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Topology and Ideal Hypothesis
Assessment

p_e_'_rties:

T is closed under arbitrary unions,
T is closed under finite intersections, and

T, HeT

¢lements of T are known as the open sets of . If x €7, then S =7 is a
hborhood of x just in case x ¢ S and § e T. Claims about all neighborhoods
ome point may be viewed, intuitively, as claims about what happens
arily close to this point, All other topological concepts are defined in
rms of the open sets of T, and hence are all relative to I, but explicit reference
will be dropped for brevity. A closed set is just the complement of an open
A clopen set is both closed and open.

To simplify notation, when one speaks of subsets of T, one means subscts
. Of special importance to methodology is the notion of limit points of
s of T. A limit point of a set § is an object x € 7 that is so close to §
that no open set (nelghborhood) around x can fail to catch a point of §

1),

1. Introduction

In this chapter, we move from the consideration of particular methods and
problems to the characterization of problem solvability over entire paradigms
So while the issues treated in the preceding chapter were all located at level 3
of the taxonomy of questions presented at the end of chapter 2, the question
treated in this chapter belong to level 4. A characterization condition is 4
necessary and suflicient condition for the existence of a reliable method, given
entirely in terms of the structures of X, ¢, and H, In other words, a
characterization theorem isolates exactly the kind of background knowledge
necessary and sufficient for scientific reliability, given the interpretation of the
hypotheses and the sense of success demanded. To revive Kant’s expression
such results may be thought of as transcendental deductions for reliable inductive
inference, since they show what sort of knowledge is necessary if rehable
inductive inference is to be possible.

To state a characterization condition, one must describe the structure of ;;_1
set of possible data streams without reference to scientists or to reliability
We therefore require some framework in which to state such descriptions. It
turns out that topology provides just the right concepts,

x is a limit point of S < for each open O, if x € O then O NS # (.

The closure of S is the result of adding all the limit points of § to . The
ure of § will be denoted cl($). The following facts relating closed sets to
e closure operation are among the most basic in topology. Since they will
o turn out o be fundamental to the study of logical reliability, it is worth
wing them here,

Proposition 4.1
(@) S is closed <+ § = cl(S).
(b) cl(S) is the least closed superset of S.

0of: (a) (=) Suppose S is closed. Then § is open. Suppose for reductio
t some limit point x of § is missing from S. Then § is an open set
nitaining x that is disjoint from .5, so x is not a limit point of § (Fig. 4.2).
tradiction. Thus x € 5.

(+=) Suppose S contains all its limit points. Then for each x ¢.5, x is not

2. Basic Topological Concepts

A topological space is an ordered pair T = (7, T), such that 7 is an arbitrary
set, and T is some collection of subsets of 7 with the following, simple
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ximation of § from without and the best open approximation of § from

a limit point of §. Thus for each x ¢.5, there is some open set &, disjoint from (Fig. 4.5)

S such that xe ®,. S is identical to the union of all these sets R, (Fig. 4.3)
But since each %, is open, so is the union. Thus, S is open and hence § i
closed. :

(b) From (a) it is clear that ci(5) is closed. Suppose for reductio that thei
exists some closed ®_such that § € R < cl($). Then some x € ¢i(5 ) is missin
from ® and hence is also missing from §. Since x is a limit point of §, ther
is no open O containing x that fails to contain some clement of .. But sinc
S < R, there is no open O containing x that fails to contain some element o
R®, Thus x is a limit point of R as well, so &, is missing one of its own limi
points. So by (a), & is not closed. Contradiction. | |

Proposition 4.3

bdry(S) = cl(S) — int(S).

() By definition, bdry(5) < cl(S). Suppose for reductio that some
;_Iry(j } is also in int(S). Theil there is some open subsct of § that includes
x is not a limit point of S, and hence is not in bdry(S). Contradiction.
2) Suppose that x e cl(S) — int(S). Then x is a Hmit point of S. Suppose
e‘ductio that x is not a limit point of §. Then for some open Q = §, x @.
An interior point of § is a point that is a member of an open subset o . E-m‘t(j). Contradiction. Tence, x is a it point of 3, so x € pdry(3). B
(Fig. 4.4). The interior of S, denoted int(5), is the set of all interior points o
S. The interior of § is dual to the closure of § is the sense that while th
latter is the least closed superset of §, the former is the greatest open subsg

of §.

It is therefore evident that a set is clopen just in case its boundary is empty;
..-just in case it can be perfectly approximated both by a closed and by an

S is-: de‘nse in & just in case R < cl(S).' Thus, S is arbitrarily close to
gghmg in % al?d may be thought of as spread throughout X.
Proposition 4.2 A: basis for T is a collection B of open sets of T such that every open set

int(S) is the greatest open set contained in 5.

Proof: Fach x € int($) is contained in an open subset of §. The union of the:
open subsets is open and is identical to int(S). Suppose there is an open
such that ini(§) = R < S. Then there is some x € R — int(S). But since &;
open and x e.5, it follows that x € int($ ). Contradiction. :

A boundary point of § is a point that is a limit point both of § and:
5. The boundary of S, denoted bdry(S), is defined as the set of all bounda
points of S, which is evidently the same as cl(5) N el(S).
The boundary of S is the “residue” lying between the best clos

bdry(35)

Figure 4.5

! This definition is nonstandard. The usual definition requires B = cl{$). But this
__1y excl,udcs cases in which % is not closed. The intuition of being “spread
ro l}out" R does not require that ® be closed, however. It supgests only that
thing in R, be arbitrarily close to something in S, which accords with the
lition & < cl(§).

Figure 4.3
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ns of a basis for its open sets. Let e be a finite sequence of natural numbers
hink of easa finite data sequence, where data are encoded as natural numbers.
consider the set [¢] of all infinite data streams in A/ that extend e Thus.
{e: ellh(e) = e}. I refer to [¢] as the fan with handle e (Fig. 4.9). '

Ve may think of the fan with handle ¢ as representing the empirical
tainty of a scientist who has just scen e, but whose background assump-
are vacpous‘(so that X = A{). For all he knows, the actual data sequence
be any infinite extension of e. Let e, ¢ be finite data sequences, We say
C ¢ just in case e extends e or is identical to e, For any two fans, either one
cludes the other, or the two are disjoint. That is, [¢] = [e] = ¢ é e,

f one fa-n includes the other, then their intersection and unign are also
I.__Other\mse, the intersection is empty and the union may or may not be a
.(Fzg. 4.10). The whole space A is the fan whose handle is the empty
uence 0. The emgty set is not a fan. The intersection of a countable collection
ans is nonempty just in case there is some infinite data stream ¢ that extends
'_h_andies of all fans in the intersection (Fig. 4.11). If there is no bound on
iengths .of the handles involved, then the intersection is (§ or exactly
\ th.er\mse the intersection is either empty or identical to the fan in the
rsection with the longest handle.

The Baire space is just the space 9t = (A, B), where B is the collection of
ets formed by taking an arbitrary union of fans. Recall that w* denotes the
of all finite sequences of natural numbers. Then B is defined as follows:

Let © and T be two topological spaces, and let @ be a function from &
to T. Then ® is continuous if and only if for each open subset S of T, D(S).
is open in & (Fig. 4.6). :

Topology was originally conceived as a kind of generalized geometry, in.
which the geometrical equivalence relation of congruence (one figure coincides
with the other when laid on top of it) is replaced with the topological
equivalence relation of homeomorphism (continuous, 1-1 deformability of one
figure into another). A triangle and a square are homeomorphic in the Euclidean
plane because each can be stretched or beaten into the other without cutting
tearing, or gluing. That is, regions that are arbitrarily close in the square remain
arbitrarily close in the triangle (Fig. 4.7). On the other hand, a square cannot be
stretched and beaten into a figure eight without cutting or gluing. Gluing brings
into arbitrary proximity regions that were once apart, violating continuity

3

The apparatus of open sets provides a very general setting for the study of
continuity. It is a remarkable fact that this abstract treatment of continuity alsg
captures the local perspective of ideal inductive methods that distinguishes them
from perfectly clairvoyant deities who can see the entire future all at once. Jus|
as the conjecture sequence of a scientific method is determined by its conjecture;
on finite approximations of the infinite data stream, the value of a continuou:
function at a point in a topological space is determined by its values over ope;
sets around the point. In the next section we examine a standard topologica
space in which points correspond to infinite data streams, sets of points becom
empirical hypotheses, elements of a countable basis correspond to finite dat
sequences, and continuity reflects the bounded perspective of the scientist. :

P eB<thereis a G < o* such that P = | ){[e]: e e G}.

see that M is indeed a topological space, observe that A = [0] where 0 is
.empty df:’lt‘fl sequence, so the whole space is open since each fan is. (7 is also
1, since 1F is the trivial union | |@F of the empty set of fans. Unions of open
are trivially open since open sets are arbitrary unions of fans. Finally
nsider a finite intersection of open sets. We have just seen thai a ﬁnité

3. The Baire Space

The Baire space N is a topological space of special relevance to analysis, 10g:i'
and the study of inductive inference. The Baire space is usnally defined i

Figure 4.7

2 The learning-theoretic relevance of confinuity in the Baire space is also discusst
in Osherson et al. (1986). i

Figure 4.9
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intersection of fans is either empty (and hence open) or a fan. Thus a finite Figure 4.12

intersection of unions of fans is either a union of fans or the empty set, both
of which are open.

Since the fans constitute a basis for R, the open sets of N are arbitrary
unions of fans. Since there are only countably many distinct fans, all such uniong
are countable. An open set.§ may be thought of as a hypothesis verifiable with
certainty through observation or, rather, as the set of all data streams for which
such a hypothesis is correct. As soon as some handle of some fan in .S is seen
the scientist knows that § is correct, since every extension of the handle is-
data stream in S. An example of such a hypothesis is “you will eventually se
a 1.” Onee a 1 is seen, it doesn’t matter what further data occurs. That is, onc
a 1 is seen by the scientist, he has entered a fan included in the open set.

