1 Fundamentals of Learning Theory

1.1 Learning Paradigms

Learning typically involves

1. a learner,

2. a thing to be learned,

3. an environment in which the thing to be learned is exhibited to the
learner,

4. the hypotheses that occur to the learner about the thing to be learned on
the basis of the environment.

Learning is said to be successful in a given environment if the learner’s
hypotheses about the thing to be learned cventhally become stable and
accurate. To fix our subject matter, let us agree to call something “learning”
just in case it can be described in roughly these terms.

Language acquisition by children is an example of learning in the in-
tended sense. Children are the learners; a natural language is the thing to be
learned; the corpus of sentences available fo the child is the relevant
environment; grammars serve as hypotheses. Language acquisition is com-
_ plete when the child’s shifting hypotheses about the ambient language
stabilize to an accurate grammar.

By a (learning) paradigm we mean any precise rendition of the basic
concepts of learning just introduced. Thus a paradigm provides definitions
corresponding to 1 through 4 and advances a specific criterion of successful
learning. The latter requires, at minimum, definition of the notions of
stability and accuracy as used earlier. Alternative learning paradigms thus
offer alternative conceptions of learners, environments, hypotheses, and so
forth. Learning theory is the study of learning paradigms.

In 1967 E. M. Gold introduced a paradigm that has proved to be
fundamental to learning theory. This paradigm is called identification. All
the other paradigms io be discussed in this book may be conceived as
generalizations of identification. The present chapter defines the identifica-
tion paradigm, thereby laying the foundation for all subsequent develop-
ments. We proceed as follows. Section 1.2 provides essential background
concepts and terminology. Section 1.3 is devoted to the construal of items |
through 4 within the identification paradigm. The relevant criterion of
successful learning is given in section 1.4. Section 1.5 discusses an essential
feature of identification and related paradigms.
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1.2 Background Material

1.2.1 Functions and Recursive Functions

We let N be the set {0,1,2,...} of natural numbers. The set of all functions
(partial or total) from N to N is denoted #. Following standard mathemat-
ical practice, members of # will be construed as sets of ordered pairs of
numbers satisfving the “single-valuedness” condition. Single valuedness
specifies that no two pairs of numbers with the same first coordinates may
occur in the same function. There are nondenumerably many functions in
& . Welet the symbols ¢, ¥, 8, ¢, ..., represent possibly partial functions in
& . The symbols f,g, h,f",..., are reserved for total functions in #. T p e &
is defined on x e N, we sometimes write @(x}|. Otherwise, we write p(x)7.
It will often be useful to construe individual numbers as “tuples” of
numbers. This is achieved as follows. For each n € N we select some comput-
able isomorphism between N” (i.e., the n-fold Cartesian product on N) and
N. For x;, X3, ..., X,€N, {(x1,%;,...,x,> denotes the image under this
function of the (ordered) n-tuple (x;, x,,. .., X,). In using this notation, the
reader should keep the following facts in mind (illustrating with n = 2):

1. For all x, yeN, {x,y> is a number, but (x,y) is an ordered pair of
numbers.

2, There is an effective procedure for finding {x, ¥> on the basis of x, ye N.
3. There is an effective procedure for finding both x and y on the basis of
{x,y>eN.

For4,B< N,welet A x B = {{x,y)ixeAand ye B}. Note that 4 x B
is a set of numbers, not a set of ordered pairs as in the usual definition of
A x B, the Cartesian product of 4 and B. We also introduce “projection
functions,” n; and «, with the property that for all x e N, {r,(x), 75 (x)} = x.
Thus 7; “picks out” the first coordinate of the pair coded by x; n, picks
out the second coordinate,

The set of recursive functions (partial or total) from N to N is denoted:
FTE F T is a denumerable subset of #. The members of F™° may be
thought of as those functions that are calcuiable by machine. “Machines”
can be understood as Turing machines, LISP programs, or any other
canonical means of computation. For concreteness we shall occasionally
invoke Turing machines to explain various definitions and results; however,
any other programming system would serve equally well.

We wish now to assign code numbers to the partial recursive functions.
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This is achieved by listing the members of %7 and using ordinal positions
in the list as code numbers. To be useful, however, this listing of #™° must
meet certain conditions, specifically:

DeriaTioN 1.2.1A  An acceptable indexing of 7% is an enumeration ¢,
@1, P2, - -, Of (all of) F7° that meets the following conditions:

i. For some yre #, {{i,x>) = ¢@,(x) for all i, xe N.
ii. For some total se %7,

qps((i,m,xl ..... xm))(<y1:-- . ’yn>) = (pi(<x1n' ers X Yoo+ iyn>)
foralli, m, Xqs 0oy Xy Vis e en Yo €N

Part ii of the definition aliows us to parameterize the first m arguments with
respect to the ith partial recursive function.

Relative to a given acceptable indexing ¢g, @ (,..., @4 ..., @;isreferred to
as the partial recursive function of index i. Intuitively i may be thought of as
the code for a program that computes ¢,. Indeed, one acceptable indexing
of #™ results from enumerating all Turing machines {or other canonical
computing agents) in fexicographical order and taking ¢, to be the function
computed by the ith Turing machine in the enumeration. This indexing
orders Turing machines by their size (measured in number of symbols),
resolving ties by recourse to some arbitrary alphabetization of Turing
machine notation, We assume that Turing machines are specified by a finite
string of symbols drawn from a fixed, finite alphabet. The reader may
safely adopt this size interpretation of indexes, since none of the results in
this book depend on which acceptable indexing of % ¢ is selected. This
invariance is a consequence of the following resuit.

Lemma 1.2.1A (Rogers, 1958)  Let @q, @1, ..., and ¥, ¥4, ..., be any two
acceptable indexings of #*°°. Then there is a one-one, onto, total fe ¢
such that ¢, = ., for all xe N.

Proof See Machtey and Young (1978, theorem 3.4.7). o

Thus any two acceptable indexings of the partial recursive functions are
identical up to a recursive isomorphism. We now fix on some specific
acceptable indexing of 7 {of the reader’s choice). Indexes are henceforth
interpreted accordingly.

The following simple result will be useful in subsequent developments.

Lemma 1.2.1B  For all ie N, the set {j|@; = ¢;} isinfinite.
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Proof See Machtey and Young (1978, proposition 3.4.5). 01

Lemma 1.2.1B reflects the fact that any computable function can be pro-
grammed in infinitely many ways (e.g., by inserting redundant instruc-
tions into a given program). If @; = @;, we often say that i and j are
equivalent.

1.2.2 Recursively Enumerable Sets

For all ie N the domain of ¢; is denoted: W;. As a consequence of lemma
1.2.1B, for all i;e N the set {j|W, = W, } is infinite. A set § = N is called
recursively enumerable (ot r.c)) just in case there is i e N such that § = Wj;in
this case i is said to be an index for § (there are infinitely many indexes for
each r.e. set). Intuitively a set § is r.e, just in case there is 2 mechanical
procedure P (called a positive test) such that for all x e N, P eventually halts
on input x if and only if x € §; indeed, the program coded by i serves this
purpose for W, Construed another way, the r.e. sets are those that can be
“generated” mechanically such as by a grammar.

The class of all r.e. sets is denoted: RE. Thus RE = {W|ie N}.

Three special kinds of r.e. sets will often be of interest. These are presented
in definitions 1.2.2A through 1.2.2E. SeRE is called finite just in case S
has only finitely many members; it is called infinite otherwise.

Dermamion 1.2.2A The collection of all finite sets is denoted: RE; .
SeRE is called recursive just in case S e RE.
DermnimioN 1.2.2B The collection of all recursive sets is denoted: RE ..

It can be shown that RE,, = RE__, = RE.RE

as follows.

may also be characterized

rec rec

Derintrion 1.2.2C e % is said to be the characteristic function for S = N
just in case for all xeN,

0, ifxes,

Jo) = {1, if xeS.

Ttis not difficult to prove that § < N is recursive if and only if its character-
istic function is recursive, Intuitively S € RE_, . justin case there is a mechan-
ical procedure (called a test} that eventually responds “yes” to any input
drawn from § and eventually responds “no” to any other input (thus a test,
unlike a positive test, is required to respond to every input}.
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Turning to the third special kind of r.e. set, recall from section 1.2.1 that
each ne N represents a unique ordered pair of numbers, namely the pair (i, j)
such that {i,j> = n. Accordingly:

DermiaTiON 1.2.2D

1 8§ € N is said to represent the set {{x, y)|{x, ¥> €8} of ordered pairs.

ii. § = N is called single valued just in case S represents a function,
iil. A single-valued set is said to be total just in case the function it represents
is total.

