120 The Logic of Reliable Inquiry

Recall that M is the Baire space (A, B). Let | + & be the result of addiz
all singletons to 9. Let D = (N, 29\{) be the discrete topology on . Let T
(AL {&. N }) be the trivial topology on A, Let W = (A, A), where A is the set of
closed balls under the distance function p(s, 7y = sup,|e, — t,|, where the distance is
if the sup does not exist. :

(i) Show that Ve, h is verifiable . in the limit given T on e<=h is verlﬁabIe
the limit given A,

(i) Let C, = {{}. Show that k is not verifiable . with certainty given M, T, or’
on {, whereas & is decidable . with certainty given D on {. Show that a structi
R satisfies “h is decidable . with certainty given & on {7 just in case In sug
that { e ([} > {£} is refuted by stage n)g. Do you believe that if a univery

educibility and the Game
Science

hypothesis is actually true then there is some fixed time such that if th White has Why do I always
hypothesis were false it would be refuted by that time? What does this g the first move, sturt out with
about the prospects for Nozick’s program (cf. section 2.7) as a response to { Monsieur. only one guy!

problem of local underdetermination? Show that for every R, { e (I} rad

such that {{} is refuted by stage n)q. Why does the placement of the existentia]

quantifier matter so much? (The former placement is said to be de re, or

things, while the latter placement is said to be de dicto, or of words.)
{iii) Show that for each s, k , is not refutable in the limit given M, T, or W on &,
(iv) Show that:

@) DCIhlgee = @C [h]w = i — bdr ().
(b) (VCC ave — QDCC ilnes = bdry(Cy) — Gy
© RC [hlnre — DC A Mws e = bdry(Cy) — G
d) int(C,) = & = @Cc{h]m+g =y (i.e.,, “his decidable with certamty” is't
same proposition as h).

(v) What happens to (b) and (c) in R?
(vi) Relate results (iv a—c) to the discussion in this chapter in which it was c1a1
that the problem of induction arises in the boundaries of hypotheses.
(vii) What is the significance of (d) for naturalistic epistemology, the proposal t
we should use empirical inguiry to find out if we are or can be reliable?

“Introduction

Many of the negative arguments considered so far have involved demons who
attempt to feed misleading evidence to the inductive method o, as though science
¢ an ongoing game between the demon and the scientist, where winning is
rmined by what happens in the limit. This game-theoretic construal of
uiry is familiar in skeptical arguments from ancient times, and it is the
pose of this chapter to explore it more explicitly than we have done so far.
Oné reason it is interesting to do so is that the theory of infinite games is central
y contemporary work in the foundations of mathematics, so that the existence
Winning strategies for inductive demons hinges on questions unanswered by
theory.! In set theory, infinite games are known to be intimately related to
the notion of continuous reducibility among problems and inductive methods
ri1 out to determine continuous reductions. It is therefore natural to consider
ames and continuous reducibility all at once. The discussion of continuocus
ducibility in this chapter will help to underscore the analogy between reliable
iductive inference on the one hand and ordinary computation on the other,
ich will be developed in the next chapter.

! Material presented in this chapter assumes some elementary issues in set theory,
it may be skipped without loss of comprehension in the chapters that follow.
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9. Ideal Inductive Methods as Continuous Operators on the Baire Space
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Consider a hypothesis assessment method a. o takes a hypothesis and a finj
data sequence as arguments and returns a rational number in the interval
[0, 1]. Let & be a fixed 1-1 map from the rational numbers in [0, 1] to ¢
natural numbers. This way, we may think of « as conjecturing natural codg
numbers for rationals. Then for fixed h, we may think of « as determining a
function ®, ,» AL— A from data streams to conjecture streams such that t
code mumber of the nth conjecture of @ on h is the nth entry in the infin
conjecture stream that is the value of @, (&) (Fig. 5.1). In other words:
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Figure 5.2