The closed sets of 9 are just the complements of open sets. Hence, a close
set corresponds to a hypothesis that can be refuted with certainty by fini
observation if it is false. That is, the complement of a closed set is verified wher
one of its handles is seen in the data, and hence the closed set is refuted. Close
set correspond therefore to universal hypotheses such as “all ravens are blac
Once a white raven is observed, the hypothesis is known with certainty to b
false, no matter what further evidence is observed. A clopen set of N is a s¢
that is decidable with certainty. '

Limit points in the Baire space also have an important methodologica

interpretation.

: (=) Suppose ¢ is a limit point of S in A/. Then by definition, for each
pen O,ife€ O then O NS # . Then for each n, [ein] .S £ &, since [|n]
open set containing £. So there is an ¢ €5 such that ¢ e [¢|n]. Hence
= ¢'in. So for each n there is an ¢ €S such that ¢|n = ¢'}n.

) Suppose that for each n there is an ¢ €5 such that ¢|n = ¢'|n. Let
Suppose ¢ € O. Then since O is a union of fans, there is an » such that
n] < O. By assumption, there is &' € § such that 5'|n = ¢|n. Hence, ¢ € 0. So
S # (. Thus 2 is a limit point of § in N, H

>

A limit point of § in M may be thought of as a data stream ¢ with data
treams in 5 veering off infinitely often. Figure 4.72 depicts the open set
{J{Lel: ¢ is a finite string of Os with a 1 at the end}. .S corresponds to
: pothesis that some non-0 will eventually be observed. § is a closed set
' _orrespo‘n‘ds to the universal hypothesis that 0 will always be observed.
ce each initial segment of the everywhere 0 data stream is an initial segment
ata stream in 5, we have by proposition 4.4 that the everywhere 0
ce is a limit point of §. This is a case in which a limit point of § is
sing from .S, It is also an instance of the problem of induction, for a demon
! present data along ¢ until the scientist becomes sure that he is in §, after
ich the demon is free to veer back into §. In fact, whenever a limit p,oint £

is not in 5, the same argument can be given, in light of proposition 4.4.

Proposition 4.4 efore:

g is a limit point of S in N
<> for each n there is an & €5 such that &in = ¢'|n.

The problem of induction arises when either the hypothesis or its
complement is not closed.

gfr words, the problem of induction arises exactly in the boundaries of
eses.

= :‘r:‘w:—x—m \EH— ves 1 Figure 4.12, 1 did not overlap ¢ and the shared initial segments of data
= ‘ \% :‘%%%% sin.S asin Figure 4.13. This is because the overlapped versions of such
= : - - ms are dangerously misleading, since they depict trees, and tree structure

not. uniquely determine the topological structure of the set so depicted.

Figure 4.11 S @* be a set of finite data sequences. G is a tree just in case each initial
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Figure 4.13

segment of a member of G is a member of G. The tree generated by S (denote
Tree(S)) is defined as the set of all finite, initial segments of ¢lements of §
is not always uniquely determined by Tree(S). For example, let 5 be the s¢
of all data streams in which 1 occurs somewhere. Then Tree(S) = Tree(N)
In general, Tree(S) = Tree(R) if and only if S is dense in &, This facti
important to keep in mind when relying on tree diagrams. Since such diagram:
are finite, they cannot indicate whether limit points are missing or present, by
missing limit points are exactly what local underdetermination and the problem
of induction are about. _

To fix intuitions, it is useful to consider some simple examples of open an
closed sets in the Baire space. ¥ and 9 are both clopen. Each singleton {¢
is closed, since it is the complement of an open set (namely, the union of th
fans whose handles are not extended by &). Each finite union of closed sets.
closed, so each finite subset of 9 is closed and each cofinite subset of M-is oper
Since a set cannot be both finite and cofinite, we also have that finite scts a:i-'
propetly closed (ie., closed but not open) and cofinite sets are properly o
(i.c., open but not closed). Closed sets can also be the closures of infinite opé
sets, as when we add the missing limit point ¢ to the set S in the preced
example. '

Say that an open set is n-uniform just in case it is a union of fans whos
handles are all bounded in length by s, and say that an open set is uniform ju
in case it is n-uniform for some n. Each uniform open set S is clopen, since:1l
complement consists of the union of all fans not included in 5 whose handle
are of length n (Fig. 4.14).

Not all clopen sets are uniform. For example, consider the union of all far
with handies of form n*e, where e is a string of Os of length n. This set is
union of fans whose handles come in every length, but all the handles are dist
at position 1. Evidently, this set is not uniform, since the handles of the fans
the union come in all lengths. That it is open can be seen from the fact th

S =

LUOOO%
=
&OQQ;%

Figure 4.15

tis a union. Of. fans. That it is alse closed can be seen from the fact that
issing no limit point (Fig. 4.15). On the other hand, each clopen set is
n if the space is finitely branching (cf. exercise 4.14).

es ricted Topological Spaces

: (7, T') be a topological space, and let K = 7T, The restriction of T to
noted TIK, is the space that results if we toss out of T everything that
- in X while retaining essentially the same structure. The way to carry
ut is to replace 7 with 7'~ X and to replace T with the set T|% of all
tions O n KX sach that O e T. Accordingly, let T|K = (T n K, T|K).
lements of T|X are said to be K-open. Sets of the form X — O, where
T|X, are said to be K-closed. Sets that are both X -open and % -closed
Kiclopen. It is not too hard to show that T|X is itself a topological space,
II. the results established previously apply to restricted spaces.

_:_the Baire space, restricting to some set K of data streams corresponds
opting background assumptions about how the data will appear in the
! ._'__}_“he topological significance of background knowledge is to make sets
ler given the restriction than they are without it, and that is why local
_d_et'ermination depends crucially on what the scientist’s background
piions are.

“Characterization of Bounded Sample Decidability

'nqw time to characterize the various notions of reliable success in
ogical terms. To do so, it is useful to let ¢, denote the set of all data
1s for which h is correct (according to ). We may think of (, as the
ical content of h since C,, includes all the infinite data streams that might
¢, given that h is correct (Fig. 4.16).

.Bgunded_ sample decidability is easy to characterize in terms of fans. Recall
= A is n-uniform just in case S is a union of fans whose handles are

n

Figure 4.14
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Figure 4.16

all bounded in length by n. Like all the other concepts, this one relativizes t
background knowledge K. Then it is simple to sce that: :

Figure 4.18

Proposition 4.5 ¢ 3& n, then o is wrong. Since « is arbitrary, H is not decidable. by
ven K.

H is decidable - by time n given K <> for each he H, - "

C, 0 K is K-n-uniform. _
_ Characterizations of Certain Assessement
Proof: (<=) Suppose that C, n K is K-n-uniform. Thus, there 15 a G, S @
such that each e € G, is no fonger than n and , n K is the union of all [e] ~v
such that e & G,. Define method « as follows (Fig. 4.17):

1ave already seen that open and closed sets are like existential and universal
othieses, respectively. It is therefore to be expected that open sets are
ifiable with certainty and closed sets are refutable with certainty. The
Wing proposition also shows that the converse is true: if a hypothesis is
able with certainty, it determines an open set and if a hypothesis is refutable

“certainty, it determines a closed set.

(. &) = {1 if e extends some €' € G,
’ 0 otherwise.

Let e K. Suppose & € Cy. Then for some k < n, ¢lk & G- Thus by time k5
« stabilizes to 1 and hence conjectures 1 at time . Suppose £ ¢ .. Then e|n ¢ (
so olh, gln) = 0. _

(=) Suppose that for some he H, XN is not K-n-uniform. Th
there are &, ¢ € K such that h is correct for & but not for &' and g/n = ¢'/n. Thi
is just what the demon needs to fool a (Fig. 4.18). For the demon merely che
the scientist’s conjecture a(h, ejn). If the conjecture is 1, the demon contint

Proposition 4.6

verifiable -
H is | refutable. | with certainty given X
decidable -

feeding with ¢ I it is anything clse, the demon continues feeding e. Tf o does K-open
produce 1 or O at n, then o fails by default, and if « produces eit < for each he H, C, n K is | K-closed
K-clopen

Aha! The current
data giarantee
that I is incorrect.

oof: It suffices to show the verifiability case, since the refutation case follows
gality and the decision case follows immediately from the first two in light
oposition 3.3(b). (<) Suppose that C, n K is K-open. Then for some
< @*, (, is the union of all {e] » X such that e € G,. Let a conjecture 0
ome element of G, is extended by e, at which {ime a conjectures the
ity mark ‘I’ and continues producing 1s thereafter (Fig. 4.19).

Vv eeG,
alh,e) =41 if eproperly extends some e ¢ G,
Figure 4.17 0 otherwise.
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Figure 4.19

‘that we know that K-openness characterizes verifiability with certainty
en X, the general resolution of the question is at hand.

opsider a single hypothesis in isolation. We will make use of the fact that
terior of a set is the best open approximation of the set from within. Then
throw out of Al every data stream in C, that is not in the interior of ,
ill have converted (, into an open set in a minimally destructive manner,
reby arriving at minimal assumptions under which h is verifiable. with
nty (Fig. 4.21). In keeping with this strategy, define:

Let & € K. Suppose that & € (. Then for some n, ¢}n € Gy. Thus, o produce
| with certainty. Suppose ¢ ¢ C,. Then for no n is g|n in G,. So & never produce
1 with certainty. :

(=) Suppose that for some he H, (, n X is not K-open. Thus C, n
is not K-closed. So by proposition 4.1(a), C, has a limit point & in X that';
not in (, n K. But that is just the sort of situation that permits the demon t
fool an arbitrary scientist regarding h given X, as we saw in the precedi :
chapter (Fig. 4.20). The demon feeds ¢ until « produces its mark of certaint
“I” followed by a 1. Otherwise he continues feeding ¢ forever. If & ever produce;
the mark of certainty followed by 1, then the demon presents a data stream fo
which h is incorrect -, SO « fails. Otherwise, the demon presents &, for which:
is correct, and o fails to produce 1 with certainty. Since o is arbitrary, no possibi
method can verify # (and hence H) with certainty given X.