Equivalently S is single valued just in case for all x, y, ze N, if {x, y> e S and
{x,zy eS8, then y = z. Plainly a singie-valued set § represents the function ¢
defined by the condition that for all x, ye N, ¢(x} =y if and only if
{x,yy€eS. Asingle-valued set § is total just in case for all xe N thereis ye N
such that {x,y>eS.

Dermtion 1.2.2E  The collection of all single-valued, total, r.e. sets is
denoted: RE,,.

Exercises

1.2.2A LetS = N besingle valued, and suppose that § represents @ € #. Show that

a. peF "~ if and only if S RE.
b. ¢ is total recursive if and only if § is total and r.e.
c. if SeRE and § is total, then S is recursive.

1.2.2B
a. Prove: Let f € % be the characteristic function for § & N. Then SeRE,,, if and
only if some TeRE,,, represents f.

b. Show that there is a total recursive function f such that for all ie N, if W.eRE
then ¢y, is the characteristic function for W,

c. Prove: RE_,, = RE

svis

svt rec*

1.3 Identification: Basic Concepts

We now consider items 1 through 4 of section 1.1 as they are construed
within the paradigm of identification. We begin with 2.
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1.3.1 Languages

Identification is intended as a model of language acquisition by children,
so languages are the things to be learned. In the model languages are
conceived in a manner familiar from the theory of formal grammar (see
Hopcroft and Ullman, 1979, ch. 1) where a sentence is taken to be a finite
string of symbols drawn from some fixed, finite alphabet. A language is then
construed as a subset of the set of all possible sentences. This definition
embraces rich conceptions of sentences, for which derivational histories,
meanings, and even bits of context are parts of sentences. Since finite

derivations of almost any nature can be collapsed into strings of symbols .

drawn from a suitably extended vocabulary, it is sutficiently general to

construe a language as the set of such strings. Simpiifying matters even

further, it is useful to conceive of the strings of a language (collapsed
derivations or otherwise) as single natural numbers; this is appropriate in
light of simple coding techniques for mapping strings univocally into
natural numbers {for discussion, see Rogers, 1967, sec. 1.10). In this way a
language is conceived as a set of natural numbers.

But not just any subset of N counts as a language within the identification
paradigm. Since natural languages are considered to have grammars, and
since grammars are intertransfatable with Turing machines, we restrict
attention to the recursively enumerable subsets of N—that is, to RE.
Henceforth in this book the term “language” is reserved for the r.e. sets. We
use the symbols L, L, ..., to denote languages.

In sum, within the identification paradigm what is learned are languages,
where langnages are taken to be r.e. subsets of N (equivalently, members of
RE).

It is interesting in this context to consider the significance of single-
valued languages. Some linguistic theories envision the relation between

underlying and superficial representations of a sentence as a species of -

functional dependence, different natural languages implementing different
functions of this kind {(e.g., Wexler and Culicover, 1980). It is assumed
moreover that contextual clues give the child access to the underlying
representation of a sentence as well as to its superficial structure. On this
view a sentence is understood as an ordered pair of representations, under-
lying and superficial, and competence for a language consists in knowing
the function that maps one representation onto the other (variants of this
basic idea are possible). All of this suggests that empirically faithful models
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of linguistic development construe natural languages as certain kinds of
single-valued sets,

Single-valued languages are also the appropriate means of representing
various learning situations distinct from language acquisition. For
example, a scientist faced with an unknown functional dependency can be
conceived as attempting to master a single-valued language selected arbit-
rarily from a set of theoretical possibilities.

For these reasons we shall often devote special attention to single-vaiued
languages, treating them separately from arbitrary r.e. sets.

1.3.2 Hypotheses

Languages construed as r.e. subsets of N, it is natural to identify the
learner’s conjectures (iten: 4) with associated Turing machines, In turn, we
may appeal to our acceptable indexing of the partial recursive functions
(section 1.2.1) and identify Turing machines with indexes for r.e. sets (ie,
with N itself). Thus within the identification paradigm the number i is the
hypothesis associated with the language W, (and with the language W, if
W= W), |

1.3.3 Environments
We turn how to item 3.

DerFmnmioN 13.3A A tex{ is an infinite sequence iy, i, ..., of natural
numbers. The set of numbers appearing in a text t is denoted: rng(?). A textis
said to be for asel § & N just in case rng(¢) = S. The set of all possible texts
is denoted: 7.

Example 1.3.3A

£=0,0,2,2,4,4,6,6,... is a text. Since mg(f) = {0,2,4,6,...}, t is a text for the
language consisting of the even numbers.

lette befor Le RE. Then every member of I appears somewhere in ¢
(repetitions allowed), and no member of L appears in ¢, There are non-
denumerably many texts for a language with at least two clements. There
is only one text for a singleton language (i.e., a language consisting of only
one element), There are no texts for the empty language.
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Within the identification paradigm an environment for a language L is
construed as a text for L. We let the symbols r, s, ¢, ¥, ..., represent texts.

From the point of view of language acquisition, texts may be understood
as follows. We imagine that the sentences of a language are presented to the
child in an arbitrary order, repetitions allowed, with no ungrammatical
intrusions. Negative information is withheld—that is, ungrammatical
strings, so marked, are not presented. Each sentence of the language eventu-
ally appears in the available corpus, but no restriction is placed on the order
of their arrival. Sentences are presented forever; no sentence ends the series.

The foregoing picture of the child’s linguistic environment is motivated
by recent studies of language acquisition. Brown and Hanlon (1970}, for
example, give reason to believe that negative information is not systemati-
cally available to the language learner. Studies by Newport, Gleitman, and
Gleitman (1977) underline the relative insensitivity of the acquisition pro-
cess to variations in the order in which language is addressed to children.
And Lenneberg (1967) describes clinical cases revealing that a child’s own
Linguistic prdductions are not essential to his or her mastery of an incoming
language.

The following asymmetrical property of texts is worth pointing out. Let
te and ne N be given. If nerng(s), then examination of some initial
segment of £ suffices to verify the presence of nin ¢ once and for all. On the
other hand, no finite examination of ¢ can definitively verify the absence of
n from £ (since n may turn up in ¢ after the finite examination).

1.3.4 Learners

We turn, finally, to item 1. Consider a child learning a natural language. At
any given moment the child has been exposed to only finitely many sen-
tences. Yet he or she is typically willing to conjecture grammars for infinite
languages. Within the identification paradigm the disposition to convert
finite evidence into hypotheses about potentially infinite languages is the
essential feature of a learner. More generally, the relation between finite
evidential states and infinite languages is at the heart of inductive inference
and learning theory.

Formally, let te7 and neN be given. Then the nth member of ¢ is
denoted: t,. The sequence determined by the first n members of ¢ is denoted:
1,. The sequence £, is called the finite sequence of length n in t. Note that for
any text f, t, is the unique sequence of length zero, namely the empty
sequence which we identify with the empty set . The set of all finite
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. sequences of any length in any text is denoted: SEQ. SEQ may be thought of
- as the set of all possible evidential states (e.g., the set of all possible finite
~ gorpora of sentences that could be available to a child). We let the symbols
g, T, X» 05 - ., fepresent finite sequences,

Now let 0 e SEQ. The length of o is denoted: Ih(g). The (unordered) set of
sentences that constitute o is denoted: rng(s). We do not distinguish num-
bers from finite sequences of length 1. As a consequence of the foregoing
conventions, note that 0 e SEQ is in te .7 if and only if ¢ = Fy,,.

Example 1.3.4A

aletr=002244. . Thenty=1t =01, =671, =(0,0) (but ¢, = 2), and
7, =(0,0,2,2) (but ¢, = 4). Moreover (f;) =7, 1h(z,) = 4, Ih{t,) = 1, rag(f,) =
{0,2}, and 1, =7, = 0.7 = (2,2,4) is not in ¢ because ¢ does not begin with .

b. Let o = (5,2,2,6,8). Then lh{s) = 5, and rmg(s) = {5,2,6,8}.

With evidential states now construed as finite sequences and conjectures
construed as natural numbers (section 1.3.2), learners may be conceived as
functions from one to the other, that is, as functions from SEQ to N. Put
differently, learning may be viewed as the process. of converting evidence
into theories (successful learning has vet to be defined), However, rather
than taking learners to be functions from SEQ to N, it will facilitate later
developments to code evidential states as natural numbers. Thus we choose
some fixed, computable isomorphism between SEQ and N and interpret, as
needed, the number » as some unique member of SEQ. None of our results
depend on which computable isomorphism between SEQ and N is chosen
for this purpose. Officially then a learning function is a member of & (ic., a
function from N to N} where the domain of the function is to be thought of
as the set of all possible evidential states and the range as the set of all
possible hypotheses. A learning function may be partial or total, recursive
or nonrecursive. A “learner” is any system that embodies a learning func-
tion. Learning theory thus applies to learners indirectly via the learning
functions they implement.

