Reasoning has a similar statement:5

B(E) |= H and B(¬E) |= H =⇒ B(⊤) |= H. (4)

6 When Belief Revision Tracks Bayesian Conditioning
A credal state represents not only one’s degrees of belief but also how they should be
updated according to the Bayesian ideal. So the qualitative counterpart of a credal state
should be an initial belief state plus a qualitative strategy for revising it. Accordingly,
define an acceptance rule to be a function B that assigns to each credal state p a belief
revision method Bp. Then Bp(⊤) is the belief state accepted unconditionally at credal
state p, and proposition H is accepted (unconditionally) by rule B at credal state p if
and only if Bp(⊤) |= X.6

3Readers more familiar with the belief revision operator notation ∗ (Alchourrón, Gärdenfors, and
Makinson 1985) may employ the translation rule: B(⊤) ∗ E = B(E). Note that B(⊤) is understood as
the initial belief state rather than revision on the tautology.

4Hypothetico-deductive Monotonicity is strictly weaker than the principle called Cautious Mono-
tonicity in the nonmonotonic logic literature: B(X) |= Y and B(X) |= Z =⇒ B(X ∧ Z) |= Y .

5Case Reasoning is an instance of the principle called Or in the nonmonotonic logic literature:
B(X) |= Z and B(Y ) |= Z =⇒ B(X ∨ Y ) |= Z.

6The following, conditional acceptance Ramsey tests translate our framework into notation familiar
in the logic of epistemic conditionals:

p  E ⇒ H ⇐⇒ Bp(E) |= H; (5)
E |∼ p H ⇐⇒ Bp(E) |= H. (6)
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Each revision allows for a choice between two possible courses of action, starting at
credal state p. According to the first course of action, the subject accepts propositional
belief state Bp(⊤) and then revises it propositionally to obtain the new propositional
belief state Bp(E) (i.e., the left-lower path in figure 3). According to the second course

p p E

Bp(E) Bp  (T)
E

=

Bayesian conditioning

Bp(T)

belief revision

acceptance acceptance

Figure 3: Belief revision tracks Bayesian conditioning

of action, she first conditions p to obtain the posterior credal state p|E and then accepts
Bp|E (⊤) (i.e., the upper-right path in figure 3). Pre-established harmony requires that
the two processes should always agree (i.e., the diagram should always commute).
Accordingly, say that acceptance rule B tracks conditioning if and only if:

Bp(E) = Bp|E (⊤), (7)

for each credal state p and proposition E in A such that p(E) > 0. In short, acceptance
followed by belief revision equals Bayesian conditioning followed by acceptance.

7 Accretive Belief Revision
It is easy to achieve perfect tracking: just define Bp(E) according to equation (7).
To avoid triviality, one must specify what would count as a propositional approach to
belief revision that does not essentially peek at probabilities to decide what to do. An
obvious and popular idea is simply to conjoin new information with one’s old beliefs to
obtain new beliefs, as long as no contradiction results. This idea is usually separated

We are indebted to Hannes Leitgeb (2010) for the idea of framing our discussion in terms of conditional
acceptance, which he presented at the Opening Celebration of the Center for Formal Epistemology at
Carnegie Mellon University. Our own approach (Lin and Kelly 2011), prior to seeing his work, was to
formulate the issues in terms of conditional logic, via a probabilistic Ramsey test, which involves more
cumbersome notation and an irrelevant commitment to an epistemic interpretation of conditionals.
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into two parts: belief revision method B satisfies Inclusion if and only if:7

B(⊤) ∧ E |= B(E). (8)

Method B satisfies Preservation if and only if:

B(⊤) is consistent with E =⇒ B(E) |= B(⊤) ∧ E. (9)

These axioms are widely understood to be the least controversial axioms in the much-
discussed AGM theory of belief revision, due to Harper (1975) and Alchourrón, Gär-
denfors, and Makinson (1985). A belief revision method is accretive if and only if it
satisfies both Inclusion and Preservation. An acceptance rule is accretive if and only if
each belief revision method Bp it assigns is accretive.

8 Sensible, Tracking Acceptance Cannot Be Accretive
Accretion sounds plausible enough when beliefs are certain, but it is not very intuitive
when beliefs are accepted at probabilities less than 1. For example, suppose that we
have two friends—Nogot and Havit—and we know for sure that at most one owns a
Ford. The question is: who owns a Ford? There are three potential answers: “Nogot”
vs. “Havit” vs. “nobody” (figure 4). Now, Nogot shows us car keys and his driver’s

p

nobody

Nogot Havit

p Nogot

somebody

Figure 4: How Preservation may fail plausibly

license and Havit does nothing, so we think that it is pretty probable that Nogot has a
Ford (i.e., credal state p is close to the acceptance zone for “Nogot”). Suppose, further,
that “Havit” is a bit more probable than “nobody” (i.e., credal state p is a bit closer
to the “Havit” corner than to the “nobody” corner). So the strongest proposition we

7Inclusion is equivalent to Case Reasoning, assuming the axiom called Success: B(E) |= E.
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accept is the disjunction of “Nogot” with “Havit”, namely “somebody”. Unfortunately,
Nogot was only pretending to own a Ford. Suppose that now we learn the negation
of “Nogot”. What would we accept then? Note that the new information “¬Nogot”
undermines the main reason (i.e., “Nogot”) for accepting “somebody”, in spite of the
fact that the new information is still compatible with the old belief state. So it seems
plausible to drop the old belief “somebody” in the new belief state, i.e., to violate the
Preservation axiom. That intuition agrees with Bayesian conditioning: the posterior
credal state p|¬Nogot is almost half way between the two unrefuted answers, so it is
plausible for the new belief state to be neutral between the two unrefuted answers.

