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1. Introductien

and the relation of correctness  holds directly between data streams and
‘hypotheses. We can also ignore the fact that the scientist produces actions, since
hese actions are irrelevant to correctness and to the data received.

‘1 will assume that the entries in the data stream are natural numbers. These
ay be thought of as code numbers for other sorts of discrete data. Let o
enote the set of all natural numbers. Let w* denote the set of all finite sequences

'f:bf natural numbers. The set of all infinite data streams is denoted by N = ©*.}
Define (Fig. 3.2):

Tn the preceding chapter, several notions of logical reliability were introduced.
Tt was proposed that degrees of underdetermination be defined as the impos-
sibility of reliability in various different senses. In this chapter, 1 will categorize
some inductive problems by their degrees of underdetermination. Thus, we will
be engaged in questions of the third level, which demand that inductive
problems be shown unsolvable by all possible methods.

Recall that for all the scientist supposes, the actual world may be any world
in K. The hypothesis h under investigation is correct for some of the worlds
in K and incorrect for others. The relation C of correctness may be truth,
empirical adequacy, predictiveness, or any other relation depending only on
the hypothesis, the world, and the method the scientist employs. Each world
interacts with the scientist through some data protocol and emits a stream of
data, of which the scientist can only scan the initial segment produced up to
the current stage of inquiry. When the data protocol is historical, we have a
simpler situation in which the scientist’s conjectures and experimental acts feed
back into the world’s experimental protocol to generate more data, and so forth
(Fig. 3.1).

Until chapter 14, 1 will assume that truth or correctness is an empirical
relation, depending only on the hypothesis in question and the actual data
stream, and that the scientist is a passive observer, so that the data stream does
not depend on what the scientist does. Given these simplifying assumptions,
the machinery of worlds and data protocols no longer does any work, since
each world determines a unique data stream and truth or correctness depends .
only on the data stream produced. Hence, worlds can be identified with the -
unique data streams they produce, so that K is a set of possible data streams

g, = the datum occurring in position n of e.

g|ln = the finite, initial segment of & through position n — 1.
nle = the infinite tail of ¢ starting with position n.

h(e) = the number of positions occurring in finite sequence e.
¢— = the result of deleting the last entry in e.

last{e) = the last item occurring in e.

0 = the empty sequence

~ Given the assumption that worlds are interchangeable with data streams,
t K be some subset of A and let truth or correctness be a relation C between

_ ! Each element of the infinite cross product of @ with itself is an infinife sequence
“of natural numbers and hence is a data stream,
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data streams and hypotheses. I will also assume that hypotheses are discrete
objects coded by natural numbers, so that H € w. Thus C & N x @.

Finally, since 1 am ignoring the actions recommended by the scientist’s
assessment method «, T will assume that such a method is an arbitrary, total®
map from hypotheses and finite data sequences to conjectures (Fig. 3.3).
Conjectures (outputs of the assessment method) will be rational numbers
between 0 and 1, together with a special certainty symbol 1.

Now we may consider a traditional inductive problem that is idealized
enough to clarify the logic of the approach and yet rich enough to illustrate
many different senses of solvability and unsolvability.

Qur scientist is a theorist ai the ®Rep (Institute for Really Big Physics). His
ttitude toward the infinite divisibility of matter is frankly operational. If no
ceelerator of any power can split a particle, then he takes it as metaphysical
onsense to say that the particle is divisible, so indivisibility is just indivisibility
y some possible accelerator that the mep, with its unlimited research budget
could construct. To investigate Kant's question, the theorist is commited to thé
following experimental procedure, ’

The lab maintains a list of the particles that have been obtained from
revious splits but that have not yet been split themselves. This list is initialized
ith the original particle p under investigation. At stage n, the lab attempts to
t the particle currently at the head of the list. If they succeed, then they
emove the split particle from the head of the list and add the new fragments
o the tail of the list, write 1 on the data tape, and proceed to stage n -+ 1
:th_out building a larger accelerator. If, however, they fail to split the current
article into any fragments, they report 0. Then they place it at the end of the
st; bl}ﬂd a new, bigger accelerator; and proceed to stage n + L

(_}wen no assumptions at all, the reports of the lab may have nothing to
o w1t}'1 actual divisions of particles, so that all questions about the divisibility
f particles are globally underdetermined: the alleged fragments of particles fed
o these accelerators may be artifacts of faulty theory and irrelevant but
1slezj1diug machinery. To make the issue more interesting, we will grant our
heorist some strong theoretical assumptions.

First, we will grant him that the lab accurately reports the result of each
tt'empted cut. It never reports cuts in particles when no such particles or cuts
x1st,- and it always reports cuts that occur. Second, we will grant him that any
.hysu:ally possible cut in a particle given to the lab will eventually be made by
is lab, This reflects our theorist’s operationist leanings. We will not grant
owever, that the very next attempt will succeed if a cut is possible. It may take’
ome time before even the IRBP can secure funding for a sufficiently large
ccelerator.

Example 3.1 The infinite divisibility of matter

Since classical times, there have been debates concerning the nature of matter
In the seventeenth and eighteenth centuries, this debate took on a renewed
urgency. The corpuscularian followers of René Descartes believed that matter is
continuously extended and hence infinitely divisible. Atomists like Newton -
thought the opposite. Kant held the more measured opinion that the question
goes beyond all possible experience:
For how can we make out by experience ... whether matter is infinitely divisible
or consists of simple parts? Such concepts cannot be given in any expetience,
however extensive, and consequently the falsehood either of the affirmative or
the negative proposition cannot be discovered by this touchstone.?

The issue has not gone away. It seems that every increase in the power of:
particle accelerators may lead to a new, submicroscopic universe. Who was"
right, Descartes, Newton, of Kant?

2 One could also countenance partial maps and require for convergence that the:
map be defined on each finite initia} segment of the data stream. Nothing of interest:
depends on this choice. :

3 Kant (1950): 88.
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Accordingly, if we let h;,, denote the hypothesis that particle p is infinitely
divisible and let h;, be the hypothesis that p is only finitely divisible, then our
assumptions imply that

énvergence_, where convergence to an answer by stage n of inquiry means
ply producing that answer at n. Let b range over possible conjectures. Then
fine:

C (&, hspy) < infinitely many 1s occur in &. o produces b at n on h, ¢ <> olh, e|n) = b.
C(&, hyin) <= only finitely many 1s occur in e.

his notion of convergence says nothing about being right or wrong. Success
- matter of converging to the right conjecture on a given data stream.
_ad_itiona]ly, methodologists have recognized three different notions of con-
tingent success. Verification requires convergence to 1 when and only when the
hypothesis is cotrect. Refutation demands convergence to 0 when and only
when the hypothesis is incorrect. Decision requires both. In the present case

The scientist can entertain a variety of hypotheses about the fundamental
structure of matter. Let fig,,q. be the hypothesis that the particle p is physicaily
indivisible, and let Ay De the negation of Ay Then the scientist’s
assumptions imply that :

C(& Myjppre) <= only Os occur in &

C (8, Mginisinte) <> 1 Occurs somewhere in &.
o verifies,. hatnone < [« produces 1 at n on h, e < C(e, h) 1.
Let hypision r « D€ the hypothesis that a successful division will occur at t. Then: o refutes,- h at non &< [a produces 0 at n on h, £<> —1C(s, h)].

C(Ss hdivision at t) <~ sr = 1 * deCideSC h atnone<>o bOth ven:ﬁeSC and refutesc h by non &,

C &, jh ivision m =g =0 3 i i

( y! o1 : - can verify h at n on ¢ by producing anything but 1 (e.g., 0.5) when h is
correct.

Reliability specifies the range of possible worlds over which the method

uist succeed. The logical conception of reliability demands success over all
ssible worlds in X

Let A pp(y= be the hypothesis that the limiting relative frequency of successful
cuts in the experiment under consideration exists and is equal to r.
C (e, hypp(1y-r) < LRE(1) exists and is equal to 7.

C(e, Thpgpay-r) < LRE(1) does not exist or exists but is #r. a verifies, h at n given X <> for each ¢ € X, o verifies. h at n on g

; Fig. 3.4).
Let H be the set of all these hypotheses. We will assume that the huge ) ! (g 3.9
accelerators of the TRBP are new and so unprecedented in power that the theorist aref urese hatn given X <> fi 0"_ each e € K, o refl utes, hatnons
has to admit that any sequence of Os and 1s is possible for all he knows or (Fig. 3.5).
assumes. So K is just the set 2 of all infinite sequences of Os and 1s. o decides - h at ngiven X < for all e X, decides. h at non ¢
(Fig. 3.6).