Let ee ®THO), so Oz} € 0. Since O(s) € O, there is some e € G such that
{e). Butdby hypothc;sis, for each n < lh(e) there is an ¢’ < ¢ such that for
" extending ¢’ ®(g'), = ®(e),. Thus, e R(e) = R. “(0) =
e 0T10) is open. (e) R(e) =R So @™ '(0) =R, and
(=) Suppose that @ is continuous. Then for each open set 0, ®~10) is
n. Let 2 € A, new be given. Suppose ®(g), = k. Let S(k, n) be the set of
all afinite sequences g’ such that ¢, = k. S(k, n) is just the union of all fans [e]
ch that Ih(e) = n and e, =k, and hence is open. By the continuity of @
(s -(k, n)) is open. Hence, there is some G = w* such that ®~1(S(k, n)) i;
ion of all [e"] such that ¢” ¢ G (Fig. 5.6). Since ®(g), = k, some ’initial
1ent e* of ¢ is in G, But then for each extension &” of e*, &” e @~ (S (k, n))
§") e S(k, n) and hence ®(c"), = k. ’ I,

®, ,(e), = Ealh, )N

A function @ from N to W is called an operator. 1t turns out that th
operator @, , is continuous with respect to the Baire space. Recall that @
continuous just in case ® *(§) is open if 5 is. In the Baire space, this amount;
to the requirement that successive conjectures in ®(¢) depend only on finit
initial segments of ¢, so continuity captures the bounded perspective of th
scientist. The following proposition makes the connection precise (Fig. 5.2)

Proposition 5.1

@ N — N is continuous <> Ve, Yn, Je < ¢ such that Ve’ extending e,
o), = Vo),

S1_n(fe ®, ; clearly satisfies the right-hand side of proposition 5.1, the
._ulty of q),x,_,, follows immediately. It is not the case, however, that ’each
ntinuous @ is identical to some @, ,. Continuity leaves open the possibility
waiting for relevant data to arrive. For example, define:

D) = {T if €100 =0

f

T otherwise.

Proof: (<) Assume the right-hand side of the fact. Let O be an open subset ¢
2. Then for some G < w*¥, O is the union of all [e] such that e € G. Let R(k;
be the union of all [¢'] such that for each & extending ¢/, ®&), =k Rk, n
open since each [¢'] is (Fig. 5.3). '

Hence, the finite intersection K(e) = Rlep, 0} 0 - 0 Reppe)-1- 1))
open (Fig. 5.4).

The union R of the R(e) over all e e G is therefore open. Let e e R, Th
¢ € R(e), for some ¢ € G. Thus, e < @(¢), by the definition of R(e), so O(e) e

d 1" are any conjecture streams that difk i i i
(e R() forsome ¢ T d iffer up to time 100, @ is continuous,

0 o that is ‘forced to produce a conjecture on each finite initial segment
1¢ data can induce ®. Nevertheless, it turns out that this extra generality

y W < e
i Ty = -

Lo g " .
e ewd v fetse ey ey Figure 5.1 Figure 5.3
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When 4 < B, we may say that 4 is G-reducible to B. G-equivalence is

doesn’t matter for our applications, since we are interested in methods tha ¥ hIe :
ned in the obvious manner:

converge, and convergence is undisturbed if a method stalls by repeating it
previous conjecture until some relevant datum arrives in the data stream, a
we shall see in the next section. - A=gBeA<gBand B <gA.

'may think of 4 <, B as saying that 4 is no harder than B, so far as
pperators in & are concerned. Let Cnt denote the continuous operators on A,
3. Assessment as Reduction n the relation <, of continuous reducibility satisfies the following
Many results in topology, descriptive set theory, logic, and the theories’
computability and computational complexity are about reducibility. The follow
ing approach is common to each of these fields. Let & be a collection g
operators on A_. We may think of G as characterizing all operators cor
responding to agents of a given cognitive power. For example, arbitras
operators correspond to the abilities of the Judeo-Christian deities who can’ ;
the entire future at a timeless glance. Continuous operators correspond to th

Proposition 5.2

(a) =<y is reflexive and transitive over the subsets of N, s0 =y, 18
an equivalence relation over these sets.

