Hannes Leitgeb

University of Bristol

June 2010

June 2010 1 / 18

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

Sometimes the concept of qualitative belief is supposed to be eliminable:

However, even scientists *do* seem to believe in the truth of certain propositions. And they do so without being *certain* of these propositions. (Which rules out: *X* is believed_P iff *P*(*X*) = 1.)

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

Sometimes the concept of qualitative belief is supposed to be eliminable:

- However, even scientists *do* seem to believe in the truth of certain propositions. And they do so without being *certain* of these propositions. (Which rules out: *X* is believed_P iff *P*(*X*) = 1.)
- Also, when scientists believe two hypotheses A and B to be true, A \lapha B does seem believable to be true for them (as all other of their logical consequences).

(Which rules out the *Lockean thesis*: *X* is believed_{*P*} iff P(X) > r.)

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

Sometimes the concept of qualitative belief is supposed to be eliminable:

- However, even scientists *do* seem to believe in the truth of certain propositions. And they do so without being *certain* of these propositions. (Which rules out: *X* is believed_P iff *P*(*X*) = 1.)
- Also, when scientists believe two hypotheses A and B to be true, A \lapha B does seem believable to be true for them (as all other of their logical consequences).

(Which rules out the *Lockean thesis*: *X* is believed_{*P*} iff P(X) > r.)

One reason why the concept of belief simpliciter is so valuable is that it occupies a *more elementary* scale of measurement than the concept of quantitative belief does.

So the really interesting question is:

Both qualitative and quantitative belief are concepts of belief. *How exactly do they relate to each other?*

< 口 > < 同

So the really interesting question is:

Both qualitative and quantitative belief are concepts of belief. *How exactly do they relate to each other?*

Plan of the talk:

- Postulates on Quantitative/Qualitative Belief
- Interpresentation Theorem and its Surprising Consequence
- Applications and Extensions: A To-Do List for the Future
- Solving a Problem

(cf. Hilpinen, *Rules of Acceptance and Inductive Logic*, 1968. Swain, ed., *Induction, Acceptance, and Rational Belief*, 1970.

Maher, Betting on Theories, 1993.

Skyrms 1977, 1980 on resiliency.

Roorda 1995, Frankish 2004, Sturgeon 2008 on belief.

Snow 1998, Dubois et al. 1998 on big-stepped probabilities.),

Let *W* be a set of possible worlds, and let \mathfrak{A} be an algebra of subsets of *W* (propositions) in which an agent is interested at a time.

We assume that \mathfrak{A} is closed under countable unions (σ -algebra).

Let *W* be a set of possible worlds, and let \mathfrak{A} be an algebra of subsets of *W* (propositions) in which an agent is interested at a time.

We assume that \mathfrak{A} is closed under countable unions (σ -algebra).

Let *P* be an agent's degree-of-belief function at the time.

P1 (Probability) $P: \mathfrak{A} \to [0,1]$ is a probability measure on \mathfrak{A} .

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)}$$
, when $P(X) > 0$.

Let *W* be a set of possible worlds, and let \mathfrak{A} be an algebra of subsets of *W* (propositions) in which an agent is interested at a time.

We assume that \mathfrak{A} is closed under countable unions (σ -algebra).

Let *P* be an agent's degree-of-belief function at the time.

P1 (Probability) $P: \mathfrak{A} \to [0,1]$ is a probability measure on \mathfrak{A} .

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)}$$
, when $P(X) > 0$.

Read: P(Y|X) is the degree of belief in Y on the supposition of X. P(Y) = P(Y|W) is the degree of belief in Y (unconditionally).

Let *W* be a set of possible worlds, and let \mathfrak{A} be an algebra of subsets of *W* (propositions) in which an agent is interested at a time.

We assume that \mathfrak{A} is closed under countable unions (σ -algebra).

Let *P* be an agent's degree-of-belief function at the time.

P1 (Probability) $P: \mathfrak{A} \to [0,1]$ is a probability measure on \mathfrak{A} .

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)}$$
, when $P(X) > 0$.

Read: P(Y|X) is the degree of belief in Y on the supposition of X. P(Y) = P(Y|W) is the degree of belief in Y (unconditionally).

P2 (Countable Additivity) If *X*₁, *X*₂,..., *X*_n,... are pairwise disjoint members of 𝔄, then

$$P(\bigcup_{n\in\mathbb{N}}X_n)=\sum_{n=1}^{\infty}P(X_n).$$

Read: Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).

Read: Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).

B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then Bel(X|X).