M”x (Ca h) = ﬂ\[ - (Ch - int(Ch))'

Max (C,h) is Mfu (C, h)-open, since C, N Max(C, ) = int{Cy), so by
ition 4.6, there is some method « that verifies,. 7 with certainty given
i (C, h). B3y the following proposition, this method is optimal in terms
1ability.

Proposition 4.7

h is verifiable . with certainty given Max(C, h) but not given
any proper superset of Max(C, k).

The demonic construction in the above proof is just Sextus’ ancien
argument for inductive skepticism, which we considered in the preceding tw
chapters. What we have just seen is that the argument arises for every hypothesi
h such that ¢, is not K-open. It is interesting that this argument is an insta
of the basic topological fact that each nonclosed set is missing one of its limi
points (i.e., proposition 4.1). .

T promised at the very end of the preceding chapter to apply topologic
concepts to the question whether some « that does not verify . H with certaint
given A could nonetheless be an optimally reliable certain verifier for C,

: Suppose Max(C, h) < K. Then we may choose z e (0, n K) — int(C,).
& ¢ int(Cy), and int(C,) is the union of the set of all fans included in ,
have that e is not an element of any fan included in C,. Thus, for every n,
| contains some element z[n] of A — C,. But then [¢|n] also contains some
nent of Max(C, h) — C, since C, € Max(C, h) (Fig. 4.22).

hus, ¢ is not included in any %-fan included in C, n &, so C, n K is not
en. So by proposition 4.6, h is not verifiable. with certainty given K. ®

ax((, k) is also uniguely optimal, so we have a complete characterization

Aht ; : : .
7 souped-up he optimal assumptions required for verification with certainty of an
model] trary hypothesis,

y

=0
=0
=

1

Proposition 4.8

4 e

Figure 4.20

I K # Maz(C, h) and h is verifiable . with certainty given XK, then
h is verifiable . with certainty given some proper superset of K.

F or the refutation and decision with certainty cases, cf. exercise 4.5.
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Proof: Suppose K # Max(C,h). Then K < Max(C, k) or there is som
g€ K — Max(C, h). In the former case, we are dome: h is verifiable. with.
certainty given Max(C, h), by proposition 4.7. So let ee K — Max(C, h
Then ¢, and, as was shown in the preceding proof, [&|n] contains soin
element t[1n] of N — C,, for each n. Since h is verifiable,. with certainty given
XK, we have by proposition 4.6 that ¢ is contained in some X-fan [&|n'}
Cyn XK. Let m be the least such #'. So for all m' =>m, fm']1¢%X. L
K=K {z[m+ 11} (Fig. 4.23). :

Let o verify,. i with certainty given X, by hypothesis. Now define:

Figure 4.24

mple sets in a topological sense. Since we already know that limiting success
easier to guarantee than success with certainty, it is clear that we must
nsider weaker notions of topological simplicity if we are to characterize the
er notions of reliability introduced in the preceding chapter. Happily, there
tandard scale of such notions, known as the finite Borel hierarchy. The
Borel hierarchy is a system of mathematical cubbyholes that forms the lowest
‘most clementary part of the classificatory structure of descriptive set theory.
‘aim of descriptive set theory is to provide a kind of shipshape mathematics,
in which there is a place for everything, and everything is put in its place. Each
bbyhole reflects a kind of intrinsic, mathematical complexity of the objects
thin it. Understanding is obtained by seeing the relative complexities of
cts in terms of the cells in the hierarchy. The striking fact is that
hodological success can be characterized exactly in terms of cubbyholes that
¢ already familiar through other applications in logic, probability theory, and
alysis.
o form the finite Borel hierarchy, we start out with the clopen sets. To
uild more complex sets, we iterate the operations of complementation and
ntable union (Fig. 4.24). The more countable unions and complementations
takes to generate a set, the higher the complexity of the set. That’s all there
0 it.* It is convenient to name the classes according to the following
ional scheme due to Addison (1955). The first Borel class is just the

0 if ect[m+1]
olh, €) otherwise,

o'(h, e) = {

This verifies,. h with certainty given K.

7. Characterizations of Limiting Assessment

So far, we have isolated topological characterizations of verifiability, refutabili
and decidability with certainty in terms of open, closed, and clopen se
respectively. Open, closed, and clopen sets may be thought of as especia

Cy Fcfan in G, = sction of all clopen sets of the Baire space:
= . €
o
m % S € X§ <> .S is clopen.
W dmel] * The full Borel hierarchy does not stop here, for we can form countable unions of

drawn from each TIZ class, which are Borel sets that may reside at no finite level

Figure 4.23 We will have no use for such sets until chapter 13.
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Figure 4.25
The other finite Borel classes are defined by the following induction:
S eTB, . «S is a countable union of complements of Zy sets.”
The dual Borel classes are defined as follows:
SeTB=Sexl
Finally, there are the ambiguous Borel classes:

SeAla§er)nil.

Thus =8 = IT8 = A = the class of clopen sets, the open sets are the X7 se
(since each open set is a union of fans and hence is a countable union of clop
sets), the closed sets are the TIF sets (since they are complements of open set
and the clopen sets are the Af sets (both closed and open). I8 sets are conntabl
unions of closed sets and I12 sets are conntable intersections of open sets. St
every singleton {&} is closed in A/, and hence is the complement of an open set
every countable subset of A is £, and every complement of a countable
is TI2. It will be shown later that every level in this classificatory structu

contains new subsets of A (Fig. 4.25).

51e., S e BB, <> there is a countable I' = ZJ such that § = J{R:ReT}.
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*
.
.

Refutable in Verifiable
the limit in the limit
Decidable in
the limit
Refutable B 1 Verifiable
with certainty A &

with certainty

Decidable
with certainty
Figure 4.26
- Proposition 4.9
For each n, Af = £%.
of Deferred until chapter 7. ]

‘he finite Borel classes can be defined for restrictions of A’ to X just by
ting out with X-clopen sets instead of clopen sets and carrying through
induction from there. For § < X define:

S eZ[K]S =S is K-clopen.

SeXKE, =S isa coun;able union of complements of Z[KE sets.

he dual and ambiguous classes are defined in terms of these as before.
en we restrict the hierarchy to X, it may collapse, depending on the
aracter of &, For a trivial example, if X is a singleton {¢}, then each § = A
17_(}'0’, and if X is countable, then each § = W is T[X]5. Since the levels
hierarchy will be seen to correspond to levels of local underdetermination
idence, it is clear that to determine the sorts of assumptions that give rise
uch collapse is a matter of the highest methodological importance.

he characterization of limiting reliability may now be stated (Fig. 4.26).°

lhe following approach is a relativized, noncomputational version of the tech-
sintroduced in Gold (1965) and Putnam (1965). A similar perspective is developed
ugel (1977).
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Kopen complements

x ‘L x
Glhly Glhl,

Proposition 4.10 (Gold 1965, Putnam 1965)
verifiable .

H is| refutable,. | in the limit given x

decidable .
ST
<> for each he H, G n K e| LK1 Sl Sal,
AIKE Figure 4.27

(=) In previous characterizations, we have constructed demons to show
an arbitrary scientist can be fooled if the characterization condition is false,
ime it is easier to do something different. We will use the fact that the
itist succeeds to decompose C, N K into a countable union of K-closed
; howing directly that C, n K € Z[X 4. This technique was originally
'pl_c_)'yed by Gold (1965) and Putnam (1965) in a computational setting, but
so works in the ideal case.

Suppose that some method « verifies H in the limit given X. Then we have
dch he H:

Proof: 1t suffices to show the verifiability case. The refutability case follows by
duality, and the ambiguous case follows from proposition 3.4(b). (=) Suppose
that for each he H, C, n K e Z[K 5. So ¢, n K is the union of some countabl
sequence S[h]o, S[H]y, ..., SEh],, ... of K-closed sets. Thus, for each i, th
is some G[h];, = w* such that § [A]; is the union of all K-fans [e] N K such
that e c G[h]; (Fig. 4.27).

When provided with hypothesis k and evidence e, « proceeds as follows. /
pointer is initialized to 0. Then a scans e in stages e|0, e|1,.. ., e|lh(e). Th
pointer moves forward one step at a given stage if the data refutes the close
set §[h]; that the pointer points to upon entering that stage, and the pointe
stays put otherwise. More precisely:

Yee K[C(e, h) <> In ¥m = n, alh, ¢|m) = 1].

pointer(h, 0) = 0 can think of this fact as a definition of {, over the restricted domain X

inter(h, +1
pointer(h, e|n) Vee K, eeCyn K <= InYm = nalh, e|m) = 1.
pointer(h, e|ln + 1) =14 i e extends some member of GLh ] poimeerth. ein)-

pointer(h, eln) otherwise. ‘set A, (m) of all e €K such that a(h, ¢|m) = 1 is K-clopen, since we only
The method & conjectures 0 when the pointer moves on reading the last datu
in e, and conjectures 1 otherwise (Fig. 4.28):

afh, 0) = 0

alh, e*x) = {1 if pointer(h, ¢*x) = pointer(h, )

0 otherwise.

Now we verify that « works. Let he H, e e X Suppose ¢€ Cp- Then thes
is some K-closed set in «’s enumeration containing & Let S[h]; be the
such. Since ¢ ¢ STh];, there is no n such that g|ne G[h];, so the pointer
never move past position i. Thus, there is some time after which the po
stops moving and at this time & stabilizes correctly to 1 on &. Suppose & ¢
Then ¢ is not in any S [#],. So for each i, e € S[h];. Thus, for each i, there isa
¢ e G[h], such that ¢|lh(e’') = £ Tt follows that the pointer never stops mov
so o does not stabilize to 1.

