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Reducing Belief Simpliciter to Degrees of Belief

Rational belief comes in a qualitative version—belief simpliciter—and in a
quantitative one—degrees of belief.

Sometimes the concept of qualitative belief is supposed to be eliminable:

However, even scientists do seem to believe in the truth of certain
propositions. And they do so without being certain of these propositions.

(Which rules out: X is believedP iff P(X) = 1.)

Also, when scientists believe two hypotheses A and B to be true, A∧B
does seem believable to be true for them (as all other of their logical
consequences).

(Which rules out the Lockean thesis: X is believedP iff P(X) > r .)

One reason why the concept of belief simpliciter is so valuable is that it
occupies a more elementary scale of measurement than the concept of
quantitative belief does.
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So the really interesting question is:

Both qualitative and quantitative belief are concepts of belief. How exactly do
they relate to each other?

Plan of the talk:

1 Postulates on Quantitative/Qualitative Belief
2 The Representation Theorem and its Surprising Consequence
3 Applications and Extensions: A To-Do List for the Future
4 Solving a Problem

(cf. Hilpinen, Rules of Acceptance and Inductive Logic, 1968.
Swain, ed., Induction, Acceptance, and Rational Belief, 1970.

Maher, Betting on Theories, 1993.

Skyrms 1977, 1980 on resiliency.
Roorda 1995, Frankish 2004, Sturgeon 2008 on belief.
Snow 1998, Dubois et al. 1998 on big-stepped probabilities.)
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Postulates on Quantitative/Qualitative Belief

Let W be a set of possible worlds, and let A be an algebra of subsets of W
(propositions) in which an agent is interested at a time.

We assume that A is closed under countable unions (σ-algebra).

Let P be an agent’s degree-of-belief function at the time.

P1 (Probability) P : A→ [0,1] is a probability measure on A.

P(Y |X) = P(Y∩X)
P(X) , when P(X) > 0.

Read: P(Y |X) is the degree of belief in Y on the supposition of X .
P(Y ) = P(Y |W ) is the degree of belief in Y (unconditionally).

P2 (Countable Additivity) If X1,X2, . . . ,Xn, . . . are pairwise disjoint members
of A, then

P(
[
n∈N

Xn) =
∞

∑
n=1

P(Xn).
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Accordingly, let Bel express an agent’s conditional beliefs.

Read: Bel(Y |X) iff the agent has a belief in Y on the supposition of X .
Bel(Y ) iff Bel(Y |W ) iff the agent believes Y (unconditionally).

B1 (Reflexivity) If ¬Bel(¬X |W ), then Bel(X |X).

B2 (One Premise Logical Closure) If ¬Bel(¬X |W ), then for all Y ,Z ∈ A:
If Bel(Y |X) and Y ⊆ Z , then Bel(Z |X).

B3 (Finite Conjunction) If ¬Bel(¬X |W ), then for all Y ,Z ∈ A:
If Bel(Y |X) and Bel(Z |X), then Bel(Y ∩Z |X).

B4 (General Conjunction) If ¬Bel(¬X |W ), then for Y = {Y ∈ A |Bel(Y |X)},T
Y is a member of A, and Bel(

T
Y |X).

B5 (Consistency) ¬Bel(∅|W ).

It follows: For every X ∈ A that is consistent with the agent’s beliefs there is a
strongest proposition BX , such that Bel(Y |X) iff Y ⊇ BX .

In particular, the agent believes Y iff Y ⊇ BW .
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B6 (Expansion) For all Y ∈ A such that Y ∩BW , ∅: BY = Y ∩BW .

This postulate is contained in the qualitative theory of belief revision
(AGM 1985, Gärdenfors 1988).
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Finally, we make quantitative and qualitative belief compatible with each other:

Let 0≤ r < 1:

BP1r (Likeliness) For all Y ∈ A such that Y ∩BW , ∅ and P(Y ) > 0:

For all Z ∈ A, if Bel(Z |Y ), then P(Z |Y ) > r .