(1) If A <¢uB then 4 <, B.

abilities of “ideal agents” who cannot see the future but who can intuit g B pov
mathematical refations in an instant. Computable operators (cf. chapter 2

B
correspond to the abilities of a scientist who follows an algorithmic inductiy © IfAe I, | and B <y A then B €| 11
method (or who lets a digital computer do his work for him). Finite stat AP AP

operators (cf. chapter 8) correspond to the abilities of a computer with a fix

memory store. Let 4, B = N, Then define (Fig. 5.7): (d) We may substitute D for B in (c).

Proof: Exercise 5.1. L
A < ;B <= there is a ® € G such that for each e € N, £ € 4 = B(z) EQ_B

/—__’,h o Z _:
WWW WWW WWW @W WW Figure 5.7

% Continuous reducibility is called Wadge reducibility in the logical literature and

Figure 5.5 noted by <., (Moschavakis 1980).
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i~ G-complete in EI;.;_

(c) His decidableC[Wlth certamty]

in the limit
. — 51
<= foreach he H, C,, Cy < cr s |
2

(d) If O <r < 1, then H is decidable . with n mind changes starting with

0 Ci
Li{eforeachhe H,| G, |=<cuSin).
r Ci Ca

Figure 5.8 . .
I present only the certainty case of (a), the other cases being similar,

et o decide. h with | mind change starting with 0. @, , is the required
ction. (<=) Suppose that for each he H, C, <, S;. Let continuous @,
uch that for cach ce A, ee(, = ®,(e) €S5,. Define the method o as
follows. (Remember that conjectures following the declaration of certainty are
fevant.)

Let © be a complexity class of subsets of A’ {e.g., Z7). Then a G-comple
set in @ is a maximally complex member of @ (Fig. 5.8). :

A is G-complete in © < (1) 4 € O and (ii) for each Be 0, B <;4

It turns out that if we fix K =A(, then reliability is equivalent to Cat-reducibtli
to one of the foliowing sets, which correspond to the various notions
convergence. Recall that £ is a fixed, 1-1 map from the rationals in [0, 1.
the natural numbers, '

1 fe#0andath,e—)="1" else
alh, €) =4V if there is an n such that for each ¢ € [e], ®,(e), = 1

¢ otherwise.

S1 = {ve . there is an n such that 7, = 1}. € AL, Suppose ¢ € (. Then ®,(s) €.5,. So for some n, ®,(e), = 1. So by

proposition 5.1, there is some finite e < ¢ such that for each &' extending e,
')« = 1. Hence, afh, ) produces a certainty mark ‘1’ followed by 1. Suppose
. Then by a similar argument, «(h, e) mever produces the certainty
B

S, = {te N[ there is an n such that for all m > n, t,, = 1},

Sak) = {r e N v e85, & there are at most k positions i such that
T # Tig i

Sy = {te A for each rational s> 0 there is an n such that for al

g1 : .. .
mzn, 1 - Yr,) < s} Proposition 5.3 shows that the ability of a continuous map to wait is of

conscquence when the question concerns reduction to a convergence set,
a method o that is always forced to produce a conjecture at every stage
simply repeat its previous conjecture until the information the continuous
‘15 waiting for appears.

The correspondence is made precise in the following proposition.

Propesition 5.3

with certainty S
(a) H is verifiable | inthelimit | <> for each he H, Cy < cue| 52 Ideal Transcendental Deductions as Cnt-Completeness Theorems
gradually 53
St
(b) H is refutable | inthelimit | < for each he H,C, < cu| 52

nvergence set. It also turns out that when K =% the characterization
orems of the preceding chapter may be thought of as proofs that the various

with certainty

gradually 53
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Figure 5.9
- Figure 5.1
Proposition 5.4 igure 5.10

St = and only if ‘the given copjecture stream is not in 5. Just like a scientific
Sa(n) ¥P od,a Qemomc strategy 5 mduces an operator @; on A. A successful demon
is Cnt-complete in} refore witnesses the relation § < ¢, Cj, just as a successful scientific method

S, x5 nesses thf? relation ), < ¢, 5. How does § <, C, conflict with C, <, 5?
S s he answer is that demonic arguments, like characterization theorems, may be

ewed as completeness proofs (Fig. 5.11).