To talk about learning functions, we need a notation for the mapping
that codes SEQ as N. It will reduce clutter to allow finite sequences to

symbolize their own code numbers. Thus “6™ represents ambiguously a

finite sequence of numbers as well as the single number coding it. No harm
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will come of this equivocation. According to our notational conventions,
for pe F,te T, and ne N, the term “o(1,)” denotes the result of applying
@ to the code number of the finite sequence constituting the first n members
of .

Let pe# and occSEQ be given. In conformity with the convention
governing 1 and | (section 1.2.1), if ¢ is defined on o, we write: @(o)].
Otherwise, we write: ¢{o) 1. Intuitively o(o) 1 signifies that the learner imple-
menting ¢ advances no hypothesis when faced with the evidence ¢. This
omission might result from the complexity of o (relative to the learner’s
cognitive capacity), or it may arise for other reasons. If ¢(a) |, we often say
that ¢ conjectures W, on o.

Example 1.3.48B

We provide some sample learning functions f, g. b, ¢, ¥ €# by describing their
behavior on SEQ. For all 6 e SEQ:

a. f(g) = the least index for the language rng(o). Informally, f behaves as if i.ts cur-
rent evidential state includes all the sentences it will ever see. Consequently it con-
jectures a grammar for the finite langnage made up of the elements nj:ceivcd to date.
Being parsimonious, f’s conjectured grammars are as small as possible (relative to
the acceptable indexing of section 1.2.1). We shall have occasion to refer to this
function many times in fater chapters. )

b. g(¢) = 5. The function g has fixed ideas about the langnage it is observing.

¢. k(o) = the smallest i such that rng(s) = W,. Here h conjectures t}}e first 1anguage
(relative to our acceptable indexing) that accounts for all the data it has reccived.
d. Let E be the set of even numbers.

least index for rng(s), if rg(e) = E,
olo) = 1, otherwise.

@ is partial. . ' '
e. ¥{6)1. Although v is the empty partial function, it counts as a learning function.

Exercises

1.34A Let Lbeanonempty language, and let tbeatext for L. Let f be the learning
function of part a of example 1.3.4B.

a. Show that LeRE,,, if and only if for all but finitely many neN, mg(t,) =
g (T,,.) S ,

b. Show that L& REg, if and only if f(,) = f(f,4) for all but finitely many ne N.
¢. Suppose that there is ne N such that for infinitely many me N, f(f,) = f(%,). Show
that Wfﬁn) = L.
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: *1.34B A text t is called ascending if t, <t,,, for all neN; ¢t is called strictly
| gscending if t, <ty forallneN,

a. Let L'be a finite Janguage of at least two members. How many ascending texts are
there for L.?
b. Let L be an infinite language. How many strictly ascending texts are there for L?

These kinds of texts are treated again in section 5.5.1,

1.4 Idenmtification: Criterion of Success

Languages, hypotheses, environments, and learners are the dramatis per-
sonage of learming theory. In section 1.3 we presented their construal within
the identification paradigm. We now turn to the associated criterion of
successful learning. Within the current paradigm successful learning is said
to result in “identification;” its definition proceeds in stages.

1.4.1 Identifying Texts
DermrrioN 1.41A  Let ged and te J be given.

i. @ 1s said to be defined on t just in case @(f,)] for allne N.
ii. LetieN. ¢ is said to converge on t to i just in case (a) @ is defined on ¢ and
(b) for all but finitely many ne N, ¢(t,) = i.

" 1l @ issaid to identify t just in case thereis i e N such that (a) ¢ converges on

ttoiand (b) rng(t) =W,

Clause ii of the definition may also be put this way: ¢ converges on ¢ to i just
in case @ is defined on ¢, and there is ne N such that ¢{t,)) = i for allm > n.
The intuition behind definition 1.4.1A is as follows. A text ¢t is fed to a

learner [ one number at a time. With each new input I is faced with a new

finite sequence of numbers. { is defined on ¢ if | offers hypotheses on all of
these finite sequences. If [ is undefined somewhere in ¢, then I is “stuck” at
that point, lost in endless thought about the current evidence, unable to
accept more data. | converges on ¢ to an index i just in case [ does not get
stuck in £, and after some finite number of inputs [ conjectures i thereafter.
To identify ¢, ! must converge to an index for rg(t).

Let pe 4 identify .. Note that definition 1.4.1A places no finite
bound on the number of times that ¢ “changes its mind” on 1. In other

words, the set {ne N lo(t,) # @(t,+1)} may be any finite size; it may not,
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however, be infinite, Similarly the smallest n, e N such that W,,,(;no, = rng(t)
may be any finite number. Tt is also permitted that for some n, W, =
rog(f), but W ) # rg{r). In other words, ¢ may abandon correct conjec-
tures, although ¢ must eventually stick with some correct conjecture.

Example 1.4.1A

a Letibethetext2,4,6,6,6 6, .... Let f €% be as described in part a of exal_mple
1.3.4B. OnT,, f conjectures the least index for &5; on'ty, f conjectures the least index
for {2}; onT,, f conjectures the least index for {2,4}; ont, forn >3, f conjectures the
least index for {2,4,6}. Thus f converges on ¢ to this latter index. Since rng(t) =
{2,4,6}, f identifies £. o
b.Lettbethetext0,1,2,3,4,5,.... Let f and g be as described in parts a and b of
example 1.3.4B, fis defined on ¢ but does not converge on t, g converges on ¢, and
g identifies ¢ if and only if W; = N. o
c.Lettbethetext2,2,2,3,3,3,4,4,4,5,5,5,.... Let pe # beas described in partdof
example 1.3.4B, ¢ is defined on 7, for n < 3; it is undefined thereafter. ¢ is th.us not
defined on t.

Exercise

14.1A Lettbethetext0,1,2,3,4,5,.... Let h be as described in part ¢ of example
1.3.4B. Does h identify ? :

1.42 Tdeatitying Languages :

Children are able to learn their language on the basis of many orderings of
its sentences. Since definition 1.4.1A pertains to individual texts it does not
represent this feature of language acquisition. The next definition remedies
this defect.

DerinimionN 1.42A  Let o € # and Le RE be given. ¢ is said to identify L
just in case @ identifies every text for L.

As a special case of the definition every learning function identifies the
empty language, for which there are no texts.

Let o e % identify LeRE, and let s and ¢ be different texts for L. It is
consistent with definition 1.4.2A that ¢ converge on s and ¢ to different
indexes for L. Likewise ¢ might require more inputs from s than from ¢
before emitting an index for L.
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© Example 1.4.2A

a.Let f € % be as described in part a of example 1.3.4B. Let I, = {2,4, 6}. Given any
text ¢ for L, there is some n, € N such that L = rng(z,,) for all m > n,,. Hence, for all

. = g, f{E) = ftne) and Wi , = rng(t). Hence f identifies any such . Hence f

identifies L. _ _
b. Let g€ % be as described in part b of example 1.3.4B. g identifies a language L if
and only if 3 is an index for L.

¢ Let g be an index for L = {0, 1}. Let he 4 be defined as follows: for all 0 s SEQ

iy, if o does not end in 1,
hio) = ,
lh{s), otherwise.

h identifies every text for L in which 1 occurs only finitely often; no other texts are
identified. & does not identify L.

1.4.3 Identifying Collections of Langunages

Children are able to learn any arbitrarily selected language drawn from a
large class; that is, their acquisition mechanism is not prewired for just a
single language. Definiton 1.4.2A does not reflect this fact. We are thus led
to extend the notion of identification to collections of languages.

Deriarion 1.4.3A  Let ¢ € % be given, and let % < RE be a collection of
languages. ¢ is said to identify & just in case ¢ identifies every Le . & is
said to be identifiable just in case some ¢ ¢ % identifies .%.

Welet &, %', ..., represent collections of languages. As a special case of the
definition, the empty collection of languages is identifiable.