K =2°
iven definitions of verification, refutation, and decision at a given time, we

Now we have a set of hypotheses H, a set of possible data streams %, and | define verification, refutation, and decision by a given time.

an empirical relation of correctness C, reflecting something of the character o

Kant’s claim. The question is whether Kant was right, and if so, then in what data streams conjecture
sense? ' n K streams
h correct -{ g | === converges to |
2. Decidability with a Deadline — ===| converges to neither
y h incorrect — f——
— ——| convergesto 0

We would certainly like science to be guaranteed to succeed by some fixed time
namely, the time we need the answer by. This corresponds to a trivial notio

Figure 3.4
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verifiable .

H is | refutable. | by n given K by a method in M

decidable . verifies,.

verifies - verifies -

< thereisan o e M
ol refutes~ | hbyngiven X < there is m < n such that o refutes | h such that of refutes. | H by n given X.
c c

decadesc

decides decides,

Vhen H = {h}, we will simply s i
h a peak of the hypothesis h as bein ifi
_futil(llalz, or cjlec:dable by a given time. When reference to 9 is gd:c?;)e?ibli
_ouNOWewuen nf;;t?;i kthaft M 1sdthe set of all possible assessment metho’ds
Now of a quadruple (C, &K, M, H) as an inducti '
at is either solvable or unsolvable in 6 sonse ot et of
)y the sense described, E i
roblem solvability to be considered e of
> be. may be analyzed into criteria of con-
X g.célce,‘ SUCCESS, rehabthy, and range of application in this man(ile:m;\
specification of these criteria will be referred to as a paradigm. The paradigm

at m given X,

There is another sense of guaranteed success. Tt concerns the range H of
hypotheses that the method can reliably assess.* K reflects uncertainty about
the world under study, whereas H reflects uncertainty about one’s next scientific

job assignment. Accordingly, we define:

verifies
st defined is th o .
a| refutes. | H byngiven K <« for all he H, A basic facte bgunded samp le d'_gcmo_" paradigm.
. . v about _th1s paradigm is that verifiability, refutability, and
decides - verifies- dabilig EO apselfor ideal methods, So henceforth, we need consider’ only
. v #n unless restrictions on th ; .
al refutes,. | h by n given X, ) s n the method class A
ofutes, yhrdg K __g:clude the following, trivial construction (Fig. 3.7) are imposed that
decides e
data streams conjecture Proposition 3.2
in streams
> converges fo 1 :_(_a_) The following statements are equivalent:
h corzect — _— P & H : .
== (i) H is decidable. by n given X.
— == to neith . . )
1 incorrect [ o ——— converges fo NETEt : (11) His Ueﬁ:ﬁable(_' by n inen X
_ ————=> | ==={ convergesto 0 . .
_ (iii} H is refutable . by n given X
Figure 3.6 is decidable. by n given K = H is decidable. by each n' > n given X

rigjgs(b}fls blmmegiiatﬁ. (a) (i) = (i) & (i) is immediate. (i} = (i): Suppose «
'oducgs ' Ojtrh:rgwen ‘.?( Define o so that o' produces 1 when a does, and
wise. o refutes. H by n given XK. (iii) = (i) is similar., |

4 gome reliabilist epistemologists seem to confuse these two senses, so that they,
take a method to be reliable if it kappens to succeed over a wide range of hypotheses
in the actual world. In my view, lucky success over lots of hypotheses does not add up
to reliability. It adds up only to lots of lucky success. On my view, a method guaranteed
to sncceed on a single hypothesis is reliable for that hypothesis even if it fails for evet
other. I propose that the philosophers in question have confused aileged evidence fo
reliabitity with reliability itself. It may e hard to believe thata method could accidentall
succeed over a wide range of hypotheses, but what is hard to believe can be true, afn
here we are defining what reliability is, not how we come 1o believe that a given syster
i valiahle by watching its actual behavior on actual data.

Em::: ;E:I;(;G(i t;ac?pls decision pa‘radigm is strict, but it is not impossible
._Stage The Cleaprl © is : di’;"“"" at n» Which states that the particle at hand is split
] lookin’g S whafh ecidable by stage n s‘lmply by running the experiment and
| olng ot whal appens at stage n. It is not hard to see that this hypothesis
__ able by stage n — 1 when X =2“. Suppose that some hypothesis
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tage . 'If X admits both possibilities, the argument is a proof against
ect ability by stage n — 1, The same argument shows that hy,,; is not
etifiable or refutable by stage n — 1, either. Since n is arbitrary, E;;;n:[ng is not

‘ verifiable by fime 2 &  decidable by time 2 ¢ refutable by time ZJ

ows that the relation given in proposition 3.2(b) is optimal, and hence the

i

'véls in Figu.re 3.7 do not collapse. This is the simplest possible demonic
ument against all possible scientific methods, As we shall see, the demon’s

[ verifiable by time | < decidable by fime 1 < refutable by time 1 ’

fask gets more difficult as the operative notion :
: U of convergence is we
he scientist’s knowledge is strengthened. ® akened and

1l

Scientific realists faced with demonic arguments sometimes object that there

Fverifiable by time 0 <> decidable by timeQ <> refutable by time OJ

1 c‘jemc}:n, as though one must be justified (in the realist’s elusive sense!) in
elieving that a demon exists before such arguments must be heeded. But the

assessot o and some stage n
tour of a railroad switching yard, in w
The engineer of the train Is th
fooling the scientist. The scientist
turn switches in the switching yar
as the infinife path ultimatel
only constraint on the demo
consistent with the scientist’s background assumptions.
The demon proceeds accordin
He presents the scientist’s method
Method o must conjecture 0 or 1
stage. But if « says 0, the
says 1, the demon presents 0 at stag
does, it fails on the data stream pro
is in K because any infinite sequenc
by stage n — 1 given K. Since «
method succeeds in the required sense.
This is precisely Hume’s argument for in

hdim‘sion atn

e inductive

y taken by t

demon presents
¢ n and forever after.
duced by the demon. But this data strea
¢ of 1s and Os is. Thus o fails to decide
is arbitrary, no possible assessment

Figure 3.7
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are given. Imagine the scientist as being given a
hich each track is an infinite data stream
demon, who is fiendishly devoted to
makes his guesses, and the demon is free to
d wherever and whenever he pleases, so long:
he train ends up in K. That is, the.
o is that he ultimately produce a data stream-

g to the following, simple strategy (Fig: 3.8)
o« with nothing but 0s up to stage # — 3
at stage n — 1 in order to succeed by tha
1 at stage n and forever after; if o
So no matter what

ductive skepticism. No matter how.
1, the sun may or may not rise at

--8‘1 issue 1s‘the existence of a logically reliable method for the scientist, and
ons are .]us.t a mathematical artifice for proving that no such method e’x' Itl
.pe sgaentlst 1s actually a demonologist interested in whether or not a derilsos‘
mlﬁ?_ying Solr(;; strategy actually exists, then demonic arguments against thil;
-?d ;:n glzuundeiv; ::1 ;.nvoke metademons that try to fool the scientist about
The argument J:ust presented is driven by the fact that % contai
4ta streams presenting a fork to the scientist at stage n — 1, together 'thatl?s
emand that the scientist arrive at the truth by stage n — 1 (,Fig 39 SW}°t X
i(zvertur(;led eithe_r by removing data streams from X (i..c ‘ l;y Da::ld(i:flrgl
2 %r;;inﬁ nis;s'umptlons) or by relieving the stringent demand of convergence
. It is oply shgptly more complicated to show that kg, which says that
can l?e divided, is not verifiable, refutable, or decidablewl;s;(br;’n arbitrary fi ad
me given XK. Let’s consider the case of verification by stage n. Let ocy,b N
rbltlrary a.ssessm‘ent method. The demon’s strategy is to present bs up to siaz;
t,h :licit };[;) c‘;;?:(,f()? & dto produce its conjecture at stage n. If the conjecture
- ,dem e n feeds Os foreve?' after. If the conjecture is anything but 1
on feeds I'S forever after (Fig. 3.10). In the former case, o produces 1
n wht?n hdi[,iml? is false, and in the latter case, « fails to produ::e 1 at n wh
.-"""'“3'“ 1s true. Elther way, o fails to verify or to decide hy,,, at stage n B‘E
.aﬁ?nﬁxzdatri; arljitrgry, 5o no possible method can verify or d;cide hd,-,,,-si,,;e by
sy Heed ¢ rf:).du Cs1m111arhaurgusfnenF wqus for the case of refutation, except that
.':'otherwisé) oo es 1 when the scientist produces anything but 0 and produces
. sa.me.argu_ment works for the hypotheses h,,,, h,,, and
1rF(1)=r> NONE of which is verifiable, refutable, or decidable by any%{’edﬁﬁe

If he says no

If he says yes

stage # -1

stage n

Figure 3.9
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Keynes was correct to observe that those of us who are now alive are all

dead by some fixed time. But Sextus was equally correct to maintain that by -

any fixed time we are all unreliable unless we already assume quite a bit. For
example, if we assume that if all cuts up to stage n fail, all later cuts fail as well,
then hpite 18 decidable by stage n.