Proof of X% case: Let C, be an arbitrary 38 set. Then by proposition
4.10, some « verifies - i in the limit given A/, So @, , is a continuous reduction
of C, to S, So for ecach PeX3, P <, S, Moreover, it is immediate

Proposition 5.5

B —
definition that S, e 28 So §, is Cnt-complete in *£ The other cases ar Z Sy
similar. ‘o »D S,
If Ck € ZI; and : ) = Cnt CJJ:
The idea behind proposition 5.4 is more general than the particular notion 2 S2
of convergence considered. Say that S is closed under finite repetition just i 164 Sy
case for each & € 5, the result of inserting an arbitrary, finite number of xs af T
each occurrence of x in ¢ is still in S (Fig. 5.9). : -
IF is easy to see that S, 5, S,(n), and 5, are all c!qsed undcr‘ fin then C, is Cnt-complete in u
repetition. For each convergence set closed under finite repetition, the existen TI5
of a reliable method is equivalent to the existence of a continuous reduction -
3

as in proposition 5.3. To extend inquiry to 32 all we have to do is to inven
a new notion of convergence that yields a convergence set closed unde
finite repetition that is Cat-complete in 2 (cf. exercise 5.4).

5. Inductive Demons as Continuous Counterreductions

In each of the demonic arguments employed in the preceding chapters, th
demon looks at the conjectures produced by the scientist so far and gencrate
the next datum to be fed to the scientist. So we may view the demon explici
as a map & from finite sequences of conjectures to data points. In this sens
the demon is a mirror image of the scientist, who maps finite sequences of dat
points to conjectures (Fig. 5.10). :
The demon’s goal is also a mirror image of the scientist’s goal. The scientist
method is supposed to reduce C, to .S, where S is the set of all sequences that
converge in the relevant sense. The demon’s job is to produce a data stream

Figure 5.11
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For e¢xample, Cy,,, 18 2 complete by proposition 5.5 and the demonie
argument given in chapter 3. By the Borel hierarchy theorem (proposition 4.9
there is a non-E2 set & e 115, So (,,,,» which is TI3-complete, reduces R, By {
contrapositive of proposition 5.2(c), any set that continuousty reduces a non-32
set is a non-xZ set, so (y,,, is not ZF. By the characterization theorem f
limiting verifiability (proposition 4.10), h is not verifiable . in the jimit. Simil
arguments apply in the other cases. So a demeonic argeument shows not only
that C, is not in the Borel complexity class characterizing inductive success o
the required sort, but also that C, is at least as impossible to solve for id
agents as the worst problem in the dual complexity class. ;

The parallelism between the demon and the scientist can be extended t
background knowledge. X tells the scientist what sort of data stream the demo
may produce in the limit. Suppose we were to restrict the scientist to producin
conjecture streams in some set P, so that D is the demon’s backgrouni
knowledge about what the scientist will do in the limit. The demon’s task woul
become easier, just the way the scientist’s task becomes easier when X1
strengthened, For example, consider what happens when the hypothesi
investigated by the scientist is kg, but the demon knows that the scientist
never say 1 again once he stops conjecturing 1.

5, is the ith play of the scientist o and d; is the ith play of the demon 4.
A/, then define

P, . = (ae|0), a(ell), afe|2), ...) and P, ; = (3(2]0), é(ei1), 6(el2), ...).

D, s= (o dy,ds,...)

