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only to a finite initial segment of a data stream at a given time
6.1).

Alan Turing reasoned from a philosophical explication of the limitations
uman following an explicit procedure to a formal model of computability.!
ng machine consists of a read-write head scanning a potentially infinite
n the sense that another square of tape is always provided when the
hine uses up the tape at hand. The read-write head is like an experimental
ntist according to the definition given in chapter 2. The experimental acts
flable to the read-write head are to move right on the tape, to move left on
tape, or to write something down on the square of tape currently scanned.
bservation at a given stage of inquiry is the symbol writien on the tape
¢ scanned at that stage. Finally, its current experimental act is determined
by the current datum and its current state, of which there are at most
ely many. We may think of these staies as the possible configurations of a
& memory store. Just as a scientist sees only a finite, initial scgment of his
>y any given time, the read-write head sees only a finite chunk of the tape
y given time (Fig. 6.2).

urch’s thesis is the claim that a Turing machine can do whatever a person
d. a computor) following an explicit, step-by-step procedure can do.
rch’s thesis is nontrivial, because Turing computability is a mathematically
1s¢ notion, whereas following an explicit procedure is not. Turing’s account
he limitations of the human computor provides an informal argument for
thesis. A major limitation figuring into the argument is that a human doing
mputation can only see or alter at most a finite number of discrete jottings
nce.” The human computor is transformed into the Turing read-write head,
-his bounded range of observation is transformed into the fact that the
ad-write head can scan at most one square at a time. So both the classical
oblem of induction and the modern theory of computability are founded on
idea of a bounded perspective on the infinite.

1. Introduction

Formal learning theory has been invented and developed to a large extent
experts in the theory of computability. This is no accident. The theor
computability suggests a strong analogy between the situation of a compi
working on a purely formai problem and that of an empirical scientist worki
on a purely empirical problem, and learning theorists have instinctively follow,
this analogy when thinking about inductive inference. I will argue, in fact, tha
uncomputability and empirical underdetermination have the same, underlyi
logical structure, so that it is difficult to dismiss the demons of induction whi
acknowledging the significance of uncomputability, On the one hand, t
analogy counters the tendency in traditional epistemology to study ideal norm
for agents free of all computational limitations. On the other hand, it rai
questions about the motivation behind the sharp divergence of philosophica
attitudes toward formal and empirical inquiry. The purpose of this chapte
. 18 to explore the analogy between computability and inductive reliabilit
both to illustrate the strong ties between computability theory and skeptica
methodology and te introduce some computational tools that will be vital:t
the discussion of computationally bounded inductive inference in chapter 7

2. Church Meets Hume

The problem of induction begins with the assumption that the huma
perspective on the universe is spatiotemporally bounded. In traditional epis
temology, at most finitely many experimental trials can be observed by.
given time. This locality of observation is captured by allowing the scientis

.. Turing (1936).
* Turing (1936). For a detailed discussion of Turing’s analysis of computability and
elevance to Church’s thesis, of. Sieg (1994).
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iice an output. It turns out not to matter much which conventions we
oose, so long as we stick with them. To input r, put the read-write head into its
nated start state and then write n + 1 1s to the right of the head on an
erwisc blank tape (Fig. 6.3).
A Turing _machine outputs n when the read-write head goes into its
ionated halting state and an uninterrupted sequence of n 1s appears to the
_of the read-write head on an otherwise blank tape (Fig. 6.4).
ust as we .could interpret one and the same inductive method as trying to
ed in various different ways (e.g., verification in the limit, decision with
tg. ty), the theor'y of computability can interpret one and the same Turing
c}gnc as converging to an cutput in correspondingly different ways. Turing
chmc M can be viewed as computing a function ¢ from inputs to outputs
d a pqrtial recursive function. If M fails to make an output on some input’
en ¢ is undefined for x and we write ¢(x)1. Otherwise, we write ¢(x)}. If
t._otal, the_n ¢ is called a recursive function. Let P® denote the class of .all
al recursive functions and let X denote the set of all (total) recursive
ctions. A decision procedure is a Turing machine that computes the
Facteristic function of some relation on the natural numbers. That is, a
jon procedure outputs 1 if a given sequence of numbers is in the relati(’)n
_ u‘tputs. 0 otherwise. A positive test is a Turing machine that returns f
‘given input if and only if the input is in a given set. On objects not

