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Probability and Reliability

1. Introduction

The results of the preceding chapters make no reference whatever to probab
Since probability and induction have long been viewed as inscparable,
interesting to relate the probabilistic perspective to the purely logical point
view of the preceding chapters. Of particular interest are the limiting reliabil
claims made for probabilistic methods.! For example, it is often said tha
process of updating probabilities by Bayes’ theorem will almost surely appr

the truth in the limit;

The person learns by experience. The purpose of the present section is to
explore with a moderate degree of generality how he typically becomes almost
certain of the truth, when the amount of his experience increases indefinite!
... It is to be expected intuitively, and will soon be shown, that under gener
conditions the person is very sure that after making the observation he will
attach a probability of nearly 1 to whichever element of the partition actu

obtains.?

In light of the many negative results in the preceding chapters, such cl
sound too good to be true. Are they? Or do they illustrate the triump
modern, probabilistic thinking over skepticism? The aim of this chapte

address these important epistemological questions.

' I am indebied to my colleague Teddy Seidenfeld for many useful discussion

references concerning the material in this chapter.
2 Savage (1972): 46.
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2. Conditionalization

Let Bo denote the closure of the open sets of A’ under complementation and
countable union. Thus, Bo contains the union of the complexity classes Z%. Let

be a real-valued function taking elements of Be as arguments. P is a
probability measure on Bo (or, 1 will say, on A)) just in case

(1) for each S € Bo, P(5) = 0,
(2) P(N) =1 and
(3 It 5y, Sy.....8, is a finite sequence of pairwise disjoint elements of

Bo, then P(O 5,-) = i P(S).

i=1

Whatever probability is, it is supposed to behave sort of like mud spread
out on a table marked with areas representing subsects of A/. The first two
xioms say that we start out with a unit block of mud. The third axiom says
hat the total mud spread over a finite number of disjoint regions can be found
yy summing the mud on each region. In other words, the probability of a whole
egion is the sum of the probabilities of the parts of the region when the region
g divided into only finitely many parts. This property is called finite additivity
Fig. 13.1).

. Countable additivity requires, further, that if an event is divided into a
countable infinity of nonoverlapping parts, the probability of the whole is
till the sum of the probabilities of its parts (Fig. 13.2). In other words,
' S02 51500550 .18 an w-sequence of pairwise disjoint elements of Bo,
hen

P( U 5,-) =Y P(S).

iemw ico

ally

Figure 13.1
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countably additive

is an immediate consequence of this definition that: -

Proposition 13,2 (Bayes’ theorem)

If P(T) > Othen P(H, E) = ﬂ}[—);()%@ and hence

P(H ~ E) = P(H)P(E, H).

Figure 13.2
st i i o Proof: Exercise 13.2. B

P is a countably additive probability measure just in case P is a probe}bﬂxt f
measure that is also countably additive. When a pro.bablhty measure is. L
countably additive, we say that it is merely finitely additive. Countable additivi
can be expressed in a different form. Define (Fig. 13.3):

According to a popular conception of learning from experience, the scientist
starts out with some initial probability measure F, and then updates this
measure in response to new data by defining P,(#), the probability of # at
time n, to be Py(7{, ‘E), the conditional probability of # given the total evidence
£ encountered so far. The process of updating one’s current degrees of belief
by replacing them with probabilities conditional on ail the evidence gathered so
at is known as temporal conditionalization, Bayes” theorem is often used to
ompute Po(H, ) because a statistical model typically provides an explicit
ormula for Fo(‘E, H) and the Bayesian statistician also concocts an explicit
ormuia for P(#). Thus conditionalization is sometimes referred to as Bayesian
pdating. When Bayes’ theorem is used in temporal conditioning, P(H, F) is
called the posterior probability of 7 given %, P(H }is called the prior probability
of %, and P(E, H) is called the likelihood of H given ‘L.

Since I have not defined the value of P(H, E) when P(T) = 0, one might
_suppose that Bayesian updating goes into a coma whenever such evidence is
_encountered (Fig. 13.4). In fact, it is possible to extend conditional probability

P is continuous < for each downward nested sequence

Q.cQ,S...€Q;<...0of Borel sets,

P( N Qf) = LimP(Q,).

few

Proposition 13.1

If P is a finitely additive probability measure on N then P is countab
additive < P is continuous.

Proof: BExercise 13.1.

Figure 13.3

Figure 13.4
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Proposition 13.3

Let B be a conditionalization method.

h 1
i [approac es][ ]on & then so does oy
stabilizesto i}

to such cases.®> Having noted this possibility, 1 will sidestep the co:
cations it raises by considering only conditionalizers that assign nonz
prior probabilities to all relevant hypotheses and to all finite data sequen
logically consistent with background knowledge, so that & entails that no fix

data sequence of probability zero will ever be seen. Accordingly, define:

t follows immediately that:

Corollary 13.4
B is a conditionalizer for H, C, K <> there is a probability measur verifiable .

