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Abstract

We prove that given reasonable assumptions, it is possible to give an explicit defini-
tion of belief simpliciter in terms of subjective probability, such that it is neither the
case that belief is stripped of any of its usual logical properties, nor is it the case that
believed propositions are bound to have probability 1. Belief simpliciter is not to be
eliminated in favour of degrees of belief, rather, by reducing it to assignments of con-
sistently high degrees of belief, both quantitative and qualitative belief turn out to be
governed by one unified theory. Turning to possible applications and extensions of the
theory, we suggest that this will allow us to see: how the Bayesian approach in general
philosophy of science can be reconciled with the deductive or semantic conception of
scientific theories and theory change; how primitive conditional probability functions
(Popper functions) arise from conditionalizing absolute probability measures on max-
imally strong believed propositions with respect to different cautiousness thresholds;
how the assertability of conditionals can become an all-or-nothing affair in the face of
non-trivial subjective conditional probabilities; how knowledge entails a high degree
of belief but not necessarly certainty; and how high conditional chances may become
the truthmakers of counterfactuals.

1 Introduction
[THIS IS A PRELIMINARY AND INCOMPLETE DRAFT OF JUST THE TECHNICAL
DETAILS. . .]

Belief is said to come in a quantitative version—degrees of belief—and in a qualitative
one—belief simpliciter. More particularly, rational belief is said to have such a quantita-
tive and a qualitative side, and indeed we will only be interested in notions of belief here
which satisfy some strong logical requirements. Quantitative belief is given in terms of
numerical degrees that are usually assumed to obey the laws of probability, and we will
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follow this tradition. Belief simpliciter, which only recognizes belief, disbelief, and sus-
pension of judgement, is closed under deductive inference as long as every proposition
that an agent is committed to believe is counted as being believed in an idealised sense;
this is how epistemic logic conceives of belief, and we will subscribe to this view in the
following. Despite of these logical differences between the two notions of belief, it would
be quite surprising if it did not turn out that quantitative and qualitative belief were but
aspects of one and the same underlying substratum; after all, they are both concepts of
belief. However, this still allows for a variety of possibilities: they could be mutually irre-
ducible conceptually, with only some more or less tight bridge laws relating them; or one
could be reducible to the other, without either of them being eliminable from scientific or
philosophical thought; or either of them could be eliminable. So which of these options
should we believe to be true?

The concept of quantitative belief is being applied successfully by scientists, such as
cognitive psychologists, economists, and computer scientists, but also by philosophers, in
particular, in epistemology and decision theory; eliminating it would be detrimental both
to science and philosophy. On the other hand, it has been suggested (famously, by Richard
Jeffrey) that the concept of belief simpliciter can, and should, be eliminated in favour of
keeping only quantitative belief. But this is not advisable either: (i) Epistemic logic, huge
chunks of cognitive science, and almost all of traditional epistemology rely on the concept
of belief in the qualitative sense; by abandoning it one would simply have to sacrifice too
much. (ii) Beliefs held by some agent are the mental counterparts of the scientific theories
and hypotheses that are held by a scientist or a scientific community; they can be true
or false just as those theories and hypotheses can be (taking for granted a realist view of
scientific theories). But not many would recommend banning the concept holding a sci-
entific theory/hypothesis from science or philosophy of science. (iii) The concept of belief
simpliciter, which is a classificatory concept, occupies a more elementary scale of mea-
surement than the numerical concept of quantitative belief does, which is precisely one of
the reasons why it is so useful. That is also why giving up on any of the standard properties
of rational belief, such as closure under conjunction (the Conjunction property)—if X and
Y are believed, then X∧Y is believed—as some have suggested in response to lottery-type
paradoxes (see Kyburg...), would not be a good idea: for without these properties belief
simpliciter would not be so much less complex than quantitative belief anymore (however,
see Hawthorne & Makinson...). But then one could have restricted oneself to quantitative
belief from the start, and in turn one would lack the simplifying power of the qualitative be-
lief concept. (iv) Beliefs involve dispositions to act under certain conditions. For instance,
if I believe that my original edition of Carnap’s Logical Syntax is on the bookshelf in my
office, then given the desire to look something up in it, and with the right background con-
ditions being satisfied, such as not being too tired, not being distracted by anything else,

2



and so on, I am disposed to go to my office and pick it up. The same belief also involves
lots of other dispositions, and what holds all of these dispositions together is precisely
that belief. If one looks at the very same situation in terms of degrees of belief, then with
everything else in place, it will be a matter of what my degree of belief in the proposition
that Carnap’s Logical Syntax is in my office is like whether I will actually go there or not,
and similarly for all other relevant dispositions. Somehow the continuous scale of degrees
of belief must be cut down to a binary decision: acting in a particular way or not. And
the qualitative concept of belief is exactly the one that plays that role, for it is meant to
express precisely the condition other than desire and background conditions that needs to
be satisfied in order for to me to act in the required way, that is, for instance, to walk to the
office and to pick up Carnap’s monograph from the bookshelf. Decision theory, which is
a probabilistic theory again, goes some way of achieving this without using a qualitative
concept of belief, but it does not quite give a complete account. Take assertions as a class
of actions. One of the linguistic norms that govern assertability is: If all of A1, . . . , An are
assertable for an agent, then so is A1∧ . . .∧An. One may of course attack this norm on dif-
ferent grounds, but the norm still seems to be in force both in everday conversation and in
scientific reasoning. Here is plausible way of explaining why we obey that norm by means
of the concept of qualitative belief: Given the right desires and background conditions,
a descriptive sentence gets asserted by an agent if and only if the agent believes the sen-
tence to be true. And the assertability of a sentence A is just that very necessary epistemic
condition for assertion—belief in the truth of A—to be satisfied. (Williamson... states an
analogous condition in terms of knowledge rather than belief; but it is again a qualitative
concept that is used, not a quantitative one.) But if an agent believes all of A1, . . . , An, then
the agent believes, or is at least epistemically committed to believe, also A1 ∧ . . . ∧ An.
That explains why if A1, . . . , An are assertable for an agent, so is A1 ∧ . . . ∧ An. And it
is not clear how standard decision theory just by itself, without any additional resources
at hands, such as a probabilistic explication of belief, would be able to give a similar ex-
planation. The assertability of indicative conditionals A → Bi makes for a similar case.
Here, one of the linguistic norms is: If all of A → B1, . . . , A → Bn are assertable for an
agent, then so is A→ (B1 ∧ . . . ∧ Bn). This may be explained by invoking the Ramsey test
for conditionals (see...) as follows: Given the right desires and background conditions,
A→ Bi gets asserted by an agent if and only if the agent accepts A→ Bi, which in turn is
the case if and only if the agent believes Bi to be true conditional on the supposition of A.
Again, the assertability of a sentence, A → Bi, is just that respective necessary epistemic
condition—belief in Bi on the supposition of A—to be satisfied. But, if an agent believes
all of B1, . . . , Bn conditional on A, then the agent believes, or is epistemically committed
to believe, also B1 ∧ . . . ∧ Bn on the supposition of A. Therefore, if A → B1, . . . , A → Bn

are assertable for an agent, so is A → (B1 ∧ . . . ∧ Bn). Ernest Adams’ otherwise marvel-
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lous probabilistic theory of indicative conditionals (...), which ties the acceptance of any
such conditional to its corresponding conditional subjective probability and hence to the
quantitative counterpart of conditional belief, does not by itself manage to explain such
patterns of assertability. While from Adams’ theory one is able to derive that the uncer-
tainty (1 minus the corresponding conditional probability) of A → (B1 ∧ . . . ∧ Bn) is less
than or equal the sum of the uncertainties of A → B1, . . . , A → Bn, and thus if all of the
conditional probabilities that come attached to A→ B1, . . . , A→ Bn tend to 1 then so does
the conditional probability that is attached to A → (B1 ∧ . . . ∧ Bn), it also follows that for
an increasing number n of premises, ever greater lower boundaries 1− δ of the conditional
probabilities for A→ B1, . . . , A→ Bn are needed in order to guarantee that the conditional
probability for A → (B1 ∧ . . . ∧ Bn) is bounded from below by a given 1 − ε. No uniform
boundary emerges that one might use in order to determine for a conditional—whether
premise or conclusion, whatever the number of premises, or whether in the context of an
inference at all—its assertability simpliciter. But since there is only assertion simpliciter,
at some point a condition must be invoked that discriminates between what is a case of
asserting and what is not. Once again the concept of (conditional) qualitative belief gives
us exactly what we need.

The upshot of this is: Neither the concept of quantitative belief nor the concept of qual-
itative belief ought to be eliminated from science or philosophy. But this leaves open, in
principle, the possibility of reducing one to the other without eliminating either of them—
using traditional terminology: one concept might simply turn out to be logically prior to
the other. Now, reducing degrees of belief to belief simpliciter seems unlikely (no pun in-
tended!), simply because the formal structure of quantitative belief is so much richer than
the one of qualitative belief. But for the same reason, at least prima facie, one would think
that the converse ought to be feasible: by abstracting in some way from degrees of belief,
it ought to be possible to explicate belief simpliciter in terms of them. Belief simpliciter
would thus be qualitative only at first glance; its deeper logical structure would turn out to
be quantitative after all. One obvious suggestion of how to explicate belief simpliciter on
the basis of degrees of belief is to maintain that having the belief that X is just having as-
signed to X a degree of belief strictly above some threshold level less than 1 (this is called
the Lockean thesis by Richard Foley... more about which below). If that threshold is also
greater than or equal to 1

2 , then belief would simply amount to high subjective probabil-
ity. But since the probability of X ∧ Y might well be below the threshold even when the
probabilities of X and Y are not, one would thus have to sacrifice logical properties such as
the Conjunction property, which one should not, as mentioned above. While the Lockean
thesis seems materially fine, for qualitative belief does seem to be close to high subjective
probability, it does not get the logical properties of qualitative belief right. Or one iden-
tifies the belief that X with having a degree of belief of 1 in X: call this the ‘probability

4



1 proposal’. While this does much better on the logical side, it is not perfect on that side
either. Truth for propositions is certainly closed under taking conjunctions of arbitrary
cardinality, however, being assigned probability 1 is not so except for those cases in which
probability assignments simply coincide with truth value assignments; but in the presence
of uncertainy, subjective probability measures do not. If qualitative belief inherits this
general conjunction property from truth—maybe because truth is what qualitative beliefs
aim at, whether directly or indirectly—then an explication of qualitative belief in terms
of probability 1 is simply not good enough. More importantly, apart from such logical
considerations, the proposal is materially wrong. As Roorda (...) pointed out, our pre-
theoretic notions of belief-in-degrees and belief simpliciter have the following epistemic
and pragmatic properties: (i) One can believe X and Y without assigning the same degree
of belief to them. But then at least one of X and Y must have a probability other than 1. For
instance, I believe that my desk will still be there when I enter my office tomorrow, and I
also believe that every natural number has a successor, but should I therefore be forced to
assign the same degree of belief to them? (ii) One can believe X without being disposed
to accept every bet whatsoever on X, although the latter ought be that case by the standard
Bayesian understanding of probabilities if one assigns probability 1 to X, at least as long as
the stakes of the bet are not too extravagant. For example, I do believe that I will be in my
office tomorrow. But I would refrain from accepting a bet on this if I were offered 1 Pound
if I were right, and if I were to lose lose 1000 Pound if not. (Alternatively, one could aban-
don the standard interpretation of subjective probabilities in terms of betting quotients, but
breaking with such a successful tradition comes with a price of its own. However, later we
will see that our theory will allow for a reconciling offer in that direction, too.) Roorda’s
presents a third argument against the probability 1 proposal based on considerations on
fallibilism, but with it we are going to deal later. This shows that Ramsey’s term ‘par-
tial belief’ for subjective probability is in fact misleading (or at least ambiguous, about
which more later): for full belief, that is, belief simpliciter, does not coincide with having
a degree of belief of 1, and hence a degree of belief of less than 1 should not be regarded
as partial belief. All of these points also apply to a much more nuanced version of the
probability 1 proposal which was developed by Bas van Fraasen, Horacio Arlo-Costa, and
Rohit Parikh, according to which within the quantitative structure of primitive conditional
probability measures (Popper functions) one can always find so-called belief cores, which
are propositions with particularly nice and plausible logical properties; by taking super-
sets of those one can define elegantly notions of qualitative belief in different variants
and strengths. But the same problems as mentioned before emerge, since all belief cores
can be shown to have absolute probability 1. Additionally, the axioms of Popper func-
tions are certainly more controversial than those of the standard absolute or unconditional
probability measures, and since two distinct belief cores differ only in terms of some set
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of absolute probability 0, one wonders whether in many practically relevant situations in
which only probability measures on finite spaces are needed and where often there are no
non-empty zero sets at all—or otherwise the corresponding worlds with zero probabilistic
weight would simply have been dropped from the start—the analysis is too far removed
from the much more mundane reality of real-world reasoning and epistemological thought
experiments. On the other hand, we will see that the logical properties of belief cores are
enormously attractive: we will return to this later, when we will show that it is actually
possible to restore most of them in the new setting that we are going to propose.

Summing up: Reducing qualitative belief to quantitative belief does not seem to work
either. In the words of Jonathan Roorda (...), “The depressing conclusion . . . is that no
explication of belief is possible within the confines of the probability model”. Roorda
himself then goes on to suggest an explication that is based on sets of subjective probability
measures rather than just one probability measure as standard Bayesianism has it. In
contrast, we will bite the bullet and stick to just one probability measure below.

Given all of these problems, the only remaining option seems to be: neither of quan-
titative or qualitative belief can be reduced to the other; while there are certainly bridge
principles of some kind that relate the two, it is impossible to understand qualitative be-
lief just in terms of quantitative belief or the other way round. A view like this has been
proposed and worked out in detail, for example, by Isaac Levi (...) and recently by James
Hawthorne (...). And apart from extreme Bayesians who believe that one can do without
the concept of qualitative belief, it is probably fair to say that something like this is the
dominating view in epistemology these days.

In what follows, we are going to argue against this view: we aim to show that it is in
fact possible to reduce belief simpliciter to probabilistic degrees of belief by means of an
explicit definition, without stripping qualitative belief of any of its constitutive properties,
without revising the intended interpretation of subjective probabilities in any way, without
running into any of the difficulties that we found to affect the standard proposals for quan-
titative explications of belief, and without thereby intending to eliminate the concept of
belief simpliciter in favour of quantitative belief. Both notions of belief will be preserved;
it is just that having the qualitative belief that A will turn out to be definable in terms of
assignments of consistently high degrees of belief, where what this means exactly will
be clarified below. We will also point out which consequences this has for various prob-
lems in philosophy of science, epistemology, and the philosophy of language. And for
the convinced Bayesian, who despises qualitative belief, the message will be: within your
subjective probability measure you find qualitative belief anyway; so you might just as
well use it.