Current

data e .
pointer

maoves

Figure 4.28
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When & ¢ C,,, the data stream will “break through” each open set and the
ter will be moved infinitely often, so that the method emits infinitely man
When ¢ € (, there is some open set that & never breaks through, so thz
ter eventually remains fixed. ’

-_I_{_arl Poppfar’ has recommended holding onto a theory that has “passed
Zter” llﬂ.tll it is refuted. Proposition 4.10 shows that this is not a ver
d: idea 1f‘ reliability is at stake. Recall the hypothesis &, that particI}é
nly ﬁm.teiy divisible. Popper’s method would always thr;ibilizc to 1 on
hypot}lCSlS. and hence would fail to verify it in the limit, since it is consistent
all posm_ble data streams (given the setup described in chapter 3)
;the bun}pmg pointer architecture just described is guaranteed to verify .
_ ]'gthe Imnt‘.q In fact, it will beat Popper’s proposal whenever , N if(é
18 — LK. When C, » K e A[K]3, then there are two bumping lpointer
ethods %y, A such that «, verifies. h in the limit given X and «
S frin the limit given &, When these two methods are assembled togethei
ding t‘o t_he sFrategy of proposition 3.4(b), we have a method that decides
the limit given %, This method beats Popper’s proposal whenevccr
_'KE A[KTE — TI[X]%. Moreover, if the hypothesis is refutable with
rt_azlr_ity, as Popper’s method requires, the bumping pointer method can be set
'o"as'to be guaranteed to succeed in this sense. The only modification
ired is to replace the infinite enumeration of XK-closed sets with a single
. sed spt and 'to have the method return °!’, 0 when this set is refuted. Thus
bumping pointer architecture can be modified so as to obey Popper’s:
quirement whenever doing so doesn’t get in the way of reliability, and to relax

have to look at the data up to time m to determine what « will do. Also, fo;
each & e X we have:

(Vm = nalh, elm)=1) < z€ (A(r) N Tn + ) 0 Aln+2).. . )
Let B,(n) denote this countable intersection. Then we have for each ee K

geCyn K <InVm = nolh e|m) = 1
e ee (B0 U B VB2 w )

Thus C, » K e Z{K13.

The method « constructed in this proof may be called the bumping poi
method. What we have just seen is that it is a complete architecture i
verification in the limit, in the sense that for any inductive problem (C, X,
verifiable in the limit by an ideal agent, the bumping pointer method employi
the appropriate decomposition of each , into a countable union of K -clost
sets verifies (C, K, H) in the Himit. :

There is a very direct picture of how topological structure guarantees: th
bumping pointer method’s success. Suppose that G, N K€ (K13 Th
CinX is a countable union of K-closed sets. Hence, the complemety
C, n K is a countable intersection of K-open scts. Each K-open set is a uni
of K-fans. Recall that the intersection of two fans is empty unless one fan1
subset of the other, in which case the intersection is the fan with the long
handle. So a countable intersection of open sets can yield infinitely many pat
determined by countable intersections of fans with shared handles, as in'{

case of ¢ in Fig. 4.29.

nothser application of this result concerns the question of optimal
.hf:y.‘ We have already seen by proposition 3.15 that if & is not verifiable
he' limit given A but is verifiable in the limit given X < %/, then there 1%
¢ X such that h is verifiable. in the limit given % w {z}. In purel
gical terms, this amounts to: ‘ !

Corollary 4.11

If P ¢ X% and P e LK 1% then for some nonempt i
‘ , Jinite § € N —
Pei[K uSiE g N Té

_uf)stion then arises whether the result can be strengthened to show that
¢ weakened by an infinite set of possible data streams. In fact, this is

Eﬁpper‘ {1968).
his s isi :
i 4.5‘?71%6 was visited at the end of the preceding chapter as well as in

Fioure 4.29
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true, as the following proposition shows.? In some cases, it can even be showp
that weakening by an uncountably infinite set of data streams is possible.'? tick

tick
. tick
Pyoposition 4,52 (with C. Juhl)

IfP¢xSand P e E[K 1% then for some countably infinite S < N — 9(,
PeX[KuSE

Proof: Given that P ¢ L[5 then A] — X is infinite, else by proposition 3.15
? e X8 Then either (I) (N —X) — P is infinite or () W —-K)n P
infinite. Let o verify P in the limit given %, as guaranteed by hypothesis ang
by proposition 4.10. Case (I). Either (A) there is an infinite, closed 5 ¢
(N — K) — P or (B) there is not. (A) Consider a method that verifies 2
the limit given K w.§ as follows. Let o conjecture O until § is refuted, ang
agree with o thercafter. If £eS then o correctly stabilizes to 0. Else, §
eventually refuted with certainty, after which o agrees with o, which. i
guaranteed to work given X. (B) Suppose there is no infinite, closed S &
(N.— K) — P. Then in particular, (' — X) — P is not closed, and heng
has a limit point in K u P. Let I' be a sequence of distinct clements. o
(N — K) — P that converges to some ¢€ K u P. Let § be the range of [
Since T converges to ¢, ¢ is the only limit point of S missing from S and he
(*)$ U {e} is closed. Let b = 1 if e € P and let b = 0 otherwise. Then constr
the method o that conjectures b until & is refuted, that conjectures O ur
S w {e} is refuted, and that agrees with « thereafter. On data stream e,
correctly stabilizes to b. If ¢ €.5, then o correctly stabilizes to 0. If & ¢S an
¢ # ¢, then eventually the set § U {&} is refuted by (*), and o' correctly agr
with o, which is correct given XK. Case (II) is similar. '

Figure 4.30

onvergence is concerned, this is true. But that doesn’t mean that any method
able in the limit is as good as any other, for insanity in the short run may
dlessly delay the onset of convergence (Fig. 4.30). Recall that

modulus (h, &) = the least n such that for all m > n, o(h, e|r) = a(h, &|m).

simplify what follows, we will let the modulus function assume value @ when
such n exists. Define:

B<fa<forallheH ce K, modulusy(h, &) < modulus,(h, &).
B <ka<e B <Ko butnot x <% B

the former case we say that 8 is as fast as « on H given K. In the latter case
y that 8 is strictly faster. § is strictly faster than « on H given & just in
f stabilizes as soon as « on each hypothesis in H and data stream in %,
roperly faster on some hypothesis in H and data stream in %. This is a
cial case of what decision theorists call weak dominance’?

t would be nice to have a reliable method that is as fast as every other

. ient o .
8. Efficient Data Use able method on H given K. Let M be a class of methods. Define:

A standard objection to the limiting analysis of inductive methods is that succ . _
in the limit is consistent with any crazy behavior in the short run.'' As far o is strongly data-minimal in M for H, K

< ae M and for each fe M, o <% .

9 Proposition 4.12 belongs to what we might describe as inverted complexity theot]
In standard complexity theory, one starts with a fixed, “tidy” space (e.g., N, and wit
a given object (e.g, P < A). The question is then to determine what the complexi
(e.g., Borel complexity) of the object is in the fixed space. In propositions 4.12, 4.7,
4.11, the issue is rather to specify an object 7 and a fixed complexity (e.g., =4, and the
to describe the set of all possible background spaces & = A in which the object ha
the given complexity. This is what distinguishes episternological applications of topolog
from standard results in descriptive set theory. '

10 we might ask, further, whether it is possible to expand X by an uncount
Se N — K when P¢ X8 and PeZ[K]E It is possible to do so if AL —K -
what is known as a Suslin set, for each such set has an uncountable, closed subs
(Moschavakis 1980: 79, theorem 2C.2). Let § be this uncountable closed subset. Lt
verify P in the limit given K. Let o' conjecture 0 until § is refuted, and agree wi
thereafter. Similarly, when N — X P is a Suslin set, let o conjecture 1 un
S is refuted and agree with « therealter, :

11 w2 a2 . o~ p—-—

her words, for each method f§ in M, a strongly data-minimal method «
cts to the truth as quickly as f on each data stream. We will be interested in
s in which M is the set of all solutions to the inductive problem in question.
0_ng1y data-minimal limiting verifiers exist only for very trivial inductive
blems. For example, if (), = ¢f for each he H, then the constant method
h ¢ _) = 0 is data-minimal over all limiting-verifiers of H. However, as soon as
h_a_ve a nontrivial hypothesis (ie., C, # X, @} and X has at least two data
ams, we can forget about strongly data-minimal solutions. For suppose

2 . p s

One act weakly dominates another if its outcome is as good in each possible
d state and is better in some possible world state. Here, the possible world states
possible data streams in K and the outcome of using a method is better insofar

A oote tm the te1rtls o e e
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T
AR conjectures of o,
o l o '
( (incomparable) ) .
weakly data minimal strongly data minimal | 1 ] 0 0

not strongly data minimal

Figure 4.31

conjectures of 3

a(j, 0) = 1. Then since ;, # X, there is some & € K — (y» 50 o cannot be as fast Figure 4.32
on & as the method that returns 0 until the current data e deviates from g
similar argument holds if a(h, @) is any other vailue.

The situation becomes more interesting when we lower our sights?

methods that are not weakly dominated by any other method in M (Fig. 4.3

ulus of oy on v is n — 1, but the modulus of § on 1 is at best n, so § is not
tly faster than «, (Fig. 4.32). So f % a,.

Suppose then that f’s modulus » is strictly smaller than that of ¢, on some

Cy- Then f stabilizes to 0 on &. If «, stabilizes to 0 on &, the argument

 is weakly data-minimal'® in 9 for H < o € W and for each Be M, s before. I oy does not stabilize to 0 on &, then there is some k > » such

p+E - -conjectures 1 on ¢|k after § has stabilized to 0. Thus, ¢ = 0, by the

L finition of a,. Extend ¢|k with all Os thereafter to form 1. The modulus of «,

z, but the modulus of § cannot be lower than k + 1 since ff conjectures

on";.|k. So B £%B. |

This i§ -just one very simple example. Can it be extended to other cases?
urprising answer is that every problem solvable in the limit has a weakly
inimal solution. 1 begin with the limiting decidability case, which is
sler, and then proceed to the more interesting case of limiting verifiability.