- Read: Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).
 - B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then Bel(X|X).
 - B2 (One Premise Logical Closure) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and $Y \subseteq Z$, then Bel(Z|X).

- Read: Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).
 - B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then Bel(X|X).
 - B2 (One Premise Logical Closure) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and $Y \subseteq Z$, then Bel(Z|X).
 - B3 (Finite Conjunction) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and Bel(Z|X), then $Bel(Y \cap Z|X)$.
 - B4 (General Conjunction) If $\neg Bel(\neg X|W)$, then for $\mathcal{Y} = \{Y \in \mathfrak{A} | Bel(Y|X)\}$, $\cap \mathcal{Y}$ is a member of \mathfrak{A} , and $Bel(\cap \mathcal{Y}|X)$.

- Read: Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).
 - B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then Bel(X|X).
 - B2 (One Premise Logical Closure) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and $Y \subseteq Z$, then Bel(Z|X).
 - B3 (Finite Conjunction) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and Bel(Z|X), then $Bel(Y \cap Z|X)$.
 - B4 (General Conjunction) If $\neg Bel(\neg X|W)$, then for $\mathcal{Y} = \{Y \in \mathfrak{A} | Bel(Y|X)\}$, $\cap \mathcal{Y}$ is a member of \mathfrak{A} , and $Bel(\cap \mathcal{Y}|X)$.
 - B5 (Consistency) $\neg Bel(\emptyset|W)$.

- Read: Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).
 - B1 (Reflexivity) If $\neg Bel(\neg X|W)$, then Bel(X|X).
 - B2 (One Premise Logical Closure) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and $Y \subseteq Z$, then Bel(Z|X).
 - B3 (Finite Conjunction) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and Bel(Z|X), then $Bel(Y \cap Z|X)$.
 - B4 (General Conjunction) If $\neg Bel(\neg X|W)$, then for $\mathcal{Y} = \{Y \in \mathfrak{A} | Bel(Y|X)\}, \cap \mathcal{Y}$ is a member of \mathfrak{A} , and $Bel(\cap \mathcal{Y}|X)$.
 - B5 (Consistency) $\neg Bel(\emptyset|W)$.

It follows: For every $X \in \mathfrak{A}$ that is consistent with the agent's beliefs there is a *strongest proposition* B_X , such that Bel(Y|X) iff $Y \supseteq B_X$.

In particular, the agent believes *Y* iff $Y \supseteq B_W$.

< ロ > < 部 > < 通 > < 通

B6 (Expansion) For all $Y \in \mathfrak{A}$ such that $Y \cap B_W \neq \emptyset$: $B_Y = Y \cap B_W$.

This postulate is contained in the qualitative theory of belief revision (AGM 1985, Gärdenfors 1988).

Finally, we make quantitative and qualitative belief compatible with each other:

Let $0 \le r < 1$:

BP1^{*r*} (Likeliness) For all $Y \in \mathfrak{A}$ such that $Y \cap B_W \neq \emptyset$ and P(Y) > 0: For all $Z \in \mathfrak{A}$, if Bel(Z|Y), then P(Z|Y) > r.

(For $r \ge \frac{1}{2}$, this is one direction of the Lockean thesis; cf. Foley 1993.)

Finally, we make quantitative and qualitative belief compatible with each other:

Let $0 \le r < 1$:

BP1^{*r*} (Likeliness) For all $Y \in \mathfrak{A}$ such that $Y \cap B_W \neq \emptyset$ and P(Y) > 0: For all $Z \in \mathfrak{A}$, if Bel(Z|Y), then P(Z|Y) > r.

(For $r \ge \frac{1}{2}$, this is one direction of the Lockean thesis; cf. Foley 1993.)

It is possible to prove a representation theorem for pairs $\langle P, Bel \rangle$ that satisfy our postulates so far. It employs just one purely probabilistic concept:

Finally, we make quantitative and qualitative belief compatible with each other:

Let $0 \le r < 1$:

BP1^{*r*} (Likeliness) For all $Y \in \mathfrak{A}$ such that $Y \cap B_W \neq \emptyset$ and P(Y) > 0: For all $Z \in \mathfrak{A}$, if Bel(Z|Y), then P(Z|Y) > r.

(For $r \ge \frac{1}{2}$, this is one direction of the Lockean thesis; cf. Foley 1993.)

It is possible to prove a representation theorem for pairs $\langle P, Bel \rangle$ that satisfy our postulates so far. It employs just one purely probabilistic concept:

Definition

(*P*-Stability^{*r*}) For all $X \in \mathfrak{A}$:

X is *P*-stable^{*r*} iff for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \emptyset$ and P(Y) > 0: P(X|Y) > r.

