Computers in Search of the Truth 159

7

Hoid if!
These stairs

don't go that high. \/

Then why am |
climbing them?

Computers in Search of the Truth

Figure 7.1

. - frailties, then inductive methodology would be the world’s shortest
L. Ideal Epistemology and Computability jcct;. believe the whole truth and nothing but the truth. Tt is a candid

So far, our study of inductive methodology has acceded to the time-hons ider probabilities, inductive logics, and confirmation theories in the first
cult of the ideal agent. An ideal agent is a curious sort of deity who s lirnite ‘ _
in evidence-gathering ability more or less the way we are, but who suffers fr unidedness makes little sense on the face of it (Fig. 7.1}, and makes far less
no computational limitations whatsoever. An ideal agent can demde ' e in light of the strong analogies between computability and ideal inductive
mathematical relations in an instant, but in a dark room he bumps int ence that were discussed in the preceding chapter.
walls with the rest of us. Oﬁe solution is to find some hypothetical imperatives that justify approxi-
' Whatever we are, we are not ideal agents. If cognitive psychologist ons to the ideal directly. Maybe one can define degrees of else, so that it
tight, we are computers. But a methodologist needn’t debate the point, si to all that greater degrees of else are more horrible than smaller degrees
methods should. be routinely followable, without appeal to arcane power se: If one can also define degrees of approximation to the ideal that are
mgsight that cannot be accessed at will. A. Turing’s conception of the Tur able by bounded agents, then one can say strive harder and you will get
machine was intended to explicate just this notion of explicitly direc te:'This solves the problem, but it also seems to jettison the ideal. The degrees
method-driven behavior. Accordingly, Turing computability seems a natu the. ideal are not ideal norms, but rather bounded norms achievable by
constraint to impose on methedological principles. ded agents. The ideal, itself, ceases to do any work, and we are back to
Ideal epistemologists propose norms for the conduct of ideal scientists putationally bounded methodology.
computational agents cannot do what ideal agents can do. In fact, this different approach is to hold that an ideal norm is binding in a given
extreme understatement: there are uncountably many distinct problems solv if and only if it is achievable. If it is not achievable, then the violator is
by noncomputable agents, but there are at most countably many distin ven.! On this view, a computationally bounded agent is left entirely without
problems that are solvable by computational agents. If ought implies can, the :
we should expect computationally bounded methodology to be different fr
ideal methodology. In this chapter, we will consider both the differences an
the similarities between ideal and computationally bounded methodology,
from a logical reliabilist point of view.
The ideal epistemologist might respond that ideals also bind computab
agents, who should strive to satisfy the ideal even though exact complianct
impossible. That is not my opinion, however. If ideals may be utterly indiffer

“Standards of ideal rationality are not limiting cases of standards of bounded
nality. The standards are ideal in the sense that the capacity to satisfy them is one
ch an ideally rational agent, in contrast to a human agent, possesses. To advocate
andard of ideal rationality is not to promote realizable actions which approximate
rescriptions of such standards. Rather it is to promote conformity to such standards
ever that is feastble. The standard is an ideal in the sense that often we are incapable
eting its requirements. In that case, we are urged to devise ways and means of
ying these requirements in a larger number of cases” (Levi 1990): 214.

160 The Logic of Reliable Inquiry Computers in Search of the Truth 161

guidance in many cases unless unachievable ideals are augmented with achie
able norms achievable in those cases. :
Ideal methodology is not bad in itself. What a demigod can’t do, a compi
can’t do. If a problem is so hard that gods cannot solve it, to say merely
it is uncomputable is like saying that Everest is a bit of a hifl. Another re
for interest in ideal methodology is that it enables us to separate the pux
topological (informational} dimensions of a problem from its purely compy
tional dimensions by comparing the degree of underdetermination of a probj
for ideal agents with its degree of underdetermination for computation:
bounded agents. .
Ideal results are fine so long as they are contrasted with and qualifiei
their computational counterparts. T depart company, however, when 'id
results are portrayed as what is essential to methodology while computationa
considerations are brushed aside as bothersome details of application. A
saw in the preceding chapter, classical skepticism and the modern theory
computability are reflections of the same sorts of limitations and give ri
similar demonic arguments and hierarchies of underdetermination. 1
accordingly treat computational boundedness as a full partner with percept
boundedness, rather than as an accidental afterthought,

§ is recursive, then a computer can succeed with certainty after scanning
e first datum, just like an ideal scientist. The computer uses its computable
is n procedure to decide whether the first datum is in or out of §, and
ectures 1 or 0 forever after, accordingly.

Now suppose S € 4 — II{. Then no computable method « can decide &
ample size 1, for otherwise « could be used as a decision procedure for
sitrary to assumption: to determine whether n € S, feed ok,) the sequence
... until the first ‘I is returned and output the subsequent conjecture
ii the other hand, some computable method « can verify h with certainty.
wiethod simulates a positive test M for S for several steps on &, every time
datum arrives. o outputs 0 until M halts with 1, and outputs 1 thereafter.
ats membership in § as a kind of internal inductive problem that is, in fact

nsically harder than the ideal external empirical problem of deciding tht;
of h. The required mind change is due entirely to the computational
y of this internal inductive question, rather than to the Borel complexity
(Fig. 7.3). If Se 4 and C, = Ps, then by similar reasoning, i can be
ed with certainty by a computable scientist.

Suppose next that S T4 — II3. Then h cannot be decided - in the limit by
mputable scientist. For suppose otherwise. Then we can construct a limiting
ive test M for § using the computable scientist «, as follows. To test n e w,
s a(h,) the sequence n, 0, 0, 0,..., which is clearly an effective task.

time « makes an output, M makes the same output. Since « stabilizes to

1 correct and to 0 otherwise, M stabilizes to 1 if n € § and to 0 otherwise,

hence is a limiting recursive test for §. But this is impossible by proposition

On the other hand, some computer can verify & in the limit by once again

g S as an internal inductive inference problem. Since § € 24, § is limiting

so § has a limiting positive test M, by proposition 6.1. Qur effective scientist

st eeds £, to M and then repeats the outputs of M, ignoring all further

irical evidence. Similar points can be made concerning gradual verification

2. Computation as Internalized Inductive Inquiry

Some hypotheses lie beyond the scope of limiting, computable inquiry, ¢V
though they are decidable with certainty by an ideal agent. Consider,
example, a problem in which the first datum is an encoded clue that gives
problem away to an ideal agent, but that is too hard for a computer to dec
More precisely, let S < o, and let T5 = {e: eq € S}. Now let C, h be suc
C, = Ps. Intuitively, h says that the first observation will be in §, 8
members of S are clues that permit an ideal scientist to decide h by tin
(Fig. 7.2). j
Now consider the following question. How does the purely computatio
complexity of § relate to the ability of a computer to decide,. the truth'v

The truth of A
depends only on
whether the first
c - c T datum £ isin §
h h
<
5 < e "
e internal” data stream
n about the current status of the
. ositive test for 5 on i
external® data strean £ positive test for § on input £
Figure 7.2 Figure 7.3

162 The Logic of Reliable Inquiry Computers in Search of the Truth 163
. . . N finite) mput - =
3. The Arithmetical Hierarchy over the Baire Space ‘ type 2(m '““ lll||]"l|| ST S
. il induct e QI s~
We have just seen that a very trivial inductive problem in the ideal sense. III TH < ||||i|i||llllh -
be arbitrarily hopeless for a computer to solve. The probiem is that clues th I!IIIII \t{m'ﬁeb e
give away an inductive problem to an ideal agent can generate induct iy, WY

difficulties for a computer, But our study so far has been restricted to a
particular type of inductive problem in which ideal and computational ¢o
siderations are kept neatly separate to make the point as clearly as possi
It remains to characterize just how these two kinds of complexity—ideal-a;
computational —interact to determine whether or not an inductive problem
solvable by a computer. Once again, we need a way to describe the compu
tional structure of a hypothesis in a way that makes no reference to computa
scientists or {o decision.