For those who assume no such thing and who would prefer that inquiry
have some logical connection with the truth, it is of interest to investigate

weaker senses of convergence that do not demand success by a fixed time, even
though it is clear that we would prefer a method guaranteed to succeed in the

near future, if such a method were to exist.

3. Decidability, Verifiability, and Refutability with Certainty

If 2 method is guaranteed to succeed by a given stage n, then given our
assumptions K, the method has the truth at stage n. Thus, the method confers
a kind of certainty upon its user at n, given K. This certainty is very desirable
when it can be had. Since we can’t have certainty about infinite divisibility at
some fixed time, perhaps we can have it by some time that cannot be specified
in advance. Since we no longer know a priori when the method will be sure, it
must tell us when it is sure by some sign (Fig. 3.11).

Any convention will do. T require that the method write an exclamation
mark “!” just prior to announcing its certain conjecture. Nothing prevents a
method from producing this mark of certainty several times, so we will take its
certain conjecture to be the one immediately following the first occurrence of
‘1> The others will be ignored, as though the method has finished its job and
is merely producing irrelevant noise thereafter, Let b = 0 or 1. Then define:

Figure 3.11
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L verifiabie with certainty‘] L refutable with certainty

Ldecidablc with certainty l

1l
I verifiable by time 2 &> decidable by time 2 &> refutable by time 2 I
]

| verifiable by fime 1 5 decidable by time I & refutable by time | |

ll
r verifiable by time ¢ < decidable by time 0 < refutable by time 0 I

Figure 3.12

o produces b with certainty on h, & < there is an n such that

(a) alh, eln) ="V,

(b) alh, eln + 1) = b, and

(c) for each m < n, a(h, e|m) # ‘1",

his concept of convergence induces three notions of success, just as before:
« verifies- h with certainty on g

<> [o produces 1| with certainty on h, &< (s, h)];

o refutes. h with certainty on ¢
<> [« produces 0 with certainty on h, ¢ < 1C(e, B)];

a decides,. h with certainty on ¢
<> o verifies . h with certainty on ¢ and « refutes - h with certainty on ¢.

ese notions of success give rise to corresponding definitions of reliability,

inge of applicability, and problem solution just as before. Let € denote the

mplement of ¥. Then we have the followi i i
o (e 1 owing basic facts relating these

Proposition 3,3
{a) His verifiable - with certainty given X
< H is refutable~ with certainty given .
(b) H is decidable.. with certainty given X
< H is both verifiable . and refutable . with certainty given X
(c) For 'each n, if H is decidable . by time n given K then H is decidable
with certainty given X, ¢

5 * I .- .
In this case, the result (b) is trivial, but we will see that it fails in more complex

paradigms.
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Proof: (a) (=) Let «, verify. H with certainty given K. Define «, to conjecture
0 when a, conjectures 1 and to conjecture 1 when a, conjectures 0. All other
conjectures (including ‘1°) are left unaltered. o, refutes H with certainty given
K with respect to C. (=) is similar.
(b) (=) Immediate. (<=) Let o, verify . H with certainty given %, and let
o, refute,. H with certainty given K. Let method « conjecture 0.5 until either
oy O &y POHJf’CtUTeS ‘I, Then o conjectures ‘I’, and repeats forever whatever Let’s return to Kant’s question about the infinite divisibility of matter. I
the machine that produced ‘17 says next. . adily seen to be neither verifiable nor refutable with certah{t I " o \
(c) Suppose «, decides. H at n given K. Define o, to mimic exactly, an:assessment method ¢, the demon can present o with nothin by.t ool
except at n — 1, when o, produces ‘I’ no matter what. o decides. H with until a says preceded by ‘I, at which time the demon rivizlle -
certainty given K. 2 its, and o fails to verify infinite divisibility with certainty. ’ T RO o
_Similarly, the demon can provide only failed cuts until « says 0, after which
1y sucqessfui cuts are announced, so « fails to refute the infinite divisibility
othesis with certainty. Since « is arbitrary, no possible method can verify
efute infinite divisibility with certainty. Hence, no possible method can
_d.;_g;de in.ﬁni‘te divisibility with certainty, either. So although verificationism and
falsiﬁ_ce'tt.lomsm expand the scope of reliable inquiry, they do not save infinite
sli:.)ﬂny.from Kant’s charge of running beyond all possible (local) experience
hesituation with limiting relative frequency is even worse. Perhaps we can.
'_ipg these hypotheses under the purview of logically reliable inquiry by
eakening the operative concept of convergence still further.

fiability, and refutability by a fixed time, for the same problems are not
able in those senses, To enhance the scope of reliable inquiry by weakening
skeptic’s prqposed standard of success {decision with certainty or decision
ow) is the basic idea behind Popper’s falsificationist philosophy of science
; i_ﬁcationism, the idea that theoremhood can be verified but not refuted witﬁ
rtainty, is the fundamental idea behind the philosophy of mathematical proof.

We have seen that the hypothesis fgyime is Dot verifiable, refutable, or
decidable by any fixed time given 2% We can also show that ks, 18 DOt
decidable with certainty given 2%, even when we do not insist on success by a
fixed time. Once again, a demonic argument suffices. Let assessment method o
be given. The demon’s strategy is to present the everywhere 0 sequence
(indicating no cuts) until the method produces its first mark of certainty, If the
next conjecture is 1, the demon feeds 0 forever after. If the next conjecture is 0,
the demon feeds 1 forever after. And if the next conjecture is anything else, it
doesn’t matter what the demon does, so long as he produces a 01 data stream,
so we will arbitrarily have him produce all Os. If o never produces a mark of
certainty followed by a 0 or a 1, then o clearly fails to decide hypigpe With
certainty given K. If o produces *!” followed immediately by 0, then h,0. 18
true so a is wrong. If o produces ‘!I” followed immediately by 1, then hgueine
is false, so a is wrong again (Fig. 3.13). So in any case, « fails to succeed on the
data stream produced by the demon, which is constructed so as fo be in XK.
Since o is arbitrary, no possible assessment method can decide hgiyigipre With
certainty given K.

1t follows that kg, ., the negation of hyeapies is not decidable with certainty
given K, either. This is just the problem of universal generalization, and the
preceding demonic argument was already familiar to philosophers before the
time of Sextus Empiricus. On the other hand, hy,isse 18 verifiable with certainty
The method need only produce conjecture 0 until a successful cut is observed
and then produce ‘U, 1, 1,... forever after. Dually, Ay is refutable with
certainty. The method just reverses the conjectures of the method for hyiams
It follows that Ry is not refutable with certainty and Hyy, . 18 not verifiabl
with certainty. This is an improvement over the situation regarding decidability

Verification, Refutation, and Decision in the Limit

_:_1_'_tainty demands thgt a method eventually give a sign that it has arrived at
corrc?ct answer. The impossibility of giving such a sign for universal hypotheses
¢ issue that drives Plato’s Meno paradox.

_Meno: A-nd how will you inquire, Socrates, into that which you do not know?
What will you put forth as the subject of inquiry? And if you find what you
want, how will you ever know that this is the thing which you did not know?®

10’ u.nderlying assumption is that inquiry is worthless unless it can produce
1d terminate sign that it has succeeded. But it is possibie for a method to be
guaranteed to a;rive at the truth and to stick with it forever after without ever
g such a sign. Stabilization requires only that inquiry eventually settle
n to some fixed assessment value, even though the user of the method may

r be sure when stabilization has occurred, since a future reversal is always
ible for all he knows (Fig. 3.14).

a stabilizes to b for h on &
<= there is a stage n such that for each later stage m > n, a(h, &|m) = b,

Nonethe!ess, after the method has stabilized, no such upsets ever occur

Figure 3.13
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1 & & & S ’ verifiable in the limit I | refutable in the limit I
N 2 '
. | decidable in the timit |
modulus 74 S
Figure 3.4 [ verifiable with ccrta;n'l\\y 1 I ﬂrefutable with cerlainty |

1 decidabie with certainty |

i)

I verifiable by time 1 & decidable by time § 43 refutable by time 1 |

]

I verifigble by time 0 <> decidable by time 0 <2 refutable by time 0 I

again. We will refer to the easliest time after which all conjectures are the same
as the modulus of convergence, :

modulus,(h, &) = the least n such that for all m = n, a(h, &|m) = a(h, &|n).