So *P*-stable^{*r*} propositions have stably high probabilities under salient suppositions. (Examples: All *X* with P(X) = 1; $X = \emptyset$; and *many* more!)

The Representation Theorem and its Surprising Consequence

Theorem

Let Bel be a class of ordered pairs of members of a σ -algebra \mathfrak{A} , and let $P : \mathfrak{A} \to [0,1]$. Then the following two statements are equivalent:

- I. P and Bel satisfy P1, B1–B6, and BP1^r.
- P satisfies P1, and there is a (uniquely determined) X ∈ 𝔄, such that X is a non-empty P-stable^r proposition, and:
 - For all $Y \in \mathfrak{A}$ such that $Y \cap X \neq \emptyset$, for all $Z \in \mathfrak{A}$:

Bel(Z | Y) if and only if $Z \supseteq Y \cap X$

(and hence, $B_W = X$).

This neither presupposes P2 nor $r \geq \frac{1}{2}$.

This implies: If there is a non-empty *P*-stable^{*r*} X in \mathfrak{A} with P(X) < 1 at all, then there is also a *least* such X.

This implies: If there is a non-empty *P*-stable^{*r*} X in \mathfrak{A} with P(X) < 1 at all, then there is also a *least* such X.

The next postulate entails, amongst others, that there is a least X s.t. P(X) = 1:

This implies: If there is a non-empty *P*-stable^{*r*} *X* in \mathfrak{A} with P(X) < 1 at all, then there is also a *least* such X.

The next postulate entails, amongst others, that there is a least X s.t. P(X) = 1:

BP2 (Zero Supposition) For all $Y \in \mathfrak{A}$: If P(Y) = 0 and $Y \cap B_W \neq \emptyset$, then $B_Y = \emptyset$.

Finally, we postulate:

BP3 (Maximality)

Among all classes Bel' of ordered pairs of members of \mathfrak{A} , such that P and Bel' jointly satisfy P1–P2, B1–B6, BP1^{*r*}, BP2 (with '*Bel*'' replacing '*Bel*'), the class *Bel* is the *largest* with respect to the class of beliefs.

For then *Bel* approximates the other direction of the Lockean thesis to the maximal possible extent.

Finally, we postulate:

BP3 (Maximality)

Among all classes Bel' of ordered pairs of members of \mathfrak{A} , such that P and Bel' jointly satisfy P1–P2, B1–B6, BP1^{*r*}, BP2 (with '*Bel*'' replacing '*Bel*'), the class *Bel* is the *largest* with respect to the class of beliefs.

For then *Bel* approximates the other direction of the Lockean thesis to the maximal possible extent.

But now $Bel(=Bel_P^r)$ can actually be *defined explicitly* in terms of *P* and $r \ge \frac{1}{2}$:

Definition

Let $P : \mathfrak{A} \to [0, 1]$ be a countably additive probability measure on a σ -algebra \mathfrak{A} , such that there exists a least set of probability 1 in \mathfrak{A} . Let X_{least} be the least non-empty P-stable^r proposition in \mathfrak{A} (which exists). Then we say for all $Y \in \mathfrak{A}$ and $\frac{1}{2} \leq r < 1$: $Bel_{P}^{r}(Y)$ (i.e., Y is believed to a cautiousness degree of r as given by P) iff $Y \supset X_{locot}$. One can prove that a similar result holds even when all postulates are generalized to *suppositions that may contradict an agent's current beliefs*.

That is: Take P1 and P2, add *full* AGM belief revision, make them compatible as before, and voilà: *full* conditional belief is definable explicitly in terms of *P*!

One can prove that a similar result holds even when all postulates are generalized to *suppositions that may contradict an agent's current beliefs*.

That is: Take P1 and P2, add *full* AGM belief revision, make them compatible as before, and voilà: *full* conditional belief is definable explicitly in terms of *P*!

Semantically, this means that every *P* determines a *sphere system* of worlds:

One can prove that a similar result holds even when all postulates are generalized to *suppositions that may contradict an agent's current beliefs*.

That is: Take P1 and P2, add *full* AGM belief revision, make them compatible as before, and voilà: *full* conditional belief is definable explicitly in terms of *P*!

Semantically, this means that every *P* determines a *sphere system* of worlds:

And almost all P over finite W have a least P-stable^r set X_{least} with $P(X_{least}) < 1!$

Applications and Extensions: A To-Do List for the Future

• Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable^r set with $r \ge \frac{1}{2}$; so only W is to be believed then.