In other words, there is no method in M that gets to the truth on each da
stream as fast as o and that beats ¢ on some data stream. Weak data minimalit
is weaker than strong data minimality because it countenances situations’
which « gets to the truth sooner than ff on some data stream and f also g
to the truth sooner than « on some other data stream. In decision theory; at
admissible strategy is one that is not weakly dominated by any other strategy
Weak data minimality is a special case of admissibility if weak dominan
understood with respect to convergence time over all possible data stream
and the competing strategies are all in M. .

Weakly data-minimal solutions to problems of verifiability in the limit
much easier to find. Recall the hypothesis hj,,, which says that only finit
many 1s will occur and define the simple method: '

. Proposition 4.14*

._ If H is decidable,. in the limit given X_then some weakly data-minimal
method decides, H in the limit given X

of: By hypothesis, for each he H, C, n K e A[X]5. We define method o

fows. Let h and ¢ be given. There are K-closed sets Sy, Ko, S Bise s

1 if e ends with O
s

0 otherwise.

a(}(hae)={
GNE=SuSu-usu-

Preposition 4.13 CinK=RoURyu " UR, U -

oy is weakly data-minimal among limiting verifiers of kg given 2 erate the set of all pairs of form (5, 1), (R;,0) as mg, 7y,.... Let a
cture the Boolean value associated with the first pair whose K-closed set
ot fefuted by e (Fig. 4.33).

s egsily verified along the lines of proposition 4.10 that « decides. H in
limit given & Now it is shown that « is data-minimal. For supposg there
’ uch that f§ decides~ H in the limit given X and for some ke H, e€ K
nygrges sooner than « does. First, suppose that ¢ € C,,. Let modulusg(h, &) = ni

Proof: Tt is evident that o, verifies . by, in the limit. Suppose  also verifi
h . Suppose B’s modulus is strictly smaller than that of ¢, on some &
Then & stabilizes to 0 at some 7, so the modulus of a, is n, and g,_; =1
modulus of § is strictly less than n, say . Let tjn — 1 = gln— 1andletTh
only ls thereafter, so that ¢ stabilizes to 1 with modulus n— 1. Then:

13 Cf. Gold (1967) and Osherson et al. (1986). imilar to Gold (1967) and Osherson et al. (1986).



100 The Logic of Reliable Inquiry Topology and Ideal Hypothesis Assessment 101

of: (a) Suppose that for each he H, C, n K e Z[KX15 For each he H,
s5¢ K-closed sets .S [h]; such that

ConK=8hTowShlv - vShl, v

first K-closed set
consistent with
thecurrentdata

Cp K # &, then no STh]; = &@. The function pointer(h, ¢) is set up
as in the proof of proposition 4.10 above. The method « is given as follows.
Fo each h, e, let T4, De an arbitrary, fixed choice of a data stream extending
K — Cy» if such a data stream exists, and let 7, , be undefined otherwise.

curvent
conjecture

a(h, e):
Oy if C, 0 K = &, then conjecture 0
(1) else if e = G, then conjecture 1 g

current
data

Figure 4.33 (2) else if there is an ¢’ < e such that pointer(h, &') # pointer(h, 9’3 and

T, o exiends e, then conjecture O

For some m > n, a(h, ¢]m) = 0. Hence, o’s pointer points to some pair 7, = (X, 0) (3) else conjecture 1.
at stage m. So R is not refuted by &|m. Hence, there is an ¢ e X — C, suc
that &' extends &|m. o’s pointer is never moved after stage m on &, s
modulus,(h, £) < m. But f(h, &'{m) = 1, so modulusy(h, £’} > m. A similar arg
ment works when & ¢ ;. Since f is an arbitrary [imiting decider. of H give
K, o is data-minimal among such solutions.

The idea is that ¢, , is “entertained” by « if the pointer bumps on e, and it
inues to be entertained until data deviating from it is seen (Fig. 4.34). While
e 1, is entertained, ¢ conjectures 0. Otherwise, o conjectures 1. This
nductive architecture will be referred to as the opportunistic architecture, since
fakes advantage of opportunities to stabilize to 0 in order to block the
gument that some other method is properly faster.

irst it must be shown that « verifies. H in the limit given % Let he H.
e, N K. Then for some i, ¢ €5 [#];. Thus the pointer cannot bump past
sition i, so the pointer bumps only finitely many times on e, say on g|n,,
s e|mg. Since g€ Cy NI 8 F Ty zjngs -+ - s Thoglng OO fOr sOME time m, &|m
not extended by t, ,,,, and hence (2) is never again satisfied after stage m.

The preceding argument works because whenever « has not yet stabilized
to 1 on some £ & X N (,, it can be excused because there is some 1€ X — ¢,
that it might have already stabilized to 0 on. It is not obvious that the same
sort of argument can be given in the case of limiting verification. For suppo
that h is verifiable but not decidable in the limit and that « verifies h in the
limit. Then « fails to converge to 0 on infinitely many data sireams that make % !
h false. But then there is a method f§ that also converges to 0 on a data strearn rever after m, and « stabilizes correctly to 1 (Fig. 4.35).
¢ making h false on which « fails to converge to 0 (i.e., define f§ to conjecture '
0 until the actual data veers off from ¢ and to pass control to o thereafter), O
g, the modulus of « is infinitely greater than that of #. It therefore seems tha

doesn't count
c because pointer T
hel2 didn't burnp on €l2 hie 12

it should be possible to speed up any limiting verifier of h. But in fact, we can Ty ol Thel
define « so that any § that converges to (0 when o does not must converge to: ¢ e ||
later than e on some data stream making A true. €4 aafl”

o8 T ell Tnen

pointer bumps el3

pointer bumps el2 el2

Proposition 4,15

pointer bumps ell pointer bumps ell

(a) If H is verifiable . in the limit given K then some method is weakly

Condition (2) satisfied on e in virtue of T o Condition (2) not satisfied on e.
data-minimal over limiting verifiers,. of H in the limit given K. '
(b) The limiting refutation case is similar. Figure 4.34
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Th, e’ Th, e because of this 0,
T fote
e & h e exXists
[ ll;_////,: ;/////L////_VA/ /V %/// Z £
| 1 : o - P L conjectures of &
bump bump 1o more pointer bumps Jast 7 refuted conjectures of §
o 0 0 0 0 0 0 1 1 i //// P
Figure 4.35 : conjectures of &

conjectures of

Now suppose &€ K — ;. For each i, ¢ ¢ S[h7;, so the pointer is bumpe
infinitely often. Moreover, ¢ itsell witnesses the existence of 1, ., for each:
so condition (2) is satisfied infinitely often, and infinitely many Os a
conjectured by o on & (Fig. 4.36).

It remains to show that « is weakly data-minimal. Suppose that for son
gc X and for some limiting verifier f of h given K, n' = modulusg(h, £):
modulus,(h, &) = n. Suppose & € C, 1 K. Then both § and « stabilize to 1 on:
So a(h, eln — 1) = 0. (0) is not satisfied by gln — 1, since e € G, 0 K. So &[n
satisfies (2). Then by condition (2), there is SOME Ty -1 € K —Cy th
extends &jn — 1, and by condition (2), modulus,(h, Ty sin-1) = B — 1. But sin
B(h,eln — 1) =1, modulusy(h, Ty op—1) > 1 — 1. So f§ is not strictly faster than
(Fig. 4.37).

Now suppose &€ X — Cy. Since n' = modulusg(h, £} < modulus,(h, £);
stahilizes to 0 and « either stabilizes to 0 later or never stabilizes. Fither w;
there exists n = #' such that a(h, &ln) = 1. Suppose this happens due to clay
(1). In that case, n' = 0. Since clause (0) was bypassed, (N K # &,
S[h1, # @, by our specification of the enumeration § [h];. Hence, there exi
1 €5 [h], such that the pointer remains forever stuck at 0 on 7, so « stabili
to | on t with modulus 0. Since B starts out with 0, its modulus on 1 ca
10 less than 1, so f is not strictly faster than a. Suppose, finally, that a(h, &|n) -
in virtue of clause (3). As in the proof of correctness for o, & itself witnesses't
for each k, T, . exists. Then (2) fails for &in because pointer(g|n — 1)
pointer{e{n). Let k be the pointer position on gjn. Then g|n is extended by som
¢ € S[h], & Cy Modulus,(h, &) = n, since the pointer remains stuck at k o
and hence o stabilizes to 1 on & at least by n But since f(h, ¢|n)
modulusg(h, £) > n. S0 again f is not strictly faster than o E

Figure 4.37

;éd by the data (i.e.,' \yhen K nle]leC,n[e]) In fact, consistency is
essary for weak data minimality in limiting verification problems (cf. exercise

remarkable feature of the above result is that no limiting decision
ure is strictly faster than an arbitrary specification of the opportunistic
cture for the problem in question, even though some other method may
bilize to ( on more data streams. It is also interesting that such methods can
kly data-minimal employing a pointer that bumps only one step each
closed set in the enumeration is refuted. It would seem that a method
ploying a pointer that advances immediately to the first unrefuted closed set
t fo be properly faster, but this is not the case.