_' infinite sequence of plays of ¢ in response to «, and the infinite play

Sa,é = (Sﬂs 815 87, .. J)

he infinite sequence of conjectures produced by « in response to J.
An inﬁn_ite game of perfect information is now just a set % < A/, Winning
ned with respect to 9/ in the following way:

6. Science as a Limiting Game o wins for S against 8 in W< F, ;e W

We have seen that a continuous demon suffices to show that an inductiv & wins for D against o in W <> o does not win for S against & in W.
problem is unsolvable and that when the problem is solvable, it is as thoug
the scientist has turned tables on the demon, exploiting the latter’s restrict
view of the scientist’s conjectures. But this raises a question, namely, wheth:
there are inductive problems for which neither the scientist nor the demon b
a winning strategy. In other words, is the game of inquiry always determiné

The question belongs to the theory of infinite games of perfect informatio
which has found important applications in logic and sct theory.? We assum
that there are two players, which I will provide with the suggestive names
and D, for the scientist and the demon, respectively. A strategy is just a func
$: o* - o from finite sequences of natural numbers to natural numbers. L
a, & be strategies for S and for D, respectively. The play sequence P, ; of o an
§ is built up as follows. The strategy « of S is applied to the empty seque
yielding the first play a(0) = s Then the strategy & of D is applied to:
sequence (sy), yielding the first play by D, namely 8((s,)) = do. In general,
nth play of § is the value of « on all previous plays by 4, and the nth play.
D is the value of & on all previous plays by «. In the limit, the interaction 0
and § generates the infinite play sequence:

iice the players select their respective strategies, one and only one of them is
ned to win the game W/, by the definition of winning. But we are not
rested in mere winning. We are interested in strategies logically guaranteed
, no matter which strategy the opponent selects.

o is a winning strategy for S in ‘W
<Y strateqy 8, o wins for 8 against § in ‘W.

d is a winning strategy for D in W
< ¥ strategy o, & wins for D against o in W.

8 has a winning strategy in "W
< Jo such that o is a winning strategy for S in W.

D has a winning strategy in ‘W
<> A such that & is a winning strategy for D in ‘W.

n cither S or D has a winning strategy in W/, we say that W/ is determined.
§ not obvious from the definition of determinacy that all games T/ are
etermined. In fact, the answer to this question hinges on debates concerning
¢ foundations of mathematics so that the foundations of inductive method-
2y and the foundations of mathematics are intertwined.

Pa,é = (SOE d()s Sla dl: SZ: dz, . )

3 For a review, see Moschavakis (1980).
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e Gale-Stewart theorem does not settle our question in the negative,

In standard, Zermelo-Fraenkel set theory* with the axiom of choice add .
, since scientific games have a special form and the game produced by

(zrcC), there is a powerful positive result for determinacy.

Proposition 5.6 (Martin 1975)
If W is a Borel set then W is determined. nals between |w| and |2%| = [9\[| The continuum hypothesis is known to
dependent of ZFc (i.e., neither it nor its negation is entailed by zrc) if zrc

. . s i t.6 s ., .
As a corollary to this result, whenever C, is a Borel set, underdeterminati If consistent.” I leave open the question whether a nondetermined limiting

(in any of the senses introduced in chapter 3) implies a winning strategy:fy
the demon, because the definition of the winning set in such a game adds J
a bit of complexity to the Borel complexity of .
Since conjectures less than 1 can be converted to 0 conjectures, we ma
assume without loss of generality that scientific strategies for limiting verificatio
produce only 0-1 conjectures. This permits us to dispense with the fuss
encoding of rationals into natural numbers. Let p be an infinite play sequer
and let p, and pg be the demon’s and the scientist’s plays in p, respective
Since o produces only 0-1 conjectures, pse N. Then the game of limitin
verification can be defined as follows: :

Proposition 5.9 (Juhl 1991)

ZFC -+ cu implies that there exists a C, such that Limver (h) is not
- determined.

Using the axiom of choice, well-order the set of all scientific strategies
o, p < @y} and the set of all demonic strategies as {4,: 4 < w,}, where @,
‘the first uncountable ordinal. By the continoum hypothesis, each u < w, is
ountable. Now we define an ordinal sequence A, B, of sets of data streams
h that at each stage u < @,, 4, N B, = . We will et Ch =Uu<w A, The
that at each stage y < w,, we add a data stream to A, or to B, that
ures that neither the scientific strategy o, nor the demonic strategy 5 wins
imver -(1). The idea is complicated by the fact that we may not be ab]e to
he right sort of data stream to add to ensure that 3, loses, but it will furn
n such cases that J, is not a winning strategy anyway.

