II IDENTIFICATION GENERALIZED

This part is devoted to a family of learning paradigms that results from
modifying the definitions proper to identification. Chapter 4 considers
alternative construals of “learner” that are narrower than the class % of
all number-theoretic functions. Chapter 5 concerns the environments in
which learning takes place. Chapter 6 examines various construals of
“stability” and “accuracy” in the context of alternative criteria of successful
learning. Functions that learn neither too much nor too little are the topic
of chapter 7.

The family of models introduced in this part may be designated
generalized identification paradigms.

4 Strategies -

4.1 Strategies as Sets of Learning Functions

e
To say that children implement a learning function is not to say much; a
vast array of possibilities remains. Greater informativeness in this regard
consists in locating human learners in proper subsets of %,

Derration 4.1A Subsets of # are called (learning) strategies.

Strategies can be understood as empirical hypotheses about the imitations
on learning imposed by human nature. As such, the narrower a strategy, the
more interesting it is as a hypothesis.

Strategies may also be conceived as alternative interpretations of the
‘concept learner (see section 1.1). We leave intact for now the interpretations
of language, environment, and hypothesis proper to the identification para-
digm; similarly identification (section 1.4) is the criterion of learning rele-
vant to the present chapter. Each strategy & thus constitutes a distinct
learning paradigm. The identification paradigm results when & = #.

DerFmmioN 4.1B Let & < & be given,

i. The class {.% < RE|some ¢ € identifies '} is denoted: [%].
ii. The class {% < RE,,,lsome ¢ € & identifies % } is denoted: [%7]

svir

Thus [#] is the family of all collections % of languages such that some
fearning function in the strategy & identifies %, [0o is just
[11 #(REy,), that is, the family of all collections % of total, single-valued
languages such that some learning function in the strategy & identifies %.

Example 4.1A

a. [#] is the family of all identifiable collections of languages. By proposition
22A0), RE;;, U{N} ¢[F 1. Thus RE¢[#]. Let & be any finite coilection of lan-
guages. By exercise 1.4.3C, e[#].

b. [#], Is the family of all identifiable collections of total, single-valued languages.
LF o = #(RE,,,) since RE, = {# 1., by proposition 1.4.3C and every subset of an
identifiable collection of fanguages is identifiable. Let h be as in the proof of
proposttion 1.4.3C. Then [#], = [{h}].

¢ Let fe# be as defined in part a of example 1.3.4B. Then [{ f}] = 2(RE,,,).

d. The strategy .# = {p e # ¢ is sel-monitoring} was discussed in section 1.5.2. By
proposition 1L52A, [.#] < [#].

46 Identification Generalized

In this chapter we consider the inclusion relations between [&7] and [%]
as & and & vary over learning strategies. Informally we say that &
restricts & justin case [N %] = [F[%] < [&], then & is said to

be restrictive. Similar terminology applies to [.%7],,,. One last notational .

convention will be helpful.

Dermmion 4.1C Let P be a property of learning functions. Then the set
{peF|Pis true of p} is denoted: F*,

Thus the set of recursive learning functions is denoted “# ¥ which we
will continue to write as “# "

Ali the strategies to be examined may be viewed as constraints of one
kind or another on the behavior of learning functions. Five kinds of
constraints are considered, corresponding to the five sections that follow.
Before turning to these constraints, we conclude this section with a general
fact about strategies.

ProposiTioN 4.1A Let & be a denumerable subset of #. Then [&¥] =
[F].

Proof For each ieN and each X a subset of N, define L,y =
{{i,xy|xeX}. Now if Q < N, define a collection of languages .%, by

n(fQ = {Li,NlieQ}U{Li,D”¢Q and D‘ﬁnitc}- .
Obviously for every @, ¥, .
Claim No @ e # identifies both %, and %, for ¢ # Q.

Proof of claim Suppose that ¢ identifies £, andie Q — Q. Then, since ¢
identifies %, ¢ identifies L, . Let o be a locking sequence for ¢ and L; .
Then there is a finite set D such that rng(s) < L; . But then ¢ can be
extended to a text ¢ for L; ;. Since L; p,is a subset of L, , ¢ converges to an
index for L; on t. Thus ¢ does not identify L; ;. Since L; ,€ %5, ¢ docs
not identify %-.

It is easy to see that the claim implies the result of the proposition, since
there are nondenumerably many § < N and each ¢ identifies at most one
of the classes %,. O '

Strategies 47

EII,IA Let & and & be learning strategies such that % < &,

a. Prove that [%7] < [%].
b. Show by example that [%] = [%’] is possible.

4.1B Evaluate the validity of the following claims. For learning strategies &, %,

A [FUST=[FIUL].
b [N e [FIN[S]

o [FIN[F]e [FNF]

d[F —F]=[F]—-[¥]
+41C Letpe# and & = & be given.

" a. What is the relation between F{p)and [{p}§?
. b. Prove that [#] = {# = P(g)lpc).

42 Computational Constraints

In this section we consider two attempts to specify learning strategies that
approximate human computational limitations.

42.1 Computability

One of the most popular hypotheses in cognitive science is that human
ratiocination can be simulated by computer. It is natural then to speculate
that children’s learning functions are effectively calculable. The corre-
sponding strategy is #*°, the set of all partial and total recursive functions
(see section 1.2.1).

Since 7 constitutes a small fraction of %, the computability strategy is
a nontrivial hypothesis about human learners. From the fact that #7° <
#, however, we cannot immediately conclude that #7™° is restrictive (see
exercise 4.1A). For this latter result it suffices to observe that %™ is a
denumerable subset of #, from which proposition 4,1A directly yiclds the
following. ‘

’PROPOSIT[ON 421A [F*=lc[F]

It will facilitate later developments to exhibit a specific collection of lan-
guages that falls in [#] — [#"°]. We proceed via a definition and three
lemmata.

g s ol

48 Identification Generalized

Reduchr, {0 Leveves

Derinimion 4.2.1A The set {x e N|@.(x}|} is denoted: K.
LEMMaA 4.2.1A K eRE, but K¢ RE.

Proof See Rogers (1967, sec. 5.2, theorem VI). O
Lemma 42.1B {KU{x}|xeN}e[F].

Proof This follows from exercise 1.4.3D. 0o

Limma 4.2.1C {KU{x}|xe N} ¢[F™].

Proof Suppose on the contrary, that some @™ identifies
{K U {x}|xe N}.Fix ¢, and let o be a locking sequence for ¢ and K. We will
show that K is r.e., contradicting lemma 4.2.1A.

Let kg, k4, ..., be some fixed enumeration of K, and for every x definc a
textt*for KU {x} by * = a * x M kg, k;,. ... Since ¢ is a locking sequence for
@ and K, o(f3,) = @(o) is an index for K for every x. Now, if x¢ K, t*is
a text for K U {x} which is not the same language as K. Thus, if x ¢ K, there
is an n > Ih(s) such that o(£;7) is not an index for K, and hence @(,) #
@(tis) But, if xe K, t¥ s a text for K, and hence, since I} 18 a locking
sequence for K, o{t¥) = @(s) for all n > Ih{s). Thus we have shown that

(*) xeK if and only if there is n > Ih(c)} such that
@(t,) # p(a).

Now it is easy to see from (*) that K is r.e. To see this, note that £ can be
constructed effectively from x and that the function

Y(x) = least n > lh(g) suchthat (1) # (o)

is therefore partial recursive with domain K. 0o

A fundamental result for RE_,, is stated in proposition 4.2.1B.

Prorosimion 4.2.1B (Gold 1967) RE,, é[F™]....
e

Proof (from Gold 1967) Suppose that ¢ e # ™" identifies RE,,. We will
construct an LeRE_, and a text ¢ for L such that ¢ changes its mind
infinitely often on . This means that ¢ does not identify L, so the hypothesis
that ¢ identifies RE_ , must be false. We will construct £ in stages so that the
initial segment of ¢ constructed by the end of stage s, o7, is equal to {0,x4),
(%0, {n, x, > for some n.(We will also have that each x; isequalto Qor
1.) We rely on the following claim.

L0yt 05,

Strategics 49

Claim Given o = {0,x>, {1,%,), ..., {n,x,>, there are numbers j and k

“guch thatift =0+ 1L,0), ..., {n+j,0and ' =1t " +j+ 1,10,

L dn 4+ k, 1, then o(t) # @)

Proof of claim The following is a text for a language L, eRE,,,: 6~ (n +
Thus there is a j such thatif t = e~ {n + 1, 0,
., &n + J, 00, (1) is an index for L;. But the following is a text for another
janguage LieRE it "{n+j+ 1, 1>, ..., {n+j+ k 1>, Therefore

. there must be a number k such that if

=N +j+ 1L D, 4k 1), @t} is an index for L.

Since Lo # Ly, @(z) # (1), and j and k are our desired integers.
Now we construct ¢ in stages.

RN

Stage 0 o = €0,0).
Stages + 1 Given %, let j and k be as in the claim using ¢* for ¢, Define
! to be the r'esu}tant . T Bowles g | fu, b fi e {fectin

__#*L.M I

¢ ¥y 5 N
Itisclear thats = {J,o¥is a text for some {Le E,,.. However, g does not e f‘ﬁ \
converge on f, sine @ changes its value at leastjonce for each se N. O ok e

T

. CL\U!((U{J
/? c?(tdi\/tp

0 _:T(,W_,__, —

COROLLARY 4.%.1A [F e < LF Ton-

Proof See pr\({position 14.3C. o

{

hl

Exercises

4.21A

a. Prove that {K U {x}|x e K} e [#™"].

b. Let Le RE be recursive. Prove that {L.U D|D < N and D finite} e [#].

c. Prove that {N} U{D}D finite and D = K} U {D|D finite and D = K} e[F"].
d. Prove that {N — {x}lxeK}U {N — {x’y}lx # y and x, yeK} e[Fee].

¢. Prove that {N — {X}EXEK} U{N — {x,y}lx #y and X, yEK}E{y‘rec].

Compare exercise 2.2C.

421B For &, ¥ = RE, define % x %’ as in exercise 14.3F. Prove that if
L e[F] and ¥ e[F™], then &£ x L e[F).

*421C Prove: Let & e[#7],,. Then, there is ¢ € F°° such that {a) ¢ identifies
#,and (b)forall Le &#, thereisie N such that for all texts ¢ for L, ¢ convergeson ¢ to
i. (Hint: Fix @' e #™° which identifies %. Define ¢ € #"*° which uses ¢’ to compute
its guesscs. ¢ rearranges the incoming text and feeds the rearranged text to ¢')
Compare section 4.6.3.

50 Identification Generalized

421D Let #e[F™,,, be given. Show that there is %' e[#™],, such th%tt
¥ < & (Hint: Let g e ™ identify & = RE,,,. Use the proof of proposition
4.2.1A to construct L¢ % and @ e# ™ which identifies & U {L}.) Compare this
result to exercise 2.2E.

4.2.1E Prove that RE e [#*°°]. (For RE,,, see definition 2.3B.)

421F For & < &, 1t []... = [#]NPRE,.). Prove that [#7, . © [F]...
{Hint: Use corollary 4.2.1A and exercise 1.2.2B))

421G Let RE;, ¢ = {LeRE,|LNK s F}. Prove that {K} URE,, z ¢ [F™].

421H Let RE_, = {{0,1,2,...,n}[neN}. RE,, thus consists of the initial

segments of N. Prove:

2. Let % e[] be given. Then # URE,_ e[#] if and only if N ¢ &,
b. Let & €[%] be given. Then % URE, [#™°]if and only if N ¢ 2.

4211 Letne N be given. A total recursive function [is called almost everywhere'n
just in case for all but finitely many ie N, f(i) = n. Let & = {L|for some total
recursive function f and for some rne N, f is almost everywhere n and L represents
f}. Show that some ¢ € ™ identifics . (Compare proposition 4.5.3B.)

*42.1J Prove that {{{0,x>}U{{L,y> U{{2,zp} U {3} x W]lat least two-thirds
of {x,y,z} are indexes for W} e [F™],

4.2.2 Time Bounds

Children do not effect computations of arbitrary complexity, so we are led
to examine computationally limited subsets of ™. The following defi-
nition is central to this enterprise. A

DerFiNITION 4.2.2A (Blum 1967) A listing ®,, ®,, ..., of partial recursive
functions is called a computational complexity measure (relative to our fixed

acceptable indexing of %) just in case it satisfies the following two

conditions:

i. For alt i, xe N, ¢,(x)| if and only if @(x}].
if. The set { (i, x, y>|®y{x) < y} is recursive.

Fl

To exemplify this definition, suppose that # ™ is indexed by associated
Turing machines (see section 1.2.1). Then ®; may be thought of as the
function that counts the steps required in running the ith Turing machine;
specifically, for i, x, ye N, ®;(x) = y just in case the ith Turing machine halts
in exactly y steps when started with input x. Condition i of the definition

Sirategies 51

requires that @;(x) be undefined just in case the ith Turing machine never
halts on x. Condition ii requires that it be possible to determine effectively
whether the ith Turing machine halts on x within y steps. Both require-
ments are satisfied by the suggested interpretation of @, Moreover it
appears that any reasenable measure of the resources required for a com-
putation must also conform to these conditions.