Applications and Extensions: A To-Do List for the Future

- Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable^r set with $r \ge \frac{1}{2}$; so only W is to be believed then.
- *Preface Paradox:* What one can*not* have (with $X_i \approx$ 'page *i* is error-free'):

 $Bel(X_1),\ldots,Bel(X_n),Bel(\neg X_1 \lor \ldots \lor \neg X_n).$

What one can have is a different version of Fallibilism:

$$Bel(X_1),\ldots,Bel(X_n),P(\neg X_1 \lor \ldots \lor \neg X_n) > 0.$$

Applications and Extensions: A To-Do List for the Future

- Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable^r set with $r \ge \frac{1}{2}$; so only W is to be believed then.
- *Preface Paradox:* What one can*not* have (with $X_i \approx$ 'page *i* is error-free'):

 $Bel(X_1),\ldots,Bel(X_n),Bel(\neg X_1 \lor \ldots \lor \neg X_n).$

What one can have is a different version of Fallibilism:

$$Bel(X_1),\ldots,Bel(X_n),P(\neg X_1 \lor \ldots \lor \neg X_n) > 0.$$

• Conditionalization on Zero Sets:

 P^* , with $P^*(Y|X) = P(Y|B_X)$, determines a Popper function. cf. van Fraassen (1995), Arló-Costa & Parikh (2004) on "belief cores". • John Dorling's (1979) "Duhemian" Example:

- E': Observational result for the secular acceleration of the moon.
- T: Relevant part of Newtonian mechanics.
- *H*: Auxiliary hypothesis that tidal friction is negligible.

$$P(T|E') = 0.8976, P(H|E') = 0.003.$$

while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

$$\mathcal{B}el_{\mathcal{P}}^{r}(\mathcal{T}|E'), \, \mathcal{B}el_{\mathcal{P}}^{r}(\neg\mathcal{H}|E') \,$$
 (with $r=rac{3}{4}).$

while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

$$\mathcal{B}el_P^r(\mathcal{T}|E'), \, \mathcal{B}el_P^r(\neg \mathcal{H}|E') \, \, (ext{with} \, r=rac{3}{4}).$$

... scientists always conducted their serious scientific debates in terms of finite qualitative subjective probability assignments to scientific hypotheses (Dorling 1979).

- Conditionalization and Qualitative Belief:
 - Standard conditionalization: If $Bel_P^r(H|E)$, then $Bel_{P(.|E)}^r(H)$.

- Conditionalization and Qualitative Belief:
 - Standard conditionalization: If $Bel_P^r(H|E)$, then $Bel_{P(,|E)}^r(H)$.
 - Jeffrey conditionalization: $P'(H) = P(H|E) \cdot P'(E) + P(H|\neg E) \cdot P'(\neg E)$. But for what value 0 < P'(E) < 1?

- Conditionalization and Qualitative Belief:
 - Standard conditionalization: If $Bel_P^r(H|E)$, then $Bel_{P(,|E)}^r(H)$.
 - Jeffrey conditionalization: $P'(H) = P(H|E) \cdot P'(E) + P(H|\neg E) \cdot P'(\neg E)$. But for what value 0 < P'(E) < 1?

Simply let it be high enough so that $Bel_{P'}^{r}(E)$!

Indicative Conditionals:

If two people are arguing 'If p will q?' and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q... We can say that they are fixing their degrees of belief in q given p. (Ramsey 1929)

But when is $X \to Y$ acceptable *simpliciter*? $X \to Y$ is acceptable w.r.t. P, r iff $Bel_{P}^{r}(Y|X)$. Indicative Conditionals:

If two people are arguing 'If p will q?' and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q... We can say that they are fixing their degrees of belief in q given p. (Ramsey 1929)

But when is $X \to Y$ acceptable *simpliciter*? $X \to Y$ is acceptable w.r.t. P, r iff $Bel_P^r(Y|X)$.

Let $X_1 \to Y_1, \ldots, X_n \to Y_n \therefore A \to B$ be *valid* iff for all $P, r \ge \frac{1}{2}$, if $X_1 \to Y_1, \ldots, X_n \to Y_n$ are acceptable w.r.t. P and r, so is $A \to B$. Indicative Conditionals:

If two people are arguing 'If p will q?' and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q... We can say that they are fixing their degrees of belief in q given p. (Ramsey 1929)

But when is $X \to Y$ acceptable *simpliciter*? $X \to Y$ is acceptable w.r.t. P, r iff $Bel_P^r(Y|X)$.