Recall that the Borel hierarchy provides a natural characterization of
complexity of ideal inductive inference, because it is based on the notio
empirical verifiability. We will now consider the arithmetical hierarchy of
of functions, built on the notion of empirical verifiability by a computer..T
hierarchy will provide a natural setting for the characterization of the comp
tional complexity of inductive inference.

Recall that a correctness relation (g, /) is a relation of mixed type, hol
between data streams (type 2 objects) and code numbers of hypotheses (t
1 objects). In general, a relation S might have any number of type 1 and ¢t
2 arguments. For example, S(g, 7, n, k) has two type 2 arguments and tw 'ty
1 arguments. In general, we say that S is of type (k, n) just in case it ha
arguments of type 2 and »n arguments of type 1. We will define arithmeti
complexity all at once for relations of all types (k, n), not out of a mispl
love of generality, but because it makes the inductive definition easier to s
"The arithmetical hierarchy defined in the preceding chapter will turn out to
a special case, in which only relations of type (0,) are considered. _

In the case of ordinary computation, the base of the hierarchy is the s
recursive relations of type (0,#n). But now our relations have infinite:
streams as arguments. How do we interpret a Turing machine as accepting
infinite input? The trick is to provide the machine with an extra input tap
each infinite input stream. But it might be objected that the machine still ca
read the whole infinite sequence written on the tape prior to making an ouff
That is correct, but it doesn’t matter. A decision procedure is still require‘d
output 1 or 0 after a finite amount of time, just as in the case of finite inp
It follows that the decision procedure must extract whatever informatiol
requires for an answer after scanning only some finite chunk of the mﬁ
input tape carrying &.

With this picture in mind, we see that our previous definitions of de
procedure, positive test, limiting positive test, and so on all apply to the
of relations of type (k, n), so long as the procedure in question is provided
a separate tape for each infinite input. In particular, a decision procedure I

redad-write head

Figure 7.4

tion $ of type (k,n) is a Turing machine that when provided with finite
guments in the usual way and with a separate tape for each of the & mfinite
ments in the manner just described eventually halts with 1 if § holds of
puts, and with 0 otherwise. § is said to be recursive just in case it has a
sion procedure (Fig. 7.4).

‘is straightforward to extend the arithmetical hierarchy defined in the
seding chapter to relations of mixed type. Let .S be a type (k, m) relation,
¢liminate tedious repetitions and subscripts, let X denote an n-vector of
al numbers and let Z denote a k-vector of data streams, so that we may
(g, x) instead of S(e[1], ..., e[k], X1, ..., X,,), where cach ¢[i] e N,

S e Ef =S is recursive.

S e X}, | < there is some type (k,m + 1) relation Ve X such that
for each Ee NF, e w™ , S(& X) < 3%, such that
AVAE %y X s 1)-

HA classes and the ambiguous A classes are defined in terms of £ in the

o illustrate the relationship between this hierarchy and the finite Borel
chy, we can extend the latter notion to cover relations of mixed type. Let
__ ., T, be topological spaces with countable bases B,, ..., B,, respectively,
e product space T, x .- x T, then has the basis B, x--- x B,. Now
sider the space A* x w”. Each space A\ carries the Baire topology, and we
hink of @ as having the discrete topology, in which each singleton {n} is a
c open set. This choice is not arbitrary. Basic open sets correspond in our
't_:_ation to what is directly input to the inductive method at a given stage
uiry. In the Baire space, finite chunks of data are given and, in hypothesis

2 Tn the theory of computability, this is sometimes referred to as the wse pr ment, we assume that discrete hypotheses are given to be investigated.

164 The Logic of Reliable Inquiry Computers in Search of the Truth 165

d the fact that the base case of the arithmetical hierarchy is at least as
gent as the base case of the Borel hierarchy, that membership in an
etical complexity class implics membership in the corresponding Borel
;xity class. The example at the beginning of this section makes it clear
1} the inclusions are proper (just insert arbitrarily complex subsets of @
‘S in the example). Thus:

Thus, each singleton {h} should be basic open.® Accordingly, a basic open
in A* x " is a cross product of k fans and n singletons containing natug
numbers. Now the definition of the finite Borel hierarchy can be rephrase; '
as to mimic the definition of the arithmetical hierarchy. Let S be of type (k
Then we have:

S eXB S is clopen in N* x o™

S € IB, | <« there is some type (k, m + 1) relation YV e 2P such thar

" 5
for each Ee N, X e @™,

S(&, %) <> x,,. 1 such that VV(E, X, Xpe 1)

Praposition 7.3
For each n, T8 < X2, B

oposition 7.1 explains why we could characterize the scope of ideal inquiry
rins of the topological complexities of each (, instead of in terms of C as
Jation, since the Borel complexity of C is entirely defermined by the
plexities of each C,. But when we move to the computable case, the
mplexity of C can be arbitrarily high even when the computational complexity
ach C, is trivial. For the simplest example, consider C(s, h) <> h € X, where
8 ':ome arbitrarily hard to decide subset of @. Here, correctness does not
pend on the data at all, so any particular hypothesis can be decided a priori
nethod with a fixed conjecture. Nonetheless, the difficulty of matching
ght a priori conjecture with the right hypothesis prevents a single
putable method from assessing ail hypotheses in w.

he failure of proposition 7.1 in the computational case means that
mputable inquiry must be characterized in terms of the arithmetical complexity
¢ entire correctness relation C, rather than pointwise, in terms of each (,
1 the ideal case. It also means that both the scientist’s background
mptions K and the range H of hypotheses he might have to assess are
evant to the complexity of his problem. Accordingly, we must relativize
thmetical complexity both to X and to H.

The crucial point for our purposes is that this definition of ideal compl
differs from the preceding definition of computational complexity only in h
base case. [will refer to this as the new sense of the Borel hierarchy until I sh
that it agrees with the one defined in chapter 4 over type (1, 0) relations,

The discrete topology on @ causes the structure of the type l part'o
mixed type relation to wash out of its Borel complexity classification in.
following sense:

Proposition 7.1

Let S be of type (k,n). Let S;= {& S X)}. Then S € ¥ (in the
sense) < for each X € 0", 5; € =B (in the new sense).

It follows from this fact that the new version of the Borel hierarchy agrees s
the old on type (1, 0) relations, so we needn’t distinguish the two senses a1
longer for subsets of A,

Proposition 7.2

: S eZ[K, H < 3V e T4 such that Vee K*, e H",
Let S < L. Then S is £F in the old sense < S is T in the new se

S(E X) = V(z, x).