As with acceptable indexings, none of our results d@end on the choice of
computational complexity measure. Indeed, any two computational com-
plexity measures can be shown, in a satisfying sense, to yield similar
estimates of the resources required for a computation (see Machtey and
Young 1978, theorem 5.2.4). Let a fixed computational complexity measure
now be selected; reference to the functions @,, @, .. ., should henceforth be
¢ understood accordingly.

These preliminaries allow us to define the following class of strategies.

DeriTion 4.2.2B Let he ™ be total, W e #°° is said to run in h-time
just in case is total and there is ie N such that (i) ¢, =, and (ii)
@,(x) < h{x) for all but finitely many x e N. The subset of 7 that runs in
h-time is denoted g7 1ime,

Note that for any total he F°, F ¥ consists exclusively of total recur-
sive functions.

Intuitively a learning function in # %™ can be programmed to respond
to finite sequences o within h(«) steps of operation (recall from section 1.3.4
that “¢” in “h(o}” denotes the number that codes o). The strategy & /1i=e
corresponds to the hypothesis that children deploy limited resources in
formulating grammars on the basis of finite corpora. The limitation is given
by h.

Does F*1Um° restrict 7 regardless of the choice of total recursive
function h? The following result suggests an affirmative answer,

LemMma 4.2.2A (Blum 1967a) For every total he ™ there is recursive
L eRE such that no characteristic function for L runs in h-time.

Proof See Machtey and Young (1978, proposition 5.2.9).

Contrary to expectation, however, the next proposition shows that for
some total he F %, i doeg not restrict F .

Proposrrion 4.2.2A There is total e #™° such that [FHime] = [gree],

52 Ideritiﬁcation Generalized

The proof of proposition 4.2.2A will be facilitated by a lemma and a)
definition. The lemma is also of independent interest.

Lemma 4.22B There is total f € % such that for all ie N (i) @y is total
recursive, and (ii) for all L e RE, if ¢, identifies L, then @, identifies L.

Proof of the lemma Given i, we would like to define @, so that ¢,
identifies at least as many languages as @, but @y, is total. Thus we would
like (o), to simulate @,(a) but not to wait forever if ¢;(o) doesn’t con-
verge. Therefore on input o we will only allow ¢, to wait Th(¢) many steps
for ¢; to converge. Now ¢;(c) may not convergein ih (o) many steps for any &
but, if ¢,(¢) converges, there is a k such that ¢,(¢) converges in k steps. Thus,
in defining @(0), we will allow the simulation of ¢, to “fall back on the
text”, thatis, to compute only ¢;{#) for some initial segment & of o. Precisely,
define

o,(6), where & is the longest initial segment of o such that
Praf0) = @,(4) < Th(o) if such exists,
0, otherwise.

@ 18 a total recursive function for every i. The condition defining ¢ can
be checked recursively, since we have bounded the waiting time by th(g).
To see that @ identifies any language L that ¢; identifies, let ¢ be a text
for such an L. Then there is an ne N and an index j for L such that for all
m = n, ¢;(i,) = j. Let s = ®(7,). Then by the definition of g, if m > s, n,
@raftm) = @t} for some k = n. Thus ¢y converges ont to j. O

Proof of proposition 4.2.24 Let f be as in the statement of lemma 4.2.2B.
Define

h(x) = max{®(j)i,j < x}.

h is a total recursive function, since each function @y, is total.

Now suppose that # e[F°]. Let ¢;e F™° identify #. Then by the
lemma, ¢ identifies #. But by the definition of h, for allh j=1,
®(J) < h(j). Thus @ runs in h-time. This implies that % e [#"""¢]. g

Exercise

422A Let he #™ be total. Let %, = {LeRE,]L represents a function in
gimel Show that for some total ge 7, %, e [F7™]

‘Strategies 53

42.3 On the Interest of Nonrecursive Learaing Functions

Why study strategies that are not subsets of #°? For those convinced that
human intellectual capacities are computer simulable, nonrecursive learn-
© ing functions might seem to be of scant empirical interest. Many of the
strategies we consider are in fact subsets of F#™°,

Nonrecursive learning functions will continue, however, to figure promi-
nently in our discussion. The reason for this is not simply the lack of
persuasive argumentation in favor of the view that human mentality is
machine simulable. More important, consideration of nonrecursive learn-
ing_functions often clarifies the respective roles of computational and
information-theoretic factors in nonlearnability phenomena. To see what
‘is at issue, compare the collections % = {N}URE, and & = {KU
{x}|xe N}. By proposition 2.2A(i) and lemma 4.2.1B, respectively, no p&
F " identifies either collection. However, the reasons for the unidentifiabil-
ity differ in the two cases. On the one hand, % presents a recursive learning
function with an insurmountable computational problem, whereas the
computational structure of % is trivial. On the other hand, % presents the
learner with an insurmountable informational problem-—that is, no 6 e SEQ
allows the finite and infinite cases to be distinguished (cf. proposition 24A).
In contrast, no such informational problem exists for .#"; the available
information simply cannot be put to use by a recursive learning function.

The results to be presented concerning nonrecursive learning functions
may all be interpreted from this information-theoretic point of view.

4.3 Constraints on Potential Conjectures

Let .# = RE be identifiable, and let o= SEQ and ie N be given. From
exercise 1.5.1A we see that some @ € % such that ¢(o) = i identifies %, Put
differently, from the premise that ¢ € # identifies % < RE, no information
may be deduced about ¢(0) for any o € SEQ, except that ¢(o)| if o is drawn
from a language in %, In this section we consider the effects on identifi-
cation of constraining in various ways the learner’s potential response to
evidential states,

43.1 Totality

The most elementary constraint on a conjecture is that it exist, The corre-
sponding strategy is the set of total learning functions, denoted % ™, From
part a of exercise 1.4.3G we have proposition 4.3.1A.

5
54 Identification Generalized

ProrosiTioN 4.3.1A [F = [F#].

Similarly directly from lemma 4.2.2B we obtain proposition 4.3.1B.
ProrosrTion 4.3.1B [#F¢] = [#Freenggorl],

Thus totality restricts neither % nor %

4.3.2 Nontriviality

Tinguists rightly emphasize the infinite quality of natural languages. No
natural language, it appears, includes a longest sentence. If this univer-
sal feature of natural language corresponds to an innate constraint on
children’s linguistic hypotheses, then children would be barred from conjec-
turing a grammar for a finite language. Such a constraint on potential
conjectures amounts to a strategy.

Drermarion 4.3.2A

W, 18 infinite,

peF is called nontrivial just in case for all 6 €SEQ,

Thus the strategy of nontriviality contains just those ¢ ¢ % such that ¢
never conjectures an index for a finite language. Note that nontrivial
learners are total. The learning function g defined in the proof of propo-
sition 1.4.3B is nontrivial. '

Obviously nentriviality is restrictive: finite languages cannot be identi-
fied without conjecturing indexes for them. Of more interest is the relation
of nontriviality to the identification of infinite languages. The next propo-
sition shows that nontriviality imposes limits on the recursive learning
functions in this respect; that is, some collections of infinite languages are
identifiable by recursive learning function but not by nontrivial, recursive
learning function.

ProrosiTioNn 4.3.2A There is % = RE such that (i) every L € . is infinite,
and (11] Fe [‘g,'rcc] _ {gzrec al rg,‘nontriviai].

To prove the proposition, a definition and lemma are helpful.
Dermvrrion 43.2B ¥ < RE is said to be r.e. indexable just in case there is

S ¢ RE such that & = {W)|ie S} in this case S is said to be an r.e. index set
for &.

Thus % < RE is r.e. indexable just in case there is an r.e. set § such that for
all LeRE, Le % if and only if I. = W] for some i€ § (S is not required to
contain every index for L).

Strategies 55

Lemma 4.32A RE — RE,,, is not r.e, indexable.

Proof of the lemma Let S be an r.e. set of indexes for infinite sets. Let ¢,
e, ..., b& & recursive enumeration of §. We show how to enumerate an
infinite r.e. set A such that no index for A isin §. We enumerate A in stages.

Stage 0: Enumerate W, until an x, appears in W, . Enumerate 0, 1, ...
- x, — linto A. '

Stage s + 1: Enumerat_e We,,'ﬂ until an x,, appearsin W, with x,,, >
- %, + 1. Such an x,,, exists since W, is infinite. Enumerate x, + 1, ...,
 Xgpq — linto A.

E

‘A is infinite, since at least one integer, X, + 1, is enumerated in A4 at each
stage s + 1. A # W, for each s, since x,e W, but x. ¢ 4. O

Proof af proposition 43.24 Recall that we have fixed a recursive isomor-
phism between N and N, the image of a pair (x, y) being denoted by {x, y>.
Recall also that w, and , are the recursive component functions defined by
71 ({x, y>) = x and 7,({x, D) = y (see section 1.2.1).

Define for each ie N, L; = {{i,x)|xe W;}. Let & = {L;|W, is infinite}.
Obviously every language in % is infinite. To show that % & [%], define
hic} = m,{0,) for every o € SEQ, and choose f € % such that for all ie N,
f(}is an index for {i} x W,. Then f o h identifies .%; indeed, f o k identifies
L foreveryieN.

Suppose, however, that ¢ e #7° () Fontvial We show that ¢ does not
identify %, Let

§ = {ilthere is a sequence o such that (o) = i}.

For any recursive function ¢, S defined in this way is r.e. Since ¢ is
nontrivial, S contains only indexes for infinite sets.

Claim There is a recursive function g such that for every ie N,

1. W, infinite implies W, infinite,
2. Wie & implies Wy = {n5(Cx, y3)| ey € W),

Proof of claim Given i, define W, by

{na (e p))x, yye W), if (x,y>eW and{x’,y>e W,

Wiy = implies x = x’,

N, otherwise.

56 Identification Generalized

Informally we enumerate in W, the second components of elements of W, 5
until we have seen two elements with different first components. In this case
we then switch to enumerating every integer in W,,. The function g
obviously has properties 1 and 2.

Now given the claim, we complete the proof of the proposition as follows.
Suppose for a contradiction that ¢ identifies .#. Let g(S) = {g(D)lieS}.
Since ¢ is nontrivial, property 1 of g implies that g(S) contains only indexes
for infinite sets. Since ¢ identifies %, and since for every infinite W, L;c ¥,
for each such W, there is a je S such that W, = L,. Then by (2) of the claim,
g(j)is an index for W;. Thus g(S) is an r.e. set containing indexes for all and ‘
only the infinite r.e. sets contradicting lemma 4.3.2A. O

In section 4.3.5, proposition 4.3.2A will be exhibited as a corollary of a
more general result. ' ‘

Exercises

4324 let % be a collection of infinite languages. Prove that 2 is identiftable if
and only if some noatrivial ¢ € # identifies &. Compare this result to proposition
4.32A.

432B Let % = # be such that some % [%] is infinite. Show that not every
#'e{5] is r.e. indexable.

#432C Let & be as defined in the proof of proposition 4.3.2A. The function f ok
defined therein is such that & < #(f o h). Show that there is ¢ € 5 such that
£ = L)

*432D e is called nonexcessive just in case forall o SEQ, W, # N. Prove:
For all & = RE, if N¢ %, then & e[F g =¥]if and only if ¥ e[F™].

4.3.2E (John Canny) e & is said to be weakly nontrivial just in case for all infinite
Le #(p), W, is infinite for all ne N and all texts t for L. Nontriviality implies
weak nontriviality. Show that for some collection % < RE of infinite languages,
Pe [!o;;rec] _ [g;'rcc n yweakly nontrivial}-

4.3.3 Consistency
We next consider 2 natural constraint on conjectures.

DerFINITION 4.3.3A (Angluin 1980) ¢ e & issaid to be consistent justin case
for all 6 e SEQ, mg(s) = W

Strategies 57

‘Thatis, the conjectures of a consistent learner always generate the data seen
so far. Note that consistent learning functions are total,)

Example 4.3.3A

a. The function f defined in part a of example 1.3.4B is consistent. Hence
RErin e {g}fconsxsleml

b. The function g defined in the proof of proposition 1.4.3B is consistent.

¢. The function k defined in part ¢ of example 1.3.4B is consistent,

d. The function f defined in the proof of proposition 2.3A is not consistent, To see
this, let iy, be an index for &, and let 6 € SEQ be such that iy erng(o) and i, is least in
rng(e). Then f(o) = i;. Since rng(o) & & = W, , [is not consistent.

Comnsistency has the ring of rationality: Why emit g conjecture that is
¢ falsified by the data in hand? It thus comes as no surprise that consistency is
not restrictive. The proof of this fact resembles the solution to exercise

4.3.2A. We now demonstrate the less evident fact that consistency restricts
Lafrccl '

Prorosrrion 433A Let consistent @ e %™ identify % < RE. Then
g g REECE‘

Proof LetLe.%. By the locking sequence lemma, proposition 2.1A, there
is a sequence o such that rng(e) < L, W, = L, and if 1 SEQ is such that
rng{t) & L, then ¢{o 1) = @(o).