The bounded perspective of the read-write head leads to the key com
tional metaphor of search. In fact, scarch is what distinguishes the recur,
functions from the primitive recursive functions. The latter can always
computed with an a priori bound on how long the read-write head mu
wait before finding a relevant datum (compare to empirical decidability by
1), whereas the recursive functions may require an unbounded search for t
computation (compare to empirical decidability with certainty). In search:
natural to think of the read-write head as primed to wait for some cons
to appear on the tape, without ever knowing whether it will appear. E
though the initial input to the Turing machine, together with the machin
program, mathematically determines what patterns will arise, the read-w
head doesn’t always “know” what it will “see” in the future. It has to gene
the sequence of patterns and inspect them, just the way an empirical sci
looks at increasing data about his unknown world. The sequence of patt
seen by the read-write head on a given input may be thought of as a kin
data stream, except that the data concerns a mathematical structure rather
the physical world. '

Despite the similarities between the situation of the read-write hea
that of an experimental scientist, the theory of computability has pursued &
different course from that adopted by most scientific methodologists, T
of attaching degrees of belief to various hypothescs about what will even
appear on the tape, or about what the correct solution to a computati
problem might be, the machine is expected to find the correct answer. Ino
words, the theory of computability is a logical reliabilist arena fi
assessment of computer programs. Indeed, the criteria of reliability assurm
the theory of computability are exactly parallel to those applied to indu
methods in the preceding chapters. :

Turing tape

3. Programs as Reliable Methods
To speak of a Turing machine as computing outputs from inputs, we ha read-write head

say what it is to give the machine an input and what it is for the machim Figure 6.4
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in the set, the machine is entitled to produce any output other than 1 and
also free to go into an infinite loop. A relation that has a decision procec
is said to be recursive. A relation that has a positive test is said to be recursi
enumerable, or r.e. for short. If a relation’s complement is r.e., then the relati
is said to be co-r.e. Thus, a co-r.e. relation has a negative test (just reverse
and Os in the positive test for its complement). :

An re. relation may be thought of as a formal proposition that can
verified with certainty by a Turing machine, and a co-r.e. relation corresp
to a proposition that is refutable with certainty. A recursive relation can
be thought of as a hypothesis that can be decided with one mind chan
regardless of first conjecture. Indeed, all of the criteria of inductive succ
introduced in chapter 3 can be adopted as notions of computational sucg
Consider a machine that produces an infinite sequence of 1s and Os in the lim
after it is started with an input number #. Then define: '

might weaken the demands on the machine further, and require only that
duce a sequence of code numbers for rationals that gradually approaches
only if n e 8.° Sets having such machines may be called gradually r.e

having gradual refutation procedures may be called gradually co-r.e-’
sts having both may be called gradually recursive. -

he Arithmetical Hierarchy

o¢ notions‘ of success can be located in a hierarchical setting entirely
o the finite Borel hierarchy introduced in chapter 4. Much early work

thepry of computability concerns the arithmetical or Kleene hierarchy.
R is a k-ary relation on o, define:

A : .
R € T4 < R is recursive.

M is a limiting positive test for S

A L ,
= Vnew, neS < the output stream of M [n] stabilizes to 1. Re Ly, = thereis some k + 1-ary R' e X such that for eachn,, ..

n.ew, R(ny, ..., n) <> 3n,,, such that
f
IR (g, .oy, ey ).

-

M is a limiting negative test for §
e VYneo, n¢S < the output stream of Mn] stabilizes to 0.

M is a limiting decision procedure of S al, the dual and ambiguous classes are defined in terms of X\

< M is both a limiting positive test and a limiting negative test.' 7 -
gp g neg f Relld < Re A

S is limiting re. <> S h_as a limiting positive test. _ ReAj < ReX! & Rell;.
§ is limiting co-r.e. < S is limiting r.e. [<+S has a limiting negative te f e

i5: the Borel hierarchy starts out with clopen sets (sets of data streams
.le by. an ideal scientist on the basis of data), the arithmetical hierarchy
ut with recursive sets (sets of numbers decidable by a computer). Just
sets are the open sets, which are verifiable with certainty by an ideal
t, %.{ sets are r.e. sets, which are verifiable with certainty by a computer.

r_resPondence goces all the way up to w (Fig. 6.5).7 By way of illustration
ablish the limiting r.e. case. ,

S is limiting recursive <> S has a limiting decision procedure.