The convergence criterion of stabilization in the limit gives rise in the usual
way to three different concepts of success on a data stream:

Figure 3.15

o verifies~ h in the limit on ¢ <> [ stabilizes io 1 on h, &< C(g, B)]. Proposition 3.4

o refutes - h in the limit on & <= [o stabilizes to 0 on h, & = (s, k). ; . , C o
- (a) H is verifiable,. in the limit given X
<+ H is refutable = in the limit given X.

(b) H is decidable . in the limit given K
<> H is both verifiable,. and refutable . in the limit given X,

a decides, h in the limit on ¢
<= o both verifies. and refutes . in the limit on h, &

The corresponding definitions of reliability, range of applicability, and problem
solvability proceed just as before, and need not detain us here.

The idea that inquiry should stabilize to the truth has appealed to
philosophers for a long time. Indeed, Plato made it a centerpiece of his theory
of knowledge, as presented in the Meno.

(c) His dec?dablec, verifiable ., or refutable . with certainty given X
= H is decidable . in the limit given X

of Let oy verify,. H in the limit given K. Define o,(h, €) = 1 — a,(h, ¢). a,
futes H in the limit given & with respect to (.

{(b) (=) Immediate. («<=) Let &, verify. H in the limit given X, and let a,
ify- H in the limit given X, by (a). Define method « as follows. « simulates
and 2, on each initial segment of the current data e. If o, says some-
g other than 1 more recently than «,, then « conjectures 0. Otherwise «
njectures 1.

Let e X, he H. X (e, h), then &, stabilizes to 1 and a, does not, so some
me afier the modulus of convergence of o, on & o, produces a non-1
njecture, and o produces 1 thereafter. If (e, k), then o, stabilizes to 1 and
oes not, so by a similar argument o stabilizes to 0.

(c) Let o, verify . H with certainty given X To verify - H in the limit given
5 let o conjecture O until a; produces ‘1, followed by 1, after which « says 1
o matter what. The decision case follows immediately. A dual construction
works for the case of refutation. &

While [true opinions] abide with us they are beautiful and fruitful, but they run
away out of the human soul, and do not remain long, and therefore they are
not of much value vntil they are fastened by the tie of the cause [reason-whyl;
and this fastening of them, friend Meno, is recollection, as you and I have
agreed to call it. But when they are bound, in the first place, they have the
nature of knowledge; and, in the second place, they arc abiding. And this is
why knowledge is more honorable and excellent than true opinion, because
fastened by a chain.”

One reading of the passage is that belief formed by a method guaranteed
stabilize to the truth (e.g., Platonic recollection) is eventually stable, and when
it stabilizes, so that it does not vacillate in the face of true data, it is knowledge.
Reliabilist methodology need not endorse this or any other account o
knowledge, but insofar as knowledge is held to be at least stable, true belic
formed by a reliable process, the analysis of stabilization to the truth is relevan
to the theory of knowledge. The basic logical relations among the limitin
assessment paradigms are as follows (Fig. 3.15).

Despite the lenience of decidability in the limit, it is not a panacea for local
Underdetermination. For example, without extra background knowledge, the
/pothesis that matter is infinitely divisible is not decidable in the limit. The
oof'is a limiting generalization of the short-run demonic arguments presented

7 Plato (1949): 58-59. rher
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Figure 3.17

Recall the picture of X as an infinite switchyard through which the
inductive demon takes the scientist for a ride. In our problem, X = 2%, so the
switchyard is an infinite, binary-branching tree of 1s and 0s (Fig. 3.16). The
demon starts out by presenting 111 ... until « says 1. If « says 1, the demon
switches to all Os until  says 0, If a then says 0, the demon starts presenting
15 until « says 1. This process continues forever. Either « stabilizes to 1 or to
0 on the data stream provided, or not. Suppose « stabilizes to 1. Then the
demon feeds Os forever after o stabilizes to 1, so hy,, is false, and « is wrong,
Suppose « stabilizes to 0. Then the demon feeds 1s forever after the modulus of
convergence, so hy,  is true, and a again fails. But if « does not stabilize to O or
to 1, « fails again, since o must stabilize to one or the other so long as the data
stream contains only 1s and Os, which it will according to the demon’s strategy,
So in any event, o fails. Since « is arbitrary, we know that no possible ideal
assessment procedure can decide hy,, given X in the limit. This result seems
to vindicate Kant’s opinion that the question about infinite divisibility goes
beyond all possible experience. :

On the other hand, h;,; is refutable in the limit given Kby a trivial method.
Let tgpe, Simply repeat the last datum it has seen when assessing By I ifs
current datum is a 1, t,p., conjectures 1. If its current datum is 0, % pe
conjectures 0. Let ¢ € 2°. Suppose h;,, is correct for & Then infinitely many 1s
OCCUT, SO Oyepe, corTectly fails to stabilize to 0. Suppose hy, is incorrect for &
Then only finitely many 1s occur in & After the last 1 is seen, &,qpq, CONVErges
to 0. Thus, the trivial method o, refutes h;,, in the limit. So in another sense
Kant was wrong. By proposition 4.1, it follows from the fact that h;,, is refutable.
but not decidable in the limit that A, is not verifiable in the limit. Thus, it§
negation h,,, is verifiable but neither refutable nor decidable in the limit.

There is a tendency for philosophers to suppose that the demon i
omnipotent so that the deck is stacked against the scientist. But this is not the
case for the inductive demons under consideration. Since their outputs ar
determined locally, just as the scientist’s are, the scientist may also be in :
position to fool every possible demon. That is just what happens when th
scientist uses a logically reliable method. For example, consider the case o
verifying h;, in the limit. A would-be demon would have to produce a dat

ream in (y,,, just in case the scientist’s conjecture stream does not stabilize
. Since the demon only sées the scientist’s conjectures as they are produced,
an’t tell if the scientist’s vacillations will continue forever, or stop. The
jentist’s successful method of conjecturing the current datum is guardnteed
~outwit the demon, since the method converges to 1 if and only if the data |
ream constructed by the demon does not.

Example 3.5 Cognitive psychology

ot many years, cognitive psychologists have been concerned to discover the
neral computational architecture of the mind. One might object to the implicit
sumption that there is such a program to be found. If human behavioral
spositions are actually uncomputable, there is no such program. So it would
em that the first question is whether it is possible, even in the limit, to decide
hether or not an arbitrary input-output behavior is computable (Fig, 3.17).
~J. R. Lucas attempted to give metaphysical arguments based on Godel’s
eorem to the effect that human behavior cannot be computable, and recently
¢ physicist R. Penrose has followed suit. A. Newell and H. Simon have
sponded that the issue is an empirical one: when increasing fragments of
iman behavior are duplicated by machines, the evidence for the computability
cognition increases.® The philosopher H. Dreyfus has answered that individual
ceesses on “microworld” problems will never add up to real intelligence.

{Aln overall pattern has emerged: success with simple mechanical forms of
information processing, great expectations, and then failure when confronted
with more complicated forms of behavior. Simon’s predictions fall into place
as just another example of the phenomenon which Bar-Hillel has called the
“fallacy of the successful first step.” Simon himself, however, has drawn no
such sobering conclusions.®

gLucas (1961), Penrose (1989), Newell and Simon (1976).
Dreyfus (1979): 129,
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A A A and Os. It initializes a pointer to the beginning of this list. Each time the
y-disagrees with the data stream currently pointed to, the pointer is bumped
heomp . -ﬁ’ . ‘“‘? . —"T’} the next computable data stream consistent with the data?, and the metllljod
2 5 ke eturns 0. If the data agrees with the sequence the pointer currently points to,
gy % > % — ;g_.;., -f'method.outputs 1.

% 5 1 g 1 B8 T 1 f hm.,,p is corjrect for datg stream &, then the pointer never bumps past some
1 ////, chine in &,,,,,’s enumeration, so the method correctly stabilizes to 1. If Reomp
: TE TE r; ncorrect for data stream ¢, then ¢ matches no computable sequence in the
—— . '_"so the pomter never stops bumping, and infinitely many Os are output,
i =4 |o o) - hl_ch is again correct. This bumping pomter method is a very general technique
i T T T ‘obtaining positive results concerning limiting verifiability, as we shall see

Figure 3.18 fie next chapter.