Limver {(h) = {p: pp € C = ps €55}

It is clear that Limver (h) is Borel if G, is, and the same is true for the oth
criteria of success. '

Outside of the Borel hierarchy, however, zrc yields spotty results. Aboy
the Borel hierarchy is the projective hierarchy, and the sets in this hierarchy 2
known as the projective sets. The precise definition of the projective hiera
is not essential for our purposes here. Suffice it to say that they are formed
existential quantification over functions on the natural numbers rather than
existential quantification over natural numbers (i.e., countable union).

Stage O: 9y = By = (2.
Stage p: Let A = ), A, and B =), ., B

To ensure that a, is not a winning strategy: Find the first 4 such that
D, s¢A4 v B. Such a é exists because Vu' < g, u’ is countable and
A w B is therefore countable since at most two items are added at
each stage p’ (as will be seen in the construction that follows). If S, ;
stabilizes to 1, then set 4} = 4 and set B, = B u {D, ,}. Otherwise,
set A, = A w{D,, s} and set B, = B. In other words, we put D, ;
wherever it would make o, fail.

Proposition 5.7°

There are projective sets whose determinacy is independent of ZFc.”

Projective determinacy is the hypothesis that all games based on projecti
sets are determined. Projective determinacy has been shown to be independe
of zFc, and hence has been entertained as an additional axiom of set theo
Beyond the projective sets, ZFC entails the existence of nondetermined gam_

To ensure that 8, is not a winning strategy. Find the first 4 such that
D, s ¢, 0B, il there is one If S, ;, stabilizes to 1, then set
A,=4,v{D a,.} and set B, = B),. Otherwise, set 4, = 4, and set
B, =B, A w {D,, s} In other words, we put D, , wherever it would make
Proposition 5.8 (Gale and Stewart 1953)

ZFC implies the existence of a nondetermined game. .
W let C, =) <w, A,. It is clear that o, fails to be a winning strategy for

4 Cf. Kunen (19%0) for an introduction to ZFC.

5 Moschovakis (1980): 297. % CL Kunen (1980): 209.
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the scientist because it loses against the d chosen at stage p. It is also clear
d, fails to be a winning strategy for the demon whenever the « sought at s

p exists. It remains only to show that 3, fails to be a winning strategy for ;
demon even when the « sought at stage u does not exist. In that case,

(*¥*%), we have:

¢ .5, <> dee R such that Vn, ¢, = D, ), ;..

(*) VoD, 5 €4, 0B, . - I
is countable and {z:¢, = D |, 5.} is clopen, S, € Z}, which is absurd

(*) says that the demon &, responds to all possible scientific strategies with j is complete in 4 So we may conclude that (*¥) is false. Hence:

a countable set of data streams. Since the demon’s response is a function;
of what the scientist actually plays, the (countable) sct of all of §,’s respons

P ={D,;: 1€ N}.

Jr, v e A such that D, = D, ; and S, ; €5, but S, ; ¢.5,.

hether or not D, ; € (. 6, loses against either the fixed strategy 7 or the

Recall that S, denotes the sct of all w-sequences that stabilize to 1. For reduc strategy ¢'. Hence, Limoer -(h) is undetermined. B

assume that

(**) Ve, v e, D s = Dos, = [8,5, €5, < Seou €521 (Fig. 5.1 . . N .
Recall that the characterization of n-mind change decidability (proposition

was proved in ferms of a generalized demonic construction (n + 1-
rs) whereas no such construction was given for the verification in the limit
proposition 4.10). It seems very intuitive that there should be such a
truction, since the limiting demonic arguments given in particular cases
been based on pictures that look like infinite dimensional feathers (e.g.,
:16). But even though it appears to be a small step from n-feathers to
hers, no such proof of proposition 4.10 should be expected, and the
eceding proposition shows why. Let 6p be the claim that a generalized
moriic construction for proving proposition 4,10 exists (e.g., w-feathers). Let
denote the claim that all limiting verification games are determined. Now
se that ZrC entails GD. Then (a) ZFC entails LvD, since GD implies that
demon has a winning strategy whenever the scientist does not. By
sition 5.4, zrC 4+ cH entails T1LvD. So by (a), we have that zFc entails
- But by the independence of the continuum hypothesis, if ZFc is consistent,
n zrc does not entail 1 cH. Hence, ZFC is inconsistent. We have just shown
contraposition) that:

(**) implies that if we look at how §, responds to fixed conjet:t
sequences by the scientist, any two fixed conjecture sequences 1, v’ € A {
lead 6, to produce the same data stream either both converge to 1 or both:
to converge to 1. We may thercfore define .S, as the set of all fixed scientifi
strategies 7 ¢ A\ against which &, produces a data stream in the countabi
Ay v B, thatis (in light of **) generated only against nonconvergent conject
sequences. More precisely, define the set of all data streams produced b
against nonconvergent conjecture streams as follows:

R={eeP:VoeN, D, ; =¢e=>0¢S5,}

Now I claim:
(***) 1¢S5, =D, ; eR.

For suppose D, ; € R, By the definition of R, D, ;, € ? and Vo e N, D,
D ;= a ¢S, Choosmg o as 1, we obtain t ¢.5,. Now suppose D, ; ¢ R, Th
by the definition of R, do e A such that D, ; = D, ; and 6 €S, By (**), 1€

Corollary 5.10

conjecture data

SUeams 4 streams If zFc is consistent, then ZFcC does not entail Gb. B

& | == —— | imageofs,
T Since ZFC is the mathematical framework we have tacitly assumed through-
this study, we should not expect to show that the demon has a winning
irategy whenever the scientist does not. It may then be wondered why demonic
suments were found in each particular example considered in chapter 3. The
swer is that each such example involved a Borel hypothesis, and such
potheses are covered by proposition 5.6.

ol

— | imageof 5

Figure 5.12
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51, Sy - - and let, TI' = (R, . . ., &y, . . .) be sequences of subsets of A such
ot each distinet i, j, 5 .S, = @ and &; n K; = . Then define:

Exercises

5.1, Prove proposition 5.2, :
[ < oIT < there is a ® € G such that for each e e N, for each ic w, e e 5;

5.2. Finish the proof of proposition 5.3. <« O(e) € R, (Fig. 5.16).

. geﬁcralized notion of reduction properly handles the background assumptions X
and for each n < 3, there are no Cnt-incomplete sets in T — IIZ or in I} — X2 (H o the results of this chapter work out when we add nontrivial background
use propositions 5.5 and 5.6.) Extend the Jatter result to the case in which n = 4. (I dge and move to partition reductions? Give an account of empirical verifiability
cf. exercise 34.) ' - ecidability in the limit given & in terms of partition reductions.

5.3. Show that for each », there are no Crt-incomplete sets in X2 — [} or in T17

5.4. Invent a convergence criterion that is Z5-complete.

&

*5,5, This chapter has illustrated how the transcendental deductions and demon s \!\ '
arguments of logical reliabilism correspond to the structures of reduction and complet ! /l/ S
ness, which are familiar to logicians and computability theorists. Recall, however
the entire discussion assumes that % = A, When there is background knowledge,: \'\
tight relationships between reducibility, methods, and demons break down unless K| % /’_—l/ 52
modify the standard concept of reduction. Recall that when A < B, the picture in (£
5.13) obtains. s

When there is background knowledge, a successful scientist is free to do anyt 5 S
on a data stream violating that knowledge (Fig. 5.14): '

This could be handled simply by defining reduction modulo a set, so that ﬁl <6
mod X if and only if for some ® & G, for each s € K, £ € A < P(e) € B. So far so goo
But that won’t help with the demon. While the scientist is free to ignore all sequé
outside of %, the demon is required to produce a sequence in X (Fig. 5.15).

What is really going on is that we are interested in reductions and counterreduct
between binary partitions. The scientist is supposed to reduce the partition (4 &y
A %) to the partition (B, B), and the demon is supposed to reduce the partr
(B, B) to the partition (A n K, 2 n K). The order of the cells matters. In general

Figure 5.16

=l
=l

Figure 5.14