If it is further stipulated that Havit actually owns a Ford, then we obtain Lehrer’s
(1965) no-false-lemma variant of Gettier’s (1963) celebrated counterexample to justified
true belief as an analysis of knowledge. At credal state p, we have justified, true,
disjunctive belief that someone owns a Ford, which falls short of knowledge because
the disjunctive belief’s reason relies so essentially on a false disjunct that, if the false
disjunct were become doubtful, the disjunctive belief would be retracted. Any theory
of rational belief that models this paradigmatic situation must violate the Preservation
axiom.

The preceding intuitions are vindicated by the following no-go theorem. First, we
define some properties that a sensible acceptance rule should have. To begin with,
we exclude skeptical acceptance rules that accept complete answers to Q at almost no
credal state. That is less an axiom of rationality than a delineation of the topic under
discussion, which is uncertain acceptance. Say that acceptance rule B is non-skeptical if
and only if each complete answer to Q is accepted over some non-empty, open subset of
P. Think of the non-empty, open subset as a ball of non-zero diameter, so acceptance
of Hi over a line or a scattered set of points would not suffice. Of course, it is natural
to require that the ball include hi, itself, but that follows from further principles. Open
sets are understood to be unions of balls with respect to the standard Euclidean metric,
according to which the distance between p, q in P is just:8

∥p − q∥ =
√ ∑

Hi∈Q
(p(Hi) − q(Hi))2.

In a similar spirit, we exclude the extremely gullible or opinionated rules that accept
complete answers to Q at almost every credal state. Say that B is non-opinionated if
and only if there is some non-empty, open subset of P over which some incomplete,
disjunctive answer is accepted. Say that B is consistent if and only if the inconsistent
proposition ⊥ is accepted at no credal state. Say that B is corner-monotone if and only
if acceptance of complete answer Hi at p implies acceptance of Hi at each point on the
straight line segment from p to the corner hi of the simplex at which Hi has probability

8The sum over Q is defined over P and assumes maximum value
√

2.
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one.9 Aside from the intuitive merits of these properties, all proposed acceptance rules
we are aware of satisfy them. Rules that satisfy all four properties are said to be
sensible. Then we have:

Theorem 1 (no-go theorem for accretive acceptance). Let question Q have at
least three complete answers. Then no sensible acceptance rule that tracks conditioning
is accretive.

Since AGM belief revision is accretive by definition, we also have:

Corollary 1 (no-go theorem for AGM acceptance). Let question Q have at least
three complete answers. Then no sensible acceptance rule that tracks conditioning is
AGM.

In light of the theorem, one might attempt to force accretive belief revision to
track Bayesian conditioning by never accepting what one would fail to accept after
conditioning on compatible evidence. But that comes with a high price: no such rule
is sensible.10

9 The Importance of Odds
From the no-go theorems, it is clear that any sensible rule that tracks conditioning
must violate either Inclusion or Preservation. Another good bet, in light of the pre-
ceding discussion, is that any sensible rule that tracks Bayesian conditioning should
pay attention to the odds between competing answers. Recall how Preservation fails
at credal state p in figure 4, which we reproduce in figure 5. If, instead, one is in
credal state q, then one has a stable or robust reason for accepting H2 ∨ H3 in the
sense that each of the disjuncts has significantly high odds to the rejected alternative
H1, so Preservation holds. That intuition agrees with Bayesian conditioning. Since
Bayesian conditioning preserves odds, H3 continues to have significantly high odds to
H1 in the posterior credal state, at which H3 is indeed accepted. In general, the con-
stant odds line depicted in figure 5 represents the odds threshold between H1 and H3
that determines whether Preservation holds or fails under new information ¬H2.

We recommend, therefore, that the proper way to relax Preservation is to base
acceptance on odds thresholds.

9Analytically, the straight line segment between two probability measures p, q in P is the set of all
probability measures of form ap + (1 − a)q, where a is in the unit interval [0, 1].

10Leitgeb (2010) shows that a sensible AGM rule can satisfy one side of the tracking equivalence:
Bp(E) is entailed by Bp|E

(⊤).
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10 An Odds-Based Acceptance Rule
We now present an acceptance rule based on odds thresholds that illustrates how to
sensibly track Bayesian conditioning (and to solve the two new riddles) by violating the
counter-intuitive Preservation property. The particular rule discussed in this section
motivates our general proposal.

Recall that an acceptance rule assigns a qualitative belief revision rule Bp to each
Bayesian credal state p. Our proposed acceptance rule assigns belief revision rules of a
particular form, proposed by Yoav Shoham (1987). On Shoham’s approach, one begins
with a well-founded, strict partial order ≺ over some (not necessarily all) complete
answers to Q that is interpreted as a plausibility ordering, where Hi ≺ Hj means that
Hi is strictly more plausible than Hj with respect to order ≺.11 Each plausibility
order ≺ induces a belief revision method B≺ as follows: given information E in A, let
B≺(E) be the disjunction of the most plausible answers to Q with respect to ≺ that
are logically compatible with E. More precisely, we first restrict ≺ to the answers that
are compatible with new information E to obtain the new plausibility order ≺ |E , and
then disjoin the most plausible answers compatible with E according to ≺ |E to obtain
our new belief state (see figure 7.b for an example). Shoham revision always satisfies
axioms Hypothetico-deductive Monotonicity, Case Reasoning, and Inclusion (Kraus,
Lehmann, and Magidor 1990). But Shoham revision may violate the Preservation
axiom, as shown in figure 7.b. To obtain an acceptance rule B, it suffices to assign to
each credal state p a plausibility order ≺p, which determines belief revision method Bp

by:

Bp = B≺p . (10)
11A strict partial order ≺ is said to be well-founded if and only if it has no infinite descending chain,

or equivalently, every subset of the order has a least element.
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We define ≺p in terms of odds.12 In particular, let t be a constant greater than 1 and
define:

Hi ≺p Hj ⇐⇒ p(Hi)
p(Hj)

> t, (11)

for all i, j such that p(Hi), p(Hj) > 0. For t = 3, the proposed acceptance rule can be
visualized geometrically as follows. The locus of credal states at which p(H1)/p(H2) = 3
is a line segment that originates at h3 and intersects the line segment from h1 to h3,
as depicted in figure 6.a. To determine whether H1 ≺p H2, simply check whether

(a)

h1

h2 h3

(b)

h1

h2 h3

T

H2
H3
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H1
H3
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H2 H3

H1vH3

H2vH3

H1vH2

p

H2 H3

H1

Figure 6: A rule based on odds thresholds

p is above or below that line segment. Follow the same construction for each pair of
complete answers. Figure 6.a depicts some of the plausibility orders assigned to various
regions of the simplex of Bayesian credal states.

To see that the proposed rule is sensible, recall that the initial belief state Bp(⊤)
at p is the disjunction of the most plausible answers in ≺p. So the zone for accepting
a belief state is bounded by the constant odds lines, as depicted in figure 6.b.13 From
the figure, it is evident that the rule is sensible.

To see that the proposed rule tracks conditioning, consider the credal state p de-
picted in figure 7, with new information E = H1 ∨ H3. To show that Bp(E) = Bp|E (⊤),
it suffices to restrict the plausibility order at p to information H1 ∨ H3, and to check
that the resulting order (figure 7.b) equals the plausibility order at the posterior credal
state p|(H1∨H3) (figure 7.a). Such equality is no accident: the relative plausibility be-
tween H1 and H3 at both credal states—prior and posterior—is defined by the same

12Shoham (1987) does not explicate relative plausibility in terms of any probabilistic notions.
13The rule so defined was originally proposed by Isaac Levi (1996: 286), who mentions and rejects

it for want of a decision-theoretic justification.
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Figure 7: How the rule tracks conditioning

odds threshold, and conditioning on H1 ∨H3 always preserves the odds between H1 and
H3. So the proposed rule tracks conditioning due to a simple principle of design: define
relative plausibility by quantities preserved under conditioning. That principle cannot
be accused of “peeking” at the underlying probabilities at each qualitative revision.
Whereas full specification of the position of p requires infinitely precise information,
belief revision depends only on which discrete plausibility order is assigned to p, which
amounts to just nineteen discrete possibilities in the case of three answers.

Furthermore, the proposed rule avoids the two new riddles (i.e., it satisfies Hypothetico-
deductive Monotonicity (1) and Case Reasoning (2)). Although that claim follows in
general from Proposition 2 below, it can be illustrated geometrically for the case at
hand by drawing lines of conditioning on figure 6.b, as we did on figures 1 and 2.

The Preservation axiom (9) is violated (figure 8), for reasons similar to those dis-
cussed in the preceding section (figure 5). Preservation is violated at p when ¬H2 is
learned, because acceptance of H2 ∨ H3 depends mainly on H2, as described above. In
contrast, the acceptance of H2 ∨ H3 at q is robust in the sense that each of the dis-
juncts is significantly more plausible than the rejected alternative H1, so Preservation
does hold at q. Indeed, the distinction between the two cases, p and q, is epistemically
crucial. For p can model Lehrer’s Gettier case without false lemmas and q cannot
(compare figure 8 with figure 4).

11 Shoham-driven Acceptance Rules
The ideas and examples in the preceding section anticipate the following theory.

An assignment of plausibility orders is a mapping ≺ that assigns to each credal
state p a plausibility order ≺p defined on the set {Hi ∈ Q : p(Hi) > 0} of nonzero-
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probability answers (i.e., ≺ is a mapping ≺( · ) that sends p to ≺p). An acceptance rule
B is called Shoham-driven if and only if it is generated by some assignment ≺( · ) of
plausibility orders in the sense of equation (10). Recall that in the case of Shoham-
driven rules, propositional belief revision is defined in terms of qualitative plausibility
orders and logical compatibility. So belief revision based on Shoham revision does
define an independent, propositional “space of reasons” that does not presuppose full
probabilistic reasoning.

The example developed in the preceding section can be expressed algebraically as
follows, when the question has countably many answers. Let the plausibility order ≺p

assigned to p be defined, for example, by odds threshold 3:

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) > 3. (12)

Let assignment ≺ of plausibility orders drive acceptance rule B. Then B is sensible and
tracks conditioning, due to proposition 4 below. The initial belief state Bp(⊤) at p can
be expressed by:

Bp(⊤) =
∧ {

¬Hi : p(Hi)
maxk p(Hk)

<
1
3

}
, (13)

which is a special case of proposition 4 below. Equation (13) says that answer Hi is
to be rejected if and only if its odds ratio against the the most probable alternative is
“too low”.