-So computable cognition turns out to be exactly dual to infinite divisibility,
far as ideal inquiry is concerned. The former is verifiable but not refutable
the Hmit, and the latter i§ refutable but not verifiable in the limit. Both
u_é_stions are difficult, but some questions are even harder, as we shall now see.

The situation is reminiscent of the one concerning the infinite divisibility of
matter. Does the question lie beyond all possible experience? In this case, the
lab feeds an effective ordering of all possible stimuli to the subject and records
the response. To avoid equivocal descriptions of responses, the subject is tied
into a Skinner box with only one finger free to press a button (response 0) or
to refuse to press it (response 1) within a second. The hypothesis h,,,,, is correct
if and only if the response sequence is a computable sequence of 1s and 0s. For
all the scientist assumes a priori, any response sequence may arise, so again we
let X =2°.

Let « be an assessment method. The demon has at his disposal an infinite
list of all the computable data streams in 2”.'° He also has in hand a fixed;
noncomputable data stream 1 e2”.'" He feeds o data generated by the first
compatable data stream until o eventually produces a non-0 conjecture. He
starts presenting t from the beginning until « says 0. Then he finds the next
computable data stream that agrees with the data produced so far and presents
it until & makes a non-0 output, and so forth (Fig. 3.18). Such a data stream
can always be found, since each finite chunk e of data can be recorded in &
lookup table by some computer program that computes a data stream
extending e. :

If o stabilizes neither to 1 nor to 0, then « fails to decide h,,,, in the Timi
on the data presented. If « stabilizes to 1, then the uncomputable data stream
tis presented in its entirety (after some finite data sequence has been presented)
Thus, the overall data stream presented is uncomputable, 5o h,,,, is false and
a fails to decide A, in the limit on the data prov1ded 1f o stabilizes to 0, then
the data stream presented is computable, so h,,,, is true and « again fails. S4
in any case, « fails on the data stream presented. Since o is arbitrary, hpmp i
not decidable in the limit given 2%

On the other hand, h,,,,, is verifiable in the limit by an ideal method giver
29, The ideal method o,,,; maintains a list of all the computable sequences 0

Example 3.6 Limiting relative frequency again

'_et_f__o be a possible datum or outcome. Recall that F{o,n) = the number of
urrences of o in & up to and including time n, RF,(0, n} = F,(0, n)/n, and that
limiting relative frequency of o in ¢ is defined as follows:

LREF{o) = r< for each s > O there is an n such that for each m > n,
|RF (o, m) —r| < s.

tatisticians are often concerned with finding out whether some probability lies
ithin a given range. Accordingly, for each set S of reals between 0 and 1, define:

LRF{o} = {&: LRF(0) e S}.

will refer to LRF;(0) as a frequency hypothesis for o. Special cases include point
otheses of form LRF,,(0) and closed interval hypotheses of form LRF, (o).
here are also open interval hypotheses (e.g., LRF, ,.,(0)) and more compl{cated
ypotheses in which § is not an interval,

“Now we may ask: What sorts of frequency hypotheses may be decided,
ified, or refuted in the limit? When no background assumptions are given,
i¢ result is rather dismal.

pta

Propositien 3.7

If K = 2% then no nonempty frequency hypothesis is verifiable in the
limit,
10 There are just countably many since there are at most countably many computc

programs to compute them.
1 BEyamples of uncomputable functions in 2° will be given in chapter 6.

of: Let r € . Without loss of generality, we consider the case in whichr > 0,
case in which » < 1 being similar. Let « be an arbitrary assessment method.
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the observed frequency of o vacillates forever outside of the fixed interval
m ¢ to ¢', 50 no limiting relative frequency exists, and hence LR Fg(o) is false.
4s wrong in either case. Since o is arbitrary, the result follows. B

Let Gg, 41, . - . » s - - - D€ an infinite, monotone, increasing sequence of rationals
converging to r such that for each i, 0 < ¢; < r. The demon proceeds in stages
as follows. At stage 0, the demon’s plan is to repeatedly drive the relative
frequency of o below g, and above g,. At stage n + 1, the demon’s plan is to
drive the relative frequency of o between g, and r and then to repeatedly drive
the relative frequency of o below g, . ; and above g,,, , without ever going below
g, or above r. The demon moves from stage » to stage n + 1 when the following
conditions are met: '

n the standard theory of statistical significance tests, it is usually assumed
that the frequency hypothesis in question is to be tested only against other
quency hypotheses, and not against the possibility that the limiting relative
quency does not exist. Accordingly, let LRF(o) denote the set of all data
4ms in which the limiting refative frequency of outcome o is defined. This
ime the result is more optimistic.

(a) « has conjectured at least n + 1 non-1s on the data presented so far,
(b} Enough data has been seen to dampen the effect on relative frequency
of a single datum so that it is possible for the demon to hold the relative

frequency of ¢ above ¢, and below r during stage n + 1. Proposition 3,9
(a) LRE, .(0)is refutable in the limit given LRF(0).

(b} LRE, (o) is verifiable in the limit given LRF(o).

Suppose « stabilizes to 1. Then the demon ends up stuck for eternity at
some stage n + 1, and hence presents a data stream in which the relative
frequency of o oscillates forever below g, . 4 and above g,,, so no limiting relative
frequency exists and hence LRFy(0) is incorrect. So suppose « does not stabilize
to 1. Then the demon runs through each stage in the limit, so the relative
frequency of ¢ is constrained in ever tlghter intervals around r and hence
LRE(0) is correct (Fig. 3.19). So « is wrong in either case. Since a is arbitrary,
the result follows. - §

roof (a) Method a works as follows. & comes equipped with an infinitely
ctitive enumeration ¢q, 44, ..., 4, . . . of the rationals in [0, 1] (i.e., each such
ational occurs infinitely often in the enumeration), « starts out with a pointer
do- On empty data, « arbitrarily outputs 1 and leaves the pointer at g,

"Given finite data sequence ¢, o calculates the relative frequency w of o in
(e, w= RF /o, Ih(e)}). Let g, be the rational number pointed to after
ning « on e—. Then « checks whether w e [¥ — q;, #' + ¢,]. If so, then the
nter is moved one step to the right and o conjectures 1. Qtherwise, the
nter is left where it is and « conjectures 0.

Let e € LRF, ,|(0). Then for some s such that r < s <+, LRFE(0) = 5. So
_pach 4, there is an » such that RF(o, n)e [r — q;, ¥ + g;]. So the pointer
bumped infinitely often and « correctly fails to converge to 0. Suppose
LRF(0) — LRFE, ,0). Then since £ € LRF(0), there is an s ¢ [r, r'] such that
RF,(0) = 5. Without loss of generality consider the case in which s > r'. Pick
ie ¢, such that 0 < g; and ¢; + v < s.

: For some n, we have that for each m > n, RF(0, m) ¢ [r — q;, " + q,]. There
1 j past the current pointer position at stage n such that g; = ¢;, since
e enumeration is infinitely repetitive. Since for each m > n, RF{o,m)¢

Proposition 3.8
If K = 2° then no nonempty frequency hypothesis is refutable in the limit.

Proof: Let r S. Without loss of generality, suppose that r > 0, the case in
which r < 1 being similar. Choose ¢ so that LRF,(0) = r. Let o be an arbitrary
assessment method, Let g, ¢’ be rationals such that 0 < g < g" < r. The demon
starts by feeding & to o until & says something other than 0. Then the demon
proceeds to drive the relative frequency of o below ¢ and above ¢, until o once
again says 0 and the relative frequency has been driven below g and above ¢’
at least once. When « says 0, the demon continues feeding z, from where he left
off last. If « stabilizes to 0, then the limiting relative frequency of o in the data
stream is r since the data stream is just & with some initial segment tacked on;:.
so LRF(0) is correct. If & produces a conjecture other than 0 infinitely often;’;

stage stage | stage 2

F

~ A~ NS == 0
//\V/\v// \‘/ {;1
Q

Y

Carsent %

data

Figure 3.19 Figure 3.20



60 The Logic of Reliable Inguiry

The Demons of Passive Observation 61

[ — g, ¥ + g;], the pointer is never bumped past j, so « converges to 0, as.

required. Y 4 PP g
(b) Similar argument, switching 1 for 0 and [0, 1] — @, ) for [r, ], B L4 S v\ 2 MY\ e
Now the question is whether the strategy described could possibly be. \\\ ‘ \\\\\\\
improved to decide frequency hypotheses in the limit, given that a limiting. F
: igure 3.21

relative frequency exists. The answer is negative.

s read as acceptance and 0 is read as rejection. In statistical jargon
ype 1 error occurs when a true hypothesis is rejected and a type 2 erro;'
curs when a false hypothesis is accepted. A standard goal of statistical
pg is then to logically guarantee no more than a given limiting relative
quency r; of type | error, while minimizing the limiting relative frequency
of type 2 error as much as possible given ry. To minimize the limiting
_e]ati_ve frequency of type 2 error is to maximize the limiting relative frequency
1, of rejecting the hypothesis when it is false. Neyman put the matter this

Proposition 3.10 (C. Juhl)

(@) If 0 < ror v <1 then LRE, .(0) is not verifiable in the limit givenj
LRF(0).