Every singleton collection {L} of languages is trivially identifiabie. To see
this, let 7, be an index for L, and define f e & as follows. For all 6 eSEQ,
f(a}) = ny. Then f identifies L, and hence f identifies {L} (compare part b of
example 1.4.2A). In contrast, questions about the identifiability of collec-
tions of more than one language are often nontrivial, for many such
questions receive negative answers (as will be seen in chapter 2). Such is the
consequence of requiring a singie learning function to determine which of
several languages is inscribed in a given text,

The foregoing example also serves to highlight the liberal attitude that we
have adopted about learning. The constant function f defined above iden-
tifies W, but exhibits not the slightest “intelligence” thereby (like the man
who announces an imminent earthquake every morning). Within the
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identification paradigm it may thus be scen that learning presupposes
neither rationality nor warranted belief but merely stable and true conjec-
tures in the sense provided by the last three definitions. Does this liberality
render identification irrelevant to human learning? The answer depends on
both the domain in question, and the specific criterion of rationality to hand.
To take a pertinent example, normal linguistic development seems not to
culminate in warranted belief in any interesting sense, since natural lan-
guages exhibit a variety of syntactic regularities that are profoundly under-

determined by the linguistic evidence available to the child (see Chomsky-

1980, 1980a, for discussion). Indeed, one might extend this argument (as
does Chomsky 1980) to every nontrivial example of human learning, that s,
involving a rich set of deductively interconnected beliefs to be discovered by
{and not simply told to) the learner. In any such case of inductive inference,
fiypothesis selection is subject to drastic nnderdetermination by available
data, and thus selected hypotheses, however true, have little warrant. We
admit, however, that all of this is controversial (for an opposing point of
view, see Putnam 1980), and even the notion of belief in these confexts
stands in need of clarification (see section 3.2.4). In any case we shall soon
consider paradigms that incorporate rationality requirements in one or
another sense (see in particular sections 4.3.3, 4.3.4, 4.5.1, and 4.6.1).

To return to the identification paradigm, the following propositions
provide examples of identifiable collections of languages.

Prorosition 1.4.3A  RE,,, is identifiable.

Proof Let fe4 be the function defined in part a of example 1.3.4B. By
consulting part a of example 1.4.2A, it is easy to see that f identifies every
finite language.

Prorpostrion 1.43B  Let & = {N — {x}|xeN}. Then & is identifiable.

Proof We define ge % which identifies & as follows. Given any ¢ e SEQ,
let x, be the least xe N such that x ¢ rng(s). Now define g(o) = the least
index for N — {x,}. It is clear that g identifies every Le &, for given xge N
and any text t for N — {x,}, there is an #n such that rng(t,) 2 {0,1,...,
xo — 1}. Then for all m > n, g(£,) = the least index for N — {xo}. D

Prorosition 1.4.3C  RE,,, is identifiable,

Proof The key property of RE,, is this. Suppose that L and L' are
members of RE,,, and that L # L'. Then there are x, y, ¥ € N such that
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(xyvel, {x,y>el’ andy # ). Thus,if tis a text for L, there isan ne N
such that by looking at f,, we know that ¢ is not a text for L".
. Now we define h e # which identifies RE_,, as follows. For all 0 e SEQ, let

{least i such that W,eRE,,,, and rng(c) = W, if such an i exists,
G’ -
0, otherwise.

* Informally, h guesses the first language in RE_, that is consistent with ¢.
By our preceding remarks, given a text ¢ for LeRE,,, h will eventually
conjecture the least index for L having verified that ¢ is not a text for any
L’ with a smaller index. g

Exercises

143A Letted and total fe & be given.

a. Show that if f converges on ¢, then { f(7,)|ne N} is finite. Show that the converse
is false.

b. Show that if [ identifies t, then W, , = mg(t} for all but finitely many ne N. Show
that the converse is false,

143B Let & = {N}U{E|E is a finite set of even numbers}. Specify a learning
function that identifies .%. )

~1.43C Prove: Every finite collection of languages is identifiable. (Hint: Keep in
mind that a finite collection of languages is not the same thing as a collection of
finite languages.)

143D Let LeRE be given. Specily ¢ € # that identifies {L.U D|D finite}.

143E Let {8;/ic N} be any infinite collection of nonempty, mutually disjoint
mlfrnbers of RE,,. Let & = {N — §,|ie N}. Specifiy a learning function that iden-
tifies &,

L43F Given &, #' < RE, let & x #"be {L x L'|Le ¥ and L'e £'}. Prove: If
£, % < RE are each identifiable, then % x %" is identifiable,

= 1.4.3G

a. Prove: & < RE is identifiable if and only if some total f €% identifies %.

b. Let te7 and @ e F be given. We say that ¢ almost identifies t just in case there
exists an i€ N such that (a) W, = rng(f) and (b) ¢(%,) = i for all but finitely many
neN.(Thus ¢ can almost identify ¢t without being defined on t.) ¢ almost identifies
&£ < RE just in case ¢ almost identifies every text for every language in %, % is said
to be almost identifiable just in case some ¢ € & almost identifies &, Prove: ¥ < RE
is almost identifiable if and only if % is identifiable.
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—143H ¢ issaid to P percent identify & < RE just in case for every Le % and
every text t for L, ¢ is defined on ¢, and thereis i € N such that (a) W; = Land (b} there
is ne N such that for all m > n, @(f) = i for P percent of {jlm < j<m + 99}.
# < RE is said to be P percent identifiable just in case some ge# P percent
identifies #. Prove

ﬁlo\q\r)

a. if P > 50, then % < RE is P percent identifiable if and only if % is identifable.
*b. if P < 50, then there is % = RE such that & is P percent identifiable but & is
not identifiable.

— 1431 e issaid to identify & = RE laconically just in case for every Le & and
every text ¢ for I, there is ne N such that (a) W, , = Land (b) for all m > n, (Z,)1.
Prove; & < RE is identifiable if and only if # is identifiable laconically.

1.4.3J The property of RE,, used in the proof of proposition 1.43C is that if L,
L'eRE,,, I, # I/, and tis a text for L, then there is an ne N such that 7, is enough to
determine that ¢ is not a text for I'. Show that there are identifiable infinite
collections of languages without this property.

=— 143K Let &% be given. We define () to be {Le RE|gp identifies L}.

a. Let e # be such that for all o0& SEQ, (o) = the least nerng(s). Characterize

L ().
b. Show by example that for g, e F, L (o) = £ () does not imply ¢ = i

1.5 Identification as a Limiting Process

1.51 Epistemology of Convergence

Let pc % identify te 7, and let ne N be given. We say that ¢ begins to
converge on t at moment n just in case » is the least integer such that (1}
W,
defined in part.a of example 1.3.4B, and let ¢ be a text for a finite language.
Then { identifies t. What information about t is required in order to
determine the moment at which f begins to converge on t? It is easy to see
that no finite initial segment 7, of ¢ provides sufficient information to
guarantee that f’s conjectures on ¢ have stabilized once and for all. Simply
no such t, excludes the possibility that t,, ,¢rng(t,), in which case
F(tye11) # Sf(5,). Thus, although f in fact begins to converge on t at some
definite moment n, no finite examination of ¢ provides indefeasible grounds
for determining »n. (Compare the last paragraph of section 1.3.3.)

More generally, identification is said to be a “limiting process” in the
sense that it concerns the behavior of a learning function on an infinite

@y = 1ng(t) and (2) for all m > n, @(t,) = o(f,). Now let feF be as
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subset of its domain. For this reason Gold (1967) refers to identification as
“identification in the limit.” Because of the limiting nature of identification,
the hehavior of a given learning function ¢ on a given text ¢ cannot in
general be predicted from ¢’s behavior on any finite portion of z. The
underdetermination at issue here does not arise from the disadvantages
connected with the “external” observation of a learning function at work.
To make this clear, the next subsection discusses learning functions that
announce their own convergence and may thus be considered to observe
their own operation.

Exercise

1.51A Let % < RE be identifiable, let {¢°,...,a™} be a finite subset of SEQ, and
let {ig,...,i,} be a finite subset of N. Show that there is pe.# such that (a) ¢
identifies & and (b) p(c®) = iy, ..., @(6™) = i,.

*1.5.2 Self-Monitoring Learning Functions

DerFmaTioN 1.5.2A (after Freivald and Wichagen 1979) Let e, be an index
for the empty set. A function pe# is called self-monitoring just in case
for all texts ¢, if ¢ identifies ¢, then (a) there exists a unique ne N such that

@(2,) = ey, and (b) for i > n, p(£) = @(£,41).

Intuitively, a learner [ is self-monitoring just in case it signals its own

- successful convergence, where the (otherwise useless) index ¢, serves as the

signal. Note that once [ announces e,. I's next conjecture is definitive for ¢,
I'might be pictured as examining its own conjectures prior to emitting them.
If and when [ realizes that it has successfully determined the contents of ¢, [
signals this fact by announcing e, on the current input, reverting thercafter
to the correct hypothesis. The following proposition is suggested by our

_ earlier remarks.

ProrosiTion 1.5.2A  No seli-monitoring learning function identifies RE;;,.