Shoham-driven rules suffice to guard against the old riddle of acceptance:

Proposition 1 (no Lottery paradox). Each Shoham-driven acceptance rule is con-
sistent.
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To guard against all of the riddles—old and new—it suffices to require, further, that
the rules track conditioning:

Proposition 2 (riddle-free acceptance). Each Shoham-driven acceptance rule that
tracks conditioning is consistent and satisfies Hypothetico-deductive Monotonicity (1)
and Case Reasoning (2).

Furthermore:

Theorem 2. Suppose that acceptance rule B tracks conditioning and is Shoham-driven—
say, by assignment ≺ of plausibility orders. Then for each credal state p and each
proposition E such that p(E) > 0, it is the case that:

≺p |E = ≺p|E , (14)
B≺p|E = B≺p|E

. (15)

p p E

p  
E

Bayesian conditioning

Shoham revision

=|Ep p

Shoham revision

=|Ep
B

p
B B

p  E

Figure 9: Shoham revision commutes with Bayesian conditioning

That is, Bayesian conditioning on E followed by assignment of a plausibility order to
p|E (the upper-right path in figure 9) leads to exactly the same result as assigning a
plausibility order to p and Shoham revising that order on E (the left-lower path in
figure 9).

12 Shoham-Driven Acceptance Based on Odds
It is no accident that every Shoham-driven rule we have examined so far is somehow
based on odds, as established by the main theorem of this section.

The assignment (12) of plausibility orders and the associated assignment (13) of
belief states employ a single, uniform threshold. The idea can be generalized by allowing
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each complete answer to have its own threshold. Let (ti : i ∈ I) be an assignment of
odds thresholds ti to answers Hi. Say that assignment ≺ of plausibility orders is based
on assignment (ti : i ∈ I) of odds thresholds if and only if:

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) > tj . (16)

Say that acceptance rule B is an odds threshold rule based on (ti : i ∈ I) if and only if
the initial belief state Bp(⊤) at p is given by:

Bp(⊤) =
∧ {

¬Hi : p(Hi)
maxk p(Hk)

<
1
ti

}
, (17)

for all p in P. Still more general rules can be obtained by associating weights to answers
that correspond to their relative content (Levi 1967)—e.g., quantum mechanics has
more content than the catch-call hypothesis “anything else”. Let (wi : i ∈ I) be an
assignment of weights wi to answers Hi. Say that assignment ≺ of plausibility orders
is based on assignment (ti : i ∈ I) of odds thresholds and assignment (wi : i ∈ I) of
weights if and only if:

Hi ≺p Hj ⇐⇒ wi p(Hi)/wj p(Hj) > tj . (18)

The range of ti and wi should be restricted appropriately:

Proposition 3. Suppose that 1 < ti < ∞ and 0 < wi ≤ 1, for all i in I. Then for
each p in P, the relation ≺p defined by formula (18) is a plausibility order.

Say that B is a weighted odds threshold rule based on (ti : i ∈ I) and (wi : i ∈ I) if
and only if the unrevised belief state Bp(⊤) is given by:

Bp(⊤) =
∧ {

¬Hi : wi p(Hi)
maxk wk p(Hk)

<
1
ti

}
, (19)

for all p in P. When all weights wi are equal, order (18) and belief state (19) reduce
to order (16) and belief state (17). Then we have:

Proposition 4 (sufficient condition for being sensible and tracking condi-
tioning). Continuing proposition 3, suppose that acceptance rule B is driven by the
assignment of plausibility orders based on (ti : i ∈ I) and (wi : i ∈ I). Then:

1. B is a weighted odds threshold rule based on (ti : i ∈ I) and (wi : i ∈ I).

2. B tracks conditioning.

3. B is sensible if Q contains at least two complete answers and there exists positive
integer N such that for each i in I, ti ≤ N .
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Rule B is not sensible if the antecedent of the preceding statement is false.14 So a
Shoham-driven rule can easily be sensible and conditioning-tracking (and thus riddle-
free, by proposition 2): it suffices that the plausibility orders encode information about
odds and weights in the sense defined above.

Here is the next and final level of generality. The weights in formula (18) can be
absorbed into odds without loss of generality:

Hi ≺p Hj ⇐⇒ wip(Hi)/wjp(Hj) > tj , (20)
⇐⇒ p(Hi)/p(Hj) > tj(wj/wi), (21)

So we can equivalently work with double-indexed odds thresholds tij defined by:

tij = tj(wj/wi), (22)

where i ̸= j. Now, allow double-indexed odds thresholds tij that are not factorizable
into single-indexed thresholds and weights by equation (22); also allow double-indexed
inequalities, which can be strict or weak. This generalization enables us to express
every Shoham-driven, corner-monotone rule that tracks conditioning.

Specifically, an assignment t of double-indexed odds thresholds is of the form:

t = (tij : i, j ∈ I and i ̸= j), (23)

where each threshold tij is in closed interval [0, ∞]. An assignment ◃ of double-indexed
inequalities is of the form:

◃ = (◃ij : i, j ∈ I and i ̸= j), (24)

where each inequality ◃ij is either strict > or weak ≥. Say that assignment ≺ of
plausibility orders is based on t and ◃ if and only if each plausibility order ≺p is
expressed by:

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) ◃ij tij . (25)

When an assignment ≺ of plausibility orders can be expressed in that way, say that
it is odds-based; when an acceptance rule is driven by such assignment of plausibility
orders, say again that it is odds-based.