Before we turn to the details of our theory, we will first sketch the underlying idea of
the explication.
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2 The Basic Idea
Our starting point is again what Richard Foley (..., pp. 140f) calls the Lockean thesis, that
is:

to say that you believe a proposition is just to say that you are sufficiently
confident of its truth for your attitude to be one of belief

and consequently

it is rational for you to believe a proposition just in case it is rational for
you to have a sufficiently high degree of confidence in it, sufficiently high to
make your attitude toward it one of belief.

He takes this to be derivative from Locke’s views on the matter, as exemplified by

most of the Propositions we think, reason, discourse, nay act upon, are
such, as we cannot have undoubted Knowledge of their Truth: yet some of
them border so near upon Certainty, that we make no doubt at all about them;
but assent to them firmly, and act, according to that Assent, as resolutely, as
if they were infallibly demonstrated, and that our Knowledge of them was
perfect and certain (Locke..., p. 655, Book IV, Chapter XV; his emphasis)

and

the Mind if it will proceed rationally, ought to examine all the grounds of
Probability, and see how they make more or less, for or against any probable
Proposition, before it assents to or dissents from it, and upon a due ballancing
the whole, reject, or receive it, with a more or less firm assent, proportionably
to the preponderancy of the greater grounds of Probability on the one side or
the other. (Locke..., p. 656, Book IV, Chapter XV; his emphasis)

We take this account of belief simpliciter in terms of high degrees of belief to be right in
spirit. However, as we know from lottery paradox situations, it is not yet good enough:
there are logical principles for belief (such as the Conjunction principle) which we regard
as just as essential to the belief in X as assigning a sufficiently high subjective probability
to X, and it is precisely these logical principles that which are invalidated if the Lockean
thesis is turned into a definition of belief. Instead, we take the Lockean thesis to charac-
terise a more preliminary notion of belief, or what one might call prima facie belief:

Definition 1 Let P be a subjective probability measure. Let X be a proposition in the
domain of P: X is believed prima facie as being given by P if and only if P(X) > r.
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Of course, more needs to be said about the threshold value r here, but let us postpone this
discussion.

In analogy with the case of prima facie obligations in ethics, a proposition is believed
prima facie in view of the fact that it has an epistemic feature that speaks in favour of it
being a belief proper—that is, to have a sufficiently high subjective probability—and as
long as no other of its epistemic properties tells against it being such, it will in fact be
properly believed.

Accordingly, as far as belief itself is concerned, we suggest to drop just the right-to-
left direction of the Lockean thesis, so that high subjective probability is still a necessary
condition for belief but it is not anymore demanded to be a sufficient one. Thus, ultimately,
all beliefs simpliciter will be among the prima facie candidates for beliefs. The left-to-
right direction is going to ensure that beliefs remain reasonably cautious—how cautious
will depend on the “cautiousness parameter” r—and that they inherit all the dispositional
consequences of having sufficiently high degrees of belief. On the other hand, the right-to-
left direction was the one that got us into lottery-paradox-like trouble. Instead of it, we will
regard all the standard logical principles for belief as being constitutive of belief from the
start. Unlike the definition of prima facie belief which expresses a condition to be satisfied
by single beliefs, these logical principles do not apply to beliefs taken by themselves but
rather to systems of beliefs taken as wholes. Therefore, when putting together the left-to-
right direction of the Lockean thesis with these logical postulates, we need to formulate
the result as a constraint on an agent’s belief system or class. Furthermore, we will not
just do this for absolute or unconditional belief—the belief that X is the case—but also for
conditional belief, that is, belief under a supposition, as in: the belief that X is the case
under the supposition that Y is the case. Indeed, generalizing the left-to-right direction of
the original Lockean thesis to cases of conditional belief will pave the way to our ultimate
understanding of belief. And arguably belief simpliciter under a supposition is just as
important for our epistemic lives as belief simpliciter taken absolutely or unconditionally.
This will give us then something of the following form:

• If P is an agent’s degree-of-belief function at a time t, and if Bel is the class of
believed propositions by the agent at t (and both relate to the same underlying class
of propositions), then they have the following properties:

(1) Probabilistic constraint:

∗ P is a probability measure.
...

(Additional constraints on P.)

(2) Logical constraints:

8



∗ For all propositions Y,Z: if Y ∈ Bel and Y logically entails Z, then Z ∈ Bel.
∗ For all propositions Y,Z: if Y ∈ Bel and Z ∈ Bel, then Bel(Y ∩ Z).
∗ No logical contradiction is a member of Bel.
...

(Other standard logical principles for Bel and their extensions to condi-
tional belief.)

(3) Mixed constraints:

∗ For all propositions X ∈ Bel, P(X) > r.
∗ (An extension of this to conditional belief.)
...

(Additional mixed constraints on P and Bel.)

While the conjunction of (1), (2), and (3) might well do as a meaning postulate on ‘Bel’
and ‘P’, obviously this is not an explicit definition of ‘Bel’ on the basis of ‘P’ anymore. Is
there any hope of turning it into an explicit definition of belief again?

Immediately, David Lewis’ (...) classic method of defining theoretical terms, which
builds on work by Ramsey and Carnap, comes to mind: given P, define ‘Bel’ to be the
class, such that the conditions on Bel and P above are the case. But of course this invites
all the standard worries about such definitions by definite description: First of all, for given
P, there might simply not be any such class Bel at all. Fortunately, we will be able to prove
that this worry does not get confirmed. Secondly, at least for many P, there might be more
than just one class Bel that satisfies the constraints above. Worse, for some P, there might
even be two such classes that contain mutually inconsistent propositions. We will prove
later that this is not so, in fact, for every given P and for every two distinct classes Bel
which satisfy the conditions above (relative to that P) it is always the case that one of the
two contains the other as a subset. Even with that in place, one would still have to decide
which class Bel in the resulting chain of belief classes ought to count as the “actual” belief
class as being given by P in order to satisfy the uniqueness part of our intended definition
by definite description. But then again, what if there were a largest such class Bel? That
class would have all the intended properties, and it would contain every proposition that
is a member of any class Bel as above. It would therefore maximize the extent by which
prima facie beliefs in the sense defined before are realized in terms of actual beliefs. In
other words: it would approximate as closely as possible the right-to-left direction of the
Lockean thesis that we were forced to drop in view of the logical principles of belief.
The class would thus have every right to be counted as the class of beliefs at a time t of an
agent whose subjective probability measure at that time is P, and no restriction of bounded
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variables to “natural” classes as in Lewis’ original proposal would be necessary at all. If
such a largest belief class exists, of course—but as we will prove later, indeed it does.

What we will have found then is that the following is a materially adequate and explicit
definition of an agent’s beliefs in terms of the agent’s subjective probability measure:

• If P is an agent’s subjective probability measure at a time t that satisfies the addi-
tional constraints. . ., then a proposition (in the domain of P) is believed as being
given by P if and only if it is a member of the largest class Bel of propositions that
satisfies the following properties:

(1) Belief constraints:

∗ For all propositions Y,Z: if Y ∈ Bel and Y logically entails Z, then Z ∈ Bel.
∗ For all propositions Y,Z: if Y ∈ Bel and Z ∈ Bel, then Bel(Y ∩ Z).
∗ No logical contradiction is a member of Bel.
...

(Other standard logical principles for Bel and their extensions to condi-
tional belief.)

(2) Mixed constraints:

∗ For all propositions X ∈ Bel, P(X) > r.
∗ (An extension of this to conditional belief.)
...

(Additional mixed constraints on P and Bel.)

So we will have managed to define belief simpliciter just in terms of ‘P’ and logical and
set-theoretical vocabulary. In fact, it will turn out to be possible to characterize the defining
conditions of belief just in terms of a simple and independently appealing quantitative
condition on P and elementary set-theoretic operations and relations.

Belief simpliciter will therefore have been reduced to degrees of belief. In the follow-
ing two sections, we are going to execute this strategy in all formal details. The remaining
sections will be devoted to applications and extensions of the theory.

3 The Reduction of Belief I: Absolute Beliefs
The goal of this section and the subsequent one is to enumerate a couple of postulates
on quantitative and qualitative beliefs and their interaction; and we will assume that the
fictional epistemic agent ag that we will deal with has belief states of both kinds available
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which obey these postulates. The terms ‘P’ and ‘Bel’ that will occur in these postulates
should be thought of as primitive first, with each postulate expressing a constraint either
on the reference of ‘P’ or on the reference of ‘Bel’ or on the references of ‘P’ and ‘Bel’
simultaneously. Even though initially we will present these constraints on subjective prob-
ability and belief in the form of postulates or axioms, it will turn out that they will be strong
enough to constrain qualitative belief in a way such that the concept of qualitative belief
ends up being definable explicitly just on the basis of ‘P’, that is, in terms of quantitative
belief (and a cautiousness parameter) only. When we state the theorems from which this
follows, ‘P’ and ‘Bel’ will become variables, so that we will able to say: For all P, Bel, it
holds that P and Bel satisfy so-and-so if and only if. . .. Accordingly, in the definition of
belief simpliciter itself, ‘P’ will be a variable again, and ‘Bel’ will be a variable the exten-
sion of which is defined on the basis of ‘P’ (and mathematical vocabulary). We will keep
using the same symbols ‘P’ and ‘Bel’ for all of these purposes, but their methodological
status should always become clear from the context.

3.1 Probabilistic Postulates
Consider an epistemic agent ag which we keep fixed throughout the article. Let W be a
(non-empty) set of logically possible worlds. Say, at t our agent ag is capable in principle
of entertaining all and only propositions (sets of worlds) in a class A of subsets of W,
where A is formally a σ-algebra over W, that is: W and ∅ are members of A; if X ∈ A then
the relative complement of X with respect to W, W \X, is also a member of A; for X,Y ∈ A,
X ∪ Y ∈ A; and finally if all of X1, X2, . . . , Xn, . . . are members of A, then

⋃
n∈N Xn ∈ A. It

follows that A is closed under countable intersections, too. A is not demanded to coincide
with some power set algebra, instead A might simply not count certain subsets of W as
propositions at all.

We will extend the standard logical terminology that is normally defined for formulas
or sentences to propositions in A: so when we speak of a proposition as a logical truth we
actually have in mind the unique proposition W, when we say that a proposition is con-
sistent we mean that it is non-empty, when we refer to the negation of a proposition X we
do refer to its complement relative to W (and we will denote it by ‘¬X’), the conjunction
of two propositions is of course their intersection, and so on. We shall speak of conjunc-
tions and disjunctions of propositions even in cases of infinite intersections or unions of
propositions.

Let P be ag’s degree-of-belief function (quantitative belief function) at time t. Follow-
ing the Bayesian take on quantitative belief, we postulate:

P1 (Probability) P is a probability measure on A, that is, P has the following properties:
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P : A → [0, 1]; P(W) = 1; P is finitely additive: if X1, X2 . . . are pairwise disjoint
members of A, then P(X1 ∪ X2) = P(X1) + P(X2).

Conditional probabilities are introduced by: P(Y |X) =
P(Y∩X)

P(X) whenever P(X) > 0.

As far as our familiar treatment of conditional probabilities in terms of the ratio formula for
absolute or unconditional probabilities is concerned, we should stress that the elegant the-
ory of primitive conditional probability measures (Popper functions) would allow P(Y |X)
to be defined and non-trivial even when P(X) = 0 (that is, as we will sometimes say, when
X is a zero set as being given by P). But the theory is still not accepted widely, and we
want to avoid the impression that the theory in this paper relies on Popper functions in
any sense. We shall nevertheless have occasion to return to Popper functions later in some
parts of the paper.

To P1 we add:

P2 (Countable Additivity) P is countably additive (σ-additive): if X1, X2, . . . , Xn, . . . are
pairwise disjoint members of A, then P(

⋃
n∈N Xn) =

∑∞
n=1 P(Xn).

Countable Additivity orσ-additivity is in fact not uncontroversial even within the Bayesian
camp itself, although in purely mathematical contexts, such as measure theory,σ-additivity
is usually beyond doubt (but see Schurz & Leitgeb...); we shall simply take it for granted
now. For many practical purposes, A may simply be taken to finite, and then σ-additivity
reduces to finite additivity again which is indeed uncontroversial for all Bayesians what-
soever.

In our context, Countable Additivity serves just one purpose: it simplifies the theory.
However, in future versions of the theory one might want to study belief simpliciter in-
stead under the mere assumption of finite additivity, that is, assuming just P1 but not P2.
Extending the theory in that direction is feasible: Dropping P2 may be seen to correspond,
roughly, to what happens to David Lewis’ “spheres semantics” of counterfactuals when
the so-called Limit Assumption is dropped (to which Lewis himself does not subscribe,
while others do).

3.2 Belief Postulates
Let us turn now from quantitative belief to qualitative belief: Each belief simpliciter—or
more briefly: each belief —that ag holds at t is assumed to have a set in A as its proposi-
tional content. As a first approximation, assume that by ‘Bel’ we are going to denote the
class of propositions that our ideally rational agent believes to be true at time t. Instead
of writing ‘Y ∈ Bel’, we will rather say: Bel(Y); and we call Bel our agent ag’s belief
set at time t. In line with elementary principles of doxastic or epistemic logic (which are
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entailed by the modal axiom K and by applications of necessitation to tautologies), Bel is
assumed to satisfy the following postulates:

1. Bel(W).

2. For all Y,Z ∈ A: if Bel(Y) and Y ⊆ Z, then Bel(Z).

3. For all Y,Z ∈ A: if Bel(Y) and Bel(Z), then Bel(Y ∩ Z).

Actually, we are going to strengthen the principle on finite conjunctions of believed propo-
sitions to the case of the conjunction of all believed propositions whatsoever:

4. For Y = {Y ∈ A | Bel(Y)},
⋂
Y is a member of A, and Bel(

⋂
Y).

This certainly involves a good deal of abstraction. On the other hand, if A is finite, then
the last principle simply reduces to the case of finite conjunctions again. In any case, 4.
has the following obvious consequence: There is a least set (a strongest proposition) Y ,
such that Bel(Y); that Y is just the conjunction of all propositions believed by ag at t. We
will denote this very proposition by: BW . The main reason why we presuppose 4. is that
it enables us to represent the sum of ag’s beliefs in terms of such a unique proposition or
a unique set of possible worlds. In the semantics of doxastic or epistemic logic, our set
BW would correspond to the set of accessible worlds from the viewpoint of the agent’s
current mindset. Accordingly, using the terminology that is quite common in areas such
as belief revision or nonmonotonic reasoning, one might think of the members of BW as
being precisely the most plausible candidates for what the actual world might be like, if
seen from the viewpoint of ag at time t.