In light of proposition 7.2, the arithmetical hierarchy over A is sometim niversal Relations and Hierarchy Theorems
referred to as the effective, finite Borel hierarchy. It follows from proposi
ill be shown in this section that the Borel and arithmetical hicrarchies are
ely hierarchies, in the sense that each complexity class contains hypotheses
contained in any lower complexity class. The proof will be based on a way
igning indices to all the problems in a given £ class by means of a
iversal relation for the class. The idea of a universal relation depends
atially on the notion of encoding finite sequences of numbers and finite
iences of data streams. Let {) be a 1-1, effective encoding of ™ into w,
hat (e} is a code number for e. We may also encode a finite vector of

31f, on the other hand, hypotheses were parametrized by a real-valued param
8, then it might be impossible to give one to a method except by specifying ever nart
intervals around it. In that case, the set of hypotheses would also carry a nontil
topology in which basic open sets are intervals with rational-valued endpoints.
singleton containing a hypothesis would then be closed but not open. In such a setti
determining which hypothesis one is supposed to investigate can be as harl
determining the truth of that hypothesis from data, so ideal inquiry becomes’
analogous to compuiable inquiry in this respect. :

166 The Logic of Reliable Inquiry Computers in Search of the Truth 167

a) (1) A simple induction establishes that 7! e T, (2) We now show
4 indexes all £ relations. Base: Suppose S e 24, Let M, be a positive
S. Then for all & %, S %)<= 3k such that 7, (&), (XD, k)<=
&>, {X»). Induction: Suppose the result for all n’ < n. Let S e %1, ;. Then
me G €Zj, for all & % S(%)< 3k 1G(E %, k). By the induction
hesis there is some i such that for all &, %, k, G (&, X, k) <> UAG, (B, X, kD).

(& %) = Ik 1 UNI, (B, (X, k)). (b) is similar. []

_data streams into a single data stream using the same encoding. Let
(e[1], ..., e[n]). Define:

By = (e[gy - - - » e[ndoy, ell]ys - s elndids ooy
€ N PP 173 9 T X

In other words, <&),, = {&[1], .- - » E[A1y, for €ach m e . o

The Turing relation T(i, (&, {Z), k) is to be understood as saying th
machine M, halts on inputs Z, X within k steps of computation.* This relati
is recursive by Church’s thesis since it is a straightforward matter to decode
¢8>, and (x) and to simulate the computation M;[Z, X1 for k steps, observi
whether the computation halts by that time. Let U be a type (1, 2) rela
Now define:

ow it is not hard to see that there is always something new at each level
‘hierarchy.

Proposition 7.5 The arithmetical hicrarchy theorem
For each n, A% = £4,

The inclusions are immediate. That they are proper is shown as follows.

71 is universal for complexity class & < !
ehine. the diagonal relation

(1) Ue® and

(2) for each S € ©, there is an i such that Jor all & X,
S X} < UG, (&3, {XD).

(@) D)< Wlx, < 3, (xD),

| (» in the sccond argument position denotes the infinite sequence of
de n_umbirs for the empty vector 0. From the definition of U 4 it is evident
D, e ;. Suppose D, e A, Hence D, e /. Since U is universal for T2
position 7.4), there is some b such that for all x,

In other words, for each §e®, there is an index i such'.'t_
S = {(& %) UG, (&), {x))}. The question now is whether there exists a univer
relation for each complexity class 24 One candidate is defined inductively
follows: '

LA, (B, (X)) <> Tk such that T, (&), (XD, k).
UA, (i, <B), (&) = Tk such that DU, (B, <X, kD).

214 is a type (1, 2) relation. The inductive clause follows the usual mechanis
for building complexity in our hierarchies: existential quantification’

negation. The trick is that the existential quantifier is added without addin
the arity of the relation at the lower level by means of coding the bound variab
k into <%, k). Since the coding is 1-1, it does not “crase” any extra complext
added by the quantifier. Now we have: :

Proposition 7.4 The arithmetical indexing theorem?

(a) For each n> 1, U; is universal for Xy

(b) For each n > 1, T} is universal for T4, ‘ All the complexity exhibited by 7/ is computational, since the diagonaliza-

<now that Borel complexity is a lower bound on arithmetical complexity, so
uld t?e very‘usc_ful to be able to see how to build arbitrary complexity
gh diagonalization in the Borel hierarchy as well. It is thus useful at this

4 There is no ambiguity about the arities of & and of X because the encoding_'
is 1-1 from w* to w.
5 The following two proofs follow Hinman (1978).

168 The Logic of Reliable Inquiry Computers in Search of the Truth 169

counting

o, ct 7 so that for each i, t[i] = substream(z, i). Then € G < Ji £ ¢.5; <

71, &) < 3i 1 UB(substream(t, 1), £) < UE, (1, &). (b) is similar. &

1 01 201 2 3 61 2 3 4 01 2
6

00
e[1]3]4] o]

P _ . . .
7] 8 | 2 | 3] 4 | 8 | 7 | 2 | 1 | 9 | 91 | 7 i é Borel hierarchy theorem {proposition 4.9) can now be established by
R =2 S5 ISR : 3 ; i H
S N nalization on %, just as in the arithmetical case:
\\\\\\\\\ S \\\\\\\\ \\\\\\\\:\\:::::\\\\\\\\\\\\‘“\\

TR

[&]a]2f7] ... é

substreamn{g, 2)

T R RN

‘Proposition 7.7 Borel hierarchy theorem

‘For each n, A3 = =8, |
Figure 7.5 :

¢:now have two powerful technmiques for constructing an inductive
with arbitrarily high ideal or computational complexity when X = A
w. Of course, restrictions on X and H can collapse the hierarchy to
finite level. For example, if K = {&}, then every subset of K is A[K]%.
sneral question of how the hierarchy theorems depend on & and H is
an interesting and important one that les beyond the scope of this book.”

point to examine the proof of the analogous resuit for the finite Borel hiera
which was announced without proof as proposition 4.9. The argument is
to K. Kuratowski.® Once again, we proceed in two steps, comstructin
universal relation for finite Borel classes and then diagonalizing to show thai
hierarchy does not collapse.

Since there are already uncountably many open subsets of AL (just th
of all the ways of taking countable unions of disjoint fans), we canno
natural numbers as indices as we did in the computational case. Kuratowski
idea was to use data streams as indices for Borel sets. Let & be a data stre;
Count off positions in & accordmg to the following fixed and effective patt
;0,10,1,2,...0,1,2,. . Then substream(z, n) is just the subsequ
of ¢ whose positions are marked with n when we label successive positio
¢ according to this fixed counting scheme (Fig. 7.5). Clearly, for each w-seq
¥ of data streams, there is a unique data stream & such that for eac
W, = substream(e, n): simply write the ith data stream listed in ¥, into
positions labeled i in the standard counting scheme. Now we may defin
following candidate for a universal relation for X3 '

haracterization Theorems

e characterizations for the effective case look very much like the characteriza-
or the ideal case, except that the Borel hierarchy on A is exchanged for
ithmetical hierarchy on . As it turns out, very few modifications of the
fs'given for the ideal case are necessary. First, all the basic correspondences
lished for ideal agents in chapter 3 hold in the computable case as well.

Proposition 7.8
with certainty

1B(z, &) <> 3i € such that t; = {e) and ¢ & [e]. (a) H is verifiable..| inthelimit | by a Turing machine given X

UL, (7, &) < i such that " UE (substream(z, i), £). gradually

with certainty
Proposition 7.6 Borel indexing theorem

(a) For each n = 1, U¥% is universal for T5.

(b) For each n = 1, UE is universal for I1;.

<> H is refutables| in the limit by a Turing machine given X
gradually

with certainty

(b) H is decidablecl: } by a Turing machine given X

in the limit
<+ H is both verifiable. and refutable. by a Turing machine
given K.