S is an n-trial predicate <> S has a limiting decision procedure that
changes its mind at most n times on each in

The terms limiting recursive and limiting r.e. are taken from E. Mark Gol
Putnam referred to the former as trial and error predicates.* Putnam_
introduced the notion of n-trial predicates.® The limiting recursive relatig
are analogous to hypotheses decidable in the limit. The limiting r.e. relation
analogous to hypotheses verifiable in the limit. And n-trial predicates
analogous to hypotheses decidable with n mind changes. As in the empi
case, we can usefully refine the notion by specifying the first conjecture:

Proposition 6.1 {Gold 1965, Putnam 1965)

U8 is limiting re. = Se X4,

(<) Supposc that S e Z4. Then S is of the form {x: 3n ¥m R(x, n, m)}
R is a recursive relation. We construct a machine M that pmcee:;ls a;
. Let My be a decision procedure for R. On input x, M sequentially
Mp(x, 1, 1), Mg(x, 1, 2),... until for some n, Mp(x, 1, #) = 0. If a zero
ﬁd, then M outputs 0 and then outputs My(x, 2, 1), My(x, 2,2), ... until

S is an n-ivial predicate starting with 1 _ :
< § has a limiting decision procedure that changes its mind at
most n times on each input n € w, starting with 1.

3 Gold (1965).
4 Putnam (1965).
5 Putnam {1963).

lis idea is proposed apd developed in Hajek (1978).
ccall that the Borel hierarchy does not stop at w. The arithmetical hierarchy
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.
.

: 'r_oduce notions of justified belief, evidential support, and probability. The
is quite otherwise. The whole force of the theory of computability 'is to
‘that a bognded agent like the Turing read-write head cannot be
E'm_te‘f‘d Fo arrive at certainty concerning most formal questions. The reason
his limitation is entirely parallel to the reason for inductive skepticism
mely, a bound\?d perspective on an unbounded data stream. To iflustrate this’
int, lt us consider how uncomputability arguments can be recast as classical
hic arguments for the local underdetermination of empirical hypotheses
urns out that the easiest problems to prove intractable are those tha£
~a.kind of self-referential character based on the effective assignment of
de numbers to Turing machines. Assume some such fixed assighment of
ers to Turing machines. Let W, denote the set of all inputs on which
ine M, halts. ¥ is an r.¢. set, since we can trivially modify M; to output

verifiable  co-limiting r.e. limiting r.e.
in the limit
decidable in

the limi!

refutable in
the limit
limiting recursive

r.e.

refutable verifiable ;
with certainty with certainty never M, halts. Moreover, each r.e. set S is some set W, since the machine
decidable recursive ani: be produced by modifying the positive test for § to go into an infinite

with certainty

Figure 6.5

another zero is received, and so forth. All of this is effective, so by Churc
thesis, it can be implemented as a Turing machine M. It is easy to verify:

M is a limiting positive test for §.
(=) Suppose that S is limiting r.c. Then there is some machine M such th

x €S < In Vm > n the mth output of M[x] is defined and equal to ohserved to drop into its halting state. At that point, the simulating maching

Since M is assumed to output an infinite sequence, the predicate 51
se analogy between the strategy of the machine and that of an empirical

the mth output of M[x] is defined and equal to 1 1tist waiting for some crucial datum to verify an empirical hypothesis.)

is recursive. Hence, S has form 3n Vi R[x,n, m], where R is recursive. T

Sexi. iti
Xy Proposition 6.2

This is all parallel to the characterizations of decidability and verifiab K¢ x4,
in the limit presented in chapter 4. Just as fans provide basic empirical
that can be built up using quantifiers into ever more subtle empirical hy
theses, recursive relations provide basic formal tests that can be built up us
quantifiers into ever more subtle computational problems.