Our postulate 4. imposes also another constraint onA: While it is not generally the case
that the algebra A contains arbitrary conjunctions of members of A, 4. together with our
other postulates does imply that A is closed under taking arbitrary countable conjunctions
of believed propositions: for if all the members of any countable class of propositions
are believed by ag at t, then their conjunction is a member of A by A being a σ-algebra,
and the conjunction is a member of Bel by its being a superset of BW and by 2. above.
There is yet another independent reason for assuming 4.: In light of lottery paradox or
preface paradox situations, with which we will deal later, it is thought quite commonly
that if the set of beliefs simpliciter is presupposed to be closed under conjunction, then this
prohibits any probabilistic analysis of belief simpliciter from the start. We will show that
beliefs simpliciter can in fact be reduced to quantitative belief even though 4. expresses
the strongest form of closure under conjunction whatsoever that a set of beliefs can satisfy.
So we will not be accused of playing tricks by building up some kind of non-standard
model for qualitative belief in which certain types of conjunction rules are applicable to
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certain sets of believed propositions but where other types of conjunction rules may not be
applied (as one can show would be the case if we dropped countable additivity as being
one of our assumptions). In a nutshell: 4. prohibits our agent from having anything like
an ω-inconsistent set of beliefs.

Finally, we add

5. (Consistency) ¬Bel(∅).

as our agent ag does not believe a contradiction. Once again, this will be granted in order to
mimick the same assumption that in epistemic logic is sometimes made: one justification
for it is the thought that if a rational agent is shown to believe a contradiction, then he
will aim to change his mind; if ag’s actual beliefs are considered to coincide with the (in
principle) outcome of such a rationalization process, then 5. should be fine.

So much for belief if taken unconditionally. But we will require more than just qual-
itative belief in that sense—indeed, this will turn out to be the key move: Let us assume
that ag also holds conditional beliefs, that is, beliefs conditional on certain propositions in
A. We will interpret such conditional beliefs in suppositional terms: they are beliefs that
the agent has under the supposition of certain propositions, where the only type of sup-
position that we will be concerned with in the following will be supposition as a matter
of fact, that is, suppositions which are usually expressed in the indicative, rather than the
subjunctive, mood: Suppose that X is the case. Then I believe that Y is the case. If X is any
such “assumed” proposition, we take BelX to be the class of propositions that our ideally
rational agent believes to be true at time t conditional on X; instead of writing ‘Y ∈ BelX’,
we will say somewhat more transparently: Bel(Y |X). Accordingly, we call BelX our agent
ag’s belief set conditional on X at t, and we call any such class of propositions for what-
ever X ∈ A a conditional belief set at t of our agent ag. In this extended context, Bel itself
should now be regarded as a class of ordered pairs of members of A, rather than as a set
of members of A as before; instead of ‘〈Y, X〉 ∈ Bel’ we may simply say again: Bel(Y |X).
And we may identify ag’s belief set at t from before with one of ag’s conditional belief sets
at t: the class of propositions that ag believes to be true at t conditional on the tautological
proposition W, that is, with the class BelW . Accordingly, we now call all and only the
members Y of BelW to be believed absolutely or unconditionally, and BelW the absolute or
unconditional belief set.

In the present section we will be interested only in conditional beliefs in Y given X
where X is consistent with everything that the agent believes absolutely (or conditionally
on W) at that time; equivalently: where X is consistent with BW . In particular, this will
yield an explication of absolute or unconditional belief in terms of subjective probabilities,
which is the main focus of this section. In the next section we will add some postulates
which will impose constraints even on beliefs conditional on propositions in A that con-
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tradict BW , and ultimately we be able to state a corresponding explication of conditional
belief in general. Even in the cases in which we will consider a belief suppositional on a
proposition that is inconsistent with the agent’s current absolute beliefs, as we will in the
section after this one, we will still regard the supposition in question to be a matter-of-fact
supposition in the sense that in natural language it would be expressed in the indicative
rather than the subjunctive one. As in: I believe that John is not in the building. But
suppose that he is in the building: then I believe he is in his office.

For every X ∈ A that is consistent with what the agent believes, BelX is a set of the very
same kind as the original unconditional or absolute belief set of propositions from above.
And for every such X ∈ A, BelX will therefore be assumed to satisfy postulates of the very
same type as suggested before for absolute beliefs:

B1 (Reflexivity) If ¬Bel(¬X|W), then Bel(X|X).

B2 (One Premise Logical Closure)
If ¬Bel(¬X|W), then for all Y,Z ∈ A: if Bel(Y |X) and Y ⊆ Z, then Bel(Z|X).

B3 (Finite Conjunction)
If ¬Bel(¬X|W), then for all Y,Z ∈ A: if Bel(Y |X) and Bel(Z|X), then Bel(Y ∩ Z|X).

B4 (General Conjunction)
If ¬Bel(¬X|W), then for Y = {Y ∈ A | Bel(Y |X)},

⋂
Y is a member of A, and

Bel(
⋂
Y|X).

On the other hand, we assume the Consistency postulate to hold only for beliefs condi-
tional on W at this point (in the next section this will be generalised). So just as in the case
of 5. above, we only demand:

B5 (Consistency) ¬Bel(∅|W).

By now the axioms should look quite uncontroversial, if given our logical approach to
belief. Assuming B1 is unproblematic at least under a suppositional reading of conditional
belief: under the (matter of fact) supposition of X, with X being consistent with what the
agent believes, the ideally rational agent ag holds X true at time t. Of course, B3 is
redundant really in light of B4, but we shall keep it as well for the sake of continuity with
the standard treatment of belief. As before, B4 now entails for every X ∈ A for which
¬Bel(¬X|W) that there is a least set (a strongest proposition) Y , such that Bel(Y |X), which
by B1 must be a subset of X. For any such given X, we will denote this very proposition
by: BX. For X = W, this is consistent with the notation ‘BW’ introduced before.

Clearly, we have then for all X with ¬Bel(¬X|W) and for Y ∈ A:

Bel(Y |X) if and only if Y ⊇ BX,
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from left to right by the definition of ‘BX’, and from right to left by B2 and the definition
of BX again. Furthermore, it also follows that

Y ⊇ BX if and only if Bel(Y |BX),

since if the left-hand side holds, then the right-hand side follows from B1 and B2, and if
the right-hand side is the case then the left-hand side must be true by the definition of ‘BX’
and the previous equivalence. So we find that actually for all Y ∈ A,

Bel(Y |X) if and only if Bel(Y |BX),

hence what is believed by ag conditional on X may always be determined just by means
of considering all and only the members of A which ag believes conditional on the subset
BX of X. We will use these equivalences at several points, and when we do so we will not
state this explicitly anymore.

By B5, W itself is such that ¬Bel(¬W |W) (since ¬W = ∅), hence all of B1–B4 apply
to X = W unconditionally, and consequently BW must be non-empty. Using this and the
first of the three equivalences above, one can thus derive

¬Bel(¬X|W) if and only if X ∩ BW , ∅.

For this reason, instead of qualifying the postulates in this section by means of ‘¬Bel(¬X|W)’,
we see that we may just as well replace this qualification by ‘X∩BW , ∅’, and this is what
we are going to do in the following.

So far there are no postulates on how belief sets conditional on different propositions
relate to each other logically. At this point we demand one such condition to be satisfied
which corresponds to the standard AGM (...) postulates K*3 and K*4 on belief revision if
BW takes over the role of AGM’s syntactic belief set K, and if the revised belief set in the
sense of AGM gets described in terms of conditional belief:

B6 (Expansion)
For all Y ∈ A such that Y ∩ BW , ∅:
For all Z ∈ A, Bel(Z|Y) if and only if Z ⊇ Y ∩ BW .

In words: if the proposition Y is consistent with BW , then ag believes Z conditional on
Y if and only if Z is entailed by the conjunction of Y with BW . This is really just a pos-
tulate on “revision by expansion” in terms of propositional information that is consistent
with the sum of what the agent believes; nothing is said at all about revision in terms of
information that would contradict some of the agent’s beliefs, which will be the topic of
the next section. As mentioned before, a principle like B6 is entailed by the AGM postu-
lates on revision by propositions which are consistent with what the agent believes at the
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time, and it can be justified in terms of plausibility rankings of possible worlds: say that
conditional beliefs express that the most plausible of their antecedent-worlds are among
their consequent-worlds; then if some of the most plausible worlds overall are Y-worlds,
these worlds must be precisely the most plausible Y-worlds, and therefore in that case the
most plausible Y-worlds are Z-worlds if and only if all the most plausible worlds overall
that are Y-worlds are Z-worlds.

Equivalently:

B6 (Expansion)
For all Y ∈ A, such that for all Z ∈ A, if Bel(Z|W) then Y ∩ Z , ∅:
For all Z ∈ A, Bel(Z|Y) if and only if Z ⊇ Y ∩ BW .

Supplying conditional belief with our intended suppositional interpretation again: If Y
is consistent with everything ag believes absolutely, then supposing Y as a matter of fact
amounts to nothing else than adding Y to one’s stock of absolute beliefs, so that what the
agent believes conditional on Y is precisely what the agent would believe absolutely if the
strongest proposition that he believes were the intersection of Y and BW . That is, we may
reformulate B6 one more time in the form:

B6 (Expansion) For all Y ∈ A such that Y ∩ BW , ∅: BY = Y ∩ BW .

The superset claim that is implicit in the equality statement follows from the postulates
above because Bel(BY |Y) holds by the definition of ‘BY’ and then the original formulation
of B6 above can be applied. The corresponding subset claim follows from the definition
of BY again since Bel(Y ∩ BW |Y) follows from the original version of B6. Similarly, the
original version of B6 above can be derived from our last version of that principle and the
other postulates that we assumed. It follows from our last formulation of B6 (trivially) that
for all Y ∩ BW , ∅, BY is non-empty, simply because BY = Y ∩ BW in that case.

AGM’s K*3 and K*4 have not remained unchallenged, of course. One typical worry
is that revising by some new evidence or suppositional information Y may lead to more
beliefs than what one would get deductively by adding Y to one’s current beliefs, in view
of possible inductively strong inferences that the presence of Y might warrant. One line of
defence of AGM here is: if the agent’s current beliefs are themselves already the result of
the inductive expansion of what the agent is certain about, so that the agent’s beliefs are
really what he expects to be the case, then revising his beliefs by consistent information
might reduce to merely adding it to his beliefs and closing off deductively. Another line
of defence is: a postulate such as B6 might be true of belief simpliciter, and without it
qualitative belief would not have the simplifying power that is essential to it. But there
might nothing like it that would hold of quantitative belief, and the mentioned criticism
of the conjunction of K*3 and K*4 might simply result from mixing up considerations on
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qualitative and quantitative belief. We will return to this issue later where we will see in
what sense our theory allows us to reconcile B6 above with the worry about them that we
were addressing in this paragraph.

This ends our list of postulates on qualitative belief.

3.3 Mixed Postulates and the Explication of Absolute Belief
Finally, we turn to our promised necessary probabilistic condition for having a belief—the
left-to-right direction of the Lockean thesis—and indeed for having a belief conditional on
any proposition consistent with all the agent ag believes at t; this will make ag’s degrees
of beliefs at t and (some of) his conditional beliefs simpliciter at t compatible in a sense.
The resulting bridge principle between qualitative and quantitative belief will involve a
numerical constant ‘r’ which we will leave indeterminate at this point—just assume that
r is some real number in the half-open interval [0, 1). Note that the principle is not yet
meant to give us anything like a definition of ‘Bel’ (nor of any terms defined by means
of ‘Bel’, such as ‘BW’) on the basis of ‘P’. It only expresses a joint constraint on the
references of ‘Bel’ and ‘P’, that is, on our agent’s ag’s actual conditional beliefs and his
actual subjective probabilities. The principle says:

BP1r (Likeliness) For all Y ∈ A such that Y ∩ BW , ∅ and P(Y) > 0:
For all Z ∈ A, if Bel(Z|Y), then P(Z|Y) > r.

BP1r is just the obvious generalisation of the left-to-right direction of the Lockean thesis
to the case of beliefs conditional on propositions Y which are consistent with all absolute
beliefs. The antecedent clause ‘P(Y) > 0’ in BP1r is there to make sure that the conditional
probability P(Z|Y) is well-defined. By using W as the value of ‘Y’ and BW as the value of
‘Z’ in BP1r, and then applying the definition of BW (which exists by B1–B4) and P1, it
follows that P(BW |W) = P(BW) > r. Therefore, from the definition of BW and P1 again,
having an subjective probability of more than r is a necessary condition for a proposition
to be believed absolutely, although it will become clear below that this is far from being a
sufficient condition.

r is a non-negative real number less than 1 which functions as a threshold value and
which at this stage of our investigation can be chosen freely. BP1r really says: conditional
beliefs (with the relevant Ys) entail having corresponding conditional probabilities of more
than r. One might wonder why there should be one such threshold r for all propositions Y
and Z as stated in BP1r at all, rather than having for all Y (or for all Y and Z) a threshold
value that might depend on Y (or on Y and Z). But without any further qualification, a
principle such as the latter would be almost empty, because as long as for Y and Z it is
the case that P(Z|Y) > 0, there will always be an r such that P(Z|Y) > r. In contrast,
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BP1r postulates a conditional probabilistic boundary from below that is uniform for all
conditional beliefs—this r really derives from considerations on the concept of belief itself
rather than from considerations on the contents of belief. (Remark: It would be possible
to weaken ‘>’ to ‘≥’ in BP1r; not much will depend on it, except that whenever we are
going to use BP1r with r ≥ 1

2 below, one would rather have to choose some r′ > 1
2 instead

and then demand that ‘. . . P(Z|Y) ≥ r′’ is the case).
For illustration, in BP1r, think of r as being equal to 1

2 : If degrees of beliefs and beliefs
simpliciter ought to be compatible in some sense at all, then the resulting BP1

1
2 is pretty

much the weakest possible expression of any such compatibility that one could think of: if
ag believes Z (conditional on one of Y’s referred to above), then ag assigns an subjective
probability to Z (conditional on Y) that exceeds the subjective probability that he assigns
to the negation of Z (conditional on Y). If BP1 were invalidated, then there would be
Z and Y , such that our agent ag believes Z conditional on Y , but where P(Z|Y) ≤ 1

2 : if
P(Z|Y) < 1

2 , then ag would be in a position in which he regarded ¬Z as more likely than
Z, conditional on Y , even though he believes Z, but not ¬Z, conditional on Y . On the
other hand, if P(Z|Y) = 1

2 , then ag would be in a position in which he regarded ¬Z as
equally likely as Z, conditional on Y , even though he believes Z, but not ¬Z, conditional
on Y . While the former is difficult to accept—and the more difficult the lower the value
of P(Z|Y)—the latter might be acceptable if one presupposes a voluntaristic conception of
belief such as van Fraassen’s (...). But it would still be questionable then why the agent
would choose to believe Z, rather than ¬Z, but not choose to assign to Z a higher degree
of belief than to ¬Z (assuming this voluntary conception of belief would apply to degrees
of belief, too). Richard Foley (...) has argued that the Preface Paradox would show that
a principle such as BP1

1
2 would in fact be too strong: a probability of 1

2 could not even
amount to a necessary condition on belief. We will return to this when we discuss the
Lottery Paradox and Preface Paradox in section ??. Instead of defending BP1

1
2 or any

other particular instance of BP1r at this point, we will simply move on now, taking for
granting one such BP1r has been chosen. We will argue later that choosing r = 1

2 is in
fact the right choice for the least possible threshold value that would give us an account
of ‘believing that’, even though taking any greater threshold value less than 1 would still
be acceptable. However, for weaker forms of subjective commitment, such as ‘supecting
that’ or ‘hypothesizing that’, r ought to be chosen to be less than 1

2 .
For the moment this exhausts our list of postulates (with two more to come later). Let

us pause for now and focus instead on jointly necessary and sufficient conditions for our
postulates up to this point to be satisfied, which will lead us to our first representation
theorem by which pairs 〈P, Bel〉 that jointly satisfy our postulates get characterized trans-
parently. In order to do so, we will need the following additional probabilistic concept
which will turn out to be crucial for the whole theory:
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Definition 2 (P-Stabilityr) Let P be a probability measure on a set algebra A over W. For
all X ∈ A:

X is P-stabler if and only if for all Y ∈ A with Y ∩ X , ∅ and P(Y) > 0: P(X|Y) > r.