Ifxe L, p(c * x} = (o), since ¢ is a locking sequence for L. On the other
hand, if x¢ L, ¢(o” x) is not an index for L, since ¢ is consistent; hence
@{o ~ x) # (o). Thus xe L if and only if (s » x) = ¢(g). This constitutes
an cffective test for membership in L, since ¢ is total.

There are certainly % < RE such that (1) & € [#7], and (2) & includes
nonrecursive languages. One such collection is {K}! Hence proposition
4.3.3A yields ﬁhe following corollary.

CoROLLARY 4.3.3A [FFrec () groomsistont] [giree],

Proposition 4.3.3A suggests the following question. If attention is limited to
the recursive languages, does consistency still restrict #7°°? The next pro-
position provides an affirmative answer.

58 Identification Generalized

. ProrosiTion 4.33B There is % < RE,, such that ¥ e[#™] —

[ng:rec N g/;consistent]

- The proof of proposition 4.3.3B uses the following lemma, which is interest-
ing in its own right.

Levma 4.3.3A Let h(j, k} be a total recursive function, and let functions
fe F 7 be defined by fi(k) = h(j, k) for all k. Then there is a recursive set S
such that f; is not the characteristic function of § for any j.

Proof Define S by ke § if and only if i{k, k) 0. Obviously S is recursive.
No f;is the characteristic function of §, since je § if and only if k(j,7) # 0if
and only if f;(j} # 0.0

Recall the definition of r.e. indexable (definition 4.3.2B). Although the
recursive sets are r.e. indexable (exercise 4.3.3D), lemma 4.3.3A says that the
recursive sets are not r.e. indexable as recursive sets. In other words, there is
no r.e. set of indexes of characteristic functions containing atleast one index
for a characteristic function of each recursive set.

Proof of proposition 4.3.3B As in the proof of proposition 4.3.2A, define
Ly = {{i,x)|xe W,},and let & = {L,|W,isrecursive}. & ¢ [F"*°};infact, as
noted in the proof of proposition 4.3.2A, {L,/ie N} e [F#].

Suppose, however, that g € #™°is a consistent function that identifies &,
Define a function k as follows:

0, ifglc”{Lkp)=glo),
1, otherwise.

h{o,i), k) = {

It is obvious that h is a total recursive function, since g must.be total. Thus k
satisfies the hypothesis of lemma 4.3.3A, so there is a recursive set § such
that no funtion f, (k) = h({o,i),k) is a characteristic function of §. But
let i’ be an index for 8, and let ¢’ be a locking sequence for L;, and g. Then
ke W, implies that g(¢’ » <i', k>) = g(¢’) which implies that A(<c",i' >, k} =
0. And if k¢ W, then g(o’ * {i',k>) # g(0"), since g 18 consistent so that
h({c’,i'>, k) = 1. But this implies that f,. (k) = #{{a’,i">, k> is the char-
acteristic function of S, contradicting the choice of 8. o '

Proposition 4.3.3B may be strengthened to the following fact about total,
single-valued languages.

ProposiTioN 4.3.3C (Wiehagen 1976) [g1ec) groonsistent] = [gFree] .

59

Proof See exercise 4.3.3B. 0

We note that children are not thought to be consistent learners because
their early grammars do not appear to generate the sentences addressed to
them.

Exercises \

© 433A @e# is said to be conditionally consistent just in case for alt ¢ eSEQ, if

@{o}], then mglo) =

(e}

a. Refute the following variant of proposition 4.3.3A: Let conditionally consistent
pe# " identify .# < RE. Then ¥ = RE,,

b. Prove the following variant of corollary 4.3.3A: [gFeee) groondittonally consistent}
- [g,"I‘CC]

¢. Prove the following variant of proposition 4.3.3B: there is % = RE,,, such that
rgE_[ﬁmc] — [ﬁrecngconditional]y consistcnt]' (Hint.' Add N to the collection % de-
fined in the proof of proposition 4.3.3B8.)

4.3.3B Prove proposition 4.3.3C using the proof of proposition 4.3.3B as a model.

433C Let ZPe[FNF sonsistent] . be given. Show that for any LeRE
g U {L} = [(o’zrec r] gzconsislenl]wt'

syl

- *433D Show that RE___ is r.e. indexable. (Hint: See Rogers 1967, exercise 5-6,

p 73)

4.3.3E (Ehud Shapiro 1981) Let % = RE and total he #™° be given, and suppose wé“k‘{

that & e [gFitime) gieonsistent] Show that there is a total ge #° such that for all

Le %, some characteristic function for L runs in g-time. Sasptev
ho
b *} Ll
et
434 Prudence and r.e, Boundedness cx‘!suw}

Suppose that ¢ e # is defined on ¢ SEQ. Call ¢(0) a “wild guess” (with
respect to ¢) if ¢ does not identify W,,,. In this section we consider learning
functions that do not make wild guesses.

Dermnrrion 4.34A g e # is called prudent just in case for a]l geSEQ, if
@(g)] then ¢ identifies W, Wy

In other words, prudent learners only conjecture grammars for languages

they are prepared to learn. The function f defined in part a of example

1.3.4B and the function g defined in proposition 1.4.3B are prudent.
Children acquiring langnage may well be prudent learners, especially if

s,

60 Identification Generalized

“prestorage” models of linguistic development are correct. A prestorage
model posits an internal list of candidate grammars that coincides exactly
with the natural languages. Language acquisition amounts to the selection
of a grammar from this list in response to linguistic input. Such a prestorage
learner is prudent inasmuch as his or her hypotheses are limited to gram-
mars from the list, that is, to grammars corresponding to natural (ie.,
learnable) languages. In particular, note that the prudence hypothesis
implies that every incorrect grammar projected by the child in the course of
{anguage acquisition corresponds to a natural language.

It is easy to show that prudence is not restrictive. The effect of prudence
on the recursive learning functions is a more difficult matter. We begin by
considering an issue of a superficially different character.

The “complexity” of a learning strategy & can be reckoned in alternative
ways, but one natural, bipartite classification may be described as follows.
From exercise 4.3.2B we know that if some % [%”] is infinite, then not
every member of [} is1.e. indexable. However, even in this case it remains
possible that every collection in [%] can be extended to an r.e. indexable
collection of languages that is also in [.%]. The next definition provides a
name for strategies with this property. -

Dermrtion 4348 & = # is called r.e. bounded just in case for every
L e[| thereis ¥ e[¥] such that (i) & < &, and (ii) & is r.e. indexable.

Thus r.e. bounded strategies give rise to simple collections of langnagesina
satisfying sense.
We now return to the effect of prudence on F .

ProrosiTioN 4.3.4A (Mark Fulk) [#renNgrmden] = [F7e],

Proposition 4.3.4A is a consequence of the following two lemmata, whose
proofs are deferred to section 4.6.3.

Lemma 4.3.4A I %7 is r.e. bounded, then [F™° N gForvdent] — fgree]

Lemma 4.3.4B (Mark Fuik)‘ F' is r.e. bounded.

Exercises

43.4A Show that the function f defined in the probf of proposition 2.3A is not
prudent.

Strategies 61

#4348 Specify prudent ¢ € #*° that identifies {K U {x}|xe K }.
4.3.4C Exhibit & = & such that (a) & 1s infinite, and (b) & is not r.e. bounded.

4.3.4D Show that for every @ e F =N Frren &(m) is re. indexable. Conclude
that #7°° N FPrmdent ig ¢ e, bounded,

434E Let & and & be re. bounded strategies.

a. Show that % U % is r.e. bounded.
b. Show by counterexample that & N %" need not be r.e. bounded.

43,5 Accountability

Proper scientific practice requires the testability of proposed hypotheses.
In the current context this demand may be formulated in terms of the
“accountability” of scientists, as suggested by the following definition,

DerinrTioN 43.5A @& is accouniable just in case for all 6eSEQ,

W) — mglo} # (5.

Thus the hypotheses of accountable learners are always subject to further
confirmation.

It is easy to see that finite languages cannot be identified by accountable
learners. Sintilarly for & = RE,,, it is obvious that % e [#*°*°"™2%%7] if and
only if Ze{# 7. In contrast, the following proposition reveals that the
interaction of gFeecountable and greee is Jegs intuitive,

Prorosition 4.3.5A There is & = RE such that (i) every L € .% is infinite,
and (i) & e[F™] — [F™N g,‘accouniahlc].

Thus the identification by machine of certain collections of infinite lan-
guages requires the occasional conjecture of hypotheses that go no further
than the data at hand. The proof of the proposition relies on the following
definition and lemma, '

Dermnrrion 4.3.58

i, The set { fe F™°NF @, = f}is denoted SD.
ii. REg, = {LeRE_,|for some feSD, L represents [},

LEMMA 435A RESD ¢ l:g?;rec M ﬁaccoumable}.

Proof Suppose 8 Frec) groecovntable We define, uniformly in i, a text ¢
for a language L,eRE,, which 8 fails to identify. An application of the

62 Identification Generalized

identify.

Construction of t* We construct £ in stages. Let k be an index for 6.

<0,i>.
Let {m,) be the least number such that me Wy »

accuumabic
pot Siviy \J‘\\"\
o Cmy(m), 1= mym).

AUl g
(('Jv\){— [N)
Let L, = rng(t’). It is clear that L;eRE,, and that 8 fails to identify ¢*,
since for each n either Wy ¢ RE,, of Wy 2 rng(e”"*). Now let g be a total
recursive function such that W, = L;. By the recursion theorem, pick a j

such that W, ., = W,. Then, L;is an element of REg,. 0

Stage 0 ¢° =
Stagen + 1
and @.{c*) < 5. Such a number exists since e
If 7, (m) < Thic"), let a"“ = g"M{Ih(eg"),0). £
If w2, (m) = h(s"), let 0" = ¢" A ((Ih(a"),0), .
(n — m = max{0,n — m}.) Fett' =1, 0"

— mg(s”)

It is plain that REg, < RE,,, © RE;, and that REg, e [#*]. Proposi-
tion 4.3.5A thus follows immediately from the lemma. It may be seen
similarly that proposition 4.3.2A is a direct corollary of proposition 4.3.5A
Since ynont:iviai — ‘g:accountahle.

An analog of nontriviality relevant to RE,,, may be defined as follows.

S¥L

Dermrrion 4.3.5C (Case and Ngo-Manguelle 1979) pe#
perian just in case for all o € SEQ, if ¢(0)] then W, & RE,,

is called Pop-

Thus the conjectures of a Popperian learning function are limited to indexes
for total, single-valued languages. The fanction h in the proof of proposition
1.4.3C is Popperian.

an index for the characteristic function of § (see part b of exercise 1.2.2B).
As a consequence it is easy to test the accuracy of such an index against
the data provided by a finite sequence. Such testability motivates the ter-
minology “Popperian” since Popper (e.g., 1972) has long insisted on this
aspect of scientific practice (for discussion, see Case and Ngo-Manguelie
1979).

‘1431 = (™ Plainly, in the context of RE,,,, F°Preran ig not restrictive. In contrast,
[s‘ince GFPovperian o graccountable Jemmg 4.3 5A implies the following,

,a,r, ,/ ProposiTION 4.35B (Case and Ngo-Manguelle 1979) [F™°N

g‘zl’oppenan]“ o [grec]swl

recursion theorem will then suffice to yield an LeREg, that 8 fails to J

An index for a member S of RE,, can be mechanically converted into

Strategies R : 63

Exercises

*4.3.5A LeRE is called total just in case for all xe N there is ye N such that

{x, y»> € L{compare definition 1.2.2D)). Notethat a total language need not represent

a function (since it need not be smgle valued). p € # is called total minded just in case

for all aeSEQ if p(a)} then W, is total. Prove: There is % < RE such that (a)

every Le % is total, and (b} ¥ e[F™] — [Froon griowbminded) (Frine: Rely on

Rogers 1967, theorem 5-XVI: the single-valuedness theorem.) O J
o

435C Define: LeRE,, just in case LeRE_, and for each ne L either n,(ny = 0
or my(n) = L. (RE,, thus consists of the sets representing recursive characteristic
functions.) Prove the following strengthenmg of proposition 4.5. 3A there is
F = RE;,, such that

13 (o 4 chomtheaghe

rm (,f((fle.ﬁ
G red B
L Ee[F] ch fo ,(’ civmd e

[g;rec n tg,,—accountahle}

*4.3.6 Simplicity

Let LeRE, and let § = {x|W, = L}, the set of indexes for L. By lemma
1.2.1B, § is infinite. Intuitively the indexes in S correspond to grammars of
increasing size and complexity, It is a plausible hypothesis that children do
not conjecture grammars that are arbitrarily more complex than simpler
alternatives for the same language (in view of the space requirements for
storing complex grammars). In this subsection we conmder learning func-
tions that are limited to simple conjectures.