We can form an infinite table 7" as follows (Fig. 6.6):

O I
0 otherwise,

5. Uncomputability and Diagonalization . 7
We can think of an r.e. set S as uniquely represented by a sequence of Os

s, 1;11th 1 in position y if y € § and 0 in position y otherwise. So each row
ta ;le represents the characteristic function of some r.e. set. The important
1s this: since we have seen that each r.e i '

: _ .e. set 1s some set W, each

me row in the table, b cach e st

1t might be objected at this point that it is quite appropriate for the theor
computability to insist on reliability because computation is just deductio
deduction can be guaranteed to yield certainty. Inductive inquiry, on th
hand, concerns answers we can never be sure about, and hence demand
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y: Inputs mm It must be in an
! 2 3 ifinite loop.
£ o1 1 0 1 But then again, maybe
5 it's just about 1o produce
H ) the answer
a
g 21 o0 1 0
: )
g
5031 1 1 0
N Figure 6.8
Figure 6.6

‘read-write head. Nonetheless, there remains a strongly intuitive fecling
ny would-be decision procedure is foiled for inductive reasons: no matter
yig the decision procedure waits for machine M, to halt on input i before
ding that the computation M;[i] is in an infinite loop, the computation
It at the very next moment. Anyone who encounters a bug in a
unning program knows the feeling. One doesn’t know whether to turn
he ‘machine and start over (wasting all the time spent up until now if the
gram was just about ready to make an output) or to continue to wait (which

Now let us consider whether K is represented by some row in the tab]
not, then K is not r.e. Recall that K = {x: x & W.}. The question whether {
is answered by looking at table entry T;;. Hence, K is represented b
diagonal sequence of the table. Therefore, K is represented by the resu
reversing 1s and Os along the diagonal of the table to form the counterdiag
sequence of the table (Fig. 6.7).

But the counterdiagonal sequence differs from each row of the table
least one place (namely, on the diagonal). Therefore, K is represented b

in the table, and hence is not r.e fe is one imporiant disanalogy between a computer and an inductive
TOW 1 3 L.

: the computer receives no infinite data stream and an inductive method

The sense in which the preceding proof is a diagonal argument is glea
proceeds by depicting K as the counterdiagonal of a table whose rows inc
the characteristic functions of all r.e. sets.

od in response to its conjectures thus far, a computational demon cannot.
omputational demon can still watch what machine M, does through
waiting, for example, for M; to declare its certainty by returning 1 on a
input. Moreover, the demon itself can be a computer program, since it
problem for one computer program to simulate another to see what it
a given input. The plot thickens when the index provided to M, in the
on’s simulation is the demon’s own index. Then when M, is observed to
¢ certain (in the demon’s simulation) that the demon’s index has a given
ty, the demon can make an output so that his own program fails to have
operty M, is certain that it has!

articulay, we can use such a demonic argument to show that K is not
ppose that M; aspires to be a positive test for K. The demonic program
orks like this. On input y, it simply ignores y altogether and proceeds to
late M,, step by step, on input d; (i.e., the demon’s own index). The demon
tinues this simulation until the computation M,{d,] returns 1, at which time
mon returns 1 as well, Otherwise, the demon continues to wait for M;{d;]
n |, and hence makes no output on y (Fig. 6.9).

Thus we have that d; € W, <> M;[d,] returns 1, so M, is not a positive test
ssuming that such a d; exists for each i, no M, is a positive test for K
hence K is not r.e. The index d,, if it exists, is a “computational disguise”
inductive demon dedicated to the befuddlement of machine M, (Fig. 6.10).
ut it is not a trivial question whether such a demonic index d; exists for
nachine M;. It seems that we have to know what d; is before we can write

6. The Demons of Uncomputability

The diagonal argument rehearsed in the preceding sectior} doegn’t look 1
demonic argument, since there is no demon who feeds misleading data t

vy =inputs

machine indices
(=]

xX=
(%]
—

Figure 6.7
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on input d;.

Figure 6.10
Figure 6.9

‘Consider a table filled with partial recursive functions so that at position
e have the function ¢, ,, where we stipulate that ¢, ., denotes the
here undefined function if ¢ (3) is undefined. Consider the table’s
nal sequence of functions:

down the demonic procedure M, , because M,, feeds d, to M;. But we cann
know what 4, is until after we write down the procedure M,,, since d, i
code number of that procedure. So the question remains whether the induc :
demon can always don a computational disguise d; appropriate for a gi
machine M,. '
The self-referential miracle required for the demon’s disguise is effected
the Kleene recursion theorem. Before proving it, we will need a pair of simp
results.