If we think of P(X|Y) as the degree of X under the supposition of Y , then a P-stabler

proposition X has the property that whatever proposition Y one supposes, as long as Y is
consistent with X and probabilities conditional on Y are well-defined, it will be the case
that the degree of X under the supposition of Y exceeds r. So a P-stabler proposition
has a special stability property: it is characterized by its stably high probabilities under
all suppositions of a particularly salient type. Trivially, the empty set is P-stabler. W is
P-stabler, too, and more generally all propositions X in A with probability P(X) = 1 are
P-stabler. More importantly, as we shall see later in section 3.4, there are in fact lots of
probability measures for which there are lots of non-trivial P-stabler propositions which
have a probability strictly between 0 and 1.

A different way of thinking of P-stabilityr is the following one. With X being P-
stabler, and Y being such that Y ∩ X , ∅ and P(Y) > 0, it holds that P(X|Y) =

P(X∩Y)
P(Y) > r,

which is equivalent to: P(X ∩ Y) > r · P(Y). But by P1 this is again equivalent with
P(X ∩ Y) > r · [P(X ∩ Y) + P(¬X ∩ Y)], which yields P(X ∩ Y) > r

1−r · P(¬X ∩ Y). X ∩ Y is
some proposition in A that is a subset of X, and by assumption it needs to be non-empty.
¬X ∩ Y is just some proposition in A which is a subset of ¬X. If P(X ∩ Y) were 0, then the
inequality above could not be satisfied irrespective of what ¬X ∩ Y would be like; and if
P(X ∩ Y) is greater than 0, then a fortiori X ∩ Y , ∅ and also P(Y) > 0 are the case. So
really X is P-stabler if and only if for all Y,Z ∈ A, such that Y is a subset of X with P(Y) > 0
and where Z is a subset of ¬X, it holds that P(Y) > r

1−r · P(Z). In words: The probability
of any subset of X that has positive probability at all is greater than the probability of any
subset of ¬X if the latter is multiplied by r

1−r . In the special case in which r = 1
2 , this

factor is just 1, and hence X is P-stable
1
2 if and only if the probability of any subset of X

that has positive probability at all is greater than the probability of any subset of ¬X. So
P-stabilityr is also a separation property, which divides the class of subpropositions of a
proposition from the class of subpropositions of its negation in terms of probability.

Here is a property of P-stabler propositions X that we will need on various occasions:
if P(X) < 1, then there is no non-empty Y ⊆ X with Y ∈ A and P(Y) = 0. For assume
otherwise: then Y ∪ ¬X has non-empty intersection with X since Y has, and at the same
time P(Y ∪ ¬X) > 0 because P(¬X) > 0. By X being P-stabler, it would therefore have
to hold that P(X|Y ∪ ¬X) =

P(X∩Y)
P(Y∪¬X) > r, which contradicts P(X ∩ Y) ≤ P(Y) = 0. For

the same reason, non-empty propositions of probability 0 cannot be P-stabler, or in other
words: non-empty P-stabler propositions X have positive probability.
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Using this new concept, we can show the following first and rather simple representa-
tion theorem on belief (there will be another more intricate one in the next section which
will extend the present one to conditional belief in general):

Theorem 3 Let Bel be a class of ordered pairs of members of a σ-algebra A as explained
above, let P : A → [0, 1], and let 0 ≤ r < 1. Then the following two statements are
equivalent:

I. P and Bel satisfy P1, B1–B6, and BP1r.

II. P satisfies P1, and there is a (uniquely determined) X ∈ A, such that X is a non-
empty P-stabler proposition, and:

– For all Y ∈ A such that Y ∩ X , ∅, for all Z ∈ A:

Bel(Z |Y) if and only if Z ⊇ Y ∩ X

(and hence, BW = X).

Proof. From left to right: P1 is satisfied by assumption. Now we let X = BW , where BW

exists and has the intended property of being the strongest believed proposition by B1–B4:
First of all, as derived before by means of B5, BW is non-empty; and BW is P-stabler: For
let Y ∈ A with Y ∩ BW , ∅, P(Y) > 0: since BW ⊇ Y ∩ BW , it thus follows from B6 that
Bel(BW |Y), which by BP1 and P(Y) > 0 entails that P(BW |Y) > r, which was to be shown.
Secondly, let Y ∈ A be such that Y ∩ BW , ∅, let Z ∈ A: then it holds that Bel(Z|Y) if
and only if Z ⊇ Y ∩ BW by B6, as intended. Finally, uniqueness: Assume that there is an
X′ ∈ A, such X′ , X, X′ is non-empty, P-stabler, and for all Y ∈ A with Y ∩ X′ , ∅, for all
Z ∈ A, it holds that Bel(Z |Y) if and only if Z ⊇ Y ∩ X′. But from the latter it follows that
X′ = BW , and hence with X = BW from above that X′ = X, which is a contradiction.

From right to left: Suppose P satisfies P1, and there is an X, such that X and Bel have
the required properties. Then, first of all, all the instances of B1–B5 for beliefs conditional
on W are satisfied: for it holds that W∩X = X , ∅ because X is non-empty by assumption,
so Bel(Z|W) if and only if Z ⊇ W∩X = X, by assumption, therefore B5 is the case, and the
instances of B1–B4 for beliefs conditional on W follow from the characterisation of beliefs
conditional on W in terms of supersets of X. Indeed, it follows: BW = X. So, for arbitrary
Y ∈ A, ¬Bel(¬Y |W) is really equivalent to Y ∩ X , ∅, as we did already show after our
introduction of B1–B5, and hence B1–B4 are satisfied by the assumed characterisation of
beliefs conditional on any Y with Y ∩ X , ∅ in terms of supersets of Y ∩ X. B6 holds
trivially, by assumption and because of BW = X. About BP1r: Let Y∩X , ∅ and P(Y) > 0.
If Bel(Z|Y), then by assumption Z ⊇ Y ∩ X, hence Z ∩ Y ⊇ Y ∩ X, and by P1 it follows
that P(Z ∩ Y) ≥ P(Y ∩ X). From X being P-stabler and P(Y) > 0 we have P(X|Y) > r.
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Taking this together, and by the definition of conditional probability in P1, this implies
P(Z|Y) > r, which we needed to show.

Note that P2 (Countable Additivity) did not play any role in this; but of course P2
may be added to both sides of the proven equivalence with the resulting equivalence being
satisfied.

This simple theorem will prove to be fundamental for all subsequent arguments in this
paper. We start by exploiting it first in a rather trivial fashion: Let us concentrate on its
right-hand side, that is, condition II. of Theorem 3. Disregarding for the moment any con-
siderations on qualitative belief, let us just assume that we are given a probability P over a
set algebra A on W. We know already that one can in fact always find a non-empty set X,
such that X is a P-stabler proposition: just take any proposition with probability 1. In the
simplest case: take X to be W itself. P(W) > 0 and P-stabilityr follow then immediately.
Now consider the very last equivalence clause of II. and turn it into a (conditional) defini-
tion of Bel(.|Y) for all the cases in which Y ∩ W = Y , ∅: that is, for all Z ∈ A, define
Bel(Z |Y) to hold if and only if Z ⊇ Y ∩W = Y . In particular, Bel(Z |W) holds then if and
only if Z ⊇ W which obviously is the case if and only if Z = W. BW = W follows, all the
conditions in II. of Theorem 3 are satisfied, and thus by Theorem 3 all of our postulates
from above must be true as well. What this shows is that given a probability measure, it
is always possible to define belief simpliciter in a way such that all of our postulates turn
out to be the case. What would be believed absolutely thereby by our agent is maximally
cautious: having such beliefs, ag would believe absolutely just W, and therefore trivially
every absolute belief would have probability 1. Accordingly, he would believe condition-
ally on the respective Ys from above just what is logically entailed by them, that is, all
supersets of Y .

As we pointed out in the introduction, this is not in general a satisfying explication
of belief. But what is more important, we actually find that a much more general pat-
tern is emerging: Let P be given again as before. Now choose any non-empty P-stabler

proposition X, and define conditional belief in all cases in which Y ∩ X , ∅ by: Bel(Z |Y)
if and only if Z ⊇ Y ∩ X. Then BW = X follows again, and all of our postulates hold
by Theorem 3—including B3 (Finite Conjunction) and B4 (General Conjunction)—even
though it might well be that P(X) < 1 and hence even though there might be beliefs whose
propositional contents have a subjective probability of less than 1 as being given by P.
Such beliefs are not maximally cautious anymore—exactly as it is the case for most of the
beliefs of any real-world human agent ag. Of course this does not mean that according to
the current construction all believed propositions would have to be assigned probability
of less than 1: Even if P(X) < 1, there will always be believed propositions that have
a probability of precisely 1—for instance, W—it only follows that there exist believed
propositions that have a probability of less than 1—X itself is an example. And every be-
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lieved proposition must then have a probability that lies somewhere in the closed interval
[P(X), 1], so that P(X) becomes a lower threshold value; furthermore, since X is P-stabler,
P(X) itself is strictly bounded from below by r. It does not follow that if a proposition has
a probability in the interval [P(X), 1], then this just by itself implies that the proposition is
also believed absolutely, since it is not entailed that the proposition is then also a superset
of the P-stabler proposition X that had been chosen initially.

Since P-stabler propositions play such a distinguished role in this, the questions arise:
Do P-stabler sets other W exist at all for many P? More generally: Do non-trivial exist for
many P, that is, such with a probability strictly between 0 and 1? Subsection 3.4 below
will show that the answers are affirmative. And how difficult is it to determine whether a
proposition is a non-empty P-stabler set?

About the last question: At least in the case where W is finite, it turns out not to be
difficult at all: Let A be the power set algebra on W, and let P be defined on A. By
definition, X is P-stabler if and only if for all Y ∈ A with Y ∩ X , ∅ and P(Y) > 0,
P(X|Y) =

P(X∩Y)
P(Y) > r. We have seen already that all sets with probability 1 are P-stabler. So

let us focus just on how to generate all non-empty P-stabler sets X that have a probability
of less than 1. As we observed before, such sets do not contain any subsets of probability
0, which in the present context means that if w ∈ X, P({w}) > 0.

For any given such non-empty X with P(X) < 1, as we have shown before, it follows
that X is P-stabler if and only if for all Y,Z ∈ A, such that Y is a subset of X (and hence, in
the present case, P(Y) > 0) and where Z is a subset of ¬X, it holds that P(Y) > r

1−r · P(Z).
Therefore, in order to check for P-stabilityr in the current context, it suffices to consider
just sets Y and Z which have the required properties and for which P(Y) is minimal and
P(Z) is maximal. In other words, we have for all non-empty X with P(X) < 1:

X is P-stabler if and only if for all w in X it holds that P({w}) >
r

1 − r
· P(W \ X).

In particular, for r = 1
2 , this is:

X is P-stable
1
2 if and only if for all w in X it holds that P({w}) > P(W \ X).

Thus it turns out to be very simply to decide whether a set X is P-stabler and even more so
if it is P-stable

1
2 .

From this it is easy to see that in the present finite context there is also an efficient
procedure that computes all non-empty P-stabler subsets of W. We only give a sketch for
the case r = 1

2 : All sets of probability 1 are P-stabler, so we disregard them. All other non-
empty P-stabler sets do not have singleton subsets of probability 0, so let us also disregard
all worlds whose singletons are zero sets. Assume that after dropping all worlds with zero
probabilistic mass, there are exactly n members of W left, and P({w1}), P({w2}), . . . , P({wn})
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is already in (not necessarily strictly) decreasing order. If P({w1}) > P({w2}) + . . . +

P({wn}) then {w1} is P-stable
1
2 , and one moves on to the list P({w2}), . . . , P({wn}). If

P({w1}) ≤ P({w2}) + . . . + P({wn}) then consider P({w1}), P({w2}): If both of them are
greater than P({w3}) + . . .+ P({wn}) then {w1,w2} is P-stable

1
2 , and one moves on to the list

P({w3}), . . . , P({wn}). If either of them is less than or equal to P({w3}) + . . . + P({wn}) then
consider P({w1}), P({w2}), P({w3}): And so forth, until the final P-stable

1
2 set W has been

generated. This recursive procedure yields precisely all non-empty P-stable
1
2 sets of prob-

ability less than 1 in polynomial time complexity. (The same procedure can be applied in
cases in which W is countably infinite and A is the full power set algebra on W. But then
of course the procedure will not terminate in finite time.)