Theorem 3 (representation of Shoham-driven rules). A Shoham-driven accep-
tance rule is corner-monotone and tracks conditioning if and only if it is odds-based.

14If Q contains only one complete answer, then the rule is trivially opinionated. If the odds thresholds
ti are unbounded, say ti = i for each positive integer i, then every non-empty Euclidean ball at corner
h1 of P fails to be contained in the acceptance zone for H1.
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13 Conclusion
It is impossible for accretive (and thus AGM) belief revision to track Bayesian condi-
tioning perfectly, on pain of failing to be sensible (theorem 1). But dynamic consonance
is feasible: just adopt Shoham revision and an acceptance rule with the right geometry.
When Shoham revision tracks Bayesian conditioning, acceptance of uncertain propo-
sitions must be based on the odds between competing alternatives (theorem 3). The
resulting rules for uncertain acceptance solve the riddles, old and new (propositions 1
and 2). In particular, that approach solves the Lottery paradox.
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A Proof of Theorem 1
To prove theorem 1, let Q have at least three complete answers. Suppose that rule B
is consistent, corner-monotone, accretive (i.e. satisfies axioms Inclusion and Preserva-
tion), and tracks conditioning. Suppose further that B is not skeptical. It suffices to
show that B is opinionated, which is accomplished by the following series of lemmas.

Lemma 1. Let O be a non-empty open subset of P, and Hi, Hj be distinct complete
answers to Q. Then O contains a credal state that assigns nonzero probabilities to both
Hi and Hj.

Proof. Since O is open (in Euclidean metric topology), p is the center of an open
sphere S in Euclidean metric with some non-zero radius r that is contained in O.
If p assigns non-zero probability to both Hi and Hj , we are done. If p assigns zero
probability to exactly one of the two answers, say, Hi, then move probability mass
0 < q < min(r/

√
2, p(Hj)) from Hj to Hi to form p′. Then computing the Euclidean
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distance between p, p′ yields:

∥p − p′∥ =
√ ∑

Hn∈Q
(p(Hn) − p′(Hn))2 (26)

=
√

(p(Hi) − p′(Hi))2 + (p(Hj) − p′(Hj))2 (27)

<

√(
r√
2

)2
+

(
r√
2

)2
= r. (28)

If p assigns zero probability to both Hi and Hj , then remove probability mass 0 <
q < min(2r/

√
6, p(Hk)) from some Hk (since p is a probability distribution) and assign

equal amounts to Hi and Hj to form p′. Then:

∥p − p′∥ <

√(
r√
6

)2
+

(
r√
6

)2
+

( 2r√
6

)2
= r, (29)

where the first two terms under the radical are for Hi, Hj and the last is for Hk. So p′

assigns non-zero probability both to Hi and to Hj and is in S ⊆ O.

For arbitrary points p1, p2, p3 in P, let p1 p2 denote the convex hull of p1, p2, and
let △p1 p2 p3 denote the convex hull of p1, p2, p3:

p1 p2 =
{

Σ2
k=1akpk : Σ2

k=1ak = 1, ak ≥ 0 for k = 1, 2
}

;

△p1 p2 p3 =
{

Σ3
k=1akpk : Σ3

k=1ak = 1, ak ≥ 0 for k = 1, 2, 3
}

.

For each complete answer Hi to Q, let hi be the credal state in which Hi has probability
1, which we call a corner of P. For each pair of distinct complete answers Hi, Hj to Q,
let hi hj denote the set of credal states in which Hi ∨ Hj has probability 1, which we
call an edge of P. For each edge hi hj of P, define the following set:

Lij = {p ∈ hi hj : Bp(⊤) = Hi}.

Lemma 2. For each edge hi hj of P, Lij is a connected line segment in hi hj that
contains hi but not hj, and contains at least one point distinct from hi, hj.

Proof. Let hi hj be an arbitrary edge of P. By non-skepticism, there exists non-empty
open subset O of P over which B accepts Hi as strongest. Since O is non-empty and
open, lemma 1 implies that there exists p in O that assigns nonzero probabilities to
both Hi and Hj . So p|Hi∨Hj is defined, which also assigns nonzero probabilities to
both Hi and Hj and, thus, is distinct from corners hi, hj . Since p is in O, B accepts Hi

at p. Then B also accepts Hi at p|Hi∨Hj , by Preservation and conditioning-tracking.
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Furthermore, B accepts Hi as strongest at p|Hi∨Hj , since B is consistent and Hi is a
complete answer. Then B accepts Hi as strongest at hi, since B is corner-monotone and
consistent. So Lij contains two distinct points p|Hi∨Hj and hi. The set Lij is connected
because B is corner-monotone and consistent. To see that Lij does not contain corner
hj , note that Lij and Lji are disjoint (by definition), so it suffices to show that Lji

contains hj . That follows from permuting i and j in the preceding argument that Lij

contains hi.

For each triple of distinct corners hi, hj , hm of P, consider two-dimensional simplex
△hi hj hm (figure 10.a), relative to which points a, b, c, d are defined as follows. Let a
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Figure 10: Why every accretive rule that tracks conditioning fails to be sensible

be the endpoint of Lim that is closest to hm; namely, a is the credal state in hi hm such
that a(Hm) = sup{p(Hm) : p ∈ Lim}. Similarly, let b be the endpoint of Ljm that is
closest to hm. By the preceding lemma, a and b are in the interiors of hi hm and hj hm,
respectively. Let credal state d be the intersection point of lines a hj and b hi. Let c be
the unique credal state in hi hj such that c hm contains d.