(¢) H is decidable, with n mind changes starting with 1 by a Turing
machine given X <> H is decidable: with n mind changes starting
with O by a Turing machine given K,

Proof: (a) A simple induction establishes that U/% & T Base: Let G = N,
%5 Then for some G < w*, § is the union of all fans [e] such that e
Let 7 be an enumeration of the code numbers of elements of G. Then e &(

U3(z, 8). Induction: Suppose G eZE, ;. Then G is a countable union of
=5, U 715 W 1S, U ... such that each 5; e 27, By the induction hypoth
for cach 5, there is a data stream <[i] such that § = {e: U, (T[l:i,

& Kuratowski (1966); 368-371. “Some ideas about this issue may be found in Moschavakis (1980).

170 The Logic of Reliable Inquiry Computers in Search of the Truth 171

(d) For each r such that 0 <r <1, H is decidable. with n my,
changes starting with v <> H is decidable,. with n mind chg
starting with 0 by a Turing machine given K and H is deci
with n mind changes starting with 1 by a Turing machine giv

total recursive, the relation in square brackets is recursive. Hence, -
Clen (X x H)eZ[K, H]{.
mputable « verifies H in the limit given %, then we have for all e € X,

Now the charactetizations of reliable inguiry by Turing-computable ag,

may be stated as follows: Cle,) <= V¥nim > nalh, elm) = 1.

&(h, €|m} is a recursive relation, we have C(g, h) n (X x H)e E[X, H]A

Proposition 7.9° :
mputable o verifies H gradually given %, then we have for all ¢ € X,

verifiable - all he H,
(a) H is| refutable. |with certainty by a Turing machine given
decidable, Cle, h) ==V rational ¥ > 03nVm =z n1 — a(h, &|m) < r,
A
LK, H]{)~ (K x H) e IN[K, H]4, since the rationals may be effectively encoded
=>Cn{K x el UK, HI natural numbers.
ATK, BT -All we do _is to show that the universal architectures introduced in
ter 5 can be implemented on Turing machines whenever ¢ has the
verifiable ponding arithmetical complexity. (a) is immediate.
(0) H is| refutable. |in the limit by a Turing machine given K) Suppose C N (K x H) e E[K, H]4. Then there is some co-r.e. relation
tecidable _._.t_hat foreach e e 5\[;, heH, C(s, h) <= 3nG(s, h,n). Let M be a refutation
c) ure for g Then we implement an effective version of the bumping pointer
YLK, H]A ture using M. Let he I be given, On the empty data sequence 0, the
e C K x H)e| O[%, HY th d a outputs 0. When e # (), define:
A
AlK, H], the least i < lh(e)
verifiable - pointer(h, ¢) — such that M{e, h, i1 does not retwrn 0 in [h(e) steps,
(c) His| refutable,. | gradually by a Turing machine given X ’ if there is such an i
decidabl
eclaasie) th{e) otherwise.
H[K: H} 3
“C (X x Hye| S[%, HA inter is clearly recursive. Now let a(h, 0) = 1 and define:
A
ALK, H]; 1 if pointer(h, €) = pointer(h, ¢*x)

ah, e¥x) =

Proof: By proposition 7.8, we need consider only the verification case of & () {0 otherwise.
statement, except for the case of gradual decidability, which follows from
along the lines of proposition 3.13(b). It is convenient to treat the (=) s
all three statements together. (a) If computable o verifies H with certainty

X, then we have for all ee X, he H,

ata e, the pointer is moved to the least i < Ih(e) such that M[e, h, i] does
cturn O in Ih(e) steps if there is one and to [h(e) otherwise. Then the pointer
ed to the least i < Ih(e) such that M[e*x, h, i1 does not return 0 in Ih(e)
‘there is one, and to fh(e) + 1 otherwise. If this position is different from
vious one, a conjectures 0. Otherwise, « conjectures 1 (Fig. 7.6).

t is readily seen that this procedure is computable. It is left to the reader
tify that it works,

¢) Suppose C n (X x H)eI[X, H]“ Then for some [X, H]4 relation
have for cach ¢ € X, It € H, C{e, k) <> Vn G (e, h, n). By an argument similar

Cle, k) < An[a(h, eln) =V &afh, eln+ 1) =1 and
Ym < n, o(h, £|m) # U]

% (a) and (b) are in Gold (19653).

172 The Logic of Reliable Inquiry Computers in Search of the Truth 173

jierarchy, except that we substitute X -r.e. scts and their complements
open sets and K -closed sets, respectively. Now we may state the
cterization:

| Proposition 7.10

For all v such that 0 <r <1, H is decidable,. with n mind changes
0

starting with | 1 | by a Turing machine given K

cranks T ¥ HY

Figure 7.6 LK. H1,

«Cn(K x He| TI[X, H]?

to the preceding, we obtain a single machine M that for each fixed n, M [h ALK, H]?

is a limiting verifier for G (¢, k, n). Since M is total, we can dispense with N
counting. On inputs e, h, our method « simulates M forn =0, 1,. .., lh(e) Exercise 7.4. -

then counts how many successive 1s starting from position 0 are in the seque
Mle, h, 0], M[e, b, 1],. .., M([e, h, Ih(e)]. Call this number k. Then o conjeg
1 —27% (Fig. 7.7).
" Again, it is clear that this procedure is computable, and the verificati
correctnéss is left to the reader,

he tools developed so far place us in a good position to compare ideal
derdetermination to its computationally bounded counterpart. For example,
now know that each computationally underdetermined problem involves
mponents: a purcly topological component reflective of purcly empirical
xternal”) underdetermination, together with a purely computational
nent reflective of formal (or “internal”) underdetermination. Different
ms partake of different mixtures of these two factors. For example, when
P (ie., the set of all data streams whose first data points are in §), the
ological complexity of C, is trivial, but the computational complexity of C,
arbitrarily high, depending on the nature of § (ie, S € A¥ — T4, where
be as high as we please). On the other hand, in some problems, virtually
computational difficulty is topological. This is true of the infinite
ility hypothesis, which is in I15 — %, so there is no gap at all between
ilities of ideal and computable scientists so far as this problem is
med. Other problems involve some intermediate mixture of the two
1s. We will consider an interesting example of such a problem in section
this chapter.

Proposition 7.9 vindicates the promise in chapter 1 that the reliab
approach to method provides a seamless analogy between computable and
methodology. The characterizations listed under proposition 7.9 are a
identical to the ideal characterizations, except that arithmetical comp
requires computable decidability in its base case whereas Borel comp
demands only ideal decidability. Moreover, the complete computable:
tectures introduced in the proof are but minor variants of the ideal meth
seen in the preceding chapter.

The analogy can be carried through for decision with » mind change
well. First we must introduce an effective version of the finite diffe
hierarchy, which will be denoted d. The d hicrarchy is defined jus

[0 1 2 3 4 5 «oo iitle) |

Data-Minimal Computable Methods
.................................. ter 4 presented the surprising result that every solvable limiting verification
lem has a data-minimal solution. A natural question is whether computa-
'lly bounded inquiry can boast the same result. One might worry in this
“that the universal architecture for limiting verification tests a co-r.e.
set of C, for just a bounded number of steps before pausing and asking for
ext datum, This business of letting formal analysis pile up on the desk
new data comes in reflects the problem that there is no way to be sure

There is an unbroken
string of 3 1's prior to the
first non-1 output of M.