What Theorem 3 gives us therefore is not just a construction procedure but even, in the
finite case, an efficient construction procedure for a class Bel from any given probability
measure P, so that the two together satisfy all of our postulates. P2 still has not played a
role so far. But Theorem 3 does more: it also shows that whatever our agent ag’s actual
probability measure P and his actual class Bel of conditionally believed pairs of proposi-
tions are like, as long as they satisfy our postulates from above, then it must be possible
to partially reconstruct Bel by means of some P-stabler proposition X as explained before,
where: X is then simply identical to BW ; and by ‘partially’ we mean that it would only be
possible to reconstruct beliefs that are conditional on propositions Y which were consistent
with X = BW . For this is just the left-to-right direction of the theorem. Hence, if we had
any additional means of identifying the very P-stabler proposition X that would give us the
agent’s actual belief class Bel, we could define explicitly the set of all pairs 〈Z,Y〉 in that
class Bel for which Y ∩ X , ∅ holds by means of that proposition X and thus, ultimately,
by the given measure P. Amongst those conditional beliefs, in particular, we would find
all of ag’s absolute beliefs, and therefore the set of absolutely believed propositions could
be defined explicitly in terms of P.

So are we in the position to identify the P-stabler proposition X that gives us ag’s
actual beliefs, simply by being handed only ag’s subjective probability measure? That is
the first open question that we will deal with in the remainder of this section. The other
open question is: What should r be like in our postulate BP1r above?

In order to address these two questions, we need the following additional theorem first:

Theorem 4 Let P : A → [0, 1] such that P1 is satisfied. Let r ≥ 1
2 . Then the following is

the case:

III. For all X, X′ ∈ A: If X and X′ are P-stabler and at least one of P(X) and P(X′) is
less than 1, then either X ⊆ X′ or X′ ⊆ X (or both).

IV. If P also satisfies P2, then there is no infinitely descending chain of sets in A that are
all subsets of some P-stabler set X0 in A with probability less than 1, that is, there is
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no countably infinite sequence

X0 ) X1 ) X2 ) . . .

of sets in A (and hence no infinite sequence of such sets in general), such that X0 is
P-stabler, each Xn is a proper superset of Xn+1 and P(Xn) < 1 for all n ≥ 0.

A fortiori, given P2, there is no infinitely descending chain of P-stabler sets in A
with probability less than 1.

Proof.

• Ad III: First of all, let X and X′ be P-stabler, and P(X) = 1, P(X′) < 1: as observed
before, there is then no non-empty subset Y of X′, such that P(Y) = 0. But if X′∩¬X
were non-empty, then there would have to be such a subset of X′. Therefore, X′∩¬X
is empty, and thus X′ ⊆ X. The case for X and X′ being taken the other way round
is analogous.

So we can concentrate on the remaining logically possible case. Assume for contra-
diction that there are P-stabler members X, X′ of A, such that P(X), P(X′) < 1, and
neither X ⊆ X′ nor X′ ⊆ X. Therefore, both X ∩ ¬X′ and X′ ∩ ¬X are non-empty,
and they must have positive probability since as we showed before P-stabler propo-
sitions with probability less than 1 do not have non-empty subsets with probability
0. We observe that P(X|(X ∩ ¬X′) ∪ ¬X) is greater than r by X being P-stabler,
(X ∩ ¬X′) ∪ ¬X ⊇ (X ∩ ¬X′) having non-empty intersection with X, and the proba-
bility of (X ∩ ¬X′) ∪ ¬X being positive. The same must hold, mutatis mutandis, for
P(X′|(X′ ∩ ¬X) ∪ ¬X′). So we have

P(X|(X ∩ ¬X′) ∪ ¬X) > r ≥
1
2

and
P(X′|(X′ ∩ ¬X) ∪ ¬X′) > r ≥

1
2
,

where r ≥ 1
2 by assumption.

Next we show that
P(X ∩ ¬X′) > P(¬X).

For suppose otherwise, that is P(X ∩¬X′) ≤ P(¬X): Since by P1 and P((X ∩¬X′)∪
¬X) > 0, it must be the case that P(X∩¬X′|(X∩¬X′)∪¬X)+P(¬X|(X∩¬X′)∪¬X) =

1, and since we know from before that the second summand must be strictly less than
1
2 , the first summand has to strictly exceed 1

2 . On the other hand, it also follows that:
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1
2 > P(¬X|(X ∩¬X′)∪¬X) =

P(¬X)
P((X∩¬X′)∪¬X) ≥

P(X∩¬X′)
P((X∩¬X′)∪¬X) = P(X ∩¬X′|(X ∩¬X′)∪

¬X), by our initial supposition; but this contradicts our conclusion from before that
P(X ∩ ¬X′|(X ∩ ¬X′) ∪ ¬X) exceeds 1

2 .

Analogously, it follows also that

P(X′ ∩ ¬X) > P(¬X′).

Finally, from this (and P1) we can derive: P(X ∩ ¬X′) > P(¬X) ≥ P(X′ ∩ ¬X) >
P(¬X′) ≥ P(X ∩ ¬X′), which is a contradiction.

• Ad IV: Assume for contradiction that there is a sequence X0 ) X1 ) X2 ) . . . of sets
in A with probability less 1, with X0 being P-stabler as described. None of these
sets can be empty, or otherwise the subset relationships holding between them could
not be proper. Now let Ai = Xi \ Xi+1 for all i ≥ 0, and let B =

⋃∞
i=0 Ai. Note that

every Ai is non-empty and indeed has positive probability, since as observed before
P-stabler sets with probability less than 1 do not contain subsets with probability 0.
Furthermore, for i , j, Ai ∩ A j = ∅. Since A is a σ-algebra, B is in fact a member
of A. By P2, the sequence (P(Ai)) must converge to 0 for i → ∞, for otherwise
P(B) = P(

⋃∞
i=o Ai) =

∑∞
i=o P(Ai) would not be a real number. Because by assumption

X0 has a probability of less than 1, P(¬X0) is a real number greater that 0. It follows
that the sequence of real numbers P(Ai)

P(Ai)+P(¬X0) =
P(X0∩(Ai∪¬X0))

P(Ai∪¬X0) = P(X0|Ai ∪ ¬X0) also
converges to 0 for i→ ∞, where for every i, (Ai∪¬X0)∩X0 , ∅ and P(Ai∪¬X0) > 0.
But this contradicts X0 being P-stabler.

We may draw two conclusions from this. First of all, in view of IV, P-stabler sets of
probability less than 1 have a certain kind of groundedness property: they do not allow for
infinitely descending sequences of subsets. Secondly, in light of III and IV taken together,
the whole class of P-stabler propositions X in Awith P(X) < 1 is well-ordered with respect
to the subset relation. In particular, if there is a non-empty P-stabler proposition with
probability less than 1 at all, there must also be a least non-empty P-stabler proposition
with probability less than 1. Furthermore, all P-stabler propositions X in A with P(X) < 1
are subsets of all propositions in A of probability 1. And the latter are all P-stabler. If
we only look at non-empty P-stabler propositions with a probability of less than 1, we
find therefore that they constitute a sphere system that satisfies the Limit Assumption (by
well-orderedness) for every proposition in A, in the sense of Lewis (...). Note that P2
(Countable Additivity) was needed in IV. in order to derive the well-foundedness of the
chain of P-stabler propositions of probability less than 1.
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For given P (and given A and W), such that P satisfies P1–2, and for given r ∈ [0, 1),
let us denote the class of all non-empty P-stabler propositions X with P(X) < 1 by: Xr

P.
We know from Theorem 4 that 〈Xr

P,⊆〉 is then a well-order. So by standard set-theoretic
arguments, there is a bijective and order-preserving mapping from Xr

P into a uniquely
determined ordinal βr

P, where βr
P is a well-order of ordinals with respect to the subset

relation which is also the order relation for ordinals; βr
P measures the length of the well-

ordering 〈Xr
P,⊆〉. Hence, Xr

P is identical to a strictly increasing sequence of the form
(Xr

α)α<βr
P
. Xr

0 is then the least non-empty P-stabler proposition in A with probability less
than 1, if there is one at all. If there are none, then βr

P is simply equal to 0 (that is, the
ordinal ∅). In case the union of all Xr

α is W, each world w ∈ W can be assigned a uniquely
determined ordinal rank: the least ordinal α, such that w ∈ Xr

α. So we find that the non-
empty P-stabler propositions X with probability less than 1, if they exist, determine ordinal
rankings of those possible worlds that are members of at least one of them.

Furthermore, by P1–2, Theorem 4, and the fact that no non-empty P-stabler of proba-
bility less than 1 has a non-empty subset of probability zero, each such X inXr

P determines
a number P(X) ∈ (r, 1] and no non-empty P-stabler proposition of probability less than 1
other than X could determine the same number P(X); by P1 the greater the set X with
respect to the subset relation, the greater its probability P(X), that is: for α < α′ < βr

P it
holds that r < P(Xr

α) < P(Xr
α′). It follows that there is also a bijective and order-preserving

mapping from the set of probabilities of the members of Xr
P to the set of ordinals below

βr
P (that is, to the set βr

P). Accordingly, since every ordinal number has a unique successor,
there is a bijective mapping between the set of intervals of the form (P(Xr

α), P(Xr
α+1)) for

α < βr
P and the set βr

P. See Figure 1.
From this we can determine a boundary for the ordinal type of βr

P:

Observation 5 Let P be a countably additive probability measure on a σ-algebra A over
W. Let 1

2 ≤ r < 1.

The ordinal βr
P (see above) is either finite or equal to ω.

(Hence, the class Xr
P of all non-empty P-stabler propositions X with probability less

than 1 is countable.)

Proof. Assume for contradiction that βr
P ≥ ω + 1: then there certainly exist non-empty

P-stabler propositions X with probability less than 1. Now, for Xr
α as defined above, and

for all 0 ≤ n < ω, let Yn = Xr
n+1 \ Xr

n, and let Zn =
⋃

m≥n Yr
m. We know that for all n it

holds that Zn ∈ A, by Theorem 4 and the definition of ‘Xr
α’ it is the case that Zn ⊆ Xr

ω,
by assumption we have P(Xr

ω) < 1, and furthermore P(Zn) < 1 and the sequence (Zn) is
strictly monotonically decreasing. So there is a sequence Xr

ω ) Z0 ) Z1 ) . . . of sets in A
with probability less 1, with Xr

ω being P-stabler, in contradiction with IV of Theorem 4.
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Figure 1: P-stable sets for r ≥ 1
2

We also find that, given P is countably additive, if there are countably infinitely many
non-empty P-stabler propositions X with probability less than 1, then the union of all non-
empty P-stabler propositions X with probability less than 1 is itself P-stabler, non-empty,
and it must have probability 1. For: The countable union

⋃
α<ω Xr

α is a member of our
σ-algebra A. If Y ∩

⋃
α<ω Xr

α , ∅ for Y ∈ A with P(Y) > 0, then there must be an Xr
α with

α < ω, such that Y ∩ Xr
α , ∅. Because Xr

α is P-stabler, it follows that P(Xr
α|Y) > r. But

by P1, P(
⋃

α<ω Xr
α|Y) ≥ P(Xr

α|Y), hence P(
⋃

α<ω Xr
α|Y) > r. So

⋃
α<ω Xr

α is P-stabler (and
non-empty, of course). If P(

⋃
α<ω Xr

α) were less than 1, then βr
P would have to be at least

of the order type ω + 1, which was ruled out by Observation 5. So P(
⋃

α<ω Xr
α) = 1.

Since, as we saw before, no non-empty P-stabler propositions X with probability less
than 1 contains a non-empty zero set as a subset, that union could not do so either. So in the
case in which βr

P is infinite, that union of all non-empty P-stabler propositions with prob-
ability less than 1 would then have to be the least P-stabler proposition with probability
1.

Now back to our remaining open questions. Let us start with: what should we choose
as r?

For the proof of III. in Theorem 4 it was crucial that r ≥ 1
2 . Indeed, one can show by

means of examples that if r < 1
2 then III. can be invalidated: it is possible then that there

are P-stabler members X, X′ of A, such that neither X ⊆ X′ nor X′ ⊆ X. In fact, it is even
possible that there are non-empty P-stabler members X, X′ of A, such that X∩X′ = ∅. This
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Figure 2: P-stable sets for r < 1
2

means: if our agent ag’s probability measure P is held fixed for the moment, and if r < 1
2 ,

then depending on what P is like, our postulates P1–P2, B1–B6, and BP1r might allow for
two classes Bel such that all of these postulates are satisfied for each of them (by Theorem
3) and yet some absolute beliefs according to the one class Bel contradict some absolute
beliefs according to the other class Bel, although both are based on one and the same
subjective probability measure P. It seems advisable then, for the sake of a better theory,
to demand that r ≥ 1

2 , for this will allow us to derive as a law that a situation such as that
cannot occur. Of course, this is far from being a knock-down argument against r < 1

2 , but it
certainly puts a bit of methodological pressure on it. For if P is fixed, then one might think
that our postulates should suffice to rule out systems of qualitative belief that contradict
each other. As van Fraassen (..., p. 350) puts it, the assumed role of full belief is “to form
a single, unequivocally endorsed picture of what things are like”: If r ≥ 1

2 , then while
Theorem 4 does not yet pin down such a “single, unequivocally endorsed picture of what
things are like”, at least the linearity condition III. guarantees the following: given P, if X
and X′ are possible choices of strongest possible believed propositions BW such that P1–
P2, B1–B6, and BP1r are satisfied, that is, by Theorem 3, if X and X′ are both non-empty
P-stabler members of A, then either everything that ag believes absolutely according to
BW = X would also be believed if it were the case that BW = X′ or vice versa. Combining
this with what we said about r < 1

2 initially when we introduced BP1r above—that is, that
if an agent believes a proposition it is quite reasonable for him to have assigned to that
proposition a probability that is greater than the probability of its negation—we do have
a plausible case against choosing r in that way. (But we will see later that r < 1

2 is an
attractive choice if ‘Bel’ is taken to express not belief but some weaker epistemic attitude.)

29



Apart from presupposing r ≥ 1
2 , is it possible to exclude other possible values of ‘r’?

Before we answer this question, the following elementary observation informs us about
some of the consequences that the answer will have:

Observation 6 Let P be a probability measure on an algebra A over W. Let X ∈ A, and
assume that 1

2 ≤ r < s < 1. Then it holds:

• If X is P-stables, X is P-stabler.

Proof. If X is P-stables, then for all Y ∈ A with Y ∩ X , ∅, P(X|Y) > s. But then it also
holds for all Y ∈ A with Y ∩ X , ∅ that P(X|Y) > r, since r < s by assumption, so X is
P-stabler as well.