Lemma 3. Let hi, hj , hm be distinct corners of P. Consider two-dimensional simplex
△hi hj hm, relative to which points a, b, c, d are defined as above. Then B accepts Hi as
strongest over the interior of △a d hi. Furthermore, B accepts Hj as strongest over the
interior of △b d hj.

Proof. Consider an arbitrary point p in the interior of △a d hi (figure 10.b). Argue as
follows that B accepts Hi as strongest at p. Since posterior state p|¬Hj exists and falls
inside Lim, Bp|¬Hj

(⊤) = Hi. So, since B tracks conditioning, Bp(¬Hj) = Hi. Then,
since B satisfies Inclusion, Bp(⊤) ∧ ¬Hj |= Hi. So we have only three possibilities for
Bp(⊤):

Bp(⊤) = either Hi, or Hj , or Hi ∨ Hj ,

21



since B is consistent and the complete answers are mutually exclusive. Rule out the
last two possibilities as follows. Suppose for reductio that Bp(⊤) = Hj or Hi ∨ Hj .
Then, since B satisfies Preservation, Bp(¬Hi) must entail the conjunction of the prior
belief state and new information, i.e.:

Bp(¬Hi) |= Bp(⊤) ∧ ¬Hi.

The left-hand side equals Bp|¬Hi
(⊤) by conditioning-tracking, and the right-hand side

equals Hj by the reductio hypothesis. So Bp|¬Hi
(⊤) |= Hj . But B is consistent and

Hj is a complete answer, so Bp|¬Hi
(⊤) = Hj . Since p|¬Hi is in hj hm, p|¬Hi is in Ljm

by the definition of Ljm. But that is impossible according to the choice of p as an
interior point of △a d hi (figure 10.b). Ruling out the last two possibilities for Bp(⊤),
we conclude that Bp(⊤) = Hi. So we have established the first statement. The second
statement follows by symmetry.

Lemma 4. Continuing from the preceding lemma, B accepts Hi as strongest at hi and
over the interior of c hi. Furthermore, B accepts Hj as strongest at hj and over the
interior of c hj.

Proof. By lemma 2, Bhi
= Hi. Let q be an arbitrary point in the interior of c hi. Then

q = p|Hi∨Hj , for some point p in the interior of △a d hi (figure 10.c). So Bp(⊤) = Hi,
by the preceding lemma. Then, since B satisfies Preservation,

Bp(Hi ∨ Hj) |= Bp(⊤) ∧ (Hi ∨ Hj).

The left-hand side equals Bp|Hi∨Hj
(⊤) by conditioning-tracking, and the right-hand side

equals Hi (since Bp(⊤) = Hi). So Bp|Hi∨Hj
(⊤) |= Hi. Hence, Bp|Hi∨Hj

(⊤) = Hi, since
B is consistent and Hi is a complete answer. Then, since p|Hi∨Hj = q, we have that
Bq(⊤) = Hi, as required. So we have established the first statement. The second
statement follows by symmetry.

Lemma 5. Continuing from the preceding lemma, hi hj contains at most one point at
which B accepts Hi ∨ Hj as strongest.

Proof. By the preceding lemma, for every point p in hi hj , if Bp(⊤) = Hi ∨ Hj , then
p = c (figure 10.c).

Lemma 6. Every edge hi hj of P contains at most one point at which B accepts Hi∨Hj

as strongest.

Proof. Let hi hj be an arbitrary edge of P. Then, since Q contains at least three
complete answers, there exists a third, distinct corner hm of P. Apply the preceding
lemma to the simplex △hi hj hm, and we are done.
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The preceding lemma establishes opinionation only for each one-dimensional edge
of the simplex. The next step extends opinionation to the whole simplex.

Lemma 7. B is opinionated.

Proof. Suppose for reductio that B is not opinionated. Then, for some disjunction
Hi ∨ Hj ∨ X of at least two distinct answers Hi, Hj , and for some non-empty open
subset O of P, we have that B accepts Hi ∨ Hj ∨ X as strongest over O. Since O
is non-empty and open, lemma 1 implies that there exists credal state p in O that
assigns nonzero probabilities to both Hi and Hj . Then there exists an Euclidean ball
B of radius r > 0 centered on p that is contained in O. Transfer probability mass x
from Hi to Hj to obtain credal state q, where 0 < x < min(r/

√
2, p(Hi)). Then, as in

the proof of Lemma 1, q is in B ⊆ O, q assigns nonzero probabilities to Hi, Hj , and
p(Hi)
p(Hj) ̸= q(Hi)

q(Hj) . It follows that p|Hi∨Hj and q|Hi∨Hj are defined and distinct. Since p, q

are in O, we have that B accepts Hi ∨ Hj ∨ X as strongest at p, q. Hence, B accepts
(Hi∨Hj∨X)∧(Hi∨Hj) as strongest at p|Hi∨Hj , q|Hi∨Hj , since B tracks conditioning and
satisfies both Inclusion and Preservation. Note that (Hi∨Hj ∨X)∧(Hi∨Hj) = Hi∨Hj .
So B accepts Hi ∨Hj as strongest at two distinct points in edge hi hj , which contradicts
the preceding lemma.

To conclude the proof of Theorem 1, recall that it suffices to derive that B is
opinionated from the suppositions made in the beginning of the present section. So we
are done.