D = (Ppo10)> Pipaity> Ppazys - - -

(x) = ¢, (x)} is partial recursive, there is some i such that h = ¢;, so D is
he ith row in the table (Fig. 6.11).

Proposition 6,3 The s-m-n theorem t f be a total recursive function. Let

Suppose Y(x, y) is a partial recursive function, Then there is a total
recursive function s such that for each x, y € w,

Pen(¥) = #(x, p).

Proof: Let M[x, y] be a program for . To compute s(a), take the program
stick in input y, and return the code number of the resulting program M [a.
which now only accepts input y. :

3 E
D* = (@ ripaons Pramianys Prepaiays - - )

*isa row of the table, since #'(x) = f(¢ (x)) is computable and hence
me ¢,. If ¢, is not total, we can choose a total k' that gives rise to the very
ime tow by the following lemma, so that we may assume that ¢, is total.

Lemma

Proposition 6.4 The universal machine theorem o If ¢y is not total, we may replace k with j so that ¢;(x) is an index for

the everywhere undefined function whenever ¢ (x) is undefined and
9;(x) = ¢ (x) otherwise, so that the jth row is identical to D*.

There is a u € @ such that for each i, x € ©, ¢,(, X)
= ¢(x) if Pdx) is defined and is undefined otherwise.

Proof: u is the index of a program that decodes i and that simulates the resultin

. . . D Y50
program on input x, returning whatever output the simulated program yiel ) p
if any. p1
H P00 |
Now we may proceed to the main resuit. Il 1] ..,
D ¢¢0(0) | ¢¢,1(;) I ¢¢2(2) |-.. I ¢¢i(f) Y \
Proposition 6.5 The Kleene recursion theorem® .

For each total recursive f, there is an index i such that ¢ i = ¢;

8 The nice, tabular proof that follows is adapted from Cutland (1986). Figure 6.11
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Proof of lemma: Define: y(x, y) = b P(x), ¥), where u is the -univergal in
guaranteed by the universal machine theorem (proposition 6.4). y(x, y) is par
recursive and amounts to the result of simulating index ¢(x) on input y if ¢
is defined, and is undefined otherwise. So we may apply the s-m-n theoi
(proposition 6.3} to yield a total recursive s such that ¢y 4(¥) = V¥(x, ). L
be an index for s. .

slf-referential magic has occurred, for now we have

0 if M, returns 1 on input d;

pal¥) = {

T otherwise.

ng re. in a fashion very similar to the limiting skeptical arguments of
or 3. Consider the problem T = {i: ¢, is total }. Let M, be a Turing program
jould like to be a limiting positive test for T. If M, fails to produce an
ite sequence of outputs on some input, then it fails to be a limiting positive
 any case, so suppose that M; always does so. On inputs x, y, the demonic

Returning to the proof of the proposition, observe that ¢ s, th
entry of D*, is on the diagonal because D* is row k of the table. Since row
identical to the diagonal sequence D, the kth entry of D is identical to
on-diagonal entry in D*. Thus

¢f{¢k(k)) = ¢¢ktk)-

This is immediate from Figure 6.12. But by the lemma, ¢, (k) is defined sin

i is the ind ised in the theorem.
v is total. Thus, ¢, s the fndex prom 0 ifthere are at least y stages when M;[xT's cirrent output

How does this theorem yield the self-referential disguise d; for the de isnot 1

program for fooling M;? Consider a procedure that on inputs x, y sim .
the computation of M; on input x. When the procedure observes tha.t M, rety
1 on input x, it returns 0 for x, y. Otherwise, it continues to wait for _
return | for x. The procedure’s behavior is the following partial recurg

Wix, y) =

T otherwise.

plying propositions 6.3 and 6.4 just as before yields an index 4, such that

function:
0 if there are at least y stages when M;[d,]s current
if M, 1 on input x output is not 1
Vi 3) = {0 M, retums T on P bul) = P
1 otherwise, 1 otherwise.