Proof Let pe% be self-monitoring, and let ¢ be any text for some
LeRE,,. Then there is 'ne N such that o(f} = e,, and for all m > n,
@(t, 1) = 9(3,,). Let x, be a fixed integer such that x, ¢ L. Let t’ be the text
such that{a)t),, =, and (b)for all m > n,t,, = x,. Since p(t,) = (&) =




24 Identification

e,, we must have @(#.) = @(t,.,) = ¢(t,41) for all m = n. But ¢(f,,,) is an
index for L, whereas ¢ is a text for LU {x,}. Hence ¢ does not identify
LU {x,}, and so ¢ does not identify REg,. 0

Proposition 1.5.2A shows that identifiability does not entail identifi-
ability by sclf-monitoring learning function, Informally, a learner may iden-
tify a text without it being possible for her to ever know that she has done so.

Exercises

- 1.5.2A Let L, L' eRE be such that L. = L'. Show that no self-monitoring learning
function identifies {L,L'}.

152B Let # be the collection of languages of Proposition 1.4.3B. Show that no
self-monitoring learning function identifies %.

'I.S.ZC Call a collection % of languages easily distinguishable just in case for all
L % there exists a finite subset § of Lsuch thatforall L' #,if L' £ L,then § & L.

a. Specify an identiftable collection of languages that is not easily distinguishable.

b. Prove: Let % = RE be given. Then some self-monitoring ¢ € & identifies ¥ ifand.

only if 9 is easily distingnishable.

152D e issaid to be a 1-learner just in case for all te 7 there exists no more
than one me N such that (7)) # @(T,.4,) That is, a 1-learner is limited to no more
than one “mind change” per text.

a. Prove: If & = RE is identifiable by a self-monitoring learning function, then % is
identifiable by a 1-learner.
b. Show that the converse to part a is false.

152E LetieN.gpe#F issaidto be an i-learner justin case for all texts ¢ there exist
no more than i numbers m such that ¢(f,,} # @(f,..) That is, an i-learner is limited
to no more than i “mind changes” per text.

a. For je N define &, = {{0}, {0,1}, {0,1,2},..., {0, 1,2,...,/}}. Prove: For afl fe N,
%, is identifiable by an i-learner if and only if i > j. (Hint: Suppose that ¢ € # 1s an
i-learner and thati < j. Consider texts of the form 0,0,...,0, L, 1,..., L, ..., i/ - o /s
J» --.. What happens as the repetitions getdonger and longer?)

b. For ie N, let F; be the class of i-learners. Let F = | ), F;. Show that no ¢&F

identifies REy,,. Show that no ¢ € F identifies {N — {x}|xeN}.

1.5.2F Letebean indexfor ¢F. ¢ € # is said to be a one-shot learner just in case for
every text ¢ the cardinality of {¢(£,)|@(E,) # €+ < 1. Let # = RE be given. Show
that some one-shot learner identifies % if and only if some self-monitoring learning
function identifies %,

2 Central Theorems on Identification

© wWithin the paradigm of identification the learnability of a collection of
" languages  amounts to its identifiability. Propositions 1.4.3A through

1,4.3C provide examples of learnable collections. In this chapter we give
examples of unlearnable collections,

2.1 Locking Sequences

Many of the theorems in this book rest on the next result. To state and
prove it, we introduce some more notation. For o, € SEQ, let o * 7 be the
result of concatenating ¢ onto the end of o—thus (2,8,2)7(4,1,9,3) =
(2,8,2,4,1,9,3). Next, for o, 1e SEQ we write “o = 7,” if ¢ is an initial
segment of 1, and “o = 1,” if ¢ is a proper initial segment of r—thus
(8,8,5) = (8,8.5,3,9.

Finally, let finite sequences 6°, o1, 6%, .. ., be given such that (1) for every i,
jeNeither o' = a/ora’ = a'and (2}for every ne N, thereis m e N such that
1h(6™) = n. Then there is a unique text ¢ such that for all e N, 0" = f1y(om;
this text is denoted: | }, o™

ProprosiTioN 2.1A (Blum and Blum 1975) Let p e # identify Le RE. Then
there is 0 € SEQ such that (i) rng(e) = L. (i) W, = L, and (iii} for ali
e SEQ, if rng{t) = L, then pls * 7) = @(o).

Proof (We follow Blum and Blum.} Assume that the proposition is false;
that is, that there is no o € SEQ satisfying (i}, (ii), and (iii}. This implies the
following condition:

(*) For every x e SEQ such that rg(y) = L and W, = L, there is
some 1 & SEQ such that rng(t) < L and ¢{x " 1) # o(x)-

We show that (¥) implies the existence of a text t for L which ¢ does not
identify, contrary to the hypothesis that ¢ identifies L. Let s = 54, 54,85, ..,
be a text for L. We construct tinstages 0,1, 2,..., ateach stage n specifying a
sequence o” which is in £.

Stage 0 Let e SEQ be such that rng(¢?) = L and W, 0, = L; ¢° must
exist since ¢ identifies L.

Stagen + 1 Given ", there are two cases. H W, # L, let 6" = g" "5,
Otherwise, by (¥}, let t € SEQ be such that rng(z) & Land ¢(e" 1) # ¢(o").

Let o™l = g" Az s,




26 Identification

Weobserve that o’ < ¢ forallie N. Let t = |}, 6" tis a text for Lsince
s, is added to ¢ at stage r + 1 and no nonmembers of L are ever added to ¢.

Finally, ¢ does not converge on ¢ to an index for L since for every n either

Woiany # Lo @(6" "~ T) # @(¢"). 11

Intuitively, if ¢ € & identifies Le RE, then proposition 2.1.A guarantees
the existence of a finite sequence o that “locks” @ onto a conjecture for Lin
the following sense: no presentation from L can dislodge ¢ from ¢(o). This
suggests the following definiton.

Dermimion 2.1A  Let LeRE, e &, and 6 eSEQ be given. ¢ is called a
. locking sequence for L and ¢ just in case (i) rng(o) € L, (ii) W,y = L, and (iii)
for all e SEQ, if rng{r) < L, then ¢ls * 1) = p(0).

Thus proposition 2.1A can be put this way: if @ € # identifies Le RE, then
there is a locking sequence for ¢ and L.
As a corollary to the proof of proposition 2.1A, we have the following.

CoroLLaRY 2.1A  Let pe# identify LeRE. Let 0eSEQ be such that
rng{c) = L. Then there is e SEQ such that ¢ » tis a locking sequence for ¢
and L.

Proof Just as in the proof of proposition 2.1A, if the corollary fails, we
could construct a text 1 for L which ¢ fails to identify. Central to this
construction is the following condition, which is analogous to (¥}, that holds
if the corollary fails;

(**} Forevery x = o, y € SEQ such that rng(x) < Land W, = L, thereis
some 7€ SEQ such that rng(z) = L and ¢(x * t)} # ¢(x).

The construction of t proceeds exactly as in the proof of proposition 2.14,
except that at stage 0 we also require ¢ 2 6. 0

Note that proposition 2.1A does not characterize ¢’s behavior on ele-
ments drawn from L. In particular, if 7« SEQ is such that rng(z) & LeRE,
then even if o € SEQ is a locking sequence for o € & and L, (o * 7) may well
differ from (o).
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Example 2.I1A

a. Let f € & be as described in part a of example 1.3.4B. Let L = {2,4, 6}. Then one
locking sequence for f and Lis (2, 4, 6); another s (6, 4, 2, 6). Indeed, it is easy to see
that for all e SEQ, o is a locking sequence for f and rag(a).

b. Let ge# be as described in the proof of proposition 14.3B. Let L=
{0,2,3,4,...}. Then (22,8,4,0) is a locking sequence for g and L. Indeed, any
o € SEQ such that 0 erng(o) and 1 ¢rnglo) is a locking sequence for g and L.

Exercises

21A Letobea lockmg sequence for p % and LeRE. Let 1 SEQ be such that
mmg(t) = L. Show that ¢ * tis alocking sequence for ¢ and L. Distinguish this result
ffom corollary 2.1A.

2.1B Refute the converse to proposition 2.1A. In other words, exhibit pe &,
LeRE, and ¢ ¢ SEQ such that ¢ is a locking sequence for ¢ and L, but ¢ does not
identify L.

2IC Let ¢ e.% identify Le RE. Let ¢ be a text for L. ¢ is called a locking text for ¢
and L just in case there exists ne N such that ¢, is a locking sequence for ¢ and L.
Provide a counterexample to the following conjecture: If ¢ € & identifies Le RE,
then every text for L is a locking text for ¢ and L.

2.2 Some Unidentifiable Collections of Languages

Proposition 2.1A may now be used to show that certain simple collections
of languages are unidentifiable.

ProrosiTiON 2.2A

1. (Gold 1967). RE;, U {N} is not identifiable.
ii. Let & = {N — {x}|x e N}. Then . U {N} is not identifiable.