B Proof of Theorem 2
The domains of ≺p|E and ≺p|E coincide, because each plausibility order ≺q is defined
on the set of the answers to E that have nonzero probability with respect to q. Let
Hi and Hj be arbitrary distinct answers in the (common) domain. Since both answers
are in the domain of ≺p|E , we have that p(Hi|E) > 0, p(Hj |E) > 0 and that Hi ∨ Hj

entails E. It follows that p|(Hi∨Hj) = p|E∧(Hi∨Hj), and that both terms are defined.
Then it suffices to show that Hi ≺p|E Hj if and only if Hi≺p|EHj , as follows:

Hi ≺p|E Hj ⇐⇒ Bp|E (Hi ∨ Hj) = Hi by being Shoham-driven;
⇐⇒ Bp|(E∧(Hi∨Hj ))(⊤) = Hi by tracking conditioning;
⇐⇒ Bp|(Hi∨Hj )(⊤) = Hi since p|(Hi∨Hj) = p|E∧(Hi∨Hj);
⇐⇒ Bp(Hi ∨ Hj) = Hi by tracking conditioning;
⇐⇒ Hi≺p|(Hi∨Hj)Hj by being Shoham-driven;
⇐⇒ Hi≺p|EHj since Hi ∨ Hj entails E.
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C Proof of Theorem 3
Right-to-Left Side. Let B be driven by an odds-based assignment (≺p: p ∈ P) of plau-
sibility orders. The corner-monotonicity of B follows from algebraic verification of the
following fact: the odds of Hi to Hj increase monotonically if the credal state travels
from p to corner hi along the line p hi. To see that B tracks conditioning (i.e. that
Bp(E) = Bp|E (⊤)), since B is Shoham-driven, it suffices to show that an answer is most
plausible in ≺p|E if and only if it is most plausible in ≺p|E , which follows from the
odds-based definition of ≺p and preservation of odds by Bayesian conditioning.

Left-to-Right Side. Suppose that B is corner-monotone, tracks conditioning, and is
Shoham-driven according to assignment (≺p: p ∈ P) of plausibility orders. It suffices
to show that (≺p: p ∈ P) is odds-based. For each pair of distinct indices i, j in I, define
odds threshold tij ∈ [0, ∞] and inequality ◃ij ∈ {>, ≥} by:

Oddsij =
{

q(Hi)
q(Hj)

: q ∈ P, q(Hi) + q(Hj) = 1, Hi ≺q Hj

}
; (30)

tij = inf Oddsij ; (31)

◃ij =
{

≥ if tij ∈ Oddsij ,
> otherwise.

(32)

By corner-monotonicity, Oddsij is closed upward, because s ∈ Oddsij and s < s′ imply
that s′ ∈ Oddsij . So for each q in P such that q(Hi) + q(Hj) = 1,

Hi ≺q Hj ⇐⇒ q(Hi)/q(Hj) ◃ij tij . (33)

It remains to check that for each credal state p and pair of distinct answers Hi and
Hj in the domain of ≺p, equation (25) holds with respect to odds thresholds (31) and
inequalities (32):

Hi ≺p Hj ⇐⇒ p(Hi)/p(Hj) ◃ij tij . (34)

Note that p(Hi ∨ Hj) = p(Hi) + p(Hj) > 0, so p|(Hi∨Hj) is defined. Then:

Hi ≺p Hj ⇐⇒ Hi ≺p |(Hi∨Hj)Hj

⇐⇒ Hi ≺p|(Hi∨Hj ) Hj by theorem 2;
⇐⇒ Hi ≺q Hj by defining q as p|(Hi∨Hj);
⇐⇒ q(Hi)/q(Hj) ◃ij tij by (33);
⇐⇒ p(Hi)/p(Hj) ◃ij tij since q = p|(Hi∨Hj).
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D Proof of Propositions 1-4
Proof of Proposition 1. Consistency follows from the well-foundedness of plausibility
orders.

Proof of Proposition 2. Consistency is an immediate consequence of proposition 1. So
it suffices to show, for each p, that the relation Bp|E (⊤) |= H between E and H satisfies
Hypothetico-deductive Monotonicity (1) and Case Reasoning (2). That relation is
equivalent to relation Bp(E) |= H between E and H (by tracking conditioning). Since
B is Shoham-driven, the relation is defined for fixed p by the plausibility order ≺p

assigned to p, which is a special case of the so-called preferential models that validate
nonmonotonic logic system P (Kraus, Lehmann, and Magidor 1990). Then it suffices
to note that system P entails Hypothetico-deductive Monotonicity (as a consequence of
axiom Cautious Monotonicity) and Case Reasoning (as a consequence of axiom Or).

Proof of Proposition 3. To show that ≺p is transitive, suppose that Hi ≺p Hj and
Hj ≺p Hk. So wip(Hi)/wjp(Hj) > tj and wjp(Hj)/wkp(Hk) > tk. Hence wip(Hi)/wkp(Hk) >
tjtk. But odds threshold tj is assumed to be greater than 1, so wip(Hi)/wkp(Hk) > tk.
So Hi ≺p Hk, which establishes transitivity. Irreflexivity follows from the fact that
wip(Hi)/wip(Hi) = 1 ̸> ti, by the assumption that ti > 1. Asymmetry follows from the
fact that if wip(Hi)/wjp(Hj) > tj > 1, then wjp(Hj)/wip(Hi) is less than 1 and thus
fails to be greater than ti. To establish well-foundedness, suppose for reductio that ≺p

is not well-founded. Then ≺p has an infinite descending chain Hi ≻p Hj ≻p Hk ≻p . . ..
Since ti > 1 for all i in I, we have that wip(Hi) < wjp(Hj) < wkp(Hk) < . . .. So
the sum is unbounded. But each weight is assumed to be no more than 1, so the sum
of (unweighted) probabilities p(Hi) + p(Hj) + p(Hk) + . . . is also unbounded—which
contradicts the fact that p is a probability measure.