Therefore, I conjecture 1 —2- 3

[

Figure 7.7

174 The Logic of Reliable Inquiry Computers in Search of the Truth 175

Eat your hearts
out, tin cans!

the beginning of this chapter it was proposed that to regulate concrete
mong bounded agents an ideal methodological norm should come with
rgument to the effect that extra degrees of striving toward the ideal yield
degrees of some value that exact achievement of the ideal would provide
nletely. Here we have exactly such a situation. A computable method ma

e able to decide logical consistency with the data, but spending more timz
e problem i‘n the short run before examining the next datum may lead to
f of refutation earlier and hence may sometimes lead to earlier convergence
ruth. Such a method must use some runtime bound to succeed at all
hence can never duplicate the data-minimality of an ideal method:; but’
asing effort in the short run brings it ever closer to that unreachable i,deal
¢re is a reward for extra effort expended in the short run. ’

Turing-computable q ©
approximations o
to data-efficiency

" da[a—imal
ideal method

increasing effort
in the short run

Figure 7.8

in the present that a proof of inconsistency between the data and a given ¢
set will never be found by computational means. Perhaps no matter how h
the computer works, there will in principle always be some computat :
backlog on its desk, so that a more industrious method that does more fo example:
work at each stage converges to the truth sooner. Indeed, this is the case. Re '
that ® = {¢: ¢ is total recursive} and let Py = {& g, € K}, where K i All sentences involui
- s ing more than t

halting problem (cf. chapter 6). Let G, = P. Then we have: q an three words are false.
hypothesis /i is empirically self-defeating in the limii for us just in case

Propesition 7.11°
If Cp = Pg then Gy, € Z¢ but no computable o is a weakly daia-m his true = h is not verifiable in the limit by us.

limiting decider of h. y hypotheses of independent interest empirically self-defeating? Tt turns
hat the cognitivist hypothesis that human behavior is computable provides
h an example! Recall that C, is the set of all computable data streams
We hgve already seen by a demonic argument that h,,,, is verifiable
not decidable . in the limit by ideal scientists, so C; ism;ﬂ %8 — A% On
mputational side, the basic result is: o ’ i

Proof: Cp e T4. Let computable « decide,. h in the timit. There is an & € A
that modulus,(g) > 1, else the computable function $(x) = afh, (x)) decide
Suppose & € Px. Then g € K. Define: R

if o = &
(h, &) otherwise,

B, e) = {;

o Proposition 7.12
Now modulusy(h, &) < modulus,(h, £), but for all other data sircams, f’s mod B
retnains unchanged if the first datum is not &, and #’s modulus is Impro Cheomp € T3 — 13,

the first datum is &,. The case in which & ¢ Py is similar.
- Rogers (1987): 327, theorem X VL =

When it is impossible to avoid testing co-r.c. sets for consistency wi-ﬁ
data, there is some ideal, data-minimal solution and a chain of ever.
recursive approximations to data minimality that expend ever greater effc

finding refutation proofs in the short run (Fig. 7.8). heomp 5 empirically self-defeating in the limit for us.

9 This result is analogous to proposition 8.2.3.A in Osherson ¢t al. (1986). uppose that h,,,, is true. Then human behavior is computable, and hence

176 The Logic of Reliable Inquiry Computers in Search of the Truth 177

“our inductive behavior is computable. So by proposition 7.12, we cannot veri
Homp in the limit, If we are Turing computable, we cannot verify this fact in:
limit because we are Turing computable. This result is interesting in its o
right, but also because it illustrates a case in which the characterization theor
is useful in obtaining a negative result. A direct, demonic argument is not
all easy to provide in this case, as the reader may check (cf. exercise 7.13)
similar argument can be given if we replace verification in the limit with grady;

verification (cf. cxercise 7.6).

tld of difference between the two kinds of complexity, as will soon be
ent.

Now we may restate our question. How does the deductive complexity of
end on the scientific complexity of h? In other words, how does the
mputational complexity of deriving predictions from h depend on the
putational complexity of determining the truth value of / from data?

An ideal scientist can decide any empirically complete - h with one mind
ge starting with 1. We can see this two ways. First, we already know that
h singleton {e} is TI{, so the result follows from the ideal characterization
orem. More direetly, consider an ideal scientist that checks (in an uncomput-
le manner) successive entries in ¢ against successive entries in the data stream,
says 1 until some discrepancy is found. On the other hand, a simple demonic

rgument shows that no ideal scientist can verify such a hypothesis with
inty. Thus we have:

8. The Computable Assessment of Uncomputable Theories

Imagine an ideal scientist who investigates a complete, deterministic theor
a given system. So complete is this theory that it determines uniquely eve
future observation. We can imagine an ideal scientist who derives (witho
effort) successive predictions from the theory and then compares each of th
with what is actually observed. In this way, the theory is eventually rejected:
the scientist if and only if it misses a prediction.
Now suppose the scientist is a computer. The picture just describe
sequentially obtaining new predictions from the theory then presupposes
the theory is computable, in the sense that its prediction for time » is a recu :
function of n. We now face an important methodological question: Dot
predictions of a theory have to be derivable from the theory by computab
means if a computable method is to decide the truth value of the theory in.
limit? Or do there exist theories whose predictions cannot be derived
computable means that can nonetheless be decided in the limit or even refu
with certainty by computable inductive methods?
In this discussion we will consider only hypotheses that make determina
predictions about each datum that will appear in the limit. Say that
empirically complete . just in case for some ¢, (), = {e}. That is, there is a uni
data stream for which & is correct. When (, = {z}, we know from the precedi
characterization theorems that 4 is effectively verifiable in the limit just in;
{g} € 4. So we may think of the arithmetical complexity of {¢} as the indi
or scientific complexity of h. But the hypothesis h also has a deduc
complexity that corresponds to the computational difficulty of formally derivi
predictions from k. We take the déductive complexity of h to be the arithme
complexity of &, where ¢ is identified with its graph {(0, 8(0)) (L, &1)), .
is easily verified that for any function ¢, if ¢ is in T, then ¢ is partial recu 51
If & is also total, then & is total recursive and e AA Since a data stre

Proposition 7.13
Let h. = {&}. Then
(a) his ideally refutable. with certainty.

(b) h is not ideally verifiable.. with certainty (ie., {e}cTIf — X% ®

_ comautable scientist can play the same game, provided that ¢ € X4 (and
ence & e Af since ¢ is total). For then, the computable scientist can compute

‘waiting for a discrepancy. From these simple observations, we already
W that:

Proposition 7.14

Let h. = {e}. Then if ¢ is recursive, then h is refutable . with certainty
by a Turmg machine (i.e., ¢ € Z¢ = {¢} e [I{). A

ut in the other direction, we would expect that a highly intractable ¢ would
& p.roblems for a computable scientist trying to investigate . For suppose
is not recursive. Then there must be infinitely many predictions entailed
he theory {¢} that an arbitrary, computable scientist fails to derive correctly,
er by drawing a mistaken prediction that the theory does not actually entail
vy failing to derive any prediction at all. For suppose otherwise. Then the
assumed to be total, we have that ¢ e T4 if and only if ¢ € A4, cedure that fails to derive only finitely many predictions could be “patched”
To summarize, the deductive complexity of an empirically compl tha finite Jookup tabie to provide a procedure that computes ¢ If there is no
hypothesis k such that C,, = {e} is just the arithmetical complexity of &, whe background knowledge, then any underived prediction can be wrong for all the
the inductive or scientific complexity of h is just the arithmetical complexi titist knows. This leads one to suspect that ki is not effectively refutable with
{e}. Tt is striking that the essential difference between the nature of ind amty unless ¢ is computable. It is hard to see how to succeed otherwise,
and the nature of deduction can be captured by the difference in arithme ss there is some miraculous method of rejecting a hypothesis if and only if
complexity between & and {&}! But the subtle difference in notation bell false without deriving its successive predictions and checking them against