To begin, the notion of grammatical complexity must be precisely ren-
dered. For this purpose we identify the complexity of a grammar with its
size, and we formalize the notion of size as follows.

Dermution 4.3.6A (Blum 1967a) Total me %™ is said to be a size measure
{relative to our fixed acceptable indexing of # ™) just in case m meets the
following conditions.

i. For all ie N, there are only finitely many je N such that m(j) = i.
ii. The set {(i,j>|for all k = j, m(k) # i} is recursive.

To grasp the definition, suppose that %™ is indexed by associated Turing
machines (TM) as in section 1.2.1. Then one size measure iy, maps each
index i into the number of symbols used to specify the ith Turing machine.
This number is to be thought of as the size of i. m,; can be shown to be total
recursive. This size measure meets condition i of the definition, since for

4.3.5B (Putnam 1975) Supply a short proof that RE,,, ¢ [N g Popperian) JEur (i}

64 Identification Generalized

i€ N there are only finitely many Turing machines that can be specified
using precisely i symbols. Condition i is satisfied, since there exists an
effective procedure for finding, given any ie N, thelargest index of a Turing
machine of size i. For another example, the simplest size measure is given
by the identity function m(x) = x. Conditions 1 and ii of the definition are
easily seen to be satisfied. It would seem that any rcasonable measure of
the size of a computational agent also conforms to these conditions.

As with our choice of computational complexity measure (section 4.2.2),
none of our results depend on the choice of size measure. Indeed, any two
such measures can be shown, in a satisfying sense, to yield similar estimates
of size (see Blum 19674, sec. 1). Let a fixed size measure m now be selected.
Reference to size should henceforth be interpreted accordingly.

DermitioN 4.3.6B We define the function M : RE — N as follows, For all
LeRE, M(L)is the unique i€ N such that

i there is ke N such that W, = L and m(k) = i,
ii. for all je N, if W, = L, then m(j) > i.

Intuitively, for LeRE, “M(L)" denotes the size of the smallest Turing
machine for L. No index of size smaller than M(L) is an index for L.

Dermarion 4.3.6C Let total fe %™ be given. ie N is said to be f-simple
justin case m(i) < f(M(W}).

In other words, i is f~simpie justin case the size of i is no more than “fof” the
size of the smallest possible grammar for W,. Thus, if f(x) = 2xforallxe N,
then iis f-simple just in case no index for W, is less than half the size of i.

With these preliminaries in hand, we may now define strategies that limit
the complexity of a learner’s conjectures.

Drrmvmion 4.3.6D

1. Let total f € %7 be given. g € # is said to be f-simpleminded just in case
for all 6 € SEQ, if ¢(0){, then ¢(0) is f-simple.

ii, If pe & is f-simpleminded for some total e %, then ¢ is said to be
simpleminded.

Put differently, an f-simplemiinded learning function never conjectures
indexes that are f-bigger than necessary. Thus, if f{x) = 2x for all xeN,
then no conjecture of an f-simpleminded learner is more than twice the size
of the smallest equivalent grammar.

Example 4.3.6A

a. Suppose that m is the size measure defined by m(x) = x for all xe N. Let total
he #7° be such that h(x) > x. Then both function f of part a of example 1.3.4B and
function g of proposition 1.4.3B are h-simpleminded.

. Irrespective of chosen size measure, the function g of part b of example 1.34B is
simpleminded.

Provided that total he#™° is such that h(x) = x for all xeN,
gelvsimpleminded 5o pot restrictive. However, for any total he %™,

)C/W\SJj

g trsimpleminded geyerely restricts #7°°. To show this, we rely on the following 4,4,

remarkable result.

Lemma 4.3.6A (Blum 1967a) Let L e RE be infinite, and let total ge ™
be given. Then there is i ¢ L such that m(i) > g(M (W)

Proof Thelemma is a direct consequence of theorem 1 of Blum (1967a). o

The lemma asserts that every infinite r.e. set of indexes contains at least one
index that is g-bigger than necessary, for any choice of total ge ¢,

ProposiTion4.3.6A Let ¥ e[F o0 geimpleminded] Then & contains only
finitely many languages.

Proof Let @egrreen geimpleminded jqontify #. Let § = rng(p), where § is
r.e. because it is the range of a recursive function. Since ¢ is g-simpleminded
for some g, lemma 4,3.6A implies that S is finite. Otherwise, for some o
we would have that m(p(c)) > g(M (W,,)) contradicting the definition of
g-simpleminded. I § is finite, obviously % must be finite because ¢ cannot
learn a language for which it does not produce a conjecture. o

Thus, if children implement recufsivc, simpleminded learning functions,
and if they can only learn languages for which they can produce grammars,
then there are only finitely many natural languages.

COROLLARY 4.3.6A [FFroc N greimplemindedy — [grree

Exercises

43.6A Prove the following strengthening of proposition 4.3.6A: [F™°N
Freimpleminded? i¢ the class of all finite collections of languages.

dow

66 Identification Generalized

43.6B @eF is called loquacious just in case {p(o)|deSEQ} is infinite. Prove:
There exists total he F™° such that for all total fe %™ and loquacious pe ™
there exists 6 e SEQ and ie N such that

a. (qu{:;) =

b. f(m{i)) < mlp(o)), ,

c. for all but finitely many {x,s) e N, if ®_,{x} < s, then @,(x) < A({x,5)).

{In other words, the longer program g@{c) is not much faster than the shorter

program §). (Hint: Use theorem 2 of Blum 1967.) This result extends proposition
4.3.6A.

44 Constraints on the Information Available to a Learning
Function

Each initial segment 7, of a text ¢ provides partial information about the
identity of rng(z). The information embodied in z, may be factored into two
components: (1) rng(z,), that is, the subset of rng(¢) available to the learner

by the nth moment, and (2) the order in which rng(z,) occurs in £,. Human.

learners operate under processing constraints that limit their access to both
kinds of information. In this section we examine two strategies that reflect
this Limitation.

44.1 Memory Limitation

It seems evident that children have limited memory for the sentences
presented to them. Once processed, sentences are likely to be quickly
erased from the child’s memory. Here we shall consider learning functions
that undergo similar information loss.

DermaTion 4.4.1A Let 6 e SEQ be given.

i. The result of removing the last member of ¢ is denoted: 6. If Th(s} = 0,
then o™ = 4. _

ii, For ne N the result of removing all but the last n members of o is denoted:
g nlflhic) < n theno n = 0.

Thus, ife =3,3,8,1,9, theno” =3,3,8, lando”2=19

Dermnrrion 4.4.1B (Wexler and Culicover 1980, sect. 3.2) For all riEN,
geF is said to be n-memory limited just in case for all o, teSEQ, if

g n=1n and @(e7) = ¢(x7), then ¢(o) = @(x). H pcF is n-memory

- limited for some ne N, then @ is said to be memory limited.

1n other words, @ is n-memory limited just in case @{o) depends on no more
than @{g”) (¢’s last conjecture) and ¢~ n (the n latest members of «).
Intuitively a child is memory limited if his or her conjectures arise from the
interaction of recent input sentences with the Iatest grammar that he or she
has formuiated and stored. This latter grammar of course provides partial
information about all the data seen to date.

Example 4.4.1A

a. The function h defined in the proof of proposition 4.3.2A is 1-memory limited.
b. Neither the function f defined in part a of example 1.3.4B nor the function g
defined in the proof of proposition 1.4.3B is memory limited.

¢. The function g of part b of example 1.3.4B is 0-memory limited.

Does some memory-limited @e % identify RE;,? Let pecF be 2-
memory limited, and consider the text t =4, 5, 5, 5, 5,6, 6, 6, 6, ...,
for the language {4,5,6}. It appears that by the time ¢ reaches the
first 6 in ¢, the initial 4 will have been forgotten, rendering conver-
gence to rng(f) impossible. Since a similar problem arises for any
“memory-window,” it appears that memory limitation excludes identifi-
cation of RE;, . : ——

However, this reasoning is incorrect, Memory limitation can often be
surmounted by retrieving past data from the current conjecture. The fol-
lowing proposition will make this clear, .

Prorosition 4.41A RE; e[&0 g L-memory limited]

Proof Let 8 be a recursive set of indexes of r.e. sets containing exactly one
index for each finite set and such that, given a finite set D, we can effectively
find e(D) € § such that e(D) is an index for D. The existence of such a set and
function e is an casy exercise.

Now define feF*° by f(e) = e(rng(a)) for all ¢ eSEQ. Informally f
chooses a canonical index for the range of . Now, if f(67) = f(z7), then
rng(e™) = rng(t7) and if also 671 = 771, rng(s) = rng(z) so that f(e) =
f(T) Thus feﬁl'mcmury limitcd. 0

08 Identification Generalized

This last result notwithstanding, memory limitation is restrictive.
ProrosiTiON 4.4.1B [ggmemory Umited) — g7

Proof Let # consist of the langnage I, = {<0,x)|xe N} along with, for
each jeN, the languages L;= {{0,x)|xeN}U{(l,i}} and Li=
(€0, x>]x # j}U{{Lj>} It is easy to see that Fe[F]. (In fact Fe
[#7¢].) But suppose that & g [memer limited] Eor instance, suppose that
some ¢ e gF 1-memory imited jdentifies 7, (The case where @ FF"memery fmited {g
similar.) Intuitively, when ¢ first sees {1, for some j, ¢ cannot remember
whether it saw {0,/ or not and so cannot distinguish between L; and L},
Formally Jet o be a locking sequence for ¢ and L. Let ¢’ = o~ {1,jo)
for some j, such that {0,j,> ¢rng(o). Let 0" = 6~ {0,jy» " {1,j5>. Now
(o) = ol(c”), since @(a} = (o’ 0,jo>) and ¢ is I-memory limited.
Butnow let t; = o'~ {0,057 0,15 ~--o A (0 i> e forall i # jg, and let
t; = 0" N{0,00 M0, 1A - A0 iy~ -, for @ # jo. ty 18 a text for L,
and ¢, is a text for L; , but @ converges on ¢, and ¢, to the very same
index because of memory limitation. Thus ¢ cannot identify both L; and
Li,.o

The proof of proposition 4.4.1B hinges on a collection of languages all of
whose members are finite variants of each other, Exercise 4.4.1F shows that
this feature of its proof is not essential.

To simplify the statement of later propositions, it is useful to record here
the following result.

Lemuma 4.4.1A

j. [ﬁl-memory limiled:l — {rg,'memory limil‘.ed]

i, [gg}'reu N Lafl-mcmury limited] — [ggrec () g7 memory limilcd}

The proof of this lemma turns on the following technical resuit (cf. lemma
1.2.1B).

LeMma 4.4.1B Thereis a recursive function p such that p is one to one and

for every x and ¥, ¢, = Ppe -

A proof of this lemma may be found in Machtey and Young (1978). Such a
function pis called a padding function, for to produce p(x, y) from x, we take
the instructions for computing ¢, and “pad” them with extra instructions
to produce infinitely many distinct programs for computing the same
function.

- Strategies 69

Proof of lemma 4.4.14

i. Obviously, [1 memory limited [grmemory limited] - gy pynage on the other
hand that & e [memery limitedq. oa v & is identified by the n-memory limited
function . We construct i which is 1-memory limited and identifies .%. Let
p be the padding function provided by lemma 4.4.1B. Given any xeN,
define x™ to be the sequence of n x’s. Now given ¢ € SEQ, define I

Lo _} -

A iy 5. \ -

&:Jé")Ao-le-(()ﬂ)A

Now define (o) = p(@(8), o,). {Intuitively we simulate @ on texts for which
n-memory limitation is of no advantage over 1-memeory limitation due to
the repetitions.} ¥ evidently identifies .%, since for any text ¢t for Le %, {is
also a text for L. To see that i is 1-memory limited, suppose that ¥(¢7) =
Y(r7) and ¢71 = 7”1, Since dt(a"){: W), ple(é7),04) = ple(t), 1) so
65 =Ty Let x=0¢"1=1"1. We have then that ¢ =6~ *x" 5" and

t=4 AxAci Since o(@) =op(t), @@ ~x)=@E ~x) by the

n-memory limitation of (p Thus @(f) = @(4) by the r-memory limitation of
9. Thus =l Kiws only @
7)

wz gl 4/60)
W(o) = V@), ¢& -y .

ii. The transformation of ¢ to i in the proof of (i) produces a recurswe wife
is recursive. O

p(@(8), 60) = p(p(?), 7o) =

Proposition 4.4.1B show that memory limitation restricts . We now

show that memory limitation and $#7°° restrict each other.

PROPOSITION 4.4.1C [) grmemosy limited] o [gvee] () [g5 memory limited

Proof Let A be a fixed re. nonrecursive set, and define L =
{<O,x>|xe A}, L,=LU{{l,n>},and L; = LU{0,n),{1,n)>}. Let & =
{L, L,, Lj|lne N}. It is easy to see that & e [#™°]. (Informally, conjecture
L until some pair {1,n) appears in the text. Then conjecture I, forever
unless (0,n) appears or has already appeared in the text. In that case
conjecture L)) Also & g [memor limited] (A gain informally, conjecture L
until either {1, n) appears in the text for some n, in which case behave as just
described, or until <0,n) appears in the text for some n¢ A. In this case
conjecture L, forever. This procedure is 1-memory limited but not effective,
since it asks whether ne A fora nonrecursive set 4.)