_}Characterizatian of »-Mind-Change Decidability

clear that if there is an n such that & is decidable with n mind changes
17(. then A is decidable in the limit given K. The converse is false (cf.
ion 4.17 (a)). Since there are problems solvable with fixed numbers of
hanges that are neither verifiable nor refutable with certainty (section
he complexity of decidability with bounded mind changes is located above
ati (;1) and verification with certainty and below decidability in the limit
we cannot characterize bounded mind change decidability in terms of
omplexity, as there are no Borel classes left to characterize it. But as it
ut, there is another scale of topological complexity, the finite difference
hy,'® that lies precisely in the required position. I will label this hierarchy
the superscript D. Whereas the finite Borel hierarchy builds complexity

Each opportunistic method is consistent in the sense that it stabilizes
immediately when the hypothesis under test is refuted (ie., when G, n K
[e] = &), and it stabilizes to 1 immediately when the hypothesis under tes

=

e
|

‘ S
[ ] > F s i
— oesscs xistence of Cf. Kuratowski (1966). I am indebted to J. Tappenden for this reference, of which
he naware when I w_orked out the results in the following two sections of this chapter.
ondiion 2 holds ed to the question by Putnam (1965), which falls somewhat short of the full

dcterization, though providing such a characterization was not the point of the
Fioure 4.36
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Verifiable in

Refutable in
the limit

the limit

Decidable in

the limit

Decidable
with bounded
mind changes

Verifiable

Refutable
with certainty

with certainty

A[quf szcidable‘
with certainty

Figure 4.38

by complementation and countable union, the finite difference hierarchy bui
complexity by finite intersection and union of alternating sequences of op
and closed sets, so that O is simpler than O ~ P, which in turn is simpler th:
(O U P) n O, and so forth, where O, O are open and P is closed. Let S <!

Then we define;

S eXZ[KI8 S is K-clopen.

S eL[KIP, < for some R e 2K 1P, for some K-open O,
S=%n0.

icw

The dual and ambiguous classes are defined in terms of the T classes in

usual way. It is now possible to state the characterization.

Proposition 4.16

For each n > 0, for each r such that 0 <r <1,
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© (a—c) H is decidable with n mind changes starting with | 1| given X
KT
< for each he H, C, n K e| N[X]?
AIKTY

(d) H is decidable with n mind changes given &
<VheH, C,n KeZ[XJ? v II[K]2.

r

oof: (a) (=) Suppose that « decides. H given X in n mind changes starting
h0. Let

1
0

if alh,e) = 1

otherwise,

a'(h,e) = {

ecides. H given X in n mind changes starting with 0, and «’ conjectures
y Os and‘ 1s. Let h e H. Define £ € O(g, n) = o' changes its conjecture for A
a5t n times on g and define P, n) =« changes its conjecture for & at
' tlmes'on . O(e, n) is K-open and P(g, n) is K-closed. First, consider the
/hen n is even. Then since o starts with conjecture 0 and never uses more
1 n mind changes over X on h, we have:

ee (N K <= o changes its mind some odd number of times

<n—1abouthone

={0EED&PE1D) v (OEDEPEIN) v -
v {O(n—1D)&Pen—1))

= [Ofe, 1} & P(e, 1Y] v [O(e, 1) & O(g, 3) & P(s, 3)]
vIOED&MeD&OED&EPEST v -
VvIOED)&OEN&OES & -
&O{en—N&OEn—1)&PEn—1)]

<O DN&{PE D vOEID&[PE3) v -
v [O(sn — 1) & Pls, n — 1Y]1]] (by factoring).

. ?(E E[X]2. Now for the case in which n is odd. Since « starts out
onjecture 0 and never uses more than » mind changes over X on h, we
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ee(C, N K <o does not change its mind some even number of times

< n about hon e
= 1P 0) & (06 2y & P, 2) & -

& (0, n - D& Pe,n— 1)) Refutable in 5 | Verifiable in
0@ D&[PED vV O0E3N] &[PED Y OENT the Timit 2%y | the timit
&[P(5) v O(T]& - &[Pen— v Oen—1)
Decidablein
< 0@ D&[PED vOED] & [Ple, 1) v Ple, 3) Decidablewith the limit
some bounded e -
v O 5] & [P 1) v P, 3) v Pls 5) v O(s 7)) number of .
mind changes *
& & [P, ) v P(e,3)yv -V Ple,n—5) v - Decidable with 3
mind changes
v Pe,n—3) v Oe,n — 1)] starting with 0.5
=0 1) & [P, 1) v [0, 3) & [P(e, Hv oo Decidable with 2 H Dlecz'dable with 2
) mind changes | TI[K]3 mind changes
& [P(e,n—3) v Olg,n — D111 by factoring). starting with 1 starting with 0
Decidable with 2

D
A{RYS | mind changes

starting with 0.5
mind change mind change

starting with 1 starting with 0

L Decidable —)

with certainty

Decidable with 1

So(C,nXKe T[KI2

Refurable
with certainty

Verifiuble
with certainty

(=) Suppose that for each he H, G, n K & E[K17. Then Gy K. may

B
expressed in the forms RV

1 1
Decidable with 1 Decidable with I
O,n[Pul0sn(Pyv - [Foi v 0,] if nis odd,

0, n[Pul0sn[0su Pt ~ 0,1 if n is even,

where each O, is open and each % is closed. In either case, define a to conjectu

0 for h until O, is verified by the data, after which « says 1 until P, is refut mind change
by the data, after which a says 0 until O, is verified by the data, after which starting with 0.5
says 1 until... a will succeed with at most mind changes starting with 0 Figure 4.39

(b) foliows from (a) by duality, and (c) follows from (a) and (b): :
proposition 3.12(b). (d) follows from (a), (b), and proposition 3.12(c). 0 (b)' To show that the inclusion is proper, define #0(g) = the number of
: urring in & Let H = o and define C as follows:
The following proposition is an illustration of proposition 4.16 (Fig. 4 .39)

72
(\/ #0(2) = Zk) if his even

Proposition 4.17 Cle ) = k=1

Let 'K be the set of all data streams that stabilize to some value. T_hérji
(a) Dy = ATK 5

(b) For each n, Z[XIY = Z[K e -

(c) Dy is the finitary Boolean closure of Z[X7.

(h— 12
(( Vo #00) = 2k) or #0() > h+ 1) ifhis odd.

"ﬂ'fc'ldily seen to be decidable in & mind changes starting with 0. A simple
onic argument shows that k cannot be decided with fewer mind changes
ing with 0. Now apply proposition 4.16.
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5 ohe I3

(a) Let C be defined as in the proof of (b). Add h* to H, and defin even pretiier. = A - A _A

(e, h*) = C(s, 2y). Let and n be given. The demon feeds n + 1 as the fir h B Gy

datum and then forces « to change its mind concerning h* at least n + 1 timg ? —> >

as in (b). By proposition 4.16, Cy» N X is not in any class Z[X17, ' h k

Gy N K ¢ D, But it is easy to decide . B in the limit. By proposition 4.1

G v K ALK - G 1 <
(¢) Each finite Boolean combination of open sets may be rewritten

disjunctive normal form. But by the closure of open [closed] sets under fini =

intersection, each disjunct can be rewritten in one of the following form é <

(O nP), O, or P, where O is open and 7 is closed. Fach disjunct. Figure 4.41

form (O n P) is settled in two mind changes (say zero until O is verified; th
say one until 2 is refuted). Each O and each P can be handled with one mi
change, so the hole disjunction can be handled in some finite number of mit
changes. Apply proposition 4.16.

ction, travel‘ing out from the shaft) determines how many times the demon
orce the scientist to change his mind.

e may define n-feathers inductively, as follows. Let X, P = A/

K is a 1-feather for P with shaft e<>ee P N K.

K is an n + L-feather for P with shaft s<=eeP n K and
V¥m e’ € K such that

elm = ¢'|m and

X is an n-feather with shaft & for P.

10. A Demon-Oriented Characterization of n-Mind-Change Decidability

The proof of proposition 4.16 makes it more transparent how the scientist ¢
succeed than how the demon can. What eactly does a demon need in order
be sure of fooling an arbitrary scientist n times about h given backgrou
assumptions K7 Let’s consider the case of one mind change. We have seotl
the proof of proposition 4.6 that the demon requires only the following patt
of “tracks” somewhere in X in otder to fool at least twice a scientist who sta
out conjecturing 0 (Fig. 4.40). To fool a scientist who starts out with conject
0 at least three times, the demon requires a slightly more complex system
tracks in K (Fig. 4.41). '

The demon starts by steaming down the track depicted by the bold ar
Eventually, the scientist says 1 because all tracks headed to the right mak
true. At that point, the demon turns left onto a track for C,. He rolls do
this track until the scientist says 0, which again must happen, else the scien
produces falsehood forever on this track. At this point, the demon again tu
right, forcing the second mind change on pain, once again, of produc
infinitely many false conjectures on a data stream in &, .

The demon’s needs are becoming clear. What he requires is something
an infinite feather. The demon always starts out on the shaft of the feathe
then shunts back and forth along barbs, barbs of barbs, and so forth (Fig. 4.
Fach time the demon moves from a barb fo a barb of a barb, the truth v
of h changes. The dimension of the feather (the number of times one can t

K is an n-feather for P <> ¢ such that K is an n-feather for P with
shaft e.

_1 feather for iD is a data stream for P that has n-feathers for P branching
finitely often (Fig. 4.43). An n 4 1-feather for P has its shaft in 7, whereas

featl;;ar for © has its shaft in P. We may now define the feather dimension
or P.

Dim () =n<= j;)"( is an n-feather for P and K is not an n + l-feather
or P.

Figure 4.42

Figure 4.40




110 The Logic of Reliable Inquiry Topology and Ideal Hypothesis Assessment 111
n-feathers for f,; A
A A A A A
) — =" = == : Dimension n+1
: G q Z}'r = q —_— Outta my way!  O.K. Take over, Shorty.
_—— = % Dimension <n
= — K [e]
n+l-feather for G, £ G = |””“”“”|
Figure 4.43
The obvious demonic argument yields that if & is an n-feather for . then 1
Figure 4.44

scientist can decide h with # mind changes given X, starting with conjecture:|
It is a bit less obvious that whenever X is not an n-feather for C,, h is decidal

with at most 1 mind changes given X, starting with 0. d always conjectures 0 no matter what succeeds in 0 mind changes. The

ase for (a) is similar,
Now suppose (a) and (b) for each m < n. Suppose that for each he H, X

Proposition 4.18 an n + 2-feather for C,. Define the method (Fig. 4.44):

(a) H is decidable,. given K in n mind changes starting with O
< VheH, K is not an n + |-feather for C,. 0 ife=10

0 I‘fDimCh(Q( N e]) > rand Dims (K n[e])>n

a:(h, €) ¥ Dim=(Knle])<n

ag(h, €) otherwise (i.e., if Dim . (X  [e]) < n).