(For r ≥ 1
2 , this is one direction of the Lockean thesis; cf. Foley 1993.)

It is possible to prove a representation theorem for pairs 〈P,Bel〉 that satisfy
our postulates so far. It employs just one purely probabilistic concept:

Definition
(P-Stabilityr ) For all X ∈ A:

X is P-stabler iff for all Y ∈ A with Y ∩X , ∅ and P(Y ) > 0: P(X |Y ) > r .

So P-stabler propositions have stably high probabilities under salient
suppositions. (Examples: All X with P(X) = 1; X = ∅; and many more!)
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The Representation Theorem and its Surprising
Consequence

Theorem

Let Bel be a class of ordered pairs of members of a σ-algebra A, and let
P : A→ [0,1]. Then the following two statements are equivalent:

I. P and Bel satisfy P1, B1– B6, and BP1r .

II. P satisfies P1, and there is a (uniquely determined) X ∈ A, such that X is
a non-empty P-stabler proposition, and:

For all Y ∈ A such that Y ∩X , ∅, for all Z ∈ A:

Bel(Z |Y ) if and only if Z ⊇ Y ∩X

(and hence, BW = X).

This neither presupposes P2 nor r ≥ 1
2 .
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With P2 and r ≥ 1
2 one can prove: The class of P-stabler propositions X in A

with P(X) < 1 is well-ordered with respect to the subset relation.
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This implies: If there is a non-empty P-stabler X in A with P(X) < 1 at all, then
there is also a least such X.

The next postulate entails, amongst others, that there is a least X s.t. P(X) = 1:

BP2 (Zero Supposition) For all Y ∈ A: If P(Y ) = 0 and Y ∩BW , ∅, then
BY = ∅.
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Finally, we postulate:

BP3 (Maximality)
Among all classes Bel ′ of ordered pairs of members of A, such that P and
Bel ′ jointly satisfy P1–P2, B1–B6, BP1r , BP2 (with ‘Bel ′’ replacing ‘Bel ’),
the class Bel is the largest with respect to the class of beliefs.

For then Bel approximates the other direction of the Lockean thesis to the
maximal possible extent.

But now Bel(= Bel rP) can actually be defined explicitly in terms of P and r ≥ 1
2 :

Definition

Let P : A→ [0,1] be a countably additive probability measure on a σ-algebra
A, such that there exists a least set of probability 1 in A.
Let Xleast be the least non-empty P-stabler proposition in A (which exists).

Then we say for all Y ∈ A and 1
2 ≤ r < 1:

Bel rP(Y ) (i.e., Y is believed to a cautiousness degree of r as given by P) iff
Y ⊇ Xleast .
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One can prove that a similar result holds even when all postulates are
generalized to suppositions that may contradict an agent’s current beliefs.

That is: Take P1 and P2, add full AGM belief revision, make them compatible
as before, and voilà: full conditional belief is definable explicitly in terms of P!

Semantically, this means that every P determines a sphere system of worlds:
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And almost all P over finite W have a least P-stabler set Xleast with P(Xleast) < 1!
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generalized to suppositions that may contradict an agent’s current beliefs.

That is: Take P1 and P2, add full AGM belief revision, make them compatible
as before, and voilà: full conditional belief is definable explicitly in terms of P!

Semantically, this means that every P determines a sphere system of worlds:
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Applications and Extensions: A To-Do List for the Future

Lottery Paradox: Given a uniform measure P on a finite set W of worlds,
W is the only P-stabler set with r ≥ 1

2 ; so only W is to be believed then.

Preface Paradox: What one cannot have (with Xi ≈ ‘page i is error-free’):

Bel(X1), . . . ,Bel(Xn),Bel(¬X1∨ . . .∨¬Xn).

What one can have is a different version of Fallibilism:

Bel(X1), . . . ,Bel(Xn),P(¬X1∨ . . .∨¬Xn) > 0.