{(b) LRF, .0) is not refutable in the limit given L.RF(0).

Proof: In light of the preceding two results, it suffices to show that neither
hypothesis is decidable in the limit given LRF (0). (a) Without loss of generality,
suppose that ¥ < 1. Let g=1—17" Let gy, qp ..., 4w - be an infini
descending sequence of nonzero rationals that starts with ¢ and that converges
to 0 without ever arriving at 0. The demon starts by feeding data from some
data siream ¢ such that LRF,(0) = r' and such that the relative frequency of o
never goes below 7. When a says 1, the demon presents data that drive the
relative frequency of o ever closer to 7'+ ¢, without leaving the interval
[, ¥ + q;1. When o says something other than 1, the demon resumes driving
the observed frequency back to r’ from above, without leaving the interval
[#,# + g,]. This may not be possible immediately after « says 1, but it will be
eventually, once sufficient data have been presented to dampen out the effect
on observed relative frequency of a single observation. Therefore, the dem_o]i
may have to wait some finite time before implementing this plan. The next time
a says 1, the cycle repeats, but with g, replacing 4, and so on, forever. If
stabilizes to 1, then the limiting relative frequency of o in the data strea
presented lies outside of [r, r'], so LRE, (o) is false and o fails. If « does no
stabilize to 1, then either « conjectures 1 infinitely often or not. If o does 1
conjecture 1 infinitely often, then the demon gets stuck at a given stage ang
drives the relative frequency to #' so LRE, (o) is true but o fails to converg
to 1. If & does conjecture 1 infinitely often without stabilizing to 1, then
demon goes through infinitely many distinct stages so the limiting relative
frequency of o is again 5, and LRE, (o) is once again true (Fig. 3.21), s
fails in every case. Since o is arbitrary, no possible assessment method can verif}
LRF, (o) in the limit. (b) is similar. |

.t may often be proved that if we behave according to such a rule, then in the
ong run we shall reject A when it is true not more, say, than once in a hundred

times, and in addition we may have evidence that we shall reject 4 sufficiently
often when it is false.!?

fsuch an r; exists, then it is said to be the significance of the test (with respect
‘and X). If such an r, exists, then 1 — r, is called the power of the test
with respect to h and X). A test is said to be biased when its power does not
eed its significance. In such a case, the limiting relative [requency of rejecting
ypgthesis when it is false does not exceed the limiting relative frequency
cting it when it is true, so that flipping a fair coin to decide rejection
d do as well as using the test so far as limiting relative frequencies of error
! _q'ncerned. For this reason, biased tests are sometimes said to be less than
less. It is therefore of interest to examine the conditions under which an
ed test cxists,
[t turns out that the relationship between unbiased testability and stabiliza-
to the truth in the limit is sensitive to whether the significance Ievel is
y greater than or merely no less than the limiting relative frequency of
error over all of K. We may call the test open in the former case and

d in the latter. These ideas yield a learning-theoretic paradigm with a
tical flavor. Define:

The preceding results permit us to relate limiting verification, refutation
and decision to standards of reliability more frequently encountered in clagsica
statistics. From a sufficiently abstract point of view, a statistical test is
assessment method that conjectures 0 or 1 on each finite data sequence, whet!

oh, &) = T <> Vn, 7, = alh, &|n).

Neyman and Pearson (1933): 142.
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In other words, a(h, &) denotes the infinite conjecture sequence produced by a - head of listis 0 head of list is 1 head of list is 2

as more and more of ¢ is read. Let &, denote the set of all data streams for:
which & is correct. Then define:' :

o is an open unbiased test,. for h given Kat significance r <> Ve e K —C, .
LRF,4, (0) exisis and is z v and Yee K n Gy, :
LRF,y ,(0) exists and is <r.

J;\MAI\;
W4

o is a closed unbiased test . for h given K at significance r <> Yee K — Gy, Figure 3.22

LRF Q) exists and is >r and Vee K 0 Gy,
LRFE, 4, (0) exists and is <.
rently #, then § produces conjectures in {0, 1} in such a way as to drive the
tive frequency of 1s to 1/2"*! without ever allowing the observed frequency
_"xceed 1/2", This is trivial when n=0. If n + 1 occurs next in the
. then when (a) the current frequency of 1 conjectures is between 1/2” and
/2'{_*} and (b) enough conjectures have been made so that it is possible not
_e'x_ce;;) 1/2"*! at the next stage, then the first item in ¢ is deleted
3.22).
et € X N C,. Then « stabilizes to 1, So only finitely many numbers are
added to ¢, so LRFy, (1) > 0 and hence LRFy, (0) < 1. Let e X — (.
en every number is eventually added to ¢, so for each n, the relative frequency
15 conjectured by f on ¢ eventually remains below 1/2" and hence
Fogo(1) = 0, so LRFy ,(0) = 1. Hence, § is an open unbiased test. of h
eni K with significance level 1, (b) follows by a similar argument, ¢ B

h is open [closed] unbiased testable - given K
< there is an o and an r such that o is an open [closed, clopen] unbiased’

test. for h given K at significance r.

We may now consider the relationship between unbiased testability and limiting’
verification and refutation. The result is one of exact equivalence, depending
on whether the limiting frequency of type 1 errror is <r or <t :

Proposition 3,11  (with C. Juhl)

(a) h is open unbiased testable . given K
< h is verifiable . in the limit given XK.

(b) h is closed unbiased testable . given e
<> h is refutable . in the limit given K.
:Frequentists usually add to background knowledge the assumption that
ata stream is random.'* A place selection is a total function that picks a
on in the data stream beyond position » when provided with a finite initial
cgment of the data stream of length # Then if we run the place selection
ction over the entire data stream, it will eventually pick out some infinite
quence of the original data stream. A place sclection 7 is said to be a
g system for ¢ just in case the limiting relative frequency of some datum
1_:1;'t_:he subsequence of ¢ sclected by = is different from the limiting relative
uency of o in ¢. Let 25 be a fixed, countable collection of place sefections.
._t?e a_data stream in which the limiting relative frequency of each datum
urring in & exists. Then ¢ is PS-random just in case there is no betting system
of £ in PS5, Since randomness is a property of data streams, it is yet another
mpirical assumption that is subject to empirical scrutiny (cf. exercise 3.3}, If

Proof: (a) (=) Let o be an open unbiased test. of h given K with significance
level . We construct a limiting verifier . of k given X that uses the successive
conjectures of «. The proof of proposition 3.9(b) yields that LRF,(0) is
verifiable in the limit given LRF(0), say by method B Let y = Boa Leét
ceC, K. Then LRFy, ,(0) exists and is <r. Let a(h, &) denote the infinite
sequence of conjectures a(h, £10), a(h, gil), ... . Hence, a(h, &) € LRF, 4(0), s0
B stabilizes to 1 on a{h,&). So y stabilizes to 1 on & Let ceX —
Then LRFE,, (0} exists and is >r. Hence, a(h, &) ¢ LRF ,(0), so § does not
stabilize to 1 on a(h, ). So y does not stabilize to 1 on &.