(b) H is decidable . given K in n mind changes starting with 1
<« Yhe H, K is not an n + 1-feather for C,.

(c) H is decidable . given K inn mind changes starting with 0.5
< VheH, K is not an n + 1-feather for C, or Sor Cy.

(d) H is decidable given K in n mind changes
«VYheH, X is not an n+ A\-feather for C, or K is not i
n + l-feather for Cy.

It follows immediately from proposition 4.16 that:

the induction hypothesis when Dim- (K  [e]) < n or Dim(Kn[e])<n
ctively. Cn =
There are just two cases to consider.

Corollary 4.19

Cp 0 K e Z[KAD < K is not an n + 1-feather for .
¢, 0 K e TI[K]P < K is not an n + 1-feather for Cp-

Co " K e A[K1P <> K is not an n + 1-feather for C, and K is no
n + 1-feather for C,.

Gy n K eZ[KIP v TI[K], <> K is not an n+ 1-feather for C
K is not an n + 1-feather for C,.

(i) Yk Dim. (K  [e|k]) > n and Dim= (K n [elk]) > n.
(i) Ik Dim. (K~ [elk] < n or Dim (K n [elkT) < n.

- Lemma 4,20

If (i) then ¢ ¢ C,, and « stabilizes correctly to O on h, ¢
with no mind changes.

of: For suppose that ¢ & (. Then since for each k, Dim—(K ~ [¢]k]) > n

ave 'that for each k, there is an & such that % n [g)k] ‘1:;;' anu -1 feathcl;
i with shaft &' and &'|k = ¢|k. Hence, X is an n + 2-feather for (, with
“t' » contrary to the hypothesis. Now observe that for each k, the second
use of « is satisfied on &k, so for each k, a(h, |k} = 0. |

Proof: (a) & (b) (=) Prove the contrapositive by the obvious demont

argument. _
(<=) Argument by induction on n. Base case for (b) Suppose that 5‘(

not a 1-feather for ;. Then G, n K = &. Let ¢ € K. Then ¢ ¢ Gy So the i
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it lee
Figure 4.45 ==
Lemma 4.21

Y .

If (ii) then « succeeds inn + 1 mind changes.
Figure 447

Proof: Let m be the least k such that Dim. (K [elk]) <n o
Dim (X nfclk]D) <n Suppose that Dim= (X N [&]k]) < n. Then alh, ejm’
0, for all m’ < m and a(h, &|lm”) = «,(e|m") for all m" = m. Since a, decides
over X ~ [g|m] in n mind changes starting with 1 and o outputs only 0 pri
to invoking «,, « succeeds in n+ 1 mind changes starting with 0. In cas
Dim - (X [e]k]) < n, we have a similar situation, except that o, starts wit
0, so & succeeds in n mind changes.

f)mplfementing this set yields IT7 set and a dual 2-feather (Fig. 4.48). Now
re again free to add a dimension by augmenting this set with an open set.
. 'cesswe cgmplementatlons and open set additions, we can build a feather
rhitrary finite dimension.

Characterization of Gradual Assessment

fqllowing c.haractc.arization introduces a complete architecture that gener-
the bumping pointer architecture. Noteworthy features of this result are

nd I1 switch sides regarding verification and refutati idabili
5 a level below A[KTS. efutation and decidability

The induction for (b) is similar, except that the method employed sta
out with 1s until the submethods o, and a, are invoked. (c) and (d) may
obtained just as in proposition 4.16(c} and (d).

By corollary 4.19, the feather perspective and the D-hierarchy perspe
coincide exactly. It is revealing to see how the correspondence works b
constructing feathers out of intersections and unions of open and closed s
The D-hierarchy starts at level 2 with open hypotheses. The open set depicte
in (Fig. 4.45) clearly yields a 1-feather which affords the demon the chan

Proposition 4.22
verifiable .

H is | refutable. | gradually given K

fool a scientist who starts with O once, and a scientist who starts with 1'tw decidable b
To generate a properly IT{ set, we take the complement of the open’s c H[KT;

arrive at a closed set, which allows the demon to fool twice a scientist’y < foreachhe H, C, n K e| Z[K]E

starts with conjecture 0, and to fool once a scientist who starts with conject 5

1 (Fig. 4.46). - A[K]S
To obtain a I set, we add an open set to out closed set. This i€l A

2-feather, which affords the demon an opportunity to fool twice a scientist
starts with conjecture 1, and to fool three times a scientist who starts:y

conjecture 0 (Fig. 4.47).

.aunwi" 'nuwwli" IWWL

I .H.”‘ HH\M.

i

T ::Elil'

Figure 4.46 Figure 4.48
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(n, 7) denote this countable intersection. B,(n, ¥} € II[K]}. Then for each

Proof: As usual, it suffices to prove the verification case. The refutation cj :
' we have:

follows by duality, and the decidability case follows from proposition 3.-13(
(<=) Suppose that for each he H, C, 0 K& MK Then C, N K is the
intersection of some countable sequence § [hlg, S [Als, - . -» S Ay, .- . of Z[K]
sets. Let G and H' be such that for each i there is an h,e H' such th
Gy, =S[h];. Since each Gy, 18 ®[%7%, we have by proposition 4.10 that the
is 2 method x, that verifies . H' in the limit given %, Define method o as foltows D) denote this union. D)€ TLXTE Let roy ryse..,rrs... be an
On hypothesis ke H and finite data segment e of length k&, o c01_131ders thi - etation of the rationals greater than 0. Finally, for each ¢ ¢ & we have:
sequence of conjectures o,(ho, €), ok, €)- - oy, ¢) until some coan‘:ctu.re les
than 1 is produced. Let n < k be the number of consecutive 1s occurring in thi
sequence. o conjectures 1 — 27" (Fig. 4.49). Let he H, e K. Suppose e

InVmz=nl —alh,elm <r
e (BONUBANVBL L)

Co= (Do) 0 Dylr) n Dyry) 0 -+ -).

. I - . . : B
Then for each h; € H', £ € G,,. Then since «, verlﬁesg H’ in the limit give us, Gy € HLK 13 B
, ilizes to 1 on e for k,. Thus, for each i, there . . . ‘
e have[:hat {?irlfiCth;,sotC;gflai:;;Zfs 10for he, ... h.t_ Thereafter, «’s conject . The complete assessment architecture introduced in the proof of this
a‘:ifr;'e;ro?swbel‘:)w ; 271 Since i is arbitrg’ry oc, c:)rrectly approaches 1 o rem may be referred to as the consecutive ones architecture, since it counts
n — 274 .

for h. Suppose & ¢ C,. Then for some ;€ H', & ¢ Gy, Thus, &, does not stabil nsecutive 1s output by a simulated limiting verifier method to produce
to 1 for h; on ¢, so infinitely often, the conjecture of o for h on & is no greater tha
1 — 2% Thus o correctly fails to approach 1 for hon &.

(=) Suppose that a verifies. H gradually given % Then for each he The Levels of Underdetermination
we have:

Vee X, C(e h)<V rational ¥ > 03dn¥m > n 1 — alh, slm) <r. ncerning the divisibility of matter are located in their proper places. The dots
op of the diagram indicate that topological complexity continues upward
et (and then for infinitely many more cternities), e¢ven though our
uitions about what would count as limiting success for science pretty well
out by level 3.

The characterizations beat on some traditional issues of empiricism. Recall
the empiricist draws a line in the sand so that hypotheses that fall on one
arc gibberish and hypotheses that fall on the other are scientific. Empiricists
Iways had trouble deciding where the line should be, however. In his
uential article on this subject, C. Hempel proposed the principle that
pirical significance or meaningfulness should be closed under finitary
operations.'® He rejected TI[X]? and Z[X}? as characterizations of
irical significance because neither class is closed under negation. B. Van
ssen’s (1980) version of instrumentalism countenances belief when there is

The set A,(m, r) of all e X such that 1 — a(h, &lm) <7 is K -clopen. For
ee X,

VYm=n, 1 —alh elm) <r
wee(@nynAn+ 1,1) 0 An + 2,110 )

current evidence e -
of length k

N

=

= N . Y By e g bal underdetermination, but prohibits belief when there is, without regard
T <« 1 3 3 4 level of local underdetermination. If a dichotomy has to be drawn, then
g L . . . 0.5 \v aps it would be better to draw it at ALK ]2, This class contains both of the
§ = =) es entertained by Hempel and is also closed under finitary Boolean opera-
5B u / ns, as Hempel required. And unlike Van Fraassen’s line between local and
Zar] we count 10 3 prior 10 conjecture bal underdetermination, A[K]5 characterizes both gradual decidability and
E £ seeing the first conjecture less than 1 % ability in the limit—a natural place for line drawing if lines must be
E g below }, so stop 17
§ § simulation (\1—! .
[ | 'S Hempel (1965): 102.

Figure 4.49 ugel (1977} emphasizes the importance of A[ZS for inductive inference.
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j in an instant, then why should we entertain the fiction that we can
¢ all formal questions in an instant? This point is weil taken, and will be
2d in detail in chapter 7.

Gradually
verifiable

The limiting
relative frequency

of successful splits
of mass m will be r.

Gradually

refutable _ciSeS

rove that the restriction of a topological space is a topological space.