178 The Logic of Reliable Inquiry Computers in Search of the Truth 179

Figure 7.9

Example: compute £
when modulus,, (£) =0

the data. As it turns out, the suspicion is correct in the special case in whic
predicts only finitely many different kinds of outcomes. In fact, something m

stronger is the case: Figure 7.10

he procedure for computing ¢ is as follows. M(n): Use « to effectively label
¢e, from bottom to top, level by level, until for some m, the tree is labeled
o level m, and it is effectively verified (by exhaustion) that there is a unique
thie of length » that is not m-dead. (By lemmas 1 and 2, e = ¢|n). Return
) (Fig. 7.10). A

Proposition 7.15'°

Let b = {} and let rng(c) be finite. Then if h is verifiable, in the I;
by a Turmg machine, then ¢ is recursive (i.e., if {&} € £4 then e e A4

Proof: Suppose rng(s) is finite and recursive « verifies. i in the limit.
k = modulus(¢). Thus, (*) for each 1 € rng(e)”, we have that © = &= for e
m > k, a(h, &|m) = 1. Think of rng(e)* as an infinite but finitely branching t
in which ¢ is an infinite path. Each node in the tree may be labeled effectiv
with the conjecture afh, €}, where ¢ is the unique path to that node from th
root of the tree. Imagine that the tree is completely labeled. Then in virtue
(*), ¢ is the unique infinite path labeled with all Is after position k. Say tha
finite path e such that [h(e) < m is m-dead just in case each extension of
length m has a value less than 1 occurring on it between k and m. Then we |

So now we know that if an empirically complete hypothesis h is effectively
ifiable in the limit, then its predictions are computable, so long as it predicts
ly finitely many different kinds of events.

On the other hand, there is a hypothesis h predicting only finitely many
fferent sorts of outcomes that can be refuted in the limit by a Turing machine
en though its predictions are infinitely impossible to derive by computational
ns. At first blush, this seems like magic. By assumption, it is hopeless to
pect a scientist to recover correctly all the predictions of 2 by computational
4ans, and since there is no background knowledge, the demon can arrange
Lemma 7.16 data to agree with any mistaken prediction the scientist derives. What could
) be like? The answer is given in the following proof.
If n =k then for each m > n, £|n is not m-dead (Fig. 7.9).
Proposition 7.18 (Hilbert and Bernays)'!

There are (, h, & such that C, = {e} and for each n, C, ¢ 2 but h is
refutable . in the limit by a Turing machine (i.e., there is an ¢ such that
for each n, 5 ¢ £ but {&} e [1%).

Also, we have:

Lemma 7.17

If n > k then there is some m = n such that for each e € rng(e)" such 2

e # &|n, e is m-dead. oof: Recall the universal relation U2 defined in section 7.4, Consider the

. haracteristic function of U %
Proof: Suppose n = k. Suppose for reductio that for all m = n, there is a : n

e € rng(e)” such that e # ¢|n and e is not m-dead. Then for each m, there 13
extension e[m] of e of length m along which « conjectures only 1s for h:
S = {e[m]: m = n} is an infinite, finitely branching tree. By Konig’s lemm
has an infinite path y labeled entirely with s by « after position k. So b
y = & Thus e = y|n = &|n, contrary to assumption.

o U UG O)
Yy XD) = {0 otherwise,

call from the hierarchy theorem that D, ¢ AZ But v is at least as complex as

12 Wwith Oliver Schulte. ' Cf, Hinman (1978): 106-167.

180 The Logic of Reliable Inquiry Computers in Search of the Truth 181

he distinction between the deductive and the inductive complexity of an
cally complete hypothesis coincides exactly with the logical distinction
een explicit and implicit definability in arithmetic. An explicit definition of
formula. of arithmetic ®{x, y) with free variables x and y such that ®{x, y)
satisficd in arithmetic if and only if x and y are assigned to numbers »n, m
hat &(n) = m. An implicit definition of ¢ is a formula of arithmetic ®(e)
nly in function variable ¢ such that ®(g) is satisfied in arithmetic if and
f the variable ¢ is interpreted by the function & Tt turns out that ¢ is
11q1_tly definable in arithmetic by a formula with » — 1 quantifier alternations
ing with Y[37if and only if e € I1A [Z4]. It also turns out that ¢ is implicitly
ble in arithmetic by a formula with » — 1 quantifier alternations starting
¥[d] if and only if (e} e L/ [E]. When (, = {¢}, the arithmetical
plexity of {e} is just what T have called the inductive complexity of A, and
arithmetical complexity of ¢ is just what I have called the deductive
lexity of A

 The original motivation for the study of implicit definability had nothing
o with the relationship between inductive and deductive complexity. It was
ended, rather, as a precise analysis of the relative power of two different
ategies for defining new concepts in arithmetic, with an eye toward the
¢tion of suspect notions in higher mathematics to the relatively clearer
ept of the “natural” numbers. It is striking that the comparison of explicit
1_m'p1icit complexity, a subject motivated by investigations into the founda-
‘of mathematics, should have such direct and surprising implications for
putable scientific inquiry.

If the range of predictions made by ¢ is finite, proposition 7.18 cannot be
proved to yield a nonarithmetical ¢ such that {e} is refutable with certainty
“Turing machine, due to proposition 7.15. But what if the range of
lictions made by ¢ is infinite? It seems odd to suppose that this might
ase the power of computable inquiry, since it implies that there are more
ferent sorts of predictions for the machine to worry about. But as a matter
fact, it can help, since there is an infinitely complex & such that ¢ is refutable
‘certainty by a Turing machine, This seems even more magical than the
tf;di.ng result, for now it is (infinitely) impossible for a machine to derive all
dictions from ¢, and & could be wrong anywhere for all we know, but a
ng machine can eventually reject the hypothesis with certainty if and only
s false! This result shows that the common picture of scientific inquiry, in
the scientist sequentially tests the predictions of a theory against the

., because for each z, Dy(z) < v({n i, {z>)) = 1, where i is such that D¢z
Ui, {3, {z)), by universality. It remains to show that {v} El'[f! A sim
induction shows that '

=0
(a) Ykew, g < Land .
(b) View,xew*[&({l,], Y= 1= TG O, (X, k)] and

(€) Vnico, e o*e({n+1,i, X)) = 1
< 3k such that &({n, i, {X, ky) = 0]

Condition (a) says that ¢ is a characteristic function, condition (b) duphc
condition (1) of the definition of 214, and condition (c) duplicates conditio
of the definition of 7i4. Hence, {v} € TI®* '

The curious hypothesis introduced in the proof of the proposition can b
described in a more intuitive manner. Let ¥ denote the set of all code numbe
truths of arithmetic. It turns out'? that v is computationally equivalent to
problem of deciding ¥, so the hypothesis that a given black box yields a coin
proof system for arithmetic is refutable in the limit by a computable met