(<=) Suppose that o verifies - h in the limit given K. We construct an opef,
unbiased test with significance level 1 that uses the conjectures of a. § maintains
a list ¢ of natural numbers initialized to (0). B simulates « on the data as if
feeds in and adds n to the end of the list when o has produced exactly 7
conjectures less than 1. § produces its current conjecture in accordance with

13 The senses of statistical testability defined here are more general than usual i dm produced by- the demon n the .prfu.)f is random. The effect of
the sense that real tests produce conjoctures depending only on the current sample omness assumptions upon logical reliability is an important issue for
without reference to the samples taken before. They are more specific in the sense that,
statistical tests are supposed to work when the truth of the hypothesis change
spontaneously from test fo test, whereas in the paradigm just defined it is assumed tha

the truth of k is fixed for all time.
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5. Decision with # Mind Changes | veifiable in the limit | | cofutable in the limit
. : R 7
Whenever o stabilizes to b for h on & « changes its conjecture about h only - limiting decidable in the Famit
finitely many times. The number of times « changes its conjecture will be called inquiry )
the x‘lumber of mind changes of o for h on &, which I denote mc,(h, &). More graduaklecidability
precisely,
me,(h, §) = |{n € w: alh, e|n) # a(h, eln + D} » . o
Decision in the limit countenances an arbitrary number of mind changes by «. SEZ;ngTtharitﬁzl:vlii?: 0 dECidabl" with 2 mind
The prospect of surprises in the future is what keeps the scientist’s stomach £ changes starting with 1
churning. It would be nice if some a priori bound could be placed on the number p ,:\ ey /7
of mind changes the scientist will encounter. Then if the method happens to : CEZ;;S zt‘::inletlg 05
use up all of its mind changes, the scientist can quit with certainty. : bﬂ_"‘:idc‘i > ~ '
When mind changes are counted, it turns out to matter what sort of ' :E;’nges Secidablowith 1 PR -
conjecture the method o starts with before secing any data. In the case of a : h o ccidable with | mind
. N « o T change starting with 0 change starting with 1
universal generalization such as “all ravens are black,” the scientist can succeed
with one mind change starting with 1 by assuming the hypothesis is true until verifiable with cestainty refutable with certainty
it is refuted. In the case of an existential hypothesis, the scientist can succeed 5 7 :
in one mind change starting with O until the hypothesis is verified. We may decidable with 1 mind
then speak of o deciding 4 in n mind changes starting with b. Recall that @ change starting with 0.5
denotes the empty data sequence.
decidablewithcertainty
(M1} « decides. h with n mind changes starting with b on & < .
(2) o decides h in the limit on ¢ and bounded ' 1
(b) mey(h, &) < n and modulus verifiable by time 1 ¢ decidablebytime 1 <« refutable by time 1 |
(c) ah,0) =b. - , !
verifiable by time 0 4> decidablebytime 0 <« refutable by time 0 I
Defining the associated notions of reliability, applicability, and problem Figure 3.23
solvability is straightforward and is left to the reader. :
The fol.lowing propositi(?n sum'marizes the elementary properties of th (d.1) H is refutable . with certainty given &
bounded mind-change paradigm (Fig. 3.23). <> H is decidable . with one mind change starting with 1 given XK.
(d.2) H is verifiable,. with certainty given K
Proposition 3.12 <> H is decidable . with one mind change starting with 0 given X
For n > 0 and for all r such that 0 <r <1, (d.3) H is decidable . with certainty given X
<> H is decidable - with one mind change starting wi i
(2) H is decidable. with n mind changes starting with 1 given K ¢ g g with r given X
< H is decidablez with n mind changes starting with 0 given X. of: Exercise 3.2. B
(b) H is decidable, with n mind changes starting with v given K
<> H is decidable - with n mind changes starting with 1 given X and For each natural number n and b e {0, 1}, there are hypotheses that can

H is decidable with n mind changes starting with O given .

(c) H is decidable, with n mind changes given K

<> H is decidable . with n mind changes starting with 1 given X or
H is decidable . with n mind changes starting with O given K.

decided with # mind.changes starting with b, but that cannot be decided
h fewer than » mind changes starting with b. For example, consider the
pothesis “there is exactly one black raven.” A scientist can conjecture that
hypothesis is false until a black raven is seen. Then the scientist conjectures
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hat gradual decidability is equivalent to decidability in the limit. Thus, gradual
jfiability and refutability do not jointly imply gradual decision in the the
mit. In other words, it is not in general possible to construct a gradual decider
f a gradual verifier and a gradual refuter, contrary to the situation in the
iting case! It will be seen that these implications cannot be reversed or
e_ngthcned.

that it is true until another black raven is seen. In the worst case, this scientist -
changes his mind twice, starting with 0. The hypothesis “either there is exactly X
one black raven or there are exactly three black ravens” requires another mind
change. Continuing the sequence in this manner shows that the implications -
among the mind-change paradigms are all proper.

6. Gradual Verification, Refutation, and Decision
Proposition 3.13
We have seen that limiting relative frequencies fall beyond the scope of reliabl .
verification or refutation in the limit. This suggests that another weakening of
the notion of convergence should be considered. We will say that « approaches
b just in case o’s conjectures get closer and closer to b, perhaps without ever:
reaching it.

(a) H is verifiable. gradually given K
<> H is refutable gradually given X.

(b) H is decidable . gradually given X
< H is decidable . in the limit given K.

(¢) H is decidable ., verifiable ., or refutable . in the limit gi
. s s given K
o approaches b on h, e < for each rational s € (0, 11, = H is verifiable . and r?e utable mdcuall i
there is a stage n such that for each later ¢ f ¥ y given X

stage m = n, |b — alh, elm)| < 5. S L .
g | (h, elm)| oof - (2) As usual. (b) (<=) trivial, since stabilization to b implies approach to

(=) Let o gradually decide. H given X Define:

I refer to rationals in (0, 1] as degrees of approximation. 1f a approaches b o
h, ¢, then we may think of a as stabilizing with respect to each degree of
approximation s by eventually remaining within s of b. Accordingly, the
modulus of convergence for a given degree of approximation is the least time
after which the conjectures of « remain always within that degree of b (Fig. 3.24).

1 if a(h, e) > 0.5

0 otherwise.

pih, e) = {

s?abilizes to 1 # and only if o approaches 1, and similarly for 0. Thus §
1c!csc H in the limit given X. (c) Tt is immediate that verification in the limit
phes_grgdual verification, and similarly for refutation. Suppose «, verifies .. H
the limit given K. Let o, proceed as follows. a, simulates &, on each ini%ial
egment of the current data e, and counts how rrfany times o, makes a conjecture
r than 1. Call the count k. Then «, conjectures 1/2% (Fig. 3.25).

Letse X, h e H, and suppose C(z, ). Then «, stabilizes to 1, so «, stabilizes
some value 1/2%, and hence does not approach 0. If =1C(g, ), then «, does

modulus, (h, s, b, €) = the least n such that for all m = n,
ib — alh, ejm}| < 5.

Success may now be defined as follows:

o verifies - h gradually on ¢ <> [a approaches 1 onh, e<C R
o refutes . h gradually on £ < [ approaches 0 on b, e = 1C{e, B
o decides - h gradually on e <= Lo verifies. and refutes; h

gradually on h, £].

The corresponding definitions of reliability, range of applicability, and probles
solvability are again left to the reader. :

When we turn to the logical relations among these paradigms, we discove >
i HH h<1=
N I oy o
o H O 1 i i i 0 1 0 ¢ 1 - data
modulus for s conjectures
Figure 3.24 Figure 3.25
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not stabilize to 1, and hence emits infinitely many non-1 conjectures, so a;
approaches 0. Thus, &, approaches 0 if and only if =1C (s, k), and hence gradually
refutes,. H given 7. The implication from refutability in the limit to gradual
verifiability may be established in a similar manner. L

ar.-The question mark indicates where we might have expected gradual
dability to be, in analogy with the lower levels of the diagram.

Tnlike gradual decidability, gradual verification and refutation do increase
cope of reliable inquiry. In particular, limiting relative frequencies are
dually verifiable given 2, as we shall now see. Recall that LRF, (o) says

We have already seen several examples of hypotheses that are verifiable at the actual limiting relative frequency of o will be r.

but not refutable or decidable in the limit. By proposition 3.13(c), such
hypotheses are both gradually verifiable and gradually refutable. But by
proposition 3.13(b), such hypotheses are not gradually decidable. Thus, 3.13(c)
cannot be strengthened. Figure 3.26 summarizes all the paradigms introduced

Proposition 3,14
(@) LRE,(0) is verifiable gradually given 2°.
(b) LRE,(0) is not refutable gradually given 2°.