Hence, the smaller the threshold value r, the more inclusive is the class of P-stabler

sets that it determines. What this tells us, in conjunction with our previous results, is that
if we choose r minimally such that 1

2 ≤ r < 1, that is, if we choose r = 1
2 , then we do not

exclude any of the logically possible options for BW .
Should our agent ag exclude some of them? By determining the value of ‘r’, one lays

down how brave a belief can be maximally, or how cautious a belief needs to be minimally,
in order not to cease to count as a belief. Choosing r = 1

2 is the bravest possible option. At
the same time, beliefs in this sense would not necessarily seem too brave: after all, with
P being given, Bel would still be constrained by BP1

1
2 . In particular, if Y is believed in

this sense, then the subjective probability of Y would have to be greater than 1
2 . And of

course Bel would have to satisfy all of the standard logical properties of belief simpliciter,
as expressed by B1–B6. Indeed, for many purposes this might well be the right choice.
But then again, maybe, for other purposes a more cautious notion of belief is asked for,
which would correspond to choosing a value for ‘r’ that is greater than 1

2 . In many cases,
the value of ‘r’ might be determined by the epistemic and pragmatic context in which our
agent ag is about to reason and act, and different contexts might ask for different values
of ‘r’. In yet other cases, the value of ‘r’ might only be determined vaguely; and so on.
And all of these options would still be covered by what we call pre-theoretically ‘belief’.
We suggest therefore to explicate belief conditional on any given threshold value r ≥ 1

2 ,
without making any particular choice of the value of ‘r’ mandatory.

With that one of our two open questions settled (or rather dismissed), we are in the
position to address the other one: Can we always identify the P-stabler proposition X
that yields our agent’s ag’s actual beliefs, if we are given only ag’s subjective probability
measure P (and a threshold value r)? We need one more postulate before we answer this.

Degrees of belief conditional on a proposition of probability 0 are brought in line with
beliefs conditional on a contradiction in the following manner:

BP2 (Zero Supposition) For all Y ∈ A: If Y ∩ BW , ∅ and P(Y) = 0, then BY = ∅.
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Since P is an absolute probability measure that does not allow for conditionalization on a
proposition of probability 0 at all, it makes sense to restrict belief simpliciter accordingly
in the way that supposing any such proposition of probability 0 amounts to believing a
contradiction. For intuitively there is no reason to think that supposing a proposition qual-
itatively ought to less zero-intolerant—using Jonathan Bennett’s corresponding term (...)
which he applies to indicative conditional whose antecedent has subjective probability 0—
than the quantitative supposition of a proposition. This said, rather than restricting qual-
itative belief in such a way, it would actually be more attractive to liberate quantitative
probability such that the (non-trivial) conditionalization on zero sets becomes possible:
that is, as mentioned before, one might want to use Popper functions P from the start. But
then again the current theory has the advantage of relying just on the much more common
absolute probability measures, and since the theory is not particularly affected by using
BP2 as an additional assumption, we shall stick to conditional belief being constrained as
expressed by BP2. So BP2 is acceptable really just for the sake of simplicity. At least, if
P is regular, that is, every non-empty proposition in A has positive probability, then BP2
is of course superfluous, and for many practically relevant scenarios, Regularity is indeed
usually taken for granted or otherwise W would be redefined by dropping all worlds whose
singleton sets have zero probability.

Here is an important consequence of BP2: Let Y ∈ A be such that P(Y) = 1. Y must
then have non-empty intersection with BW , in light of P1 and P(BW) > 0. Therefore, by
B6, BY = Y ∩ BW ⊆ BW . Assume that Y is a proper subset of BW : then both Y ∩ BW

and ¬Y ∩ BW are non-empty. Since P(Y) = 1, it follows that P(¬Y) = 0 and hence
with BP2: B¬Y = ∅. But since ¬Y has non-empty intersection with BW , BP6 entails that
B¬Y = ¬Y ∩ BW . Therefore, ¬Y ∩ BW = ∅, which contradicts ¬Y ∩ BW being non-empty.
So we find that by BP2 (and the rest of our postulates), every Y ∈ A for which P(Y) = 1
holds is such that BY = BW . This also entails that, since BY ⊆ Y for all such Y by the
definition of ‘BY’, if BW has probability 1 itself, then BW must be the least proposition in
A with probability 1.

Now we are in the position to answer our remaining question from above affirmatively,
by identifying the P-stabler proposition X that yields ag’s actual beliefs if we given just
ag’s subjective probability measure P (and a threshold value r). As explained already in
section 3, apart from satisfying our postulates, the class Bel ought to be so that the resulting
class of absolute beliefs is maximised, as this approximates prima facie belief, and hence,
the right-to-left direction of the original Lockean thesis, to the greatest possible extent.
This corresponds to the following postulate:

BP3 (Maximality)
Among all classes Bel′ of ordered pairs of members of A, such that P and Bel′

jointly satisfy P1–P2, B1–B6, BP1r, BP2, the class Bel is the largest with respect to
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the class of absolute beliefs, that is, pairs of the form 〈Z,W〉, that it determines.

In other words, for all such Bel′: Bel ∩ {〈Z,W〉|Z ∈ A} ⊇ Bel′ ∩ {〈Z,W〉|Z ∈ A}.

The logical character of BP3 is obviously different from the one of our previous postulates,
but then again adding postulates that maximize or minimize classes subject to axiomatic
constraints is of course not unheard of; for example, famously, Hilbert (...) uses this
strategy in his axiomatization of geometry.

The term ‘the largest’ in BP3 is well-defined given the postulates P1–P2, B1–B6, BP1r,
BP2 Theorem 3, or in view of Theorem 4, and by what we pointed out before: Because of
Theorem 3, BW must be a non-empty P-stabler proposition in A in order to satisfy P1, B1–
B6, and BP1r. If there is at least one non-empty P-stabler proposition with probability less
than 1, then we know that amongst all the non-empty P-stabler propositions that are can-
didates for the maximally strong believed proposition BW according to Theorem 3 (which
relied on P2), there must be a least one by Theorem 4: this least P-stabler proposition
Xleast, which then has a probability of less than 1, and which does not have any non-empty
zero sets as subsets and hence satisfies BP2, must therefore determine the largest class of
absolute beliefs once II. in Theorem 3 is turned into a (partial) definition of conditional
belief again, since its class of supersets is the largest one possible. On the other hand,
if there are no non-empty P-stabler propositions with probability less than 1, then by P1,
B1–B6, and BP1r again, P(BW) must be a non-empty P-stabler proposition with probabil-
ity 1, and from our considerations on BP2 above we know that BW must really be the least
set of probability 1 in A.

Since we did not just deal with absolute belief in this section but also with belief con-
ditional on any proposition that is consistent with everything the agent believes absolutely,
one might wonder why we did not demand Bel in BP3 to be largest even with respect to
the class of pairs 〈Z,Y〉 for which Y ∩ BW , ∅. However, let B

′

W , B
′′

W derive from two
distinct candidates Bel′, Bel′′, such that both satisfy all of our postulates apart from BP3:
by Theorem 3, without restriction of generality, B

′

W ( B
′′

W . But then, first of all, the class of
all pairs 〈Z,Y〉 for which Y ∩ B

′

W , ∅ is distinct from the class of all pairs 〈Z,Y〉 for which
Y ∩ B

′′

W , ∅, so it would not be clear with respect to which of two classes our intended
belief class Bel ought to be the largest. Furthermore, there are propositions Z ∈ A (as,
e.g., B

′′

W \ B
′

W), such that Z has non-empty intersection with B
′′

W but not with B
′

W ; while
BP6 would tell us whether Bel′′(.|Z), it would not give us any information whatsoever on
Bel′(.|Z). For these reasons, it will only be in the next section, when we will deal with
conditional beliefs in general, that we will be in the position to strengthen Maximality so
that it extends to all pairs 〈Z,Y〉 for Z,Y ∈ A whatsoever. The resulting class Bel will
again be defined uniquely and the set of absolute beliefs that it determines will correspond
to what is required by BP3 and the rest of the postulates of the present section.
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With BP3 on board, and in light of our previous results, we may conclude from our
postulates that in each and every case our agent’s set BW is nothing but the least non-empty
P-stabler set in A. In other words, our postulates (including BP3) entail the explicit defin-
ability of ag’s absolute beliefs, and indeed the definability of all of his beliefs conditional
on any Y that is consistent with BW , by means of the following corollary to our results
mentioned before:

Corollary 7 Let Bel be a class of ordered pairs of members of a σ-algebra A, let P : A→
[0, 1]. Then the following two statements are equivalent:

V. P and Bel satisfy P1–P2, B1–B6, BP1r, BP2, BP3.

VI. P satisfies P1–P2, there exists a (uniquely determined) least non-empty P-stabler

proposition Xleast in A, and:

– For all Y ∈ A such that Y ∩ Xleast , ∅, for all Z ∈ A:

Bel(Z |Y) if and only if Z ⊇ Y ∩ Xleast.

– In particular: BW = Xleast, and for all Z ∈ A:

Bel(Z |W) if and only if Z ⊇ Xleast.

Where the previous postulate was reminiscent of Hilbert’s axiomatisation of geome-
try, with respect to its open parameter r the last corollary is closer in spirit to something
like Zermelo’s (...) quasi-categoricity result for second-order set theory: according to
Zermelo’s theorem, the cumulative hierarchy of sets is pinned down uniquely conditional
on the specification of an ordinal number of a certain kind. The real number r in BP1r

above takes over the function of such an ordinal number in Zermelo’s theorem, for only
conditional on it the class Bel is specified uniquely.

VI. of Corollary 7 can now be turned into an explicit definition of all relevant condi-
tional beliefs just on the basis of P (and logical and set-theoretic notions). Since in the
next section we will extend this result to arbitrary conditional beliefs, whether or not they
are beliefs conditional on proposition that are consistent with what the agent believes, we
refrain from stating the resulting definition here. However, we do exploit Corollary 7 by
deriving from it a particularly important special case: the concept of absolute belief can
be defined explicitly in terms of P alone.

In order to do so, we will take one final step. We restrict the probability measures P
that we are interested in such that the existence claim in VI. is always satisfied. While our
explicit definition of belief will then just hold conditional on that additional restriction,
since the restriction is not overly demanding in our belief context (though it would be in
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other contexts, say, in measure theory, where one needs measures for integration), we will
still end up with a definition that assigns the right reference to ‘Bel’ for a wide range of
subjective probability measures.

This is thus the restriction on P that we use. Call it the ‘Least Certain Set Restriction’:
There is a member X ∈ A, such that P(X) = 1, and for every Y ∈ A, with P(1) = 0: X ⊆ Y .
That is: There is a least set of probability 1 in A. Equivalently, by P1, there is a member
X ∈ A, such that P(X) = 0, and for every Y ∈ A, with P(Y) = 0: Y ⊆ X. Or in other words:
there is a greatest set of probability 0 in A (which is just the complement of the least set
of probability 1). It is easy to see that the least proposition X of probability 1 cannot have
a non-empty subset Y ∈ A, such that P(Y) = 0: for otherwise, X ∧ ¬Y , which is a member
of A again, would be a set of probability 1 which is a proper subset of X.

Given this Least Certain Set Restriction, there is always a least non-empty P-stabler

proposition in A: Either there is a non-empty P-stabler proposition of probability less than
1, and then there is a least non-empty P-stabler proposition anyway by Theorem 4. Or
all and only non-empty P-stabler propositions have probability 1: but then by the Least
Certain Set Restriction there is a least set with probability 1, and that set is thus the least
non-empty P-stabler proposition in A.

Standard examples of countably additive probability measures for which there are least
sets of probability 1 are:

• All probability measures on finite algebras A, and hence also all probability mea-
sures on algebras A that are based on a finite set W of worlds.

• All countably additive probability measures on the power set algebra of a set W that
is countably infinite: In that case the conjunction of all sets of probability 1 is a
member of the algebra of propositions again, and of course it is then the least set of
probability 1.

• All countably additive probability measures (on a σ-algebra) that are regular: for all
X ∈ A, P(X) = 0 if and only if X = ∅. Here the empty happens to be the least set
of probability 1. Regularity (Strict Coherence) does not enjoy general support, even
though Carnap, Shimony, Stalnaker and others argued for it as a plausible constraint
on subjective probability measures, some of them in view of a special variant of
the Dutch book argument that favours Regularity. (But see Levi... for contrary
arguments.)

• All countably additive probability measures on a countably infinite σ-algebra: The
conjunction of all sets of probability 1 is then a countably infinite conjunction, so it
is a member of the given σ-algebra, and it is again the least set of probability 1.
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These examples demonstrate that a great variety of probability measures satisfy P1, P2,
and our additional constraint, and many—if not most—of the typical philosophical toy
examples of subjective probability measures are covered by these examples.

We end up with the following materially adequate explicit definition of absolute belief
for countably additive probability measures that satisfy this additional constraint of the
Least Certain Set Restriction:

Definition 8 Let P : A → [0, 1] be a countably additive probability measure on a σ-
algebra A, such that there exists a least set of probability 1 in A. Let Xleast be the least
non-empty P-stabler proposition in A (which exists).

Then we say for all Y ∈ A and 1
2 ≤ r < 1:

Y is believed (to a cautiousness degree of r) as being given by P if and only if
Y is a superset of Xleast.

By ‘materially adequate’ we mean here: By Corollary 7, since all of P1, B1–B6, BP3 are
plausibly true, BP1r is true conditional on the choice of r as a cautiousness threshold, and
with P2, BP2 being acceptable for the sake of simplicity, our definition of belief is true if
given a probability measure that satisfies the Least Certain Set Restriction, if the definition
is taken as a descriptive sentence. What is more, since all of P1, B1–B6, BP1r, BP3 are
not just true but even conceptually necessary or analytic of belief, the definition is so as
well (conditional on the presupposition of P2 and BP2).

Note that from the theory above we know that the definiens could actually be replaced
by ‘Y is a superset of some non-empty P-stabler proposition in A’ without thereby chang-
ing the extension of the belief predicate in any way.

If we finally define for any given P : A → [0, 1], Y ∈ A is believed a priori as
being given by P if and only if P(Y) = 1, then we end up with three notions of belief
of increasing strength for all P that satisfy P1, P2, and the Least Certain Set Restriction:
prima facie belief, belief (to a cautiousness degree of r), and belief a priori. For any two
of these concepts, under very special circumstances, that is, for very special P, they can
in fact determine precisely the same beliefs (later we will deal with an example). But
under “normal” circumstances, for realistic P, they will differ extensionally, and belief in
the sense of Definition 8 is the concept that we offer as an explication of our pre-theoretic
notion of qualitative belief.

3.4 Examples
Finally, here are some examples. In all of them, A is simply the full power set algebra of W.
If W contains exactly two worlds, then the situation is trivial insofar as for given 1

2 ≤ r < 1,
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Figure 3: Rankings determined by P

the singleton {w} ⊆ W is the least non-empty P-stabler proposition if P({w}) > r, and W
itself is such otherwise.