¢crify the closure laws summarized in Figure 4.51, for each n > 0,

Refutable in Verifiable
the limit in the limit
/ 1 () be open the let P be closed. Verify the following closure laws:

Massmis =~ Gradualt idablei

infinitely divisible. deci dub[:: ﬁzc:?;ilem {a) For eachn >0 ifSe l']f then ifSe Z"D then
: Sezd Sen?
: Sufelll SnOeXd;

Decidable with 3 Sn0eXl; SwPelll,.

mind-chenges

starting with 0.5 . (b) Foreachoddn >0 fSelllthen  if SeZP then

SnPell); Sw0exd;
.SUOGII"D+1: 5(\?62}?_{,1.

{c) Foreachevenn > 0, IfSeTl?then If SeX?ithen
SuQell?; SnPexl;
SnPell? : SuCeXl, .

Decidable with 2:
mind changes
starting with 0

Decidable with 2
mind-changes
starting with I

Decidable with 2
mind changes

Mass m is not composed
of exactly two simple

particles. starting with 0.5
. quurgble Verifiuble how that the hypothesis LRF(0) that a real-valued limiting relative frequency for
Mass n: with cerfainty "with certainty ome o exists is gradually verifiable. (Hint: a sequence { of rationals is a Cauchy
s stmple. Decidable with 1 Decidable with | ence just in case for each raFional r > 0 there is an n such that for all m, m’ = n,
mind change mind change | < r. Recall from alnalyms that a sequence of rationals approaches a real if and
starting with 1 starting with 0 tis Cauchy. Now design a method that can verify the hypothesis that the sequence
ative frequencies of ¢ in ¢ is Cauchy.)
Decidable with 1 Decidable
mind change . with certainty
starting with 0.5 _— rove an analogue of proposition 4.7 for refutation and decision with certainty.
Mass m will - Decida?[e from
split on the first - I-samples countable countable complement finite finite
atternpt. union intersection intersection union
Either mass m will split —~ ODeadaI;Ief romt
of it won't. - “SAMPLES v8
yes no no yes yes
Figure 4.50
1 no no yes yes yes
Someone could well demand that if we are going to drop the criterion
demarcation from global determination to A{% 15, then we ought to drp B no ves o yes yes
still further, for A{% 15 characterizes success for ideal rather than for compu
tional agents. If we do not entertain the fiction that we can scan the entire. Figure 4.51
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4.6. A collection ® of subsets of A is an ideal < w) of closed intervals such that ({I: ke w} = {r}. Let 7, X = K. Think of H

ypothesis and of K as background knowledge. An inductive method o maps finite
(i) Feo, es of closed intervals into [0, 1] U *!”. Define:
(i) if S ® and P =5 then P c ©, and

(i) f ScO@and Pe® then S Ped.

o verifies H in the limit given X <= Vr e &, ¥ data stream {I,: k € w} for r,
reH e In¥m=n, ofl,) = 1,

Show that for some k, C, the collection I' = {%: h is verifiable . in the limit given ._ imilarly for the other notions of reliability.

is not an ideal. Which of the conditions is T" guaranteed to satisfy? i . . . g -
(i) Characterize the various notions of reliability in this paradigm.

ii) Show that only (& and [0, 1] are dectdable with certainty given [0, 1].

ii) Show that each # is decidable with certainty given R — bdry(#H).

iv) Contrast result (ii) with the fact that nontrivial subsets of 2 are decidable
Cwith certainty in the usual, Baire-space paradigm. Explain the difference.

47. Find a data-minimal architecture for decision with n mind changes.

48. Show that each opportunistic limiting verifier is consistent in the sense tha
it stabilizes to O as soon as h is refuted by the data relative to X, and 1t stabilizg
to 1 as soon as k is entailed by the data relative to K. (Hint: if K [e] :
C, ~ [e], then 7, , does not exist, and if K v Gy v [g|n] = &, then T, does not &
if m > 1.} Show that consistency is necessary for weak data minimality among limi
verifiers for a given inductive problem. "

{ 14K = N is compact <

for each collection T of open sets such that | T" = K, there is a finite I = T’
such that | JT" = K.

(i) Show that if K is compact, then ¥H = &, if H is K-clopen then In such that
H is n-uniform in K. Rephrase this fact in methodological terms.

ii) Using (a), show that A is not compact.

Show that 2* < A is compact.

. Show that no properly open subset of 2® is compact.

49, Showthatif PeZ[K B and SnP=FandSe AKX v ST then PeZ[K0 S
(Hint: use a limiting decider for § given K U S to determine whether you are in §, 2
either output 0 or switch to a limiting verifier of P given X according to the curren
conjecture of the decider.) Show by example that the result cannot be improved to
case in which SeZfK w51 —A[K v ST (Another hint: let P = the set o
sequences in which infinitely many s occur, let X = P and let § = N — K). b
_(_Subjunctive learning theory). Recall the discussion of subjunctive reliability
pter 2. We can investigate this proposal using technigues developed in chapter 4.
f K as the set of possible worlds. A notion of “closeness”™ of possible worlds is
R = (K, K), where K is some collection of subsets of K. Let 4, B = A/, Then
ne the subjunctive conditional (4 — B)g = X as follows:

4.10. Derive the upper bounds in exercise 3.1 by using the characterization theorefns
this chapter. (Hint: construct C, as a Borel set of the appropriate complexity.) =~

*4.11. 1 have assumed that the stages of inquiry are discrete. But we can imagine
inductive method implemented as an electronic device whose input at time ¢ ]
intensity of current in an input wire at ¢ and whose conjecture at t is the position
needle on a meter (scaled from 0 to 1) at t (actually a bit after ¢ to allow the signa
travel through the circuits of the machine). Say that the method stabilizes just in
its value is fixed after some finite time interval. Similar definitions can be given i
bounded mind change and gradual cases. Extend the characterization resulis o
chapter to continuous methods in the paradigm just described, taking a fan to be
set of all unbounded extensions of a finite segment. Be careful when defining the Bor
hierarchy, since open sets will not be countable unions of fans in this setting.
happens to the characterizations if the method is not assumed to be continuous?

Vee X, £ € (A > B)y <= either
D VSeK,5nid=F or
(it) IS e K such that Sn A = Fand S " A = B.

ay think of (A B)q as saying “if 4 were the case then B would be

o verifies.. b in the limit given § on &=

(a) (Cy+> alh, ) stabilizes to 1)g and

(b} (G > alh, ) does not stabilize to 1).
*#4.12. In the paradigm described in the preceding question, show that the set ol
solutions to an ordinary, first-order differential equation is always closed i
corresponding topology. Discuss the methodological significance of this fact.

= {er Ja such that o verifies h in the limit given § on e}.

definitions can be given for the other senses of reliability. Let D¢, 77,
B R correspond to decidability, verifiability, and refutability with certainty, re-
*4.13 (The epistemology of real analysis), Topologize the real line M by taking vely.

intervals with rational endpoints as basic open sets. Think of each real numbe

complete “possible world.” Then a data stream forr € M is a downward nested coll The definition is due to Lewis (1973). Lewis adds extra constraints on &.
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Recall that M is the Baire space (A, B). Let 9t + & be the result of addigy
all singletons to ®. Let D = (A, 2°0y be the discrete topology on N. Let
(N, {5, N}) be the trivial topology on . Let I = (A, A), where A is the set ¢
closed balls under the distance function p(e, 7) = sup,|e, — Tl where the distance
if the sup does not exist,

(i) Show that ¥e, & is verifiable,. in the limit given T on g<=h is veriﬁabl‘cc
the limit given AL

(i) Let C; = {{}. Show that h is not verifiable,. with certainty given %, I, o
on £, whereas h is decidable . with certainty given D on {. Show that a striy
R satisfies “h is decidable,. with certainty given & on {” just in case 3 81
that £ e ({8} = {{} is refuted by stage n)g. Do you believe that if a univer

hypothesis is actually true then there is some fixed time such that White has Why do I always
hypothesis were false it would be refuted by that time? What does thi the first move, start out with
about the prospects for Nozick’s program (cf. section 2.7) as a response t Monsieur. only one guy?

problem of local underdetermination? Show that for every &, (e ({{}
such that {{} is refuted by stage n)q. Why does the placement of the existé_
guantifier matter so much? (The former placement is said to be de e o
things, while the latter placement is said to be de dicto, or of words.)
(i) Show that for each &, i, is not refutable in the limit given 9, %, or Wone.
(iv) Show that:

(@) DC Ihpsre = DCeIhln = Cu — bdry(C)-
() Vo hln+e — PCclhlprsa = baryCh) — e
] Rcc;[h]m+6 - Q)Cc[h]iﬂ+(5 = bdry(Cy) — Ca- :
(@) int(Cy) = & = DCAhlp+e=Cn (i.e., “h is decidable with certainty™is
same proposition as h). -

|
o,
&

7
NS

i

(v) What happens to (b) and {c) in R? _
(vi) Relate results (iv a—) to the discussion in this chapter in which it was clai
that the problem of induction arises in the boundaries of hypotheses.

(vil) What is the significance of (d) for naturalistic epistemology, the propos
we should use empirical inquiry to find out if we are or can be reliable

mpt to feed misleading evidence to the inductive method o, as though science
n ongoing game between the demon and the scientist, where winning is
ined by what happens in the limit. This game-theoretic construal of
y is familiar in skeptical arguments from ancient times, and it is the
se of this chapter to explore it more explicitly than we have done so far.

heory.! In set theory, infinite games are known to be intimately related to
10tion of continuous reducibility among problems and inductive methods
out to determine continuous reductions. It is therefore natural to consider
mes and continuous reducibility all at once. The discussion of continuous
ucibility in this chapter will help to underscore the analogy between reliable
ct_ive inference on the one hand and ordinary computation on the other,
will be developed in the next chapter.

! Material. presented in this chapier assumes some elementary issues in set theory,
ay be skipped without loss of comprehension in the chapters that follow.