I verifiablegradually | I refutablegraduaily I
gradual T 7 of: (a) Let a(e) = 1 — | RF,(o, Ih(e)) — ri. Method a evidently verifies LRFy,(0)
inquiry ? 'ually given 2%,
Za D b) Either r # 1 or r # 0. Without loss of generality, suppose r < 1. Let
| verifiable in tho limit | l refutable n the Limit_| — +.Let gy, 4. - -, q,, ... bean infinite, descending sequence of nonzero
limiting Y 7 nals that starts with ¢ and that converges to 0. The demon proceeds as

inquiry decidable in the limit ows. When a produces a conjecture between 1/2" and 1/2"*!, the demon
1 ts the plan of bouncing the observed relative frequency on either side of
gradualdecidability £y 20T+ 4oy 1] without leaving the interval [r,r + g,]. The plan is not
. emented until enough stages have elapsed to dampen the effect on relative
. ency of a single datum so the plan can be implemented. The plan is then
Va S lemented at least long enough for one bounce to be accomplished and the
decidable with 2 mind decidable with 2 mind on remembers what « does while the plan is in place. Then the demon puts
changes starting with 0 changes starting with 1 “plan corresponding to «’s next conjecture into place, and so forth. If «
S a pproaches 0, then the demon drives the observed frequency into smaller and
decidable with 2 mind aller intervals around r, so that LRE,,(0) is true and « is wrong. If « fails to
changes starting with 0.5 i . . .
hounded roach 0, then « produces a conjecture greater than 1/2" infinitely often, so
mind - - - A = - - : -demon makes the data bounce forever to either side of [¥ + g, F -+ g+ 1]
chuanges Sﬁz;?lf:&i'glﬁﬁ% S;ngﬂ?ﬂt:;ﬁ:ﬁ no limiting relative frequency exists. 2]
verifiable with certainty refutable with certainty o gradual inquiry extends the scope of reliable inquiry to statistical point
5, 7 yotheses, at least in the one-sided sense of verifiability.
decidable with 1 mind
change starting with 0.5
. ) . Optimal Background Assumptions
decidablewithcertainty
. ne important task of inductive methodology is to optimize inductive methods
ﬁ that they are reliable given the weakest possible assumptions. This raises the
bounded - - - , - uestion whether there are such assumptions. Define:
modulus verifiable by time 1 ¢ decidablebytime1 < refutable by time 1 J
f

K is the optimum assumption for verifying . H in the limit <

verifiable by time 0 < decidablebytimeQ <= refutable by time 0 I

(a) H is verifiable . in the limit given X and

Figure 3.26 (b) for all 7 such that H is verifiable. in the limit given J, J < X
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when we consider computable methods. The patching argument of
oposition 3.15 also applies to refutation and decision in the limit, and to
ydual refutation and verification. It does not apply in the case of verification
I certainty, however, as we shall see in the next chapter with the help of
mie topological concepts.

and similarly for each of the other standards of success. Of course, whenever
H is verifiable . in the limit given A, W represents the optimum assumption
for the problem, since A contains all the data streams we are considering in:
our setting. Are there any other examples of optimum assumptions? In fact
there are none. And the situation is even worse than that. Define:

K is optimal for verifying . H in the limit <>
(a) H is verifiable in the limit given ¥ and : (EXCISES
(b) for all 7 such that K < J, H is not verifiable . in the limit given 7. Recall Kant's claim that infinite divisibility and composition by simples are
' itradictories. This isn’t so clear, Leibniz’s model of the plenum packed an infinity of
spheres in a finite space by filling interstices between larger spheres with smaller ones,
so on, unfil every point in the volume is included in some sphere (Fig. 3.27).
\ssuming that these spheres are simple particles, we have an infinitely divisible [inite
dy that is composed of simples, so the contradiction disappears.

Imagine the 1RBP attempting splits at higher and higher energtes, and then
empting to split the results at higher and higher energies, etc. Given the theorist’s
ssumption that each possible split is eventually found, a mass is composed of simples
ist in case this procedure leads in the limit to a history of splits such that each product
ssion is either simple itself or leads eventually to a simple particle. In the case of a
composite of simples, each path in the history of splits terminates in an indivisible
cle, but in an infinite composite of simples like Leibniz’ plenum, there will be infinite
aths of splits. Nonetheless, each fission product is either simple or gives rise to a simple
cle later (Fig. 3.28).

The dental of composition by simples is not just infinite divisibility, but rather the
session of a {ragment or region that contains no simples. This amounts to the
xistence of a fragment, every subfragment of which is divisible. Such a mass is somewhere
isely divisible. A somewhere densely divisible mass may either contain a simple (i.e.,
me indivisible fragment is eventually reached) or be everywhere densely divisible (ie.,
h part is divisible). Nothing prevents a mixture of simples together with densely
isible parts. In fact, J. J. Thomson’s raisin pudding theory of the atom had just this
aracter, for electrons were envisioned as simple particles floating in an undifferentiated
ar” of positive charge (Fig. 3.29).

So perhaps Kant was merely being sloppy when he opposed composition by simples
infinite divisibility, rather than with somewhere dense divisibility. To study such

The optimum assumption (if it exists) is optimal, but the converse may fail if
there are several, distinct, optimal sets of data streams. It will be useful to have
a simple way to refer to the set of all data streams on which a given method o
succeeds. Accordingly, define:

limver - y(0) = {&: o verifies, H in the limit on 3%

If limver -, x(e) is the optimum assumption for verifying. H in the limit, then
we say that o is an optimum limiting verifier,. for H. If limver  g{o} is opt.imgl
for verifying . H in the limit, then we say that o is an optimal limiting verifier:
for H. Now it turns out that:

Proposition 3.15

If H is not verifiable,. in the limit given N then
(8) no K =N is optimal for verifying. H in the limit, and henc
(b) no « is an optimal limiting verifier . for H.

Proof: Suppose H is not verifiable. in the limit given A, Let o be a method
and let X = limver - y(®). Then X < A . Choose s e N — K. Define:

1 ifece and ce(, potheses, the scientist must modify the experimental design at the mBp, Instead of
. ly writing down 1 or 0 to indicate successful cut and failed cut, respectively, he

, . ] »
o'(h,e) =40 ifece and e¢Cy nstructs the lab to assign a new name to each new particle discovered, and to write
a'(h, e) otherwise. wn at each stage the list (py, (Ppy, - - - > Pm,)), Where py is the particle placed in the

celerator and ..., Pm, are the n fission products resulting from the split of p,. If
plit fails, the message (p,, ()) is returned. Assume as before that the lab’s data is

! veri H in the limit given X U {&}. / ! .
o verifies, & Ko le ¢ and that the lab’s technique eventually discovers every physically possible split. For

One can view the situation described in proposition 3.15 either as a disaste
(no optimal methods are available) or an an embarrassment of riches, as whet
a genie offers any (finite) amount of money you please. Any amount asked fo
could have been larger, but it is hard to call the situation bad, except insofa
as a kibbitzer can always chide you for not asking for more. This situation i
typical of worst-case methodology and will be seen to arise in many differen

Figure 3.27
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composite of
3 simples

composite of
infinitely many simples
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Figure 3.28

each of the following hypotheses, find the strongest sense in which its truth can be.
reliably determined. This requires showing that the problem is solvable in a given sense.
and that the demon has a winning strategy if the problem is to be solved in any stronger
sense.

Ky
K,
t K
Ka

m is everywhere densely divisible.

. m is a raisin pudding.

m is either a composite of I simple or a composite of 3 simples.
. m is composed of simples.

m is a finite composite of simples,

O oo op

3.2. Prove proposition 3.12.

3.3. In what sense can we reliably investigate PS-randomness given that 25 is
countable and the limiting relative frequency of each datum occurring in the data stream’
exists?

*34. Suppose you have a system involving a car on a track subject to unknows
forces (Fig. 3.30).
Consider the following hypotheses:

hy: the position of the car at t is x.
hy: the velocity of the car at ¢ is v.

hy: the acceleration of the car at t is a. tovide

raisin pudding everywhere
with one simple densely
particle divisible

Figure 3.29

Figure 3.30

the trajectory of the car through time is f(¢).
the velocity of the car through time is v{f).
the acceleration of the car through time is a(t).

nsider the following bodies of background knowledge:

. [ is any function from reals to reals.
. [ is continuous.

: [ is differentiable.

o f is twice differentiable.

[ow consider the following data protocols:

: We can measure {ime and position exactly and continuously so that by time ¢

we have observed f|¢f = {(x, y): f(x) = y and x < t}.

: We can have the lab repeat the motion exactly at will and set a super

camera to record the exact position of the car at a given time. We can
only run finitely many trials in a given interval of time, however.

: Like P, except that the camera technology is limited so that a given camera

can only determine position to within some interval Ax. The lab can improve

the camera at will, however, to decrease the interval to any given size greater
than 0.

: We must now use a fixed camera that has no guaranteed accuracy. However,

we know that if the car is in position x at time ¢, then an infinite sequence of
repeated trials of the experiment will have limiting relative frequencies of
measurements at ¢ satisfying a normal distribution with mean x and variance v.

a logical reliabilist analysis of the various inductive problems that result from

'_'ffercnt choices of hypothesis, background knowledge, and protocol.