Proof

i. Suppose for a contradiction that ¢ e # identifies RE;, U {N}, and let & be
a locking sequence for ¢ and N. Note that rng(e) e RE,,. Clearly thereis a
text ¢ for rng(o) such that ¢, = ¢. But then ¢ does not identify rng(c) since
¢ converges on £ to an index for N.

ii. Again, suppose that ¢ is a locking sequence for p e % and N, where ¢
identifies % U {N}. Choose x ¢ rng(o). Then, on any text ¢ for N — {x} such
that #,.,, = 6, @ converges to an index for N and not one for N — {x}. 0

Proposition 2.2A should be compared with propositions 1.4.3A and 1.4.3B.
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The following fact is evident and often very nseful.

Lemma 2.2A  Suppose that % < RE is not identifiable. Then no superset
of & is identifiable,

From lemma 2.2A and proposition 2.2A we have corollary 2.2A.
CoroLLARY 2.2A  RE is not identifiable.

Corollary 2.2A should be compared with proposition 1.4.3C.
Since the collections of languages invoked in proposition 2.2A consist
entirely of recursive languages, we also have corollary 2.2B.

CororrLary 2.2B  RE,, is not identifiable,

Exercises

22A (Gold 1967)  Let L be an arbitrary infinite language. Show that REy,, U{L} is
not identifiable.

22B Let & = RE be such that for every ceSEQ there is Le.% such that
rng{o) < L and L # N. Show that % U {N} is not identifiable. (This abstracts the
content of proposition 2.2A)

2.2C

a. Leti,e N be given. Define & = {N — D|D = N has exactly i, members}. Show
that . is identifiable.

b. Letiy, jo e N besuch thatiy, # j,. Define % = {N - D|D < N haseither exactly i,
members or exactly j, members}. Prove that & is not identifiable.

22D  Exhibit ¢, € & such that #{p) U # () is notidentifiable. (For notation, see
exercise 1.4.3K.) This shows that the identifiable subsets of RE are not closed under
union.

2.2E

a. Let & < RE be an identifiable collection of infinite languages. Show that there is
some infinite L¢ % such that % U {L} is identifiable. (Hins: First use proposition
2.1A to argue that if Lye %, then there is an x,e Lg such that if L = L, — {x,},
then L is not a member of &, Next define a function i e & that identifies & U {L}
by modifying the output of a function ¢ e & ‘that identifies 2.)

b. % < RE is called saturated just in case % is identifiable and no proper superset
of & is identiftable, Prove: % < RE is saturated if and only if % = RE,.

*22K & < F is said to team identify % = RE just in case for every Le % there is
@ e.% such that ¢ identifies L. Show that no finite subset of # team identifies RE.
(See also exercise 6.2.11)
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2.3 A Comprehensive, Identifiable Collection of Languages

The collections of languages exhibited in proposition 2.2A are so simple as
to encourage the belief that only impoverished subsets of RE are identifi-
able. The next proposition shows this belief to be mistaken. To state it, a
definition is required.

DeriNiTioN 23A Let L, I/ € RE be such that (L — LYUJ(L' — L) is finite.
Then L and L' are said to be finite variants (of each other).

That is, finite variants differ by only finitely many members. Thus
EU{3,5,7}and E — {2,4,6,8} are finite variants, where E is the set of even
numbers. Note that any pair of finite languages are finite variants..

* PROPOSITION 2.3A (Wiehagen 1978) There is % < RE such that (i) for

every Le RE there is I'e & such that L and L' are finite variants and (i) &
is identifiable.

Proposition 2.3A asserts the existence of an identifiable collection that is
“nearly ali” of RE. To prove the proposition, two important lemmata are
required.

Lemma 2.3A (Recursion Theorem) Let total f € %7 be given. Then there
exists ne N such that @, = ¢, (and so Wi = W)

Proof See Rogers (1967, sec. 11.2, theorem I). o
DermvTion 2.3B

1. LeREissaidtobe self-describing just in case the smallest x € Lis such that
L=W,. B
1. The collection {Le RE|L is self-describing} is denoted: RE,,.

Lemma 2.3B  For every Le RE there is I/ e RE,, such that L and L’ are
finite variants.

Proof Fix LeRE. Define a recursive function f by the condition that for
allre N, Wy, = (LU {n})N{n,n + L,n + 2,...}. That such an f exists is a
consequence of the definition of acceptable indexing definition 1.21A(ii). To
see this, if L = W, , there is j, & N such that for all n, xe N

@, (x), ifx>n,
@; ({r,xd) =< 1, ifx=mn,
1, if x < n
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Now by definition 1.2.1A(i) there is a function g such that @y, (%) =
@;,({n,xD). By setting f(n) = g({jo,n>) for all ne N, Wy has the desired
properties.

Now by the recursion theorem there is ne N such that W, = Wy, =
(LU )N {mn+ 1,n+ 2,...}. Clearly W, is self-describing ‘de is a
finite variant of L. D /

Proof of Proposition 2.3A By lemma 2.3B it suffices to show that RE,, is
identifiable. But this is trivial. Define f € # such that for all 5 e SEQ, f(0)
is the smallest number in rng(s). Then f identifies RE ;. 01

Exercises

23A  Show that for no Le RE does RE,, include every finite variant of L.

23B  Specify & = REsuch that (a)forall L, L' € £, if L # L', then Land I’ are not
finite variants, and (b) % is not identifiable.

2.4 Identifiabie Collections Characterized

The next proposition provides a necessary and sufficient condition for the
identifiability of a collection of languages.

Prorosimion 2.4A (Angluin 1980) % < RE is identifiable if and only if for
all Le & there is a finite subset D of Lsuch thatfor all L’e &,if D < L', then
L'¢ L.

Proof First suppose that % < RE is identifiable, and let ¢ € & witness
this. By proposition 2.1A, for each Le % choose a locking sequence o for ¢
and L. Since for each Le &, rng(o;) is a finite subset of L, it suffices to prove
that for all L' € &, if rng(o;) < L', then L' ¢ L. Suppose otherwise for some
L, L ¢ %, andlett be a text for L' such that #,,, = 0. Then ¢ converges on
tto L # L' = rng(f). Thus ¢ fails to identify L', contradicting our choice
of ¢.

For the other direction, suppose that for every Le # there is a finite
D, < Lsuch that D, = L' and L'e % implies L' ¢ L. We define fe 5 as
follows. For all 4 e SEQ,
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least i such that { is an index for some
flo) =< Le.# such that Dy < mg{o) < L, if such an i exists,
0, otherwise.

To see that f identifies %, fix Le %, and let ¢ be a text for L. Let i be the least
index for L. Then there is an ne N such that

L mg(z,) = D,
2.ifj < i, Wie &, and L ¢ W, then eng(t,) ¢ Wi

We claim that f(t,)) = i for all m = n. By 1 and the fact that ¢ is a text for
L, f will conjecture i on T,, unless there is j < i such that W,=L'e¥ and
Dy, = mg(t,) = L. If rg(t,) = D,., then L = D,. so by the condition on
Dy, L ¢ L'. But then by 2, rng(t,)) ¢ L'. Thus on t,,, f will not conjecture
jforanyj<ig

Exercises

2.4A  Specify a collection of finite sets meeting the conditions of proposition 2.4A
with respect to .

a. REq.
b {N — {x}|xe N}

2.4B

a. Use proposition 2.4A to provide alternati fi iti
T bror p ve proofs of propositions 1.4.3A, 1.4.3B,

b. Use proposition 2.4A to provide an alternative proof of proposition 2.24A.

2.5 ldentifiability of Single-Valued Languages

Every language may be paired with a structurally identical single-valued
language in the following way.

Dermvirion 254 We let S be the function from RE to RE defined as

follows. For all Le RE, S(L) = {{x,0>|xe L}. For & < RE, we define § (<}
to be {S(L)|Le #}.
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Examplé 2.5A

a. Let Lbe the finite language {2,4, 6}. Then S(L) is the finite, single-valued language
42,05, {4,05,<6,05}. )

b. S{N)is the set of numbers <x, y> such that y = 0. Note that S(N) is total, whereas
for all other LeRE, §(L) is not total.

ProrosITION 2.5A % < RE is identifiable if and only if S(#) is
identifiable.

Proof Given o6c¢SEQ, say o = (xq,...,%,), define S{a) = ({x0,0>,...,
{x,,0%). Similarly, if ¢ = ({Xg, Yo -+ . {Xp, Yu)» define P(6) = (X -» X,
Let g, he F be such that for all ie N, W, = S(W) and W, = P(W).

Now suppose that # < REis identified by p € #. Let i € # be such that
for all s e SEQ,

¥(o) = g(e(P(o)))-

It is clear that  identifies S§(Z).
Similarly, if ¥ € & identifies S(#), let ¢ € # be such that for all 0 € SEQ,

@(a) = h(¥(S(0))).
Then ¢ identifies £. 0

The technique used in the foregoing proofis important. It might be called
“internal simulation.” For instance, in the first part, i works by simulating
the action of ¢ on a text constructed from the text given to ¢.