So let us turn to the first non-trivial case, that is, where W is a set {w1,w2,w3} of three
elements. For simplicity, let r = 1

2 . Let us view of all probability measures on that set W
as being represented by points in a triangle, such that P({w1}), P({w2}), P({w3}) become
the scalar factors of a convex combination of three given vectors that we associate with the
worlds w1, w2, w3. Then depending on where P is represented in that triangle, P determines
different classes of P-stabler sets. See Figure 3.

The diagram should be read as follows: The vertices of the outer equilateral triangle
represent the probability measures that assign 1 to the singleton set of the respective world
and 0 to all other singleton sets. Each non-vertex on any of the edges of the outer equi-
lateral triangle represents a probability measure that assigns 0 to exactly one of the three
worlds. Each edge of the inner equilateral triangle separates the representatives of prob-
ability measures of the following kinds: probability measures that assign to the singleton
set of some world a probability that is greater than the sum of probabilities that it assigns
to the singleton sets of the two other worlds; and probability measures that assign to the
singleton set of some world a probability that is less than the sum of probabilities that it
assigns to the singleton sets of the two other worlds. For instance, to the left-below of the
left edge of the inner equilateral triangle we find such probability measures represented
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which assign to {w1} a greater probability than to the sum of what they assign to {w2} and
{w3}. Each straight line segment that connects a vertex with the mid-point of the opposite
edge of the outer equilateral triangle separates the representatives of probability measures
of the following kinds: probability measures that assign to the singleton set of one world a
greater probability than to the singleton set of another world; and the probability measures
that do so the other way round. Accordingly, the straight line segment that connects w3

and the mid-point of the edge from w1 to w2 separates the probability measures that assign
more probability to {w1} than to {w2} from those which assign more probability to {w2}

than to {w1}. The center point of both equilateral triangles represents the probability that
is uniform over W = {w1,w2,w3}.

Given all of that, and using the construction procedure for P-stable
1
2 sets that we have

sketched before, it is easy to read off for each point, and hence for the probability measure
that this point represents, all the non-empty P-stable

1
2 sets that are determined by it. The

points on the outer equilateral triangle are special: The probability measure represented
by the vertex for wi has {wi} as its least non-empty P-stable

1
2 set, all supersets of that set

are non-empty and P-stable
1
2 , too, and all of them have probability 1. The probability

measures represented by the inner part of the edge between the vertices that belong to
two worlds wi and w j have either {wi}, or {w j}, or {wi,w j} as their least non-empty P-
stable

1
2 set, depending on whether the representing point is closer to the vertex of wi than

to the vertex of w j, or vice versa, or equidistant of both of them; all supersets of each of
them, respectively, are non-empty and P-stable

1
2 again, and all of them have probability 1.

But the really interesting part of the diagram concerns the interior of the outer equilateral
triangle: Since relative to the probability measures that are represented as such only W
has probability 1 (and hence is P-stable

1
2 ), we can concentrate solely on non-empty P-

stable
1
2 sets with probability less than 1. As we have seen, these form a sphere system of

sets. In the diagram, we denote these sphere systems by enumerating in different lines the
numeral indices of worlds of equal rank in the sphere system, starting with the worlds of
rank 0 which we take to correspond to the entries in the bottom line of each numerical
inscription. For example: Consider the interior of the two smallest rectangular triangles
that are adjacent to w1. Probability measures which are presented by points in the upper
one yield a sphere system of three non-empty P-stable

1
2 sets: {w1}, {w1,w3}, {w1,w2,w3}.

So w1 has rank 0, w3 has rank 1, and w2 has rank 2. Accordingly, probability measures
represented by points in the lower one of the two triangles determine a sphere system of the
three non-empty P-stable

1
2 sets {w1}, {w1,w2}, {w1,w2,w3}. In either of these two cases, the

probability measures in question would yield an absolute belief in every proposition that
includes w1 as a member, by Definition 8. The further one moves geometrically towards
the center point of the two equilateral triangles, the more coarse-grained the orderings
become that are given by the sphere systems of the probability measures thus represented,
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and the smaller the class of absolutely believed propositions gets. Probability measures
which are presented by points on any of the designated straight line segments within the
interior of the outer equilateral triangle require special attention: Probability measures
whose points lie on the boldface part in the diagram are treated separately in the little
graphics left to the triangle; they all lead to the three worlds ranked equally. For three
of the straight line segments we have denoted the sphere systems that they determine
explicitly. The points on the three edges of the inner equilateral triangle—or rather the six
halfs of those (without their midpoints which fall into the boldfaced lines)—yield sphere
systems which coincide with those of the areas to which they are adjacent on the inside,
which is why we did not say anything about them explicitly in Figure 3. Finally, for the
three straight line segments in the interior of the inner equilateral triangle we did not say
anything about “their” sphere systems either because they simply inherit them from the
rectangular triangle areas that they separate.

If r > 1
2 , then a diagram similar to Figure 3 can be drawn, with all of the interior straight

line segments being pushed towards the three vertices to an extent that is proportional to
the magnitude of r.

One might wonder about Figure 3 why sphere systems with one world of rank 0
and two worlds of rank 1 are determined only by points or probability measures in one-
dimensional line segments rather than in two-dimensional areas. In one sense, this is really
just a consequence of dealing with precisely three worlds. If W had four members, then
sphere systems with one world of rank 0, two worlds of rank 1, and hence one world of
rank 2 would be represented in terms of proper areas again. However, what is true in
general: sphere systems with precisely two worlds of maximal rank can only be repre-
sented by points or probability measures of areas of dimension n− 1, if W has n members.
For then the probabilities of these two worlds of maximal rank must be the same, which
means the points of the represented probability measures must lie on one of the distin-
guished hyperplanes that generalise the distinguished line segments in our diagram to the
higher-dimensional case.

For analogous reason, the following is true: The set of points in the diagram which
represent probability measures for which a set of probability 1 is the least P-stable

1
2 set

has Lebesgue measure, that is, geometrical measure, 0. This is because, for any such P:
If there were a unique world whose singleton had least probability, then W without that
world would be P-stable

1
2 ; so there must be at least two worlds whose singleton sets have

the same probability, and the rest follows in the same way as before. We conclude: Almost
all probability measures over a finite algebra have a least P-stable

1
2 set with a probability

less than 1.
Here is another example with 7 worlds and concrete numbers: Let W = {w1, . . . ,w7}

and P({w1}) = 0.54, P({w2}) = 0.342, P({w3}) = 0.058, P({w4}) = 0.03994, P({w5}) =
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0.018, P({w6}) = 0.002, P({w7}) = 0.00006. Then the resulting sphere system of non-
empty P-stable

1
2 sets is: {w1}, {w1,w2}, {w1, . . . ,w4}, {w1, . . . ,w5}, {w1, . . . ,w6}, {w1, . . . ,w7}.

However, if we switch e.g. to r = 3
4 , then the corresponding sphere system of non-empty P-

stable
3
4 sets is: {w1,w2}, {w1, . . . ,w4}, {w1, . . . ,w5}, {w1, . . . ,w6}, {w1, . . . ,w7}. In line with

Observation 6, the latter sphere system is a subclass of the former one. With a cautious-
ness degree of r = 1

2 , the proposition {w1} is the strongest one that is believed as being
given by P, while relative to a cautiousness degree of r = 3

4 , the proposition {w1,w2} is the
strongest one that is believed as being given by the same probability measure, as entailed
by Definition 8.

Finally, a simple infinite example: Let W = {w1,w2,w3, . . .} be countably infinite,
let A be the power set algebra on W, and let P be the unique regular countably additive
probability measure that is given by: P({w1}) = 1

2 + 1
4 , P({w2}) = 1

8 + 1
16 , P({w3}) =

1
32 + 1

64 , . . .. Then the resulting non-empty P-stable
1
2 sets are:

{w1}, {w1,w2}, {w1,w2,w3}, . . . , {w1,w2, . . . ,wn}, . . . and W.

It is also easy to see that every finite sphere system can be realized in this way in terms
of P-stable

1
2 propositions of probability less than 1, and hence every AGM-style belief

revision operator on a logically finite language. So there are really lots of different types
of sphere systems of P-stable

1
2 propositions.

Once we have covered conditional belief in full in the next section, we will return
to some of these examples and analyse them in terms of conditional belief accordingly.
Moreover, eventually, we will give some of these examples an intended interpretation by
assuming that the possible worlds in question satisfy particular statements.

4 The Reduction of Belief II: Conditional Beliefs
Now we finally generalise the postulates of the previous section to the case of beliefs that
are conditional on propositions which may even be inconsistent with what our agent ag
believes absolutely.

P1–P2 remain unchanged, of course. Our generalisations of B1–B5 simply result from
dropping the antecedent ‘¬Bel(¬X|W)’ condition that they contained:

B1∗ (Reflexivity) Bel(X|X).

B2∗ (One Premise Logical Closure)
For all Y,Z ∈ A: if Bel(Y |X) and Y ⊆ Z, then Bel(Z|X).

B3∗ (Finite Conjunction)
For all Y,Z ∈ A: if Bel(Y |X) and Bel(Z|X), then Bel(Y ∩ Z|X).
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B4∗ (General Conjunction)
For Y = {Y ∈ A | Bel(Y |X)},

⋂
Y is a member of A, and Bel(

⋂
Y|X).

The Consistency postulate stays the same:

B5∗ (Consistency) ¬Bel(∅|W).

The same arguments as before apply: B4∗ now entails that for every X ∈ A there is
a least set Y , such that Bel(Y |X), which by B1∗ must be a subset of X. We denote this
proposition again by: BX. This is consistent with the corresponding notations that we used
in the last section. Once again, we have

Bel(Y |X) if and only if Y ⊇ BX if and only if Bel(Y |BX).

The following postulate extends our previous Expansion postulate B6 to all cases of
conditional belief whatsoever. It corresponds to the standard AGM postulates K*7 and
K*8 for belief revision if translated again into the current context:

B6∗ (Revision)
For all X,Y ∈ A such that Y ∩ BX , ∅:
For all Z ∈ A, Bel(Z|X ∩ Y) if and only if Z ⊇ Y ∩ BX.

Equivalently:

B6∗ (Revision)
For all X,Y ∈ A, such that for all Z ∈ A, if Bel(Z|X) then Y ∩ Z , ∅:
For all Z ∈ A, Bel(Z|X ∩ Y) if and only if Z ⊇ Y ∩ BX.

That is: if the proposition Y is consistent with BX—equivalently: Y is consistent with ev-
erything ag believes conditional on X—then ag believes Z conditional on the conjunction
of Y and X if and only if Z is logically entailed by the conjunction of Y with BX. Just as
the original B6 postulate it can be justified in terms of standard possible worlds accounts
of similarity orderings (as for David Lewis’ conditional logic) or plausibility rankings (as
in belief revision and nonmonotonic reasoning): say what a conditional belief expresses is
again that the most plausible antecedent-worlds are consequent-worlds; then if some of the
most plausible X-worlds are Y-worlds, these worlds must be precisely the most plausible
X ∩ Y-worlds, hence the most plausible X ∩ Y-worlds are Z-worlds if and only if all the
most plausible worlds X-worlds that are Y-worlds are Z-worlds. Analogously to the last
section, this is thus yet another equivalent statement of B6∗:

B6∗ (Revision) For all X,Y ∈ A such that Y ∩ BX , ∅: BX∩Y = Y ∩ BX.
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The generalised version BP1r∗ of our previous BP1r postulate arises simply by drop-
ping the ‘Y ∩ BW , ∅’ restriction again. So we have:

BP1r∗ (Likeliness) For all Y ∈ A with P(Y) > 0:
For all Z ∈ A, if Bel(Z|Y), then P(Z|Y) > r.

Finally, we generalise BP2 in the same way, and additionally we strengthen it by as-
suming also the converse of the resulting generalisation:

BP2∗ (Zero Supposition) For all Y ∈ A: P(Y) = 0 if and only if BY = ∅.

The reason why the original BP2 principle did not include the corresponding right-to-left
direction of BP1r∗ with the qualification ‘Y ∩ BW , ∅—that is, why we did not postulate:
If BY = ∅ and Y ∩ BW , ∅, then P(Y) = 0—is that the resulting principle would have
been empty: if Y ∩ BW , ∅, then by BP6 the proposition BY would have to be non-empty,
in contradiction with BY = ∅, so the antecedent of that direction would always have to be
false.

We have seen in the last section that BP2, and hence BP2∗, entails (given the other
postulates): all Y ∈ A for which P(Y) = 1 holds are such that BY = BW , and BW is the least
proposition in A of probability 1. The additional strengthening has it that the propositions
the supposition of which leads to inconsistency qualitatively are precisely those for which
conditionalization is undefined quantitatively. As mentioned before, if we had started with
primitive conditional probability measures, which do allow for conditionalization on zero
sets, then BP2∗ should not be taken for granted, but in the context of absolute probability
measures BP2∗ is natural to postulate in order to treat qualitative and quantitative supposi-
tion similarly.

We are now ready to prove the main result of our theory on conditional beliefs in gen-
eral. The “soundness” direction of the following representation theorem incorporates the
corrsponding direction of Grove’s (...) representation theorem for belief revision operators
in terms of sphere systems. However, since all the propositions or sets of worlds that we
are about to consider are required to be members of our given algebraA, it is not possible to
simply translate the more difficult “completeness” part of Grove’s representation theorem
in ... into our present context and apply it, since his construction of spheres involves taking
unions of propositions that might not be members of our σ-algebra A anymore. That is
why the proof of that part of the theorem differs from Grove’s proof quite significantly.

Here is the theorem:

Theorem 9 Let Bel be a class of ordered pairs of members of a σ-algebra A, and let
P : A→ [0, 1]. Then the following two statements are equivalent:

I. P and Bel satisfy P1–P2, B1∗–B6∗, BP1r∗, BP2∗.
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II. P satisfies P1–P2, A contains a least set of probability 1, and there is a (uniquely de-
termined) class X of non-empty P-stabler propositions in A, such that (i) X includes
the least set of probability 1 in A, (ii) all other members of X have probability less
than 1, and:

– For all Y ∈ A with P(Y) > 0: if, with respect to the subset relation, X is the
least member ofX for which Y∩X , ∅ holds (which exists), then for all Z ∈ A:

Bel(Z |Y) if and only if Z ⊇ Y ∩ X.

Additionally, for all Y ∈ A with P(Y) = 0, for all Z ∈ A: Bel(Z|Y).

Proof. The right-to-left direction is like the one in Theorem 3, except that one shows first
that the equivalence for Bel entails for all Y ∈ A with P(Y) > 0 that BY = Y ∩ X, where
X is the least member of X for which Y ∩ X , ∅. The existence of that least member
follows from Theorem 4, from the fact that every non-empty P-stabler propositions with
probability less than 1 is a subset of the least set in A with probability 1, and from the
fact that the least set of probability 1 in A must have non-empty intersection with every
proposition of positive probability. The proof of B6∗ is straight forward (and analogous to
Groves Theorem in...), as is the proof of BP2∗.