By proposition 6.3, there is a total recursive s such that for all x, y, ¢y

¥(x, y). Now apply the recursion theorem to obtain an index d; such tha function is total if M, fails to stabilize to 1 on k and has finite domain

wise, so M, is not a limiting positive test for T. Since i is an arbitrary

boas = Pa. hine that outputs an infinite sequence of outputs for each given input, there
st = Fde o limiting positive test for 7.
k The same demonic technique can be used to prove that broad classes of
N blems are nonre.cursive or pon-re. Let 4 < PR (recall that PR i's t}'ie class
Tor) ! H- partial recursive functions). Let index(4) denote the set of all indices for
5 unctions in 4. That is,
] | -
i1 D ¢¢0(0) ¢¢1(;) ¢¢,2{2) vee r Dy () J--- g, 00 index(4) {l- & E.ﬂ.}
\ /f \ {f \ /f \ / ol \L‘f S @ §is an infiex set just in case fqr some ﬂt < PR, S = index(ﬂ).. This
R ‘ P o |0 o0 unts to the requirement that no partial recursive function .has one }ndex
1n § and another out of §. For example, the halting problem K is not an index
To see why this is so, we note that every partial recursive function has

nitely many distinct indices (take a program M; for ¢ and add arbitrarily
ny do-nothing clauses to M;). But using the Kleene recursion theorem, we

erim abaony ok r ammandt o ot e er s o 2otk balie Al oty 1 oo that o — B

Figure 6.12



152 The Logic of Reliable Inquiry

The Demons of Computability 153

but no other index of ¢, is in K. The construction is as follows. The follo

ninput x and pass along the result of simulating y(y) if M;[x] returns L.
function is partial recursive by Church’s thesis: o]

plying the s-m-n theorem, we have a total recursive function s such that

Ww(y)  if M[x] halts with 1
T otherwise.

Vo) = {0 fy=x

T otherwise.

‘,t’s(x)(_V) = {

Then by the s-m-n theorem there is a total recursive function s such that : Kleene recursion theorem, there is a d; such that

- 0 fy=x if M;{d;1 halts with 1

- PG ={ _ baln) = {W(J’) if Mi[. -} alts wi

: 1 otherwise. T atherwise.

L

By the Kleene recursion theorem, there is an n such that we have that M{d,) halts with 1 <= d; ¢ S, so M, is not a decision procedure
?&% : S

%@ ) = 0 ify=n ase 2, in which the undefined function (¥ is not in 4 proceeds in a similar
j Ly 1 otherwise. ner, except that 1 is replaced with ( in the definition of 6. B

On the other hand, the halting problem restricted to a fixed input » is an ind We may also show by a demonic argument that a wide range of index sets
set: ot r.e.

K,={xne W} Proposition 6.7 The Rice-Shapiro theorem
¥a < PR, if index(A) is r.e.

So is the set I = {n: W, is infinite} which contains all indices of functions wi
then Yo € PR, ¢ € A<=13 finite 8§ € A such that § < ¢.

infinite domains or the set 7' of all indices of total recursive functions. We
now show by a demonic argument that only trivial index sets are recursiv, :

uppose that the consequent of the proposition is false of some ¢ & PX.
M, be an arbitrary Turing machine. Case 1 Suppose first that the (=) side
biconditional is false. Then ¢ €.4 but for each finite & < ¢, 6 ¢ 4. Then
{ Mi’ a demonic index d; ought to proceed (by watching M(d;)) so that
i index for some finite # < ¢ if M;(d,) halts (i.e., becomes sure that 4, is
Proof: Suppose that for some 4, § = index(71). Suppose, further, that S : nid so that d, is an index for ¢ otherwise. This can be arranged as follows:
and S # . The everywhere undefined function ¢ is either in 4 or it is :
Let M, be an arbitrary Turing machine. i

Case 1: Suppose that the everywhere undefined function ¢ is in 4.

since S # w, there is some y ¢ A such that ¥ # . Tatuitively, the demont
index d, for M; watches what M; does on input d; and produces output Wiy
soon as M, becomes sure that d; is in 8 so that d; is an index for yy ¢ 4 and
is wrong. Otherwise, d; continues {o stall forever so that d; is an in
for ¢ €4 and M, is again wrong for failing to recognize that d; € S. As in
case of the halting problem, we use the Kleene recursion theorem to cons
such an index d;. Define:

Proposition 6.6 Rice’s theorem

Let § be an index set. Then S is recursive <> § = {J or S=m.