Finally, we claim that & ¢ [gFrec N gFmemory limited] For gunpose that ¢ is
1-memory limited, recursive, and o identifies 2. Let o be a locking se-

o

\ S

Al i

‘Fe\;”(?eﬂx}

o4
&

()

70 1dentification Generalized

quence for @ and L. This implies that for every ne A, (o » {0,n>} = ¢(a}.;
Therefore for some me A4, @(o » {0, mD} = ¢(o) else 4 is recursively enumer-
able, implying that A is recursive. Fixing such an m, let s be an enumeration
of L, and define two texts, t and ¢/, by t=6¢"{l,m>"5 and ' =
¢ M {0,m> M {1,m>*s. By l-memory limitation and the property of m,
@lo ~ <0, m> A1, md) = @le » {1,m)) and so again by l-memory limita-
tion, @(f,) = o{t,) for all n = Th(s) + 1. But {" is a text for L, and t for L,
and L, # L. Thus ¢ does not identify both L, and L,. o

The interaction of memory limitation and computability may be refined
yet further,

ProposiTioN 4.4.1D For every total he #ree, [time N gememery Himited]
o [zg,'rcc n ‘g;mcmory iimitcd]

The proof of proposition 4.4.1D is facilitated by the following definition.
DEFINITION 4.4.1C
i. For i, ne N, we define ¢, ,€ %" as follows. For all xe N,

pdx), I Dx) <n,
1 otherwise.

QDL',”(X) = {

ii. We define W, , to be the domain of ¢, .

Thus ¢, ,(x) may be thought of as the result of running the ith Turing
machine for n steps starting with input x. If the machine halts within n steps,
then @, (x) = g,(x); if the machine does not halt within » steps, then ¢@; (x)
is undefined. Definition 4.2.2A implies that the set {{i,n,x>|@; ,(x)|} is
recursive.

Proof of proposition 44.1D The collection & of languages, which we will
show to be in [FFo°) gememery imited] byt ot jn [gFmemory tmited () gritimeT]
will be of the form % = {R U F|F finite}, where R is a fixed recursive set to
be chosen later. It is easy to see that each such class is identifiable by a
recursive, 1-memory-limited function, so it remains to choose R such that
P o [FFtime [} grmemory Himited] Riy I and define a recursive function f by

1, if @ pmio) = (Pi,k(r)('f): wheret =M x " U(Sx),
0, otherwise,

fG.o,x)= {

(Note that equality in the first clause means that both computations con-
verge and are equal) f is evidently total and recursive,

Fix R recursive, and suppose that ¢, & "ime N grrmemery limited 4o ¢3ch

that o, identifies &y, Let o’ be a locking sequence for R and ¢; such that,
* in addition, ¢y ,,(¢") converges.

Claim For all but finitely many x, xe R if and only if f(#',¢’,x) = 1.

" Proof of claim 1f xeR, then if 7, = ¢’ * x * a¢™, @;(1,} = ¢,(¢"). Now for
" all but finitely many x, @p 4. ,(t.) converges. Thus for all but finitelty many

XER, @y ye(T) = Py yan(0”), and therefore f{i’,0’,x) = 1. On the other

. hand, suppose that f(i’,d’,x) = 1. Then @,(¢') = @p{o" * x A oi) and this

common value is an index for R. Since ¢” is a locking sequence for R, we also
have that ¢,(c’ * 0¢™) = @,(c”). Let t be any text for R, Since ¢.(¢' " off") =
(0 x " og™) and ¢, is p-memory limited, @.(¢" * o A t,) = @p{c’ A
x gl At) for every m. But since the former must be an index for R, so is
the latter. Thus xeR else ¢; does not identify RU{x} on the text
oA xr e Ay,

The theorem will now be proved if we can show that there is a recursive
set R such that for all ¢ and i there are infinitely many x such that x e R if
and only if f(i,0,x) = 0. This follows easily by a direct diagonalization
argument (f is a total recursive function) or by an argument that depends
on lemma 4.3.3A. We leave the details to the reader. r

Proposition 4.4.1D should be compared with proposition 4.2.2A.

Finally, we show that memory limitation restricts the identification of
total, single-valued languages. Indeed, the next proposition provides more
information than this (and implies proposition 4.4.1B).

ProrosiTion 441E [F™),,, & [[FFmemory Limitedy

Proof Consider the following collection of total recursive functions:

C = { f|f is the characteristic function of a finite set
or f is the characteristic function of N'}.

If & is the collection of languages in RE,,, that represents precisely the
functions in €, it is easy to see that % e [#"],,,. Suppose, however, that
¢ £ grmemeny limited jqantifies &; we may suppose by lemma 4.4.1B that ¢ is
l-memory limited, Let ¢ be a locking sequence for ¢ and (the language
representing) the characteristic function of N, Let D = {x|{x,0) e rng(s)},
andlet ¢’ be a sequence such that t = ¢ » 6, * ¢ is a locking sequence for the
characteristic function of D. (The existence of such a ¢’ useg corollary 2.1A

72

== (/u ﬁ\ d(‘ -D

[
to the Blum and Blum locking-sequence lémma.) Let n be an integer such ’
that neither (n,0> nor {n, 1> is in o. Now oo * (n,0> * ;) = @l " ay),
since o is a locking sequence for @ and thzcha,racteristic function of N, and
80 (o " (1,03 * 6, " 0') = p(o * 6, * o’)by the 1-memory limitation of ¢.
But then if we lét ¢ be a text that begins with ¢ {n,0) ~ g, * ¢’ and ends
with an enumeration of the characteristic function of D except for the pair
¢n, 15, then ¢ must converge on ¢ to an index for the characteristic function
of D by 1-memory limitedness and the locking sequence property of o',
However, ¢ is a text for the characteristic function of DU {r} and not D con-
tradicting the fact that ¢ identifies the characteristic function of DU {n}.

COROLLARY 4.4.1A [grmemery limited] T .

Proposition 4.4.1F implies proposition 4.4.1B. Corollary 4.4.1A should be
compared to proposition 1.4.3C.

Exercises

44.1A Specify 1-memory-limited, recursive learning functions that identify the
following collections of languages.

a. {N — {x}lxeN}
b. RE,, {sce definition 2.3B).
c. {KU{x}|xeK}.

44.1B LetneN be given, and let @ g Frmemery Umited jdantify T € RE. Must there be
a locking sequence o for @ and L such that lh{c) < n? Mo~ F

441C Prove that Lg,-memnrylimited] n [ﬁlﬂime] g—F [gﬁ_—memnry limiledngf,—bdime] for a]l
total he F#7,

*441D Let a function F : SEQ — SEQ be given. pe & is called F-biased just in
case for all aeSEQ, if F(e) = F(r) and @(e7)} = @(r), then ¢{o) = ¢(z). To illus-
trate, let H : SEQ — SEQ be such that for all ¢eSEQ, H{s} = ¢~ 5. Then pe & is
H-biased if and only if @ is 5-memory limited.

a. Forne N, let G, : SEQ — SEQ be defined as follows. For all g SEQ, G, (o) is the
seqquence that resuits from removing from o all numbers greater than n. Thus
G4(3,7,8,2) = (3,2). Prove: Let ne N be given. If & e [# =47, then % is finite.
b. (Gisela Schifer) For neN, let H,: SEQ — SEQ be defined as follows. For
all 7eSEQ, H,(¢) is the result of deleting all but the last » different elements of o.
[Thus H,(8,9,4,6,6,2) = (4,6,2).] Prove that for all n > 1, [F° N FHbused] =

{ gFTee [} gF 1-memory limitcd}

*4 4.1E (John Canny) ¢ is said to be a subsequence of 7 just in case rng(e) S rag(t).
For ieN, m: SEQ — SEQ is said to be an i-memory function just in case for all

Identification Generalized

73

e SEQ, (a) m{s} is a subsequence of o, (b) Thim(s)) =i, and (c) rg{m(e)) —
mgm(o)} € {Oum). ©eF is said to be i-memory bounded just in case there is
some i-memory function m such that for all ¢ € SEQ, ¢(c) depends on no more than
e 1- P{0), and m{a)—that is, just in case for all o, Te SEQ, if 01y 1 = Gipy—15
w(o™) = @(r7), and m(g) = m(z), then p(0) = @{r). Thus a memory-bounded learner
~chooses his or her current conjecture in light of a short-term memory buffer of finite
capacity that evolves through time. The concept of i-memory bounded generalizes
that of l-memory limited inasmuch as ¢ € F is 1-memory limited if and only if ¢ is
0-memory bounded.

. Prove: For all ie N, [gFimemory bounded] = [g57

...Open question 441A [rg:memory 1imited] — [ﬁl-memury baundcd]?

: 4.4.1F FExhibit % < RE such that (a) forall L, L. € #,if L # L' then L and L’ are
“not finite variants, and (b) & e[F] — [grmemor limited],

*44.2 Set-Driven Learning Functions

We next consider learning functions that are insensitive to the order in
which data arrive,

DerFmniTion 4.4.2A (Wexler and Culicover 1980, sec. 2.2) e & is said to
be set driven just in case for all g, 7€ SEQ, if rng(s) = rmg(r), then plo) =
(7).

Example 4.4.2A

a. The function f defined in part a of example 1.3.4B and the function g defined in the
proof of proposition 1.4.3B are set driven,
b. The function h defined in part ¢ of example 1.4.2A is not set driven.

Identification of a language L requires identification of every text for L,
and these texts constitute every possible ordering of L. This consideration
encourages the belief that the internal order of a finite sequence plays little
role in identifiability. The comjecture is correct with respect to . (see
exercise 4.4.2A). However, the next proposition shows that it is wrong with
respect to ™.

ProrosiTioN 4.4.2A (Gisela Schiifer) [gFmee) grsatdriven] o [grree]

74 Identification Generalized -

Proof For each jdefine L; = {{j,x)|x€ N}. Given j and n, define gif =

RO AG I A e Ay, Now define

rng(o®), if there are n, s such that .
@o?™) = iand W, > mg(c”7)
and #, s is the least such pair,

{(j,05}), otherwise.

=
I

L=

Let & = {L, L{|jeN}. It is easy to see that £ €[F"™]. Suppose, h'ow-
ever, that £ e[FreN =] and suppose that @ is a set-driven
recursive function. Now if ¢, identifies &, ¢; identifics the text ¢ =
(RO Iy N e A,y » -, Thus there must be an neN and an
index i for L, such that ¢,(c*") = i. In particular, there must be an n an(‘i 5
such that g(a?") =i and W, = mg(e""). But then ¢; does not identify
rng(c”") since on the following text ¢’ = g™ » {j,my * (f,m "Gy " T
; must conjecture W, in the limit since ¢ is set driven. Thus ¢; does not
identify #. 0

Thus set-drivenness restricts #™° {but see in this connection exercise

4.4.2C). .
Although children are not likely to be sct driven, they may well ignore
certain aspects of sentence order in the corpora they analyze.

Exercises

4.4.2A Prove that [F 4] = [F].

442B Let g Ft9 identify RE,. Show that for all ceSEQ, o is a locking
sequence for ¢ dnd rg(o).

4.4.2C ProVé that if % contains only infinite languages, then & e[F#™] if and
only if & e[Fee (g driveny,

4.5 Constraints on the Relation betw;en Conjectures

The successive conjectures emitted by an arbitrary learning function need
stand in no particular relation to each other. In this section we consider five
constraints on this relation,

75

45.1 Conservatism

DeFmaTioN 4.5.1A (Angluin 1980} @ e & is said to be conservative just in
“case for all ¢eSEQ, if rng(a) & W, then ¢(6) = @(s7).

+'Thus a conservative learner never abandons a locally successful conjecture,
- a conjecture that generates all the data seen to date.

Exampie 4.5.1A

© g, The function # defined in part ¢ of example 1.3.4B is conservative.

“b. Both the function S defined in part a of example 1.3.4B and the function g defined
n the proof of proposition 1.4.3B are conservative.

“'¢. The function f defined in the proof of proposition 2.3A is not conservative.

Conservatism is not restrictive.
PrOPOSITION 4.5.1A [| = [oonservatlve],

Proof This proof depends on the characterization of classes & e[%]
givenin proposition 2.4A. Recall that if & € [#], then for every [, € & there
is a finite set D, < L such that if D, © I and L'€.%; then L' ¢ L. Now
given such an %, define | by

fls), ifa” # & and Wy,-, 2 rng(a),
least i such that L. = W,
and L = rng(e) 2 Dy,
.least index for rng(o),

Jlo) = if such exists and Wj,-, 2 rng(o),

otherwise.

By the first clause of the definition, f is conservative. Note further that for
all yeSEQ, W,,, = rng(y) (f is consistent), so this fact together with the
first clause of the definition implies that f never returns to a conjectured
langnage once it abandons a conjecture of that language.