CoroLLARY 2.5A The collection of all single-valued languages is not
identifiable.

Corollary 2.5A should be compared with proposition 1.4.3C.

Proposition 2.5A (along with the method of its proof) shows that the
collection of single-valued languages presents nothing new from the point
of view of identification. In contrast, proposition 1.4.3C shows that the
collection of total, single-valued languages has learning-theoretic prop-
erties that distinguish it from RE. For this reason, when considering
single-valued languages, we shall generally restrict attention to RE,,, the
collection of total, single-valued r.e. sets.

What makes RE,,, identifiable? Recali from section 1.3.3 that texts do
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not, in general, allow the learner to infer directly the nonoccurrence of
sentences. In contrast, if ¢ is a text for an unspecified language in RE_,, then
for every xe N there is an ne N such that examination of 1, is sufficient to
determine whether or not x e rng(t). To see this, suppose that x = ¢i,j>.
Then some number y occursin ¢ such that y = {3, k) (since rag(t) is total). As
soon as {i, k) appears in t, the question “<i,j> e ng()?” can be answered,
for <i,j>erng(f) just in case j = k (since rng(t) is single-valued). If j # k,
the presence of (i, k> in t may be thought of as “indirect negative evidence”
for {i,j in ¢, in the sense discussed by Pinker {1984). In sum, texts for total,
single-valued languages offer information about both the presence and the
absence of sentences. The learning function h of proposition 1.4.3C exploits
this special property of RE,,,.

Exercises

*2.5A. Is there a price for self-knowledge? We restrict attention to recursive
learning functions. Call ¢ e #*° Socratic just in case ¢ identifies the language
L, = {{x, y>|p{x) = y}. (Since g e F™, L,eRE)

a. Specify a collection & of single-valued languages such that some pe T

identifies ., but no @ € #7*identifies % U {L,}. (Hint: See exercise 2.2F.) Conclude

that (recursive) Socratic learning functions arc barred from identifying certain

identifiable collections.

b. Prove: Let & = RE,,, be given. Then some ¢ € #™° identifies & if and only if

some Socratic ¢ € ™ identifies %. (Hint: Use the recursion theorem, lemma 2.34)
Philosophize about all this.




3 Learning Theory and Natural Language

We interrupt the formal development of learning theory in order to moti-
vate the technicalities that follow. Specifically we attempt to locate learning-
theoretic considerations in the context of theories of the human language
faculty. Toward this end section 3.1 presents the perspective that animates
this book; it derives from Chomsky (1975) and Wexler and Culicover {1980,
ch. 2). Section 3.2 examines several issues that complicate the use of learning
theory in linguistics.

3.1 Comparative Grammar

Comparative grammar is the attempt to characterize the class of (biologi-
cally possible) natural languages through formal specification of their
grammars; a theory of comparative grammar is such a specification of some
definite collection of languages. Contemporary theories of comparative
grammar begin with Chomsky (e.g., 1957, 1965), but there are several
different proposals currently under investigation.

Theories of comparative grammar stand in an intimate relation to
theories of linguistic development. If anything is certain about natural
language, it is this: children can master any natural language in a few years
time on the basis of rather casual and unsystematic exposure to it. This
fundamental property of natural language can be formulated as a necessary
condition on theories of comparative grammar: such a theory is true only if
it embraces a collection of languages that is learnable by children.

For this necessary condition to be useful, however, it must be possible to
determine whether given collections of languages are learnable by children.
How can this information be acquired? Direct experimental approaches are
ruled out for obvious reasons. Investigation of existing natural languages is
indispensable, since such languages have already been shown to be learn-
able by children; as revealed by recent studies, much knowledge can be
gained by examining even a modest number of languages. We might hope
for additional information about learnable languages from the study of
children acquiring a first language. Indeed, many relevant findings have
emerged from child language research. For example, the child’s linguistic
environment appears to be devoid of explicit information about the non-
sentences of her language (see section 1.3.3). As another example, the rules
in a child’s immature grammar are not simply a subset of the rules of the
adult grammar but appear instead to incorporate distinctive rules that will
be abandoned later.
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However, such findings do not directly condition theories of comparative
grammar. They do not by themselves reveal whether some particular class
of languages is accessible to children, nor whether some other particular
class lies beyond the limits of child learning. Learning theory may be
conceived as an attempt to provide the inferentiai link between the results of
acquisitional studies and theories of comparative grammar. It undertakes
to translate empirical findings about language acquisition into information
about the kinds of langnages accessible to young children. Such informa-
tion in turn can be used to evaluate theoriés of comparative grammar,

To fulfill its inferential role, learning theory provides precise construals
of concepts generaily left informal in studies of child language, notably the
four concepts of Section 1.1 as well as the criterion of successful acquisition
to which children are thought to conform. Each such specification con-
stitutes a distinctive learning paradigm, as discussed in Section 1.1, The
scientifically interesting paradigms are those that best represent the circum-
stances of actual linguistic development in children. The deductive conse-
quences of such paradigms yield information about the class of possible
natural ianguages. Such information in turn imposes constraints on
theories of comparative grammar. _

To illustrate, the identification paradigm represents languages as r.e. sets
and environments as texts; children are credited with the ability to identify
any text for any natural language. If normal linguistic development is
correctly construed as a species of identification, then proposition 2.2A
yields nonvacuous constraints on theories of comparative grammar; no
such theory, for example, could admit as natural some infinite and all finite
languages.

Unfortunately identification is far from adequate as a representation of
normal linguistic development. Children’s linguistic environments, for

example, are probably not arbitrary texts for the target language: on the one
hand, texts do not allow for the grammatical omissions and ungrammatical
intrusions that likely characterize real environments; on the other hand,
many texts constitute bizarre orderings of sentences, orderings that are
unlikely to participate in normat language acquisition. In addition the
identification paradigm provides no information about the special charac-
ter of the child’s learning function. To claim that this latter function is some
member of % is to say essentially nothing at all. Even the criterion of
successful learning is open to question because linguistic development does
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not always culminate in the perfecily accurate, perfectly stable grammar
envisioned in the definition of identification.

The defects in the identification paradigm can be remedied only inlight of
detailed information about children’s linguistic development. For the most
part, the needed information seems not to be currently available. (Ff)l:lSC—
guently we shall not propose a specific model of language acquisition.
Rather, the chapters that follow survey a variety of learning paradigms of
varying relevance to comparative grammar. The survey, it may be hoped,
will suggest questions about linguistic development whose answers can be
converted into useful constraints on theories of comparative grammar.

Our survey of learning paradigms occupies parts IT and 111 of this book.
Before turning to it, we discuss some potential difficulties associated with
the research program just described.

3.2 Learning Theory and Linguistic Development

3.2.1 How Many Grammars for the Young Child?

If ¢ € % identifies t€ 7, then @ is defined on ¢ (see definition 1.4.1A); thus
o(i,)| for all ne N, This feature of identification will be carried forward
through almost all of the paradigms to be studied in this book. Yet it is easy
to imagine that newborn infants do not form grammars in response to the
first sentence they hear (perhaps: “It’s a boy!™); similarly, bona fide gram-
mars might be lacking during early stages of linguistic production. Th-e
empirical interest of learning theory might seem to be compromised by this
possibility. . -

To respond to this problem, we may adopt a new convention concerning
indexes. According to the new convention all indexes are increased by 1,
leaving the number O without an associated grammar. Zero may then be
used to represeni any output that does not constitute a grammar. Then for
ne N, g(n) = 0 implies @(r)], as before. Plainly, % < RE is identifiable if
and only if % is identifiable under the new convention. The result is that
identification of a text ¢ need not be compromised by the failure to conjec-
ture a grammar at early stages of ¢,

In similar fashion it is possible to envision the following possibility.
Children may respond to linguistic input not with one grammar but with a
finite array of grammars, each associated with some (rational) subjective
probability. To represent this possibility, the numbers put out by learning
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functions can be interpreted not as r.e. indexes but as codes for such finite
arrays, since finite arrays of the sort envisioned are readily coded as single
natural numbers, On the other hand, we might simply choose as the child’s
“official” conjecture at a given moment the grammar assigned highest
subjective probability at that moment. ‘

Consider next children growing up in multilingual environments, Such
children simuitaneously master more than one language and hence convert
their current linguistic input into more than one, noncompeting gram-
matical hypothesis. To represent this situation, we must assume that inputs
from different languages are segregated by the child prior to grammatical
analysis (perhaps by superficial characteristics of the wave form or the
speaker). Linguistic development may then be conceived as the simulta-
neous application of the same learning function to texts for different
languages.