W(x, y) = {‘?5@) if MAx) 1 within y steps

T otherwise.

uinction is computable in light of Church’s thesis since we can effectively
e M,(x), counting each step as we go until y steps are used and then
-whether M; produces an output by that time. If not, we simulate ¢(y)
ass along the output, if any. If so, we go into an infinite loop. Applying
-m-n theotem and the recursion theorem in the usual way yiclds

. i daly) = {ﬁb(y) if Mi(d;) 1 within y steps
y(y) if M;[x] halts with 1 ‘_ T M)t 7

o(x, y) = {

K otherwise. -
, Mi(d,) | = d; is an index for some finite initial segment 6 of ¢ = d; ¢ S,
{d)T=-d, is an index for ¢ = d; € 5,50 § # W,

To compute this function, the demon need simply simulate the computati
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P =1 o) =1 $0}=1 pO=1

In case 2, the (<=) side of the biconditional is false, so we bave that th
isa ¢ e PR — A and there is a finite 8 < ¢ such that 8. In this case, w : .
want the demonic index d, to be for ¢ if M{(d;) becomes sure that d; is in § an; L
to be for § otherwise. Define:

_ ey M| or yedom(®) $(0) still - $(0) still #(0) still
Yix, y) = 1 oiherwise undefined undefined undefined
Figure 6.13

To compute i, first check whether y € dom(8), using a lookup table. Then ches
whether M(x) halts. If so, simulate ¢(y) and return the result. Applying th

; y he quantifiers occurring within the square brackets
s-m-n and recursion theorems, we obtain d; such that ¢ d & q are bounded, and

ce correspond to finite unions or intersections, The relation &, codes(m, y)
{open in A, Finally, the only remaining quantifiers are existential quan-
ver countable domains (since there are at most countably many
#), which correspond to countabie unions. (b) follows from (a) and
osition 4.6. |

$(y) i Mid) | or y e dom(6)
Paly) = :

1 otherwise.
Now we again have that My(d;} | = d; is an index for ¢ =>d; ¢ § and Mi(di)_'

d, is an index for 6 = d;€ 8,50 S # W,. . ) .
hat these corollaries tell us is that demonic arguments against ideal

tists with background knowledge data(’PR) can be used to show that a
iass of purely fromal questions do not admit of computable positive
n other words, the failure of index sets violating the Rice-Shapiro
ition to be r.e. is an instance of inductive underdetermination. The
phenomena involve exactly the same topological structure. By way of
ration, consider the problem K, = {x: 0 € W_}. Let o be a scientific method
¢ the hypothesis that the data stream is in data(K,). The demon simply
s o the data stream 0, 0, 0, . . . until « emits the certainty mark ‘1" followed
Thereafter, the demon feeds code(Q, 1) forever after (Fig. 6.13). If o ever
1’ immediately followed by 1, then the data stream is for the function
1)}, which is defined at 0 and hence is not in K. But if the method never
nes sure, the data stream is for the everywhere undefined function, which
it Ky. This is an instance of Sextus’s ancient argument against inductive
er: _lization. But in light of corollary 6.8, it shows a purely computational
namely, that K, is not r..

This result was proved by means of a demonic argument, but it has
epistemological flavor in its own right. Suppose we have a fixed, 1-1 encod
of pairs of natural numbers into numbers other than 0.0 is reserved as a speci
symbol. Let ¢ € A be a data stream. We say that & is for ¢ just in case &
code numbers for all and only the pairs (x, ¢(x)) such that ¢(x) is defi
together, possibly, with some 0s added. The funny business with ¢ ensures |
there is a data stream for the everywhere undefined function ¢, which other
would have none, since there is no pair in J to present. Notice that oth
functions may have gratuitous Os in their data streams as well, so that seei
a 0 is not a dead giveaway that the data stream will be for ¢J. Let data(d
the set of all data streams for ¢. If 4 < PR, let data(A) be the union o
data(¢) such that ¢ € 4. Finally, let h;, denote the empirical hypothesis: ik
the data stream will be in data(#1), and assume that correctness is truth.
we have:

Corollary 6.8

(a) If A = PR and index(4) is r.e. then data(A) is data(’PR }-ope ome Disanalogies

purpose of this chapter has been to illustrate the strong structural and
ophical analogy between standard results in the theory of computability
d classical skeptical arguments for local underdetermination, so that degrees
ncomputability may be thought of as levels of underdetermination. The
ogy between ideal inquiry and Turing computability is not exact, however.
the analogy has been iilustrated here only for index sets or for closely
ed sets like K. Second, the converse of proposition 6.7 fails because it is
0 construct non-r.e. index set problems that generate inductive inference

certainty given data(’PR).

Proof: (a) By the Rice-Shapiro theorem, we have that for each ¢ e
$ €A < there is a finite §e4 such that § < ¢. Then we have for:
¢ e data{(PR),

eedatalA) <1 finite e 4, dnew
[V & dom(B) 8(m) = y <> Tk < n g codes (m, y)].
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_f_bpositions 6.7 and 6.9 leave open an interesting question. Can we always

problems that are ideally verifiable with certainty.” It also turns out: 1 -
hat an index set is not 4 by means of an ideal demonic argument?

demonic arguments cease to establish the uncomputability of index sets at e
3 because the data set corresponding to any index set is always .A[dam(f'ﬂ{
This follows simply from the fact that 2% is countable. This is also the b

general upper bound available given just background knowledge data(’P " Question 6.10

If A < PR and index(A) is X4 then is it the case that

Proposition 6.9 data(A) r data(PR) is T [data(PRY] |
(a) For each countable S, data{A) N data($) € Aldata(S 3.

(b) A24S < PR such that
data(A) r data(PR) ¢ T[data(S))15 v M[data(S)]5,

is easy to show that if we restrict our attention to those If sets
are re. unions of co-r.e. index sets, then the answer is affirmative
ise 6.7). But since a £ index set could conceivably be an r.e. union of
ets that are not index sets, it is not clear that the answer is affirmative

Proof: (a) Let 4, 5 < & be given, with § countable. Let & € A Then we ha ral.

for each ¢ e data(S):
g e data(A) clges
=3P ea NS suchthat VX, y € w, P(x) = y <> Iz g5 encodes (x_,_ :
=3P e NS such that Vx, y[(¢p(x) = y & 3z such that &5 encode
(x, ¥)) or (P(x) # y &Vz, g, does not encode (x, y))]
9[- or V-]
<> Jvya- - -
< 3vd -

ve the analogue of proposition 6.1 for the other notions of computational success
iiced in section 6.2.

ne the limiting halting problem as follows:
Ky = {x: M, started on input x outputs a sequence that stabilizes to 1.}

at Ky, € X3 — 14, both by means of depicting Ky, as the counterdiagonal
¢ and by means of a demonic argument using Kleene’s recursion theorem.

Since the quantifiers all range over countable sets, they correspond to counta
intersections and unions, so data(4) r data(S) € Z[data($)]5. Also, for ¢
s e data(S), :

s¢ corollary 6.8(a), together with a demonic argument, to show that {it W, is
) is not re.

s¢ a demonic argument based on Kleene’s recursion theorem together with
ition 6.3 and the results of exercise 6.1 to prove that I = {i: W, is infinite} is not
llow the strategy of the arguments presented after proposition 6.4,

cedata(A)<=Vpesl — 4,
Ix, y € @ such that ¢p(x) = y and Vz g, does not encode (x, y) or

Ix such that ¢(x) T and Jz, w such that €, encodes (x, w). Show the converses of corollary 6.8 are false.

By regrouping the quantifiers, it follows that impicte the proof of proposition 6.9(b).

Setti_e question 6,10 in the affirmative in the restricted case of r.c. unions of co-r.e.

dara(A) o data(S) € I {data(5)15.

() Let 4,,,, = {¢: An Y even m > n, p(m) = 0} and let A,y = {¢: In
m = n, g(m) = 0% Let A = Aoy N A,pyq. Now proceed with a demonic arghl
along the lines of the one given in the example at the end of section 6 t
that data{) is neither E[data(PR)15 nor I [data(PR)15.

9 Cf. exercise 6.6.