So we can concentrate on the left-to-right direction: P1–P2 are satisfied by assumption.
Now we define X by transfinite recursion as the class of all sets Xα of the following kind:
For all ordinals α < βr

P + 1 (the successor ordinal of the ordinal that was defined in the last
section), let

Xα =
⋃
γ<α

[Xγ] ∪ BW\
⋃
γ<α Xγ .

(So, in particular, X0 = BW .)
At first we make a couple of observations about this class X:
(a) Every member of X is also a member of A. By transfinite induction. For assume

that all Xγ are in A for γ < α < βr
P + 1: by the results of the last section, βr

P is countable
and so are its predecessors, and therefore by A being a σ-algebra,

⋃
γ<α Xγ ∈ A; thus

W \
⋃

γ<α Xγ ∈ A, and therefore BW\
⋃
γ<α Xγ ∈ A; hence, Xα ∈ A.

(b) For all γ < α < βr
P + 1: Xγ ⊆ Xα. This follows directly from the definition of the

members of X. From this it also follows that for all α + 1 < βr
P + 1: Xα+1 = Xα ∪ BW\Xα .

(c) For all α < βr
P + 1: Xα =

⋃
γ<α BW\

⋃
δ<γ Xδ ∪ BW\

⋃
γ<α Xγ . By transfinite induction. As-

sume that for all γ < α: Xγ =
⋃

δ<γ BW\
⋃
η<δ Xη ∪ BW\

⋃
δ<γ Xδ . Substituting this for the first oc-

currence of ‘Xγ’ in the original definition of Xα, we conclude: Xα =
⋃

γ<α[
⋃

δ<γ BW\
⋃
η<δ Xη∪

BW\
⋃
δ<γ Xδ] ∪ BW\

⋃
γ<α Xγ . But this can be simplified to: Xα =

⋃
γ<α[BW\

⋃
δ<γ Xδ] ∪ BW\

⋃
γ<α Xγ ,

which was to be shown.
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(d) For all α < βr
P + 1: For all Y ∈ A with Y ∩ Xα , ∅, it holds that BY ⊆ Xα. This is

because: If Y ∩ Xα , ∅, then by (c) there is a γ ≤ α, such that Y ∩ BW\
⋃
δ<γ Xδ , ∅, and

by the well-orderedness of the ordinals, there must be a least such ordinal γ. Note that for
that least ordinal γ it holds that Y ∩

⋃
δ<γ Xδ = ∅, and hence Y ⊆ W \

⋃
δ<γ Xδ. By B6∗,

B[W\
⋃
δ<γ Xδ]∩Y = Y ∩ BW\

⋃
δ<γ Xδ , which is equivalent to BY = Y ∩ BW\

⋃
δ<γ Xδ by what we have

shown before. Finally, because Y ∩ BW\
⋃
δ<γ Xδ ⊆ BW\

⋃
δ<γ Xδ ⊆ Xα by (c) again, it follows

that BY ⊆ Xα.
(e) For all α < βr

P + 1: Xα is P-stabler. This can be derived from: For all Y ∈ A, if
Y ∩ Xα , ∅ and P(Y) > 0, then by (d), BY ⊆ Xα, and hence by the definition of ‘BY’:
Bel(Xα|Y). But this implies by BP1r∗ that P(Xα|Y) > r; therefore, Xα is P-stabler.

(f) There exists a least proposition X ∈ A with probability 1, X ∈ X, and X is the only
member of X with probability 1.
Proof: First of all, either there P-stabler propositions in A with probability less than 1 or
not: If so, then as shown in the last section their (countable) union is the least proposition
X ∈ A with probability 1; if not, then as observed before, BP2∗ entails with the other
postulates that BW is the least X ∈ A of probability 1. In either case, there exists the least
proposition X ∈ A with probability 1.

Secondly, we turn to the proof of: X ∈ X, and X is the only member of X with
probability 1. Assume for contradiction that all sets Xα with α < βr

P + 1 have probability
less than 1. Since they are all P-stabler by (e), it follows from (b) that there is a well-
ordered chain of (not necessarily strictly) increasing P-stabler sets of probability less than
1, where the length of that chain is βr

P + 1. That chain could not be a chain of strictly
increasing P-stabler sets of probability less than 1, by Observation 5 and by the definition
of βr

P which is the ordinal type of all P-stabler sets of probability less than 1 whatsoever. So
there must be α < α′ < βr

P +1, such that Xα = Xα+1. Hence, by (b) again: Xα = Xα∪BW\Xα .
Because P(Xα) < 1, it holds that P(W \ Xα) > 0 by P1, so by the right-to-left direction of
BP2∗ it follows that BW\Xα , ∅. Since BW\Xα ⊆ W \ Xα by the definition of ‘BW\Xα’ and
B1∗–B4∗, a contradiction follows. Hence, we have that there must be at least one set Xα

with α < βr
P + 1 that has probability 1. Since βr

P + 1 is an ordinal, there must be a least
α < βr

P + 1, such that P(Xα) = 1. By Observation 5, either βr
P is finite or equal to ω. We

will deal with these cases separately:
In the former case, there is a γ < βr

P + 1, such that α = γ + 1, and, by (b) again:
Xα = Xγ ∪ BW\Xγ . If there is a set Y ∈ A, such that P(Y) = 1 and Y is not a superset of
Xα, then Xα ∩ ¬Y is non-empty, where Xα ∩ ¬Y is a zero set since ¬Y is. Because Xγ is
P-stabler with a probability of less than 1, it cannot contain any non-empty zero set, as
shown in the previous section. So Xγ ∩ ¬Y is empty, and therefore BW\Xγ ∩ ¬Y must be
non-empty. This implies by B6∗: B[W\Xγ]∩¬Y = ¬Y ∩ BW\Xγ . But [W \ Xγ] ∩ ¬Y is a set
of probability 0 since ¬Y is, which means by BP2∗ that B[W\Xγ]∩¬Y is empty, which is a
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contradiction. Therefore, all Y ∈ A with P(Y) = 1 are supersets of Xα, and so Xα is the
least set in A of probability 1. Furthermore, if α < βr

P, then Xα+1 ∈ X, and by (b) again:
Xα+1 = Xα ∪ BW\Xα . But W \ Xα has probability 0 then, hence by BP2∗ it must hold that
BW\Xα is empty, and so Xα+1 = Xα. Thus, Xα, the least set in A of probability 1, remains to
be the only set in X with probability 1.

In the other case, where βr
P = ω, if α < ω, then by the same reasoning as before,

Xα, the least set in A of probability 1, remains to be the only set in X with probability
1. Finally, if α = ω, then all sets Xγ with γ < ω must be P-stabler sets with probability
less than 1. If these sets are not pairwise distinct, they must be equal from some ordinal
less than ω by (b), hence there is such an Xγ, such that Xα = Xγ ∪ BW\Xγ , which entails
just as before that Xα is the least set in A of probability 1 and the only set in X that has
probability 1. On the other hand, if the sets Xγ with γ < ω are pairwise distinct, then by
Observation 5, their union

⋃
γ<ω Xγ must be equal to the union of all P-stabler sets with

probability less than 1. And as shown immediately after Observation 5, that union is the
least set in A of probability 1. By definition, Xα = Xω =

⋃
γ<ω[Xγ] ∪ BW\

⋃
γ<ω Xγ , and since

W \
⋃

γ<ω Xγ is then a zero set, BW\
⋃
γ<ω Xγ is empty as follows from BP2∗, and therefore Xα

is again identical to the least set in A with probability 1, and it is the only set in X with
probability 1 since α = ω = βr

P is the last ordinal less than βr
P + 1 in the present case. This

concludes (f): the least set X with probability 1 is a member of A and indeed of X, and X
is the only member of X with probability 1.

Now let Y ∈ A with P(Y) > 0: By P1 and (f), there is a member of X with which Y has
non-empty intersection. Let α < βr

P + 1 be least, such that Y ∩ Xα , ∅: because of (b),
Xα is then with respect to the subset relation the least member of X for which this holds.
We now show that BY = Y ∩ Xα, from which the relevant part of II. follows by means of
the definition of BY and B1∗–B4∗. From (d) we know already that BY ⊆ Xα and hence with
B1∗–B4∗, BY ⊆ Y ∩ Xα. Now consider Y ∩ Xα again, which by assumption is non-empty:
By (c), Xα =

⋃
γ<α BW\

⋃
δ<γ Xδ ∪ BW\

⋃
γ<α Xγ . If Y had non-empty intersection with any set of

the form BW\
⋃
δ<γ Xδ for γ < α, then Y ∩ Xγ , ∅, by (c) again, in contradiction with the way

in which α was defined before. Therefore, Y ∩Xα = Y ∩ BW\
⋃
γ<α Xγ , ∅. The latter implies

with B6∗ that B[W\
⋃
γ<α Xγ]∩Y = Y ∩ BW\

⋃
γ<α Xγ . As in the proof of (d), Y ∩

⋃
γ<α Xγ is empty,

and thus [W \
⋃

γ<α Xγ] ∩ Y = Y . So we have BY = Y ∩ BW\
⋃
γ<α Xγ = Y ∩ Xα and we are

done.
Finally, consider Y ∈ A with P(Y) = 0: By BP2∗, BY = ∅, from which the remaining

part of II. follows by means of the definition of BY and B1∗–B4∗ again.
Uniqueness follows from: if there are two such classesX,X′ with the stated properties,

then they must differ with respect to at least one P-stabler sets with probability less than 1.
Without restriction of generality, let Xα be the first member of X that is not also a member
of X′: since Xα is P-stabler and has probability less than 1, it follows just as before that
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α is finite. If α = 0, then BW could not be the same as being given by X and X′, which
would be a contradiction. If α is a successor ordinal γ + 1, then BW\Xγ = Xα \ Xγ could not
be the same as being given by X and X′, which would again be a contradiction.

Theorem 9 generalises Theorem 3 of the last section to conditional beliefs in general—
Theorem 3 simply dealt with the special case of a sphere system of just one P-stabler set.

It remains to generalise BP3 in the now obvious way:

BP3∗ (Maximality)
Among all classes Bel′ of ordered pairs of members of A, such that P and Bel′ jointly
satisfy P1–P2, B1∗–B6∗, BP1r∗, BP2∗, the class Bel is the largest one.

In other words, for all such Bel′: Bel ⊇ Bel′.

Using this, we can derive:

Corollary 10 Let Bel be a class of ordered pairs of members of a σ-algebra A, let P :
A→ [0, 1]. Then the following two statements are equivalent:

III. P and Bel satisfy P1–P2, B1∗–B6∗, BP1r∗, BP2∗, BP3∗.

IV. P satisfies P1–P2, A contains a least set of probability 1, and if X is such that (and
indeed is uniquely determined by) (i) X includes the least set of probability 1 in
A, (ii) and all the other members of X are precisely all the non-empty P-stabler

propositions in A which have probability less than 1, then:

– For all Y ∈ A with P(Y) > 0: if, with respect to the subset relation, X is the
least member ofX for which Y∩X , ∅ holds (which exists), then for all Z ∈ A:

Bel(Z |Y) if and only if Z ⊇ Y ∩ X.

Additionally, for all Y ∈ A with P(Y) = 0, for all Z ∈ A: Bel(Z|Y).

This follows immediately from Theorem 9, except that we have to show: adding ‘BP3∗’ to
I. of Theorem 9 is equivalent to determining X as in IV. of Corollary 10.

But that is a consequence of the following independent observation:

Observation 11 Let P be a countably additive probability measure on a σ-algebra A over
W. Assume that A contains a least set of probability 1, let X,X′ be classes of non-empty
P-stabler propositions for which (i) and (ii) of II. of Theorem 9 is satisfied. Let Bel, Bel′

be defined in terms of X,X′, respectively, as stated in II. of Theorem 9. Then it holds:
If X ⊆ X′, then for all Y,Z ∈ A: If Bel(Z|Y) then Bel′(Z|Y).
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Proof. Let X ⊆ X′. For Y with P(Y) = 0 there is nothing to show. So let Y be such that
P(Y) > 0: If Bel(Z|Y), then by definition Z ⊇ Y ∩ X with X being the least member of X
for which Y ∩X , ∅ holds. But since X is also a member of X′, the least member X′ of X′

for which Y ∩ X′ , ∅ holds must then be a subset of X; hence, Z ⊇ Y ∩ X′ and therefore
Bel′(Z|Y).

From this it follows that choosing X to be the greatest class of all non-empty P-stabler

propositions in A such that (i) and (ii) of II. of Theorem 9 is satisfied must lead to the
maximal class Bel of pairs of propositions in A, if Bel is given as in in II. of Theorem
9. But that is exactly what we did in IV. of Corollary 10. Note that unlike the case of
absolute belief, where where we were only interested in the least P-stabler proposition
BW , the additional Least Certain Set Restriction on P is even entailed by our postulates on
subjective probability and belief. So when we finally turn now IV. of Corollary 10 into an
explicit definition of belief on the basis of P, but this time of conditional belief in general,
then doing so “just” for probability measures for which there exist least propositions of
probability 1 is not an actual constraint (given our postulates are plausible). After all, only
such probability measures can be combined with any class Bel at all, such that all of our
postulates are satisfied jointly by them.

This is thus the intended materially adequate explicit definition of conditional belief:

Definition 12 Let P : A → [0, 1] be a countably additive probability measure on a σ-
algebra A, such that there exists a least set of probability 1 in A. Let X be uniquely
determined by: (i) X includes the least set of probability 1 in A, (ii) and all the other
members of X are precisely all the non-empty P-stabler propositions in A which have
probability less than 1.

Then we say for all Y,Z ∈ A and 1
2 ≤ r < 1:

Z is believed conditional on Y (to a cautiousness degree of r) as being given by P if and
only if either (i) P(Y) > 0 and Z is a superset of the intersection of Y with the least non-
empty P-stabler proposition Xleast in A that has a non-empty intersection with Y (which
exists), or (ii) P(Y) = 0.

By ‘materially adequate’ we mean the same as at the end of the previous section: the
definition is a true, and even conceptually true, sentence, if taken as a descriptive statement
and if given our postulates.

In analogy with the case of absolute beliefs, we could now define notions of prima facie
conditional belief and conditional belief a priori again, and again we would end up with
three notions of belief of increasing strength: prima facie conditional belief, conditional
belief (to a cautiousness degree of r), and conditional belief a priori. Of course, condi-
tional belief in the sense of Definition 12 is the concept that we propose as an explication
of our pre-theoretic notion of conditional belief simpliciter.
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[APPLICATIONS AND EXTENSIONS LEFT OUT.]
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