To show that f identifies %, suppose that Le % and tis a text for L. If f(£)
is an index for L for any n, then f(z,} = f(t,) for all m > n. Further there is
an n’ such that D; < mg(t,) = L. Thus f will adopt the conjecture of the
least index for L on T, for some m > n’ unless there is an index i for a
language I’ # L such that f converges on t to i. Suppose for a contradiction
that such an i exists. Then L' = mg(t) = L, since Wy 2 mg(y) foraliy. Let
n be least such that f(z,) = i; f(%,) was defined by either the second or the

76 Identification Generalized * Strategies 77

third clause in the definition of f. If f was defined by the third clause, L' L 452 Gradualism

rng(t,) so that L = rng(} = mg(f,) = I/ = L; thus L = I/, contradicting
the assumption that L. # L. Suppose, on the other hand, that f(z,) is defined
by the second clause of the definition of f so that D;, < rng(z,) € L. Thus
L = D;, which by the property of D,, implies L. ¢ L'. But this contradicts
L'smgH)= L.

A single sentence probably cannot effect a drastic change in a child’s
grammar. We consider a corresponding strategy here. As a special case of
notation introduced in section 2.1 forc e SEQ and ne N, ¢ » n is the result of
concatenating # onto the end of o: thus (6,2, 4) " 3 is (6,2, 4, 3),

DerINITION 4.5.2A @ed is said to be gradualist just in case for all
6eSEQ, {¢{s ~n)lne N} is linite.

On the other hand, conservatism does restrict & °.

% TGC g conservalive gErec
ProposiTion 4.5.1B (Angluin 1980) [#7N 5% 1= 170 Thus, if ¢ € # is gradualist, then the effect of any single input on ¢’s {atest
conjecture is bounded. An argument similar to that for lemma 4.2.98
shows that gradualism is not restrictive.

Proof This argument is essentially the same as that of Proposition 4.4.2A,
Consider the class & of languages defined there and suppose that ¢, ™
is a conservative function that identifics . As we argued in proposition
4.4.2A, o; must identify the text t = {j,0), {j, 1, </, 2>, T for L;; thus
there is a least pair {n, s> such that ¢(t,) = iand W, - rng(t,). Then L; =
rng(t,) is not identified by ¢;, since on the text {j,03, {i1>, ..., {jn),
{J, 1, ..., @; must continue to output i by the conservativeness of ¢;. 0

PrOPOSITION 4.52A [gFemdualist] — [5],

Proof We will give an informal argument to show that if ¢ € F identifies
%, there is a ¢'€& such that ¢ identifies %%, and for all ¢eSEQ
{¢(c " n}|ne N} has size at most 3 by showing that ¢’ can be constructed
from ¢ so that it never changes its conjecture in response to a new input by
more than 1. The argument is a fall-behind-on-the-text argument as in
lemma 4.2.2B. What ¢" does on a text ¢ is to simulate ¢. Whenever ¢
changes its conjecture, say by n, ¢ then uses the next n arguments of £ to
change its conjecture by ones. If ¢ converges on £, so will @', although ¢’ will
start converging much later on the text.

There is a parallelism between consistency and conservatism. Both
strategies embody palpably rational policies for learning, both constitute
canonical methods of learning in the sense that neither is restrictive, but -
both strategies restrict #™°. Mechanical learners evidently pay a ptice for
rationality. '

Evidence that children are not conservative learners may be found in
Mazurkewich and White (1984). Since all the procedures invoked in the preceding proofcan be carried out

mechanically, we have the following corollary.

COROLLARY 4.52A [[gFrec) gremdualist] _ [giree]
Exercises . .
The next proposition shows that gradualism restricts memory limitation.
451A Prove:

a {3};’] — l:gj_'cnnsistenlnLg;cunservalive N (,i/,“pl‘l.'l(lEnl:I.
b. [la;;rec n ﬁcnnsislenl} 9; {r’a;‘rcc n r.gj."t:nnservasive]'
C' [g,—rec n t9;:'(‘—0]15(:[’\"3li\’C] $ [L?}.'I'EB n lgj;cunsis[em].

PROPOSITION 4.5.2B [gFeraduatist) grmemory limited) — [grmemory limitod

Proof Let L, be the two-element language {I,m}, and let % =
{LnJmeN}. Obviously % can be identified by a l-memory-limited
function. Suppose, however, that ¢ e gFeadualist () grmemory limited Suppose
for simplicity that ¢ is I-memory limited. Consider the texts t™ — 1,m 1,1,
1,.... Since ¢ is gradualist and @(£}") = ¢ for all m, ne N, there are m
and n, m # n, such that ("} = ¢(£}). Then, since ¢ is 1I-memory limited
and ¢ = ¢! for all k > 1, ¢ converges to the same index on ™ and ™. But
then ¢ does not identify both L,, and L.

4518

a. Let ¢ g greonsistent (] greonservative 1y given Show that for all 6 € SEQ, ¢ is a locking
sequence for g and W,,. .

b. Let @eFomerie jdentify text t. Show that there is no neN such that
W,y = mgl(t). (Thus conservative learners never “overgeneralize™ on languages

they identify.)

*4 5.1C Prove that [La/,'memﬂry limiteﬂ] — Eg‘;memory limited n fcunsistem ﬂ dafjconservalivc].

78 _ B Identification Generalized

Exercise

452A @e& is said to be n-graduatist just in case for all oeSEQ,
l{g(e ”~ x)|xeN}| <n Note that as a corollary to the proof of proposition
4.5.2A, [gi&-grﬂdualist] — [g;] and that [gg}graduaiislnﬁrec:l — [La/','rec]‘

Let n,me N be given. Let # = RE beasdefined in the proof of proposition 4.5.2B.
Prove: If ¢ ¢ gFmemadualist () gru-memory limited, then ¢ can identify no more than (2n)"*!
languages in %

453 Induction by Enumeration

One strategy for generating conjectures is to choose the first grammar in
some list of grammars that is consistent with the data seen sofar.

DeriniTion 4.5.3A (Gold 1967) @e# is said to be an enumerator just in
case there is total f €% such that for all ¢ € SEQ, @(0) = f(i), where i is the
least number such that tng(e) = Wjq,;in this case f is called the enumerating
function for @.

The function defined in part ¢ of example 1.3.4B uses induction by enumer-
ation; the cnumerating function for h is the identity function.

Induction by enumeration constraints the succession of hypotheses
emitted by a learner. This constraint is restrictive, but not for RE,,,.

ProrosiTioN 4.5.3A

i [Laf'cuumeraior] — [gg‘.']‘
H REsvi c [ﬁ;enumeraiur]svr

Proof

i Let L, = {x|x > n}, and let & = {L,|ne N}. & can certainly be identi-
fied; in fact there is a recursive function that identifies &. Suppose, however,
that ¢ is an enumerator with enumerating function [Were o to identity .,
tng(f) must contain indexes for each L,. Thus there would be i < j such
that Wy, = Wy, and f(@) and f(j) are the least indexes in rng() for Wy,
and W, ;. But then ¢ must, on any text for W, conjecture W, for some
k < i and so does not identify Wj;.

ii. The function k of proposition 1.4.3B that identifies RE,,, is an enumerator
with enumerating function f(x} = x. O

Strategies o

COROLLARY 4.5.3A [[gFenumerator (y grves] [grres],

Examination of the proof of proposition 4.5.3A(ii) leads naturally to the

" following result,

Prorosition 4.5.3B (Gold 1967) Let % < RE,_,, be re. indexable. Then

G G TEC g enumerator
- ZelFNF Tewt

* Exercises

: 4.5_3A Prove that fOl' some heyren_ [40/7k-timenga'consistentn @conservalive n
: Eggpmdem] $ [yenumcralor])

- 4538 Total fe is called strict just in case i # j implies W, + Wy, for all &

: gz enumeraior : H 1 3
JEN. peF is called strict just in case ¢’s enumerating function is strict.

Prove thﬂ.f‘. [g/:strict enumeralor] — [(g;ﬂﬂumerator:[

45.3C Prove proposition 4.5.38,

#*4.5.4 Caution

Conservative learners do not overgeneralize on languages they do in fact
identify, since once a conservative learner overgeneralizes it is trapped in
that conjecture (see part b of exercise 4.5.1B). However, a conservative
learner may well overgeneralize on a language it does not identify. We now
examine learning functions that behave as if they never overgeneralize.

Dermirion 4.54A @ e is called cautious just-in case for all o, e SEQ,
Wa ») is 10t a proper subset of W,

Thus a cautious learner never conjectures a language that will be “cut back”
to a smaller language by a later conjecture. Both the function f defined in
Example 1.3.4B (part a) and the function g defined in the proof of propo-
sition 1.4.3B are cautious.

Caution is an admirable policy. A text presents no information allowing
the learner to realize that it has overgeneralized; consequently the need to
cut back a conjectured language could result only from a prior miscalcu-
lation. These considerations suggest that caution is not restrictive,

ProrosiTION 4.5.4A [Foautons] — [#].

80 Identification Generalized

Proof The function f defined in the proof of proposition 4.5.1A is cau-
tious. Fot if Wy, ay # Wy, then Wygag =2 rg(c * 7), but Wy, 2 mglo 1)
since conjectures are only abandoned by f if they do not include the input,
Thus W) Wrang- 0O

As in the cases of consistency and conservatism, the calculations required
for a cautious learning policy sometimes exceed the capacities of comput-
able functions.

PRrOPOSITION 4.54B [ZFree N gFeavtions] [g™,

Proof Again, the class & of languages in the proof of proposition 4.4.2A is
the desired example of a class % e[# 7] that cannot be identified by
@ e Frree N Feetiens For if g, identifies ¢ = {,07, {J; 1%, ..., as before, ¢;
must conjecture some i such that gt} =i W, D rng(t,), where L} =
mg(Z,) e &. But then g;on text t = (5,00, {jy 1>,..., {nd, (jshd, ..., can
never later conjecture any L < W,. However, L} < W,. 01

Exercises

4.54A Prove that [gFeee) greonservative) geoaations] — [grree () g& conservative’]

4.5_41)' P[OVG that {“g,-mc ﬂ ﬁ'caulious] ; [ﬁ'“ ng,-cunser\ralive}_
(Hint: See the proof of proposition 4.5.1B.)

*4.85 Decisiveness

Let ¢ € F be a strict enumerator in the sense of exercise 4.5.3B. Then ¢
never returns to a conjectured language once abandoned. The next defi-
gition isolates those learning functions whose successive conjectures meet
this condition.

DerFmuTioN 4.5.5A @e# is called decisive just in case for all 0 e SEQ, if
Woia) % Waie» then there is no te SEQ such that W, a o = Wy

Both the function defined in example 1.3.4B (part a) and the function g
defined in the proof of proposition 1.4.3B are decisive. !

Like caution, decisiveness appears to be a sensible strategy. It is not
restrictive.

81

PROPOSITION 4.5.5A [Froesise] = [F7],

Proof The function f defined in the proof of proposition 4.5.1A is deci-
sive, as was remarked in the proof immediately following the definition of f.
There is a general fact here of note: conservative, consistent learners are
also decisive (see exercise 4.5.5D). O

The next result shows that decisiveness does not restrict #™¢ in the
context of RE_,.

ProposiTION 4.5.58 (Gisela Schiifer) [#recn gdeosive] = [gFree]

_' Proof (proof due to Gisela Schifer) Suppose that 8% identifies

¥ eRE,,,. We will define i € #7°° (1 g *°“i*I* which identifies .%. It is easy
to see that we need only define ¥ on sequences ¢ of the form ¢ =
(€0,x07,<1,x9,...,{mx,») (cf. exercise 4.2.1C). We may also suppose
that the conjectures of # arc indexes of partial recursive functions rather
than indexes for r.e. sets. This is because for j € N we can effectively compute
an index i such that if W, represents a partial recursive function, W, repre-
sents @,. Define for each i, ¢;[n] = (<0, p(0)>,...,<{n, @{n)>). Suppose
then that o =({0,xp>,...,{mx,>) and that 8()=i Let k=1+
max{m|8(F,) # i}. Define a recursive h by

X5 x <k,
%(i,k)(x) = < (x), ifx >k, forally < k, ¢,(y) = x,, and O(p,{x]} = i,

diverges, otherwise.

Now define y(o) = h(i, k).

Informally, if @ appears to be converging after the first k elements of input
to ¢;, then @, ; is defined to agree with the input through k elements and,
provided that g, agrees with the first k input elements, ¢, ,, is also defined
to agree with ¢, through the longest initial segment such that ¢, is defined
and § appears to converge to i on that initial segment of ¢,. 4

It is clear that W(c7) 3 (o) if and only if 8(c") # 6(s). Further, if #
converges on an increasing text for ¢, to { and ¢, is total, then y converges
on ¢ to h(i, k), where k = max{ml6(t,) # i}. Also in this case 4(i, k) is an
index for ¢;. Thus i identifies at least as many total functions as does 6.