Let $X_1 \to Y_1, \ldots, X_n \to Y_n \therefore A \to B$ be *valid* iff for all $P, r \ge \frac{1}{2}$, if $X_1 \to Y_1, \ldots, X_n \to Y_n$ are acceptable w.r.t. P and r, so is $A \to B$.

The resulting logic is exactly E. Adams' logic of conditionals! E.g.:

$$\frac{X \to Y, X \to Z}{X \to (Y \land Z)} \text{ (And)} \qquad \qquad \frac{X \to Z, Y \to Z}{(X \lor Y) \to Z} \text{ (Or)}$$

$$\frac{(X \land Y) \to Z, X \to Y}{X \to Z} \text{ (Cautious Cut)} \qquad \frac{X \to Y, X \to Z}{(X \land Y) \to Z} \text{ (Cautious M.)}$$

The truth of $X \square Y$ at *w* thus entails $Ch_w(Y|X)$ being high, without $Ch_w(Y|X)$ having to be 1.

The truth of $X \square Y$ at *w* thus entails $Ch_w(Y|X)$ being high, without $Ch_w(Y|X)$ having to be 1.

This yields a plausible semantics for counterfactuals, its logic being the system V, and Hawthorne's and Hájek's recent probabilistic worries about the truth of ordinary counterfactuals are undermined.

The truth of $X \square Y$ at *w* thus entails $Ch_w(Y|X)$ being high, without $Ch_w(Y|X)$ having to be 1.

This yields a plausible semantics for counterfactuals, its logic being the system V, and Hawthorne's and Hájek's recent probabilistic worries about the truth of ordinary counterfactuals are undermined.

Furthermore, if P satisfies the Principal Principle, then

 $Bel_P^r(Y|X \wedge (X \Box \rightarrow Y)).$

The truth of $X \square Y$ at *w* thus entails $Ch_w(Y|X)$ being high, without $Ch_w(Y|X)$ having to be 1.

This yields a plausible semantics for counterfactuals, its logic being the system V, and Hawthorne's and Hájek's recent probabilistic worries about the truth of ordinary counterfactuals are undermined.

Furthermore, if P satisfies the Principal Principle, then

 $Bel_P^r(Y|X \wedge (X \Box \rightarrow Y)).$

More applications: Bayesian statistics, preference aggregation, vagueness,...?

One promising future topic in these areas might thus be: A reunification of *logical* and *probabilistic* accounts of inductive reasoning in this or in other ways.

Solving a Problem

A challenge to the theory:

• Intuitively, Expansion/Revision can be problematic:

$$\frac{Bel_{P}^{r}(Y_{1} \lor Y_{2} \lor \ldots \lor Y_{n} | X), \neg Bel_{P}^{r}(\neg Y_{i} | X)}{Bel_{P}^{r}(Y_{i} | Y_{i} \lor (X \land \neg (Y_{1} \lor Y_{2} \lor \ldots \lor Y_{n})))}$$

Solving a Problem

A challenge to the theory:

• Intuitively, Expansion/Revision can be problematic:

$$\frac{Bel_{P}^{r}(Y_{1} \vee Y_{2} \vee \ldots \vee Y_{n} | X), \neg Bel_{P}^{r}(\neg Y_{i} | X)}{Bel_{P}^{r}(Y_{i} | Y_{i} \vee (X \land \neg (Y_{1} \lor Y_{2} \lor \ldots \lor Y_{n})))}$$

• Lottery's revenge: For the same reason, if both *P* and *Bel* represent the same large finite lottery, then $P(B_W)$ must be very close to 1!

Solving a Problem

A challenge to the theory:

• Intuitively, Expansion/Revision can be problematic:

$$\frac{Bel_{P}^{r}(Y_{1} \vee Y_{2} \vee \ldots \vee Y_{n} | \mathbf{X}), \neg Bel_{P}^{r}(\neg Y_{i} | \mathbf{X})}{Bel_{P}^{r}(Y_{i} | Y_{i} \vee (\mathbf{X} \land \neg (Y_{1} \vee Y_{2} \vee \ldots \vee Y_{n})))}$$

• Lottery's revenge: For the same reason, if both *P* and *Bel* represent the same large finite lottery, then $P(B_W)$ must be very close to 1!

In both cases, the solution is to make qualitative belief relativized to *partitions* (which are employed by Levi, Skyrms,... anyway):

Possible: $Bel_{P,\{Z_j\}}^r(Y_1 \lor Y_2 \lor \ldots \lor Y_n | X), \neg Bel_{P,\{Z_j'\}}^r(Y_1 \lor Y_2 \lor \ldots \lor Y_n | X)$