This point is relevant to a celebrated debate about the computatio
nature of mind. J. R. Lucas (1961) concludes from Godel’s theorem that hu
cannot be computers since humans can always “intuit” the truth of the G
sentence for a consistent formal system, but each consistent formal syste '
a4 Godel sentence that is true but that is not entailed by the system. In chag
3, T argued that the real question is empirical, namely, whether human beh
is actually as claimed. The hypothesis involved in proposition 8.4 may
thought of as Lucas’s hypothesis that a given human is an enumerator o
complete arithmetical truth, The correct resolution of the empirical issue is
the hypothesis is ideally refutable with certainty and effectively refutable i
limit. =
The logical trick behind proposition 7.1 is that recursion on a fung
variable can simulate arbitrary alterations of numeric quantifiers, ther
building arbitrary arithmetical complexity into a single definition. To see:h
arbitrary arithmetical complexity can be unwound from the definition-o
consider the case of v(¢4,i,x)). Each time the recursive clause (¢)
definition of v reduces the argument n by 1, another ‘371" is added until ¢
base case is reached, at which point ‘3’ is added. Driving the negati
through the sequence ‘3—1,371,37,3" yields *IvaV". 5

o(¢4, i, ©) = 1+ 3k, 0((3, 1, (X, ko) =1
< Tk, 13k, 0(€2, 1, K kg ko) =1
<k, 13k, 13k (<L G (X, ks oy Ry D) = L
< 3k, —13k, 3k, 3k, T O, <X Ky Ko, s, k)
Ak, Yk, Tk Yhy T, (O <F, s Koy ks D, k)

Proposition 7,19'3

There are C, h, & such that C, = {&} and for each n, C, ¢ T but h is
refutable . with certainty by a Turing machine (i.e., there is an g such
that for each n, £ ¢ 2 and {e} e I1{).

12 Rogers (1987): 318, theorem X. 13 Hinman (1978): 106—107.

Computers in Search of the Truth 183

sty

182 The Logic of Reliable Inguiry

Proof: Let v be as in the proof of the preceding proposition. {v} € 114, so th
is a recursive relation G such that for all g, e = v < ¥xAyG (s, x, y). Define

8(x) = Co(x), wyG (o, X, ¥))-

A A# definition for § would yield a A4 definition for o, since v(x) can
recovered by decoding &(x) and returning the first coordinate. Thus, for ea
n, 8¢ A Tt remains only to show that {5} eIlf. Let ({x,y>); =x 2
({x, D), = ¥ Let (@), denote the infinite sequence (4(0);, a{ 1)y, (2)y, .
will now be shown that:

Figure 7.12

So far, we have considered only empirically complete hypotheses. Typically,
ientific theory entails predictions only in light of previous observations e,
d even then it may fail to make any prediction for a given time. Define h,
C'(n, o) < for each ¢ e (), such that ¢ extends e, &, = o (Fig. 7.12). Define
EDh) = {(e,n, o). h, ek, (n,0)}. So if (e,n,0) e PRED{h), then h ptedicts o
‘given that e has been observed. Proposition 7.20, which is presented in
re 7.13, summarizes the facts concerning both the empirically complete case
d the general case. Each bound given in the tabie'* can be shown best by
ns of an example. In Figure 7.13, assume that K = 0%, where 0 = w.
‘For the proof of proposition 7.20, see exercise 7.12.

g=0<
(@) VxG{(e)h, x., (e(x));) &
(®) vx, y [y < (6(x)), = 1G{(E)1. x, Y]

which is a TI# definition for {8}. (=) Recall that ¥x3yG (v, x, y). Thus G hold
if we choose the least such y: VxG (o, x, p¥(G (v, %, ¥)). But puy(G (v, x,y)
5(x), and v = (g),, 50 YxG{(8)y, X, (8(x))}2), which is (a). And (b) follows bgca
(8(x)), is the least y such that G((¢),, x, ¥). (=) Suppose that (a) YxG{(g);
((x)),). Then VxAyG((e)y, X, y). Thus (&), = v. Assuming (b), we have that
all x, (g(x)), is the least y such that G(v, x, y). Thus & = 8, as required

i L Ideal Norms and Computational Disasters
The range of data stream & may be infinite, because the minimization

the second coordinate has no bound. Thus there is no contradiction of

previous result that when rng(e) is finite, computable refutation with certain

implies that ¢ is recursive. .
The resuits of this section provide a complete picture of how comple

the introduction to this chapter, I emphasized that bounded scientific norms
different from ideal norms. Recommendations that are good for ideal agents
n be very bad for computationally bounded ones. A methodological norm is

deductive complexity of an empirically comp}etc tl.leory can be, given the_'t Praposition 7.20 Best arithmetical bound on PRED (i)
theory has some specified inductive complexity (Fig. 7.11). Given arithmetical
If { £) is in the indicated bounds on ¢, #{is empirically complete General case
complexity class then
- (cf. exercise 7.12) Oisfinite | Oisinfinite | Oisfinite | O is infinite
- A A A
a
@ g & Impossibie if Al IT
gcan be 3 101> 1
non- /— 'E‘ b X';{ H? I]?
arithmeticat @
{prop 7.18) 8 c]'l’l1 Alli none ZT none
A A
If rng(e) is finite _/ o d Ay A) none Hé none
then & must be /— §
recursive ? é‘} ¢):g A? none H’; none
(prop 7.15) @ e impossible ‘2 ; -
If rrg(€} is infinite _ " {prop 7.13) N 2 none none none none
then £ can be /
nonarithmetical Figure 7.13
(prop 7.19)

Figure 7.11 14 Kelly and Schulte {19953).

184 The Logic of Reliable Inguiry Computers in Search of the Truth 185
Clest terrible!
They have

thrown ze book at
you, monsieut,

-Say that

o is .v.feakly conservative~ for h given X <Vee K, e € C, = o does not
stabilize to O on h, ¢

Proposition 7,22
verifies .
If o] refutes, h[

decides -
then o is weakly conservative- for h given X, |

in the Iimit] .
given K,

Figure 7.14 gradually

restrictive'® for a class of agents just in case no agent in the class who ob
the norm can solve a given inductive problem that is solvable by a metho
the same kind that violates the norm (Fig. 7.14). L

Let’s consider a concrete example of an ideal norm that is restrictive
computational agents. A standard, ideal requirement for science is tha
hypothesis be rejected immediately when it is inconsistent with the availa
evidence. This requirement has been recommended, for example, by K. Poppe
We can think of it as a property of scientists, relative to a given induc
problem: '

ien. we have the following result:

Proposition 7.23

If Cy={e} and o is consistent. for h given K and o is weakly
conservative. for h given X and a e L, then ¢ ¢ T,

oof: Given the conditions of the proposition, we claim:

h is consistent . with e given K <3¢ € Gy 0 X A Tel. g, = k <= Je such that lh(e) = n&e, = k& a(h,) # 0.

o is consistent for h given K <> (Ve € w*, h is not consistent ~ with e
K=ah, ey =0).

=) Suppose g, = k. Since o is weakly conservative, 9m > n such that
) # 0, so let e = &{m,

{<=) Suppose ¢, # k. Since o is consistent, for each e such that h(e) = n and
k, a(h,) = 0.

Finally, since x e 4, e e T4, B

Just a little reflection yields the following:

Proposition 7.21 Now recall the example ¢, = {8} of proposition 7.19. § is not in any class
but {6} € Il{. Then we have the following result, which illustrates the
ifficulties that accompany insistence on consistency, even for highly idealized,

thmetically definable methods.

Consistency is not restrictive for ideal methods in any of the paradi
of hypothesis assessment introduced in chapter 3.