TQ show that y is decisive, suppose that o = ({0,x,>,...,<0,x,>) and
that (o) # W(67). Suppose that (o} = h(i, k) and y{c™) = h(i', k). Note
that k' = n. There are two cases,

82'._ S whdification Generalized

Case 1. Suppose that n is not in the domain of Pugip- Then Yo A 7) is not
an index for Puie) for any =, since the domain Of Quangy 2 {0,1,2,..., n} for
all = by the first clause in the defintion of k(i).

Case 2. nis in the domain of Puiny- Then B(gp,, wlr]) = i and so, in
particular, ¢ Pug] But Pup(a ~ 1y €Xtends ¢ for all 1 SEQ, again by the
first clause in the definition of A(i, k). Thus in this case also, (¢ * 7)isnot an
index for Pyioye O

Whether decisiveness restricts #°° in the general case is not known.
Open question 4.5.54 [gFreeq) Frdeelsive] — [gereey

Exercises

4554 o €5 is called weakly decisive Just in case for all ge SEQ, if ple) # (o),
then thercis no ze SEQ such that g(o » T} = (o), that is, weakly decisive learning

functions never repeat a conjecture once abandoned. Prove that [grreep
g,;wcnk[y decisivc] — {g;’recj .

4558 Prove that [Fremmerator] | g deelsivey
455C Prove that [N & conseIvalive] - | grree 1y g doetsivey

4_5_5]) Prove that g consistent] g& conservative - g:decisivel

_—

4.6 Constraints on Convergence

constraints on convergence that limit the freedom of learning functions in
these ways.

4.6.1 Reliability

A learner that occasionally converges to an Incorrect language ma'y be
termed “unreliable.”

Strategies 83

DEFINITION 4.6.1A (Minicozzi, cited in Blum and Blum 1975) gpe% is
called reliable just in case () @ is total, and (i) for ail t & Fif p convergesont,
then ¢ identifies ¢,

-

Example 4.6.1A

a. The function f in example 1.3.4B (parta}is reliable, for f identifies every textfor a
finite language and fails to converge on any text for an infinite language.

b. The function f defined in the proof of proposition 2.3A is not reliable, forifnis an
index for N, then f converges on the text n, m, n, .. ., but fails to identify it.

Reliability is a useful property of learning functions. A reliable learner
never fails to signal the inaccuracy of a previous conjecture. To explain, let
S e bereliabie, let £ be a text for some language, and suppose that for some
LueN, f(t,) = L If W, % rng(s), that is, if i is incorrect, then for some m > H,
f(&,) # i (otherwise, f converges on ¢ to the incorrect index i, contradicting
S’s teliability). The new index S(t,) signals the incorrectness of 7. Tt might
thus be hoped that every identifiable collection of languages is identified by
a reliable learning function. Tt might also be conjectured that children
impiement reliable learning functions on the assumption that any text for a
ronnatural language would lead a child to search ceaselessly for a success-
ful grammar, ever elusive. In view of these considerations it is interesting to
learn that reliability is a debilitating constraint on learning functions.

PrOPOSITION 4.6.1A Let g ¢ goretiable identify L& RE. Then L is finite.

Proof This is a straightforward locking sequence argument. Suppose that
@ € FN2be identifies L: let ¢ be a locking sequence for ¢ and L. Then, if
tE=6"0p"a," -, @ converges on £ to an index for L. Thus L =

rng{t) = rngfo) which is finite. O
COROLLARY 4.6.1A [greliable] — [5],
The next definition relativizes reliability to RE,,,.

Dermvrtion 4.6.1B (Minicozzi, cited in Blum and Blum 1975) e is
called reliable-svt just in case (i) ¢ is total, and (ii) for all texts ¢ for any
LeRE,,, if ¢ converges on ¢ then ¢ identifies ¢.

g4 ’ Identification Generalized

Since RE,,, is identifiable (proposition 1.4.3C), RE,,, is identified by a
learning function that is (somewhat vacuously) reliable-svt. The interaction
of Freiablest and ™ is more interesting, as revealed by the following
results.

ProposiTioN 4.6,1B (Minicozzi, cited in Blum and Blum 1975) Let %,

Ple [gj;rcc N frélinble-svt]sw bc given. Thcn Uy € [g_-rec N Lg;;reliablc-svt]“t.
Thatis, [#77°° N grrelisblesn] s closed under finite union (cf, exercise 2.2D).

Proof of propesition 4.6.1B We give an informal proof and invite the

reader to formalize it. Suppose that i and ' e F7°¢ () gFrelizblesv jdentify 2.

and & in RE,,, respectively. Then we define ¢ € 977 grreliable-svt 50 5]
lows. On text ¢, outputs the conjectures of until i changes its mind.
Then ¢ outputs the conjectures of i until it changes its mind, and so forth,
If t is a text for a language L'e % which ¥ does not identify, then ¢ will
always abandon its yr-like conjectures for the eventually stable y' conjec-
tures. Similarly for Le .%. Should ¢ be a text for a language that is not in
Z£U#, then ¢ will change its mind infinitely often. [

Now recall definition 1.2.2D of “S < N represents T < N2.”
DermaTion 4.6.1C

L e F is said to be almost everywhere zero just in case ¢(x) = 0 for all but

finitely many x € N. The collection { L & RE, | L. represents a function that is

almost everywhere zero} is denoted: RE, .

il. peF ™ is called self-indexing just in case the smallest xe N such that
@(x) =1 is an index for @. The collection {LeRE_,|L represents a self-
indexing function} is denoted: RE,;.

ProrosiTion 4.6.1C (Blum and Blum 1975)

i. RE, e [#7],.,.
i REacz € ['g‘;rec M g;rehabl:-svtjsvv
iti. RE;URE, . ¢ [F ...

Proof For i and ii, the obvious methods for identifying RE,; and RE,,, |

work.

For iii, suppose that \f identifies RE,,,. We will define a recursive function
Jf by the recursion theorem such that f is self-indexing and if L represents f,
then i does notidentify L. To apply the recursion theorem, we define a total

.(th(i) = 1.

If x > i, and @, p) has been defined for all y < x, define ¢, (x) as follows.

For every integer ndefine o = (0,05, {103, ..., i — 1,0, (i, 1>, i + 1,

Gl + 105 - < — 1 gy — 1)), {x,03, ..., {x + n, 0>). Enumerate
- simultaneously W0, W), -, Wyn for increasing n until a pair {x +
"M +1, 0> appears in W, for some M. Then define @,(x) =+ =
 Qugx + M) =0 and @u(x + M + 1) = 1. Such an n will exist, since the

sequences o, 1, 62, ..., are inilial segments of a text for a function in
RE,.,. Thus @, is total for every i.

‘Let i’ be such that @,y = @,. By the definition of @y, @y = @4 is
self-indexing. But there are infinitely many x such that for the correspond-
ing M and o™, (o) is an index for a set that does not represent ¢;, since
Gi* +t M+ =gx+M+1)=1, but {(x+M-+1, 0>eW,u.
These o™ are initial segments of the same text ¢ for @y, S0 Y does not
converge on a text for @, O

Thus {F],, is not closed under finite union (cf. exercise 2.2D). The
following corollaries are immediate from the two preceding propositions.

COROLLARY 4.6.1B RE, ¢ [F oo grreliablesvy

COROLLARY 4.6.1C [FFree) grretiablesvty o Fgrree]

Exercises

46.JA @e# is called weakly reliable just in case for all texts ¢t for any LeRE, if ¢
converges on t then ¢ identifies ¢. (Thus weakly reliable learning functions need not
be total). Prove the following strengthened version- of proposition 4.6.1A: let
¢p € g7 weakly reliable j4.nyify I, e RE, Then L is finite.

4.6.1B (Blum and Blum 1975) Let total f € #™ be given. Suppose thatforallieN,
qof(i) e FeeN g‘;‘reiiahle-svt' Show that UieN [{[Pf(i}} :iswe {g;rec n grehable-svt]s"' This
result generalizes proposition 4.6.1B.

*4.6.1C @e# iscalled finite-difference reliable just in case for all texts t for any
LeRE, if ¢ converges on ¢, then ¢ converges to a finite variant of rng{t) (see
definition 2.3A). Thus @ e # is finite-difference reliable just in case ¢ never con-
verges to a conjecture that is “infinitely wrong.” Reliability is a special case of finite-

g6 Identification Generalized

difference reliability. Prove the following strengthened version of proposftion

4.6.1A: let finite-difference reliable p e # identify L ¢ RE. Then L is finite.

4.6.2 Confidence
A learner that converges on every text may be termed “confident.”

DernaiTion 4.6.2A e is called confident just in case for all te 7, ¢
converges on £.

Thus confidence is the mirror image of reliability.

Example 4.6.2A

a. The function f defined in the proof of proposition 2.3A is confident.

b. Neither the function f defined in example 1.3.4B (part a) nor the function g
defined in the proof of proposition 1.4.3B is confident since neither converges on any
text for N.

Children are confident learners if they eventually settle for some approxi-
mation to input, nonnatural languages.

Prorosimion 4.6.2A [gFeontident] o [],

Proof REg, e[#). Suppose that pe & identifies RE,. We construct
sequences o, o, ..., such that ¢ does not converge on g% glh)
demonstrating that ¢ ¢ gFeonfident Te(50 be the shoriest sequence of zeros
such that ¢(c”) is an index for {0}. Since @ identifies {0}, o exists. Now let
o' be the shortest sequence of ones such that @(c®*¢') is an index for
{0,1}. Given ¢" 1, let ¢" be the shortest sequence of n’s such that
(e * -+ ~g"isan index for {0, 1,...,n}. Obviously ¢ does not converge

ODO.OA.../\O-"A..._D

The next proposition shows that confidence and %7 restrict each other,
First, we prove a lemma.

LEMMaA 4.62A Let ¢ e F°°°0ent he aiven, Then for every L eRE, there is
o e SEQ such that (i) rng(s) = L, and (ii) for all e SEQ such that rng(t) < L
p(a ~ 1) = ¢(o).

Strategies 87"

Proof This is much like the proof of proposition 2.1A, the locking se-
quence lemma. If such a ¢ did not exist, we could construct a text ¢ for L on
which ¢ does not converge, contradicting its confidence. o

PROPOSITION 4.6.2B ["¢ N g oonfident] — [grveo] ([groontident]

Proof & = {KU{x}|xcK} is the needed collection. We have noted

before that Fe[F#7] (see exercise 4.2.1A). The following defines
. fe[Feomneent] which identifies

index for K, if rng(o) < K,
- floy =

index for KU {x}, if x is the least clement of rng(s} — K.

confident

Suppose however that pe F™NF and identifies %. By lemma
4.6.2A there is a sequence o such that rng(o) = K and if mng(t) < K, (o M) =
(o). But then, much as in the proof of lemma 4.2.1C, we now have a way
of enumerating K, for, xe K if and only if there is a sequence ¢ such that
mg(t) = K and @(o* x 1) # (o). 0

Exercises

4.6.2A Recall the definition of % x &' from exercise 14.3F. Prove: Let
ge{rgf,—cnnﬁdcnl] and gle[‘g,,—confidcm] be given. Thcn, P x Q'E{ﬁ““"ﬁdem}.

4.62B % < RE is called a w.o. chain just in case % is well ordered by inclusion.

a. Exhibit an infinite, w.0. chain in [™.

b. Prove: If % = RE is an infinite w.o. chain, then & ¢ [g confident]

¢ e is Called conjecture bounded {or cb)just in case foreveryte 7, {0t }|me N}
is finite. Thus @ € #°" just in case no text leads ¢ to produce conjectures of arbitrary
size. Prove: Let % be an infinite w.o. chain, thefi @3¢ L],

d. Prove that [gFeonfident] - [#°¥],

4.6.2C

a. % < RE is called maximal just in case & e[#], and there is LeRE such that
FU{LY¢[F]. To illustrate, proposition 2.2A(if) shows that the collection {N —
{x}|xe N} is maximal. (Compare the deftnition of “saturated” given in exercise
2.2E) Prove that if % < RE is maximal, then .& ¢ [# "] Obtain proposition
4.6.2A as a corollary to this result.

b. Prove: Let Pe[Feoniden] and Felgeoafident] be given. Then
& U e[gFoontident] Obiain part a of the present.exercise as a coroilary to this
result.

Identification Generalized

4.6.3 Order Independence

As a final constraint on convergence we consider learning functions that
converge to the same index on every text for a language they identify.

DermaTion 4.6.3A (Blum and Blum ‘1975) @ is called order indepen-
dent just in case for all LeRE, if ¢ identifies L, then there is i< N such that
for all texts ¢ for L, ¢ converges on ¢ to i.

Thus an order-independent learning function is relatively insensitive to the
choice of text for a language it identifies: any such text eventually leads it to
the same index (even though such behavior is not required by the definition
of identification). Note that different texts for the same identified language
may cause an order-independent learning function to consume different
amounts of input before convergence begins (just as for order-dependent
learning functions).

Example 4.6.3A

a. Both the function f defined in example 1.3.4B, part b, and the function g defined in
the proof of proposition 1.4.3B are order independent.

b. The function f defined in the proof of proposition 2.3A is order independent.

c. The function f in the proof of proposition 4.4.1A is order independent.