Conditionalization on Zero Sets:

P∗, with P∗(Y |X) = P(Y |BX ), determines a Popper function.
cf. van Fraassen (1995), Arló-Costa & Parikh (2004) on “belief cores”.
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John Dorling’s (1979) “Duhemian” Example:
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E ′: Observational result for the secular acceleration of the moon.
T : Relevant part of Newtonian mechanics.
H: Auxiliary hypothesis that tidal friction is negligible.

P(T |E ′) = 0.8976, P(H|E ′) = 0.003.
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while I will insert definite numbers so as to simplify the
mathematical working, nothing in my final qualitative interpretation. . .
will depend on the precise numbers. . .

!

!

"! #!

$%!

&'()*! &'+)! &'&+,!

&!

&'&-,!
&'&&&&.!

&'&&*!

&'&(//)!

!"

!"

#"

#"

$"

%"

&"

Bel rP(T |E ′), Bel rP(¬H|E ′) (with r = 3
4 ).

. . . scientists always conducted their serious scientific debates in
terms of finite qualitative subjective probability assignments to
scientific hypotheses (Dorling 1979).
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Conditionalization and Qualitative Belief:

– Standard conditionalization: If Bel rP(H|E), then Bel rP(.|E)(H).

– Jeffrey conditionalization: P ′(H) = P(H|E) ·P ′(E)+P(H|¬E) ·P ′(¬E).

But for what value 0 < P ′(E) < 1?

Simply let it be high enough so that Bel rP′(E)!
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Indicative Conditionals:
If two people are arguing ‘If p will q?’ and are both in doubt

as to p, they are adding p hypothetically to their stock of
knowledge and arguing on that basis about q. . . We can say
that they are fixing their degrees of belief in q given p.

(Ramsey 1929)

But when is X → Y acceptable simpliciter?
X → Y is acceptable w.r.t. P, r iff Bel rP(Y |X).

Let X1→ Y1, . . . ,Xn→ Yn ∴ A→ B be valid iff for all P, r ≥ 1
2 ,

if X1→ Y1, . . . ,Xn→ Yn are acceptable w.r.t. P and r , so is A→ B.

The resulting logic is exactly E. Adams’ logic of conditionals! E.g.:

X → Y , X → Z
X → (Y ∧Z )

(And)
X → Z , Y → Z
(X ∨Y )→ Z

(Or)

(X ∧Y )→ Z , X → Y
X → Z

(Cautious Cut)
X → Y , X → Z
(X ∧Y )→ Z

(Cautious M.)
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Subjunctive Conditionals: For each world w ∈W , let Chw be the chance
measure of w (at a fixed time). Then it is plausible that Chw and ‘truth of
X � Y at w ’ taken together satisfy the analogues of our postulates.

The truth of X � Y at w thus entails Chw(Y |X) being high, without
Chw(Y |X) having to be 1.

This yields a plausible semantics for counterfactuals, its logic being the
system V, and Hawthorne’s and Hájek’s recent probabilistic worries about
the truth of ordinary counterfactuals are undermined.

Furthermore, if P satisfies the Principal Principle, then

Bel rP(Y |X ∧ (X � Y )).

More applications: Bayesian statistics, preference aggregation, vagueness,. . . ?

One promising future topic in these areas might thus be: A reunification of
logical and probabilistic accounts of inductive reasoning in this or in other ways.
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Solving a Problem

A challenge to the theory:

Intuitively, Expansion/Revision can be problematic:

!

"!

#!

Bel rP(Y1∨Y2∨ . . .∨Yn |X), ¬Bel rP(¬Yi |X)

Bel rP(Yi |Yi ∨ (X ∧¬(Y1∨Y2∨ . . .∨Yn)))

Lottery’s revenge: For the same reason, if both P and Bel represent the
same large finite lottery, then P(BW ) must be very close to 1!

In both cases, the solution is to make qualitative belief relativized to partitions
(which are employed by Levi, Skyrms,. . . anyway):

Possible: Bel rP,{Zj}(Y1∨Y2∨ . . .∨Yn |X), ¬Bel rP,{Z ′j }
(Y1∨Y2∨ . . .∨Yn |X)
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