Clearly the general framework of learning theory can be adapted to a
wide variety of empirical demands of the kind just considered. Consequent-
ly in the sequel we shall not pause to refine our models in these directions;
specifically, we shall continue to treat conjectures straightforwardly as
{single) r.e. indexes.

322 Are the Child’s Conjectures a Function of Linguistic Input?

As discussed in section 1.3.4, learning functions are conceived as mappings
from finite linguistic corpora (represented as members of SEQ) into gram-
matical hypotheses. It is possible, however, that children’s linguistic conjec-
tures depend on more than their linguistic input; that is, the same finite
corpus might lead to different conjectures by the same child depending on
such nonlinguistic inputs as the physical affection afforded the child that
day or the amount of incident sunlight. Put another way, children may not
implement any function from finite linguistic corpora into grammatical
hypotheses; rather, the domain of the function that produces children’s
linguistic conjectures might include nonlinguistic elements.

This issue must not be confused with the problem of individual dif-
ferences. It is possible that different children implement distinct learning
functions, but the present question concerns the nature of a single child’s
function. We shall in fact proceed on the assumption that children are more
or less identically endowed with respect to first language acquisition.

The present issue is also independent of the possibility that the child’s
learning function undergoes maturational change. To see this, let YeF be
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considered the maturational successor to ¢ € %, and let ¥ begin its opera-
tion at the nth moment of childhood. Then the child may be thought of as
implementing the single function # € # such that for all 6 eSEQ,

_ Jolo),
o~ {o

@ is a function of linguistic input if @ and  are such functions, This schemna
may be refined in several ways, and any number of maturational changes
may be envisioned.

Finally, the problem of nonlinguistic inputs to the learning function is
not the same as the problem of utterance context. As noted in section 1.3.1,
any finite aspect of context may be built into the representation of a
sentence. What is at issue here, in contrast, are inpuis that play no evident
communicative role, such as the child’s diet or interaction with pets.

The possibility that the child’s grammatical hypotheses are a fonction of
more than just linguistic input can be accommaodated in a straightforward
way. Specifically, the interpretation of SEQ can be extended to allow both

if Ih(o} << m,
otherwise.

sentences and other kinds of inputs to figure in the finite sequences pre~

sented to learning functions. Such extension would require a compensatory
change in the definition of successful learning since convergence on a text ¢
to mg(f) would no longer be appropriate; rather, success would consist in
convergence to the linguistic subset of rg(t).

In practice, such amended definitions seem unmotivated since there is no
available information zbout the role of nonlinguistic inputs in children’s
grammatical hypotheses, if indeed there is any such role. As a consequence
learning theory has developed under the assumption (usually tacit} that the
only inputs worth worrying about are linguistic. We shall follow suit.

3.23 What Is a Natural Language?

Comparative grammar aims at an illuminating characterization of the class
of natural languages. But what independent characterization of this latter
class gives content to particular theories of comparative grammar? The
question may be put this way: What is a natural language, other than that
which is characterized by a true theory of comparative grammar?
Inevitably considerations of learnability enter into any “pretheoretical”
specification of the natural languages. Even if we revert to the partly
ostensive definition *“The natural langnages are English, Japanese, Russian,
and other languages like those,” the italicized expression must bear on the
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ease of language acquisition if the resulting concept is to have much interest
- for linguistics. The following formula thus suggests itself:

- A highly expressive linguistic system is nagural just in case it can be easily
acquired by normal human infants in the linguistic environments {ypically
- afforded the young.

The role of the qualification “highly expressive” in the foregoing formula is
discussed in section 7.1, so we do not consider the matter here. Rather, we
examine the remaining concepts, beginning with “normal human infant.”

What content can be given to the concept of a nomal infant that does not
render the preceding formula a tautology? Plainly it is no help to qualify a
child as “normal” just in case he or she is capable of acquiring natural
language (easily and in a typical environment). It is equally useless to
appeal to majority criteria such as: a language is natural just in case a
majority of the world’s actual children can acquire it (easily, etc.). The
reason is that the world’s actual children might all have accidental pro-
perties (e.g., the same subtle infection), rendering them inappropriate as
the intended standard. What was wanted were normal children, not the
possibly unlucky sample actually at hand.

It is tempting to here invoke neurological considerations by stipulating
that a child is normal just in case his or her brain meets certain neurophysi-
ological conditions laid down by some successful (and future) neurophysi-
ological theory. The difficulty with this suggestion is that the choice of such
neurological conditions must depend partly on information about the
normal linguistic capacities of the newborn, for a brain cannot be judged
normal if it is incapable of performing the tasks normally assigned to it. And
of course invocation of normal capacities leads back to our starting point.
Quite similar problems arise if we attempt to identify normal children with
those children implementing the “human” learning function (or a “normal”
learning function).

Consider next the concept “typical linguistic environment.” Majoritarian
construals of this idea are ruled out for reasons similar to before. Rather,
“typical” must be read as “normal” or “natural.” It is of course unhelpful to
stipulate that an environment is natural just in case it allows (normal)
children to acquire (easily} a natural language. Nor is it admissible to
characterize the natural languages as those acquirable {easily, etc.) in some
environment or other, for in that case the notion of natural language will
vary with our ability to imagine increasingly exotic environments (e.g.,
environments that modify the brain in “abnormal” ways). We leave it to the
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reader to formulate parallel concerns with respect to the concept of “easy
acquisition.”

None of this discussion is intended to suggest that comparative gramamar
suffers from unique conceptual problems foreign to other sciences. As in
other sciences, we must hope for gradual and simultaneous clarification of
all the concepts in play. Thus examination of central cases of natural
language will constrain our conjectures about the human learning function,
which can then be expected to sharpen questions about environments,
criteria of successful learning, and, eventually, natural language itsell. As in
other sciences a natural language will eventually be construed in the terms
offered by the most interesting linguistic theory. Within this perspective
learning theory may be understood as the study of the deductive constraints
that bind together the various concepts discussed earlier. These concepts
are thus in no worse shape than comparable concepts in other emerging
sciences. Our discussion is intended to show only that they are not in much
better shape either,

3.2.4 Idealization

Texts are infinitely long, and convergence takes forever. These features of
identification will be generalized to all the paradigms discussed in this
book. However, language acquisition is a finite affair, so learning theory (at
least as developed here) might seem from the outset to have littie bearing on
linguistic development and comparative grammar.

Two replies to this objection may be considered. First, although conver-
gence is an infinite process, the onset of convergence occurs only finitely far
into an identified text, What is termed “language acquisition” may be taken
to be the acquisition of a grammar that is accurate and stable in the face of
new inputs from the linguistic environment; such a state is reached at the
onset of convergence not at the end. Moreover, although it is true that
identification places no bound on the time to convergence, we shall later
consider paradigms that do begin to approximate the constraints on time
and space under which the acquisition of natural language actually takes
place. Further development of the theory in this direction may be possible
as more information about children becomes available.

This first reply notwithstanding, convergence involves grammatical sta-
bility over infinitely many inputs, and such ideal behavior may seem
removed from the reality of linguistic development. We therefore reply,
second, that learning theory is best interpreted as relevant to the design of a
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language acquisition system, not to the resources (either spatial or tem-
poral) made available to the system that implements that design. Analo-
go.usly, a computer implementing a standard multiplication algorithm is
limited to a finite class of calculations whereas the algorithm itself is
designed to determine products of arbitrary size. In this light, consider the
learning function ¢ of the three-year-old child. However mortal the child, @
is timeless and eternal, forever three years old in design. Various questions
can be raised about ¢, for example: What class of languages does @ identify?
If comparative grammar is cast as the study of the design of the human
language faculty—as abstracted from various features of its implementation
—then such guestions are central to linguistic theory.

Bvidently, the foregoing argument presupposes that a design-
implementation distinction can be motivated in the case of human cogni-
tive capacity. Now Kripke (1982), in an exegesis of Wittgenstein (1953), has
offered apparently persuasive arguments against the coherence of the predi-
cate “nervous system (or mind}. .. represents rule....” If the Iatter predicate
is indeed incoherent, then not much can be made of the program-hardware
distinction invoked above.

We decline the present opportunity to examine Kripke’s argument in
detail. The issue, after all, is quite general since it bears on all repre-
scntational theories in cognitive science, in the sense of Fodor (1976). We
note only that Kripke’s challenge must eventually be faced if cognitive
science, and learning theory in particular, are to rest on firm conceptual
foundations.

. Having done n6 miore than raise some of the conceptual and philosoph-
ical complexities surrounding the application of learning theory to the

study of natural language, we now return to formal development of the
theory itself,