It is easy to see that order independence is not restrictive. The relation of
order independence to # ™ is a more delicate matter; the following con-
sideration suggests that it is restrictive. An order-independent learning
policy seems {o require the ability to determine the equivalence of distinet
indexes. But the equivalence question cannot in general be answered bya
computational process; indeed, the set { (i, j>| W, = W} is not even r.e. (sce
Rogers 1967, sec. 5.2). Contrary to expectation, however, order indepen-
dence turns out not {o restrict FHree,

Prorosition 4.6.3A (Blum and Blum 1975) [#F7ee () grorder independent]
[g;’rec].

The proof of proposition 4.6.3A depends on a very important construc-
tion due to Blum and Blum. We will first give this construction and then
derive from it a corollary concerning classes % e[#F 7. We will then use

89

‘this corollary to establish proposition 4.6.3A. Following that, we will

éstablish lemmas 4.3.4A and 4.3.4B and thereby Fulk’s proposition that
rudence does not restrict recursive learning functions (proposition 4.3.4A).

‘Construction (the locking-sequence-hunting construction) Suppose that
peF" identifies #. Now by lemma 4.2.2B there is a total recursive
function f such that f identifies &. By proposition 2.1A, for every Le &

there is a locking sequence ¢ for f and L. We will constroct g e #7°° so that
on any text t for L, g converges to f{o), where o is the least locking sequence
for f and L. (Recall that sequences are identified with natural numbers so
that the terminology “least locking sequence” is appropriate.)

Given 1, let ¢ be the least sequence such that ¢ < 7 and

1. rng{o) < rng(z),
2. for all y < ¢ such that

a. rmg(y) < rmg(7),

b.ogcy,

¢. Th(y) < 1h(z),
o) = f&).

o exists since ¢ itself satisfies ! and 2. Define g(t) = f(s). ¢ is recursive since
only finitely many sequences need be checked to define g(z).

Claim 1f f identifies L and 1 is a text for L, then g converges on t to f(o),
where o is the least locking sequence for f and L.

Proof of claim Let o be the least locking sequence for f and L, and let n be

- such that rng{s) = mp(t,) and & < ¢, Since o is a locking sequence for L

and tis a text for L, it is clear that for every m > n, o satisfies both 1 and 2 for
t = t,,. Thus for each m > n, g(f,,) = f{o)} unless there is ¢ < o such that ¢’
also satisfies 1 and 2 for © = ,,. Since no such ¢’ can be a locking sequence
for f and L, there must be a y such that y = ¢, rng(y) <= L, and f(y) # f(&).
{Otherwise, either ¢’ would be a locking sequence for f and L or § would
converge on some text for L to an index, f(o’), for a language other than
L) But then if m is such that mg(y) =%, and y <I,,, ¢’ cannot satisfy 1
and 2 with t = ¢,,. Thus, for almost all m, g cannot conjecture f(¢”) for any
o' <o.0O

CoroLLary 4.6.3A For every & € [#™°], thereis a g = #™° that identifies
& such that for all LeRE, g identifies L if and only if there is a locking

90 Identification Generalized

sequence for g and L. Furthermore, if g identifies L, g converges to g{g),
where ¢ is the least locking sequence for g and L.

To prove the corollary, we need to modify the construction slightly.,

Proof of corollary 4.6.34 Let p be a recursive padding function as
supplied by lemma 4.4.1B. In the construction g(t) was defined to be equal
to f(o) for some o. Modify the construction so that g(7) = p(f{e), o).
Now if g identifies L. e RE, there is a locking sequence for g and L; this is
just proposition 2,1A. So suppose conversely that LeRE and that ¢ is a
locking sequence for g and [.. This means that there is a2 ¢' < ¢ such that
glo) = p(f(¢"), ¢}, and furthermore for all y such that ¢ < y and rg(y) < L,
g(y) = p(f{g'),). Now suppose that ¢ is any text for L. Let n be such that
rng(s) < §, and ¢ <t,. Then g(i,) = p(f(s"), 0} since o' satisfies 1 and 2
fort =7, and if ¢” < o satisfies 1 and 2, then ¢” would satisfy 1 and 2 for
T = ¢ also, contradicting g{s) = p(f(¢"), ¢’). Thus on ¢, g converges to

p(f(e).0). 0

Proof of proposition 4634 Let ¥4 ™ and g be as in the proof
of the corollary. Then if g identifies L, g converges on every text ¢ for L
to g(o), where o is the least focking sequence for g and L. Thus g is order
independent. 1

We may now return to lemmata 4.3.4A and 4.3.4B whose proofs were
deferred to this section.

Lemma 434A [%™°] is re bounded if and only if [F™] =
[tg;rcc al gyprudent]-

Proof Suppose first that [F™] = [Free N grrudent] [et @ e[F°]. Let
peFrengrmdent jdentify #. Then tng(ep) is an te. set § since ¢ is
recursive. Since ¢ is prudent, ¢ identifies &' = {W;|[icS}. ¥ is r.e. index-
abie and so witnesses that [# 7 N F P4 g r.e. bounded.

Suppose, on the other hand, that #™°is r.e. bounded. Let % € #™° and
fet ¥ = % be such that some ¢ € #"° identifies %’ and #"is r.e. indexable,
say by ther.e. set 8. By proposition 4.6.3A, let g be a total order-independent
recursive function that identifies %" 2 %'. We show how to construct a
prudent f that identifies % {and hence #). Let s,, 54, ..., be a recursive
enumeration of 8. If lh(s) = 1, define f(o) = s,. If n = 1h(o)} > 1, for i < n,
let o' be a sequence constructed from the elements that have been
enumerated in W, by stage n in order of enumeration. Then define

91

if i is least such that g(c') = g(0),
if there is no such i

5
o) = _
©) wa
“Since g 18 order independent and identifies %", f will converge on any text ¢t
‘for Le #' to s; for the least i such that s, is an index for L. Since every index

in § is an index for a language in %" and f outputs only indexes from 3, f is
-prudent. N

‘Lemua 4.3.4B (Mark Fulk) % is r.e. bounded.

Proof (Mark Fuik) Let % bein [#™°]. By corollary 4.6.3A, % is identifi-
able by some g such that g identifies L if and only if there is a locking
sequence for g and L. We now give an r.e. indexable collection #” such that
#e[F°] and £’ = ¥ thereby exhibiting that [%7°] is r.e. bounded.
There are two cases.

Case . Suppose that g identifies N.
Define a recursive function f by

@, ifmgo) ¢ W,
W, ., il o is a locking sequence for g and W),
N,

Wiy =
otherwise,

To see that f defined in this way is recursive, we argue informally. Given o,
to enumerate W;,,, compute g(c} and enumerate nothing in W, until a
stage s such that W,,, , contains all of rng(g). Then begin enumerating all of
W, into Wy, until there is a sequence y such that y 2 o, rg(y) & Wy, and
g(y) # g(o). If such a y exists, then begin enumerating all of N into W,
Since f'is recursive, § = { f(o)|ce SEQ} isr.e. On the other hand, since &
and N are identified by ¢ and since g identifies every L such that thereisa
iocking sequence for g and L, g identifies every language with an index in S.
Case 2. g does not identify N.

Define a recursive function f by

@7 ifrng(a) $ pT{«J{a);\
W,oys if o is a locking sequence for g and W,

{0,1,...,y}, where y is the maximum element enumerated in
W, when it is discovered that ¢ is not a
locking sequence for W,,.

Wity =

Again, it is easy to give an informal description of the algorithm for
enumerating W, given o.

Identification Generalizeq

Wie) = rg(s). To see that %' e [F <], define he F™° as follows:

h(o) r(g), ifrng(o)isan initial segment of N,
a) =
glo), otherwise.

Since g does not identify N, h identifies all that g does together with ail -

initial segments of N (cf. exercise 4.2.111). b

Exercises

4.6.3A Show that [.FFee) grorder independent) go _ [giree)] as & varies over

the foilowing strategies:

a. Nontriviality

b. Prudence

¢. Consistency

d. Memory limitation
¢, Confidence

*4.6.3B (Gisela Schiifer) ¢ec & is said to be partly set driven just in case for all 7,
1eSEQ, if Ih{s) =1h(x) and rng(o) = rng(z), then ¢@(o) = p(z). Prove that
Lg;rec N =g;)arﬂy sel drjven] — [5‘7“‘:],

463C t,t'ed are said to be cousins just in case

a. rng(f) = rng(t",
b. there are n, me N such that t,,,, = ¢/, for all ie N.

@€ F is called monotonic just in case for all t, e 7, if ¢ and ¢’ are cousing, and ¢
identifies 1, then ¢ identifies ¢'.
Prove that [#™enetenic] —_ [o7 (Hing: See exercise 44.2A)

Open question 4.6.34 [FrNF menatenie] — [grresTy

*4.7 Local and Nonlocal Strategies

There are an overwhelming number of potential learning strategies. As a
consequence classificatory schemes are needed to suggest general prop-
erties of large classes of strategies. Two classificatory principles have
already been advanced in the discussions of countable strategies (section
4.1} and r.e. bounded strategies (definition 4.3.4B). In addition exercise 4.7C

The set § = { f{o)|ceSEQ} is an r.e. index set for some collection of .
languages, % Letr be a total recursive function such that for evety 6 e SEQ,

rategies 93

efines a classification of subsets of # ¢ The classification provided by the
itles of sections 4.2 through 4.6 might also serve as the beginning of a
: assificatory scheme, if it could be rendered formally precise. In the present
section we offer yet another classificatory principle.

Compare the strategies of consistency (definition 4.3.3A) and confidence
definition 4.6.2A). Intuitively membership in consistency can be deter-
mined by examining a function’s behavior in many “small” situations;
pecifically, it is sufficient to determine whether ng(s) = i) fOT every
'oeSEQ. Since SEQ is infinite, there are infinitely many situations of this
nature to check; nonetheless, each such situation is “small” because each
‘o€ SEQ is finite. In contrast, this kind of checking is useless for determining
“membership in confidence, Rather, determination of confidence requires
3 examining a function’s behavior on entire texts in order to verify conver-
gence, In this sense consistency, but not confidence, may be termed a “local”
strategy. Looked at from another perspective, a learner can “decide” to
embody a given, local strategy by pursuing a policy bearing on small
situations. In contrast, to embody a nonlocal strategy, the learner must
arrange his or her local behavior in such a way as to conform to a more
global criterion.

We now make this precise,

DeriNiTION 4.7A

L The set {p € # |the domain of ¢ is finite} is denoted: FFin,

il. Let learning strategy & be given. & is called local just in case there
is a subset F of #7 such that for all pe&, pe& if and only if
WeFmly gl k.

The subset F of #" in definition 4.7A(ii) represents the set of local
examinations that enforce membership in .&.

LEMMA 4.7A

i. There are 2%° many local strategies.
i, There are 22 many strategies that are not local,

Proof

i. There are ¥, many functions in #*", Thus there are 2% many subsets F of
" The local strategies are in one-to-one cotrespondence with such
subsets.

Identification Generalized -

ii. There are 2™ many functions in & so 2% many subsets of #. Thus there
are 227 - 280 — 22 many nonlocal strategies. 1

Thus “most” learning strategies are not local.
ProrosiTion 4.7A The following learning strategies are local:

i. Nontriviality

ii. Consistency '

ifi. 1-memory limita{ion
iv. Conservativism

Proof These are very easy. We will just say how to choose the .F in the
definition of locality.

i. F ‘a/-,'fm ﬂ ﬁnnntrw:al
ii. F = {g|domain of ¢ is finite and if Cp(O') converges, then rng(o-} S Wyt

111 F J(, gz fin ﬂ 9,— 1-memory hm:ted
iv. F = a—fm NgF fcnnservauve 0

Prorosition 4.7B The following learning strategies are not local:

i. Computability

i. Prudence

ifi. Reliability

iv. Confidence

v. Order independence

Proof The key property of each of these strategies &7 is that for every
pe FUn there is a ¢’ € & such that ¢ < o',

Thus for each of the strategies listed, were it to be local, the set F would
equal all of #ti8, But this would imply that % = % which we know to be
false for all of the strategies listed. 0 \

Exercises

4.7A Show that memory limitation is not a local strategy.

478 Classify the remaining learning strategies discussed in sections 4.2 through
4.6 in terms of locality.

47C Let ¥ < #™° be given. & is said to be r.e. indexable just in case & =
{@jc W;} for some ie N. & is said to have an r.e. core just in case there is &' < &

95

: such that % is r.e. indexable and [.9"’] [#]. A strategy without r.e. core may be .
~considered intrinsically complex, in a certain sense.

a. Show that 77 1.7 has an r.c. core. (Hint: See proposition 4.2.2A.) Conclude
“ihat there are non-r.e. indexable strategies with r.e. cores.
“b. Show that not every & < %™ has anr.e. core. (Hint: Consider 77] genontrivial,
ee section 4.3.2.) -