Indeed, we saw in chapter 4 that consistency is necessary for ideal dat
minimality and that each ideally solvable problem is solvable by a data-minim
method. Now let’s consider the situation for computable methods. The relati
of comsistency may be monrecursive. For example, recall the hypoth
Py = {&: ey € K}, where K is the halting problem. If x ¢ K, then (x) is incons e
with Py, but no computer can decide whether x < K. This suggests. th
consistency is restrictive for effective scientists. In fact, something far stronge

Corollary 7.24

Let C,, = {8}, as in proposition 7.19. Then h is computably refutable with
certainty but no consistent, arithmetically definable o can even gradually
refute,. or verify . h.

roof: {8} eI1{ so h is computably refutable with certainty, Suppose that o
adually refutes . or verifies - h. Then by proposition 7.22, « is weakly conserva-
€. for h given K. Suppose « is also consistent . for £ given X Then if u € T2,
18 4, by proposition 7.23. But for each n, § ¢ X, So foreach n, x ¢ X1 B

15 Osherson, et al. (1986).
16 popper (1968).

186 ‘ The Logic of Reliable Inquiry Computers in Search of the Truth 187

Hence, insisting that a method notice immediately when data refute
hypothesis entails a severe restriction on reliability. There is a hypoth
Cy = {8} that a computable method can refuie with certainty that no
metically definable method that notices refutation right away can even
or verify gradually. A

Nor can one require that a computable method be maximally consist
in the sense that no method obeys consistency everywhere « does
somewhere else as well. Let o« be an arithmetically definable method
verifies~ & in the limit. Thus, « is not consistent. Then there is some
extended by & such that a(h,) # 0. Let o’ be just like o except that a'(h, e)
o' is arithmetically definable (o’ checks whether the current data is e, and
switches to a program for « if it is not) and o' is more consistent than &
o is still not entirely consistent, by corollary 7.24, so o' can be improved in
same way, and so on, forever. This situation is more the rule than the exce
when we consider the reliability of computable methods satisfying ideal n
Such norms are often restrictive and often fail to admit of optimal appr Cises
tions among the reliable methods. '

Intuitively, the problem with demanding consistency is that it requir
method to complete its consistency test before reading the next datum, whe
an arithmetically definable method may only be able to succeed by putting
the consistency test until after more data is read. It should not be suppo:
that this procrastination means that the consistency problem can be sol
effectively in the limit but not in the short run, That would imply that d ¢
but in fact & is not in any class T7. The truth is more subtle. The comput
method that refutes C, = {8} with certainty actually uses future data as
empirical oracle to help it decide whether past data is consistent wit
hypothesis, so’ that not even a limiting, arithmetically definable method co
decide whether past data is consistent with the hypothesis, given the past
alone (cf. exercise 7.15). This remarkable phenomenon underscores how fo

ies whose predictions are infinitely impossible for a computer to derive
netheless be computably refutable with certainty. Without guidance from
results in mathematical logic, such a possibility would be hard to
much less to demonstrate,

his chapter extends the strong analogy between empirical and formal
ry introduced in chapter 6. There are differences to be found between the
ses, and it is interesting to analyze just what they are, but the general
re is one of confluence rather than of sharp dichotomies between the
ive logics of formal and empirical inquiry. That is not to say that ideal
are good for computationally bounded agents, but rather that from the
“reliabilist point of view, inductive methodology for computationally
ded agenis involves a smooth interleaving of formal and empirical
derations.

rove proposition 7.1 and use it to prove proposition 7.2.

tove proposition 7.8 and show that the methods constructed in the proof of
sition 7.9 work as claimed.,

Prove proposition 7.10.

{Putnam 1965) Recail the n-trial predicates defined in section 6.3, Define an effective,

difference hierarchy for relations over the natural numbers, and characterize the
al predicates in terms of the cells of this hierarchy as follows: For each + such that
< I and for each ne o,

and empirical problems blend into one another from a learning theor 0 x
perspective. : 8 is an wetrial predicate starting with | 1 < Se| IT¢
r Al

10. Computable Inquiry Prove proposition 7.7 following the strategy of proposition 7.5.
In this chapter, the difference between ideal and computationally bous
underdetermination in hypothesis assessment problems was characterized. F
difference amounts to the difference in the base case between the arithmet
and the finite Borel hierarchies. We have seen that computational agents
treat formal difficulties as internal inductive inference problems solv
parallel with the ongoing external investigation. An important result o
chapter is that our ability to compute predictions from an empirical t]
corresponds to its explicit definability in arithmetic, while the ability
computer to determine the truth of the hypothesis in the limit correspofd;
its implicit definability in arithmetic. This correspondence permits us to:
use of standard results in mathematical logic to prove the surprising resul

Show that &, is gradually empirically self-defeating for us.

Prove proposition 7.13,

Prove proposition 7.14,

Say that a method is conservative'” with respect to ¢, X, H just in case
ach h e H, it refuses to change its conjecture from 1 to 0 unless ¢, n K = .

ow that conservatism is restrictive for ideal verification in the limit.

Osherson et al. (1986).

188 ' The Logic of Reliable Inquiry Computers in Search of the Truth 189

ents a ponrecursive data stream if and only if the given method « approaches 0.

7.10. Prove proposition 7.21.
demon exists by proposition 5.6,

7.11. To apply the approach of chapter 5 to computable methods, we must intréd

the notion of an assessment G-reduction as follows: Develop the generalized setting for hypothesis assessment described in footnote 3

. fharacterize the various senses of success in this setting.
C <6B < there is a © € G such that for each & eN, heaw, (e,)

< ®(h, &) e B. ¢ Using the implicit definition of the hypothesis (, = {8} of proposition 7.19,
u how the obvious method for refuting this hypothesis with certainty uses the

Let @: @ x N — A be an operator. Define: mation in future data to determine if past data is inconsistent with the hypothesis.

@ is recursive <= there is a partial recursive function ¢(h, e, X) such that
se N, h, x, yew, Bh, £) = y <> there exists e S ¢ such that ¢(h, e, x)

Lot Ree be the class of all recursive operators. Now prove analogues of proposit
5.3, and 5.4 for recursive assessment reducibility. a5

#7.12. Prove proposition 7.20 (Fig. 7.13).
Hints: (Oliver Schulte) to show that the infinite O, general case of (a) is optimal
let 0 = o and let

ge (<> [e(e(0)) # 0 = by, (6(0)) halts within (2(0)) steps].

(Oliver Schulte) To show that the finite O, general case of (b) is optimal
0 = {0, 1} and define the hypothesis: i

g e Oy k(YK <k, 2(k") = 1) and e(k) = 0 and (g(k) + 1 #0 = ke K]1.

To show that the finite O, general case of (c) is optimal, let 0 = {0, 1}, 1et
I14-complete and let R & £4 be such that for all u, ne § <> Vz R(n, z). Now defing
hypothesis:

ceCo=Vx[xeK or a(x)=0]

(Oliver Schulte) To show that the finite O, general case of (d) is optimal, defin
the hypothesis:

&€ Cp <= if [In (1"y*0*1 is extended by £] then [Indm (1Y*0*(1™*0 is extende
by & and 1 R{n, m)]. .

The upper bound given in the infinite O, general case of () can be establishie
follows: let o verify) in the limit. If (e, n, 0) ¢ PRED AI), then « stabilizes tb
some infinite extension # of e such that g, # 0. Use this fact to get a Ij definit
of rreED(h), from which the result follows. The rest of the proposition folls
from elementary logical dependencies in the table or from results similar to those alreai
proved in section 7.8, '

*713. Take up the challenge of providing a direct demonic argument to-.shO
that h,,, Is not gradually refutable- in the limit by a Turing machine (cf. propos i
7.12), from which it would follow that C,,,,, ¢ TI4. What is required is a demon