Proof of Proposition 4. To see that B is a weighted odds threshold rule, argue as fol-
lows:

Bp(⊤) =
∨

{Hj ∈ Q : Hj is minimal in ≺p} (35)

=
∨

{Hj ∈ Q : max
k

wkp(Hk)/wjp(Hj) ̸> tj} (36)

=
∧

{¬Hi ∈ Q : max
k

wkp(Hk)/wip(Hi) > ti} (37)

=
∧ {

¬Hi ∈ Q : wi p(Hi)
maxk wk p(Hk)

<
1
ti

}
. (38)

Part 2, that the rule tracks conditioning, is an immediate consequence of theorem 3,
because the rule is a special case of odds-based rules. To see that the rule is sensible,
recall that the parameters are assumed to be restricted as follows: 1 < ti ≤ N and
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0 < wi ≤ 1 for all i in I, where N is a positive integer. Then the rule is consistent,
because for each credal state p, the rule does not reject the answer Hk in Q that
maximizes wk p(Hk). The corner-monotonicity of the rule is an immediate consequence
of theorem 3, because the rule is a special case of odds-based rules. Non-skepticism is
established as follows. Suppose that i ̸= j. Define

rij = inf {∥hi − p∥ : p ∈ P, wip(Hi)/p(Hj) ≤ N} .

The value of rij is independent of the choice of j because of the symmetry of P, so
let ri denote the invariant value of rij . Argue as follows that ri > 0. Suppose for
reductio that ri = 0. Then there exists sequence (pn)n∈ω of points such that for all
n ∈ ω, wipn(Hi)/pn(Hj) ≤ N and limn→∞ ∥hi − pn∥ = 0. So limn→∞ pn(Hi) = 1 and
limn→∞ pn(Hj) = 0. Then, for some sufficiently large m, we have that wipm(Hi)/pm(Hj) >
N . But that contradicts wipm(Hi)/pm(Hj) ≤ N , which is guaranteed by the construc-
tion. Therefore, ri > 0. Let Bi be the Euclidean ball centered at corner hi with radius
ri. Suppose that k ̸= i. Then:

p ∈ Bi =⇒ ∥hi − p∥ < ri

=⇒ wip(Hi)/p(Hk) > N
=⇒ wip(Hi)/p(Hk) > tk since N ≥ tk;
=⇒ wip(Hi)/wkp(Hk) > tk since wk ≤ 1.

Hence Hi is accepted by the rule over Bi. To establish that the rule is non-opinionated,
it suffices to show that one particular disjunction, say H1 ∨ H2, is accepted over an
open set. Consider the unique credal state p∗ such that w1p∗(H1)/w2p∗(H2) = 1 and
p∗(Hj) = 0, for all j ̸= 1, 2. Suppose that j ̸= 1, 2. Define:

aj = inf {∥p∗ − p∥ : p ∈ P, w1p(H1)/p(Hj) ≤ N} ;
bj = inf {∥p∗ − p∥ : p ∈ P, w2p(H2)/p(Hj) ≤ N} ;
c = inf {∥p∗ − p∥ : p ∈ P, w1p(H1)/w2p(H2) > t2} ;
d = inf {∥p∗ − p∥ : p ∈ P, w2p(H2)/w1p(H1) > t1} .

By the symmetry of P, aj and bj do not depend on j, so let a denote the invariant value
of aj and similarly for b. (If Q has only two complete answers, so that Hj does not
exist, then let a = b = 1.) It follows that a, b > 0, by the same argument as in the non-
skeptical case. Argue as follows that c > 0. Suppose for reductio that c = 0. Then there
exists sequence (pn)n∈ω of points such that for all n ∈ ω, w1pn(H1)/w2pn(H2) > t2
and limn→∞ ∥p∗ − pn∥ = 0. So, limn→∞ w1p(H1)/w2p(H2) = 1. Then, since t2 > 1,
there exists sufficiently large m such that w1p(H1)/w2p(H2) < t2. But that contradicts
wipm(Hi)/pm(Hj) > t2, which is guaranteed by the construction. Therefore, c > 0. By
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symmetry, d > 0. Since a, b, c, d are strictly greater than 0, the following quantity also
exceeds 0:

r∗ = inf {a, b, c, d} .

Let B∗ be the Euclidean ball centered at p∗ with radius r∗. It suffices to show that
H1 ∨ H2 is accepted as strongest by the rule over B∗. So it suffices to show that for
each p in B∗ and for each complete answer Hk distinct from Hi:

w1p(H1)/wkp(Hk) > tk;
w2p(H2)/wkp(Hk) > tk;
w1p(H1)/w2p(H2) ≤ t2;
w2p(H2)/w1p(H1) ≤ t1.

The first two statements follow by the same argument as in the non-skeptical case. To
prove the third statement, argue as follows:

p ∈ B∗ =⇒ ∥p∗ − p∥ < r∗

=⇒ ∥p∗ − p∥ < c
=⇒ w1p(H1)/w2p(H2) ≤ t2.

The fourth statement follows by symmetry.
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