on N such that - If his refutablec gradually given K by a conditionalizer then

(a) P(K) =1, decidable,.
(b) for all e c w*, if [e]l K 5 & then P(e) > 0, and (K]
(C) ﬁ(hs e) = P(Cha [e]) Ch e H{_‘](:lg )
. B
Conditjionalizers produce real-valued probabilities and hence are not assess ALK
ment methods in the sense defined in chapter 3, since assessment methox verifiable,.

were defined to conjecture only rationals. Nonetheless, every condition
tion method £ induces a rational-valued assessment method o, “wit
the same limiting performance, as follows, First, digitize the [0, 1] %nte
by two rational-valued sequences that start at the middle of the intery

If his refutable. | in the limit given K by a conditionalizer then
decidable -

B

and converge to its end points, treating the end points as special Z[K]3
(Fig. 13.5): Coel| g1z |. -

AIK13

27 wherei = the leastn > 0

suchthat2 ®"D <y <277 FfOo<r<2 ' Conditionalization, therefore, cannot ¢vade the negative results of the pre-
' ceding chapters. Whatever conditionalization does, it cannot do the impossibie.

It remains to ask whether conditionalization does what is possible. In fact,
conditionalization can fail to solve inductive problems that are fairly trivial
from the point of view of the preceding chapters. It follows from Bayes’ theorem
that if P(C,) = 0, then for all evidence e such that P(e) > 0, P(C,,e) = 0. So
if the prior probability of (), is 0, then a conditionalizer employing this measure
will fail to approach the truth when C, is true. But this sort of trivial failure can
arise even when P((,) > 0, for example if P(C,,e) =0 for some e logically
consistent with C, and K. Nobody would be surprised to see conditionalization
fail when the underlying measure “closes the door” forever on a hypothesis by
assigning it probability zero before it is refuted or that assigns unit probability
to a hypothesis before it is logically entailed by the data and background
knowledge. It would be more interesting, however, to find a probability measure

p#) = { 1 — 27" wherei = the leastn > 0
suchthat 1 =27 "<r<1—27®*0 27 <r <1

r, ifr=0o0rr=
Then o, =y f is a rational-valued assessment method. It is casy to sec

3 There are applications in which it is both natural and desirable to suppose th
P(H, ) is uniquely determined, even though P(E) = 0. For cxamp.le,.spppose that f
cach € R, P, is a probability measure on Al Then Bayesian statisticians usually 1_ t
P(S, {0}) = Py(S) even though P({0}) = 0 in the typical case in which P is continuou
The general theory of which this example is an instance is presented, for example; it
Billingsly (1986).
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P that always “keeps the door open” such that conditionalization Still'f_ ;

converge to the truth. Accordingly, define:

P is an open door probability measure for K, C, H
< for each he H, e € w* such that [e] N K # &,

(i) P(e) > 0 and

i) P(Cr &) =0 [e]n K <G, and
(iii) P(Cy, @) =1 <= [e]lnK =, his refutable . with certainty given 2° by the automaton depicted in Figure
13.7, which establishes (b).

Let xe{0,1}, ee2* Define [x, l={eeg=x}. If Pis a probability
measure, let us abbreviate P([x, Ih(e)], Le]) as the more readable expression
P(x, e) and abbreviate P(le]) as P(e). Now define measures P, P_ as follows:

But even when the measure P is assumed to be an open door measure;

possible for a conditionalizer to remain stuck for etermti/l 01;11 a Villtle iesisst?:
is i ion is true, even when the hypothesis

hen the hypothesis in question is 3 s !

:‘;futable with certainty by a finite state automaton that does not conqu e

Indeed, the following example has the prope.r.ty th:clt t.hore are uncgu ably.

many ;)ossible data streams on which conditionalization never updats

0  ifle*x]cg,
initial probability on the hypothesis for eternity.

Pine)={1 ¥le*1—x[]c,
0.5  otherwise.
P_(x,e) =0.5.

Proposition 13.5

There exists a C, < 2% and a countably additive probability
measure P on 2° such that

The function |1 - x| simply exchanges Os and 1s. Intuitively,
(@) P is an open door measure for 2°, C, {h},

P_ thinks the next
datum is generated by a fair coin toss, while P, thinks the next datum is
generated by a fair coin toss if both outcomes are consistent with %; else the
outcome logically excluded by h occurs with probability 0 and the other
‘outcome occurs with probability 1. P, (e), P (e) are extended, by induction, to
‘each e € 2%, as follows:

. , ven 2®
(b) hisrefutable . with certainty (by a five-state automaton) given

H

(c) for uncountably many &€ C,, for each n, P(C,, &|n) = P(() =

Proof: Let h be the hypothesis that there will never appear two (ilonse(:lol:we
26108 -with the first zero appearing at an cven position. In other w

Co=14e:Vn,85, =0 = 85,4, # 0}. The shaded fans in Figure 13.6 are all
"= . » ©2n T il

PO)=P (0)=1.
included in the complement of C,.

Pi{e*x) = P, (e)P, (x, e).

P_(e*x) = P_(e) P_(x, e).
5 S N
‘§ Y Y Figure 13.8 illustrates the values of P, on data sequences of length <35,
! \ Observe that,
z P+(€) = 13
lh(ey=k

. and similarly for P_. Tt then follows by standard extension techniques* that P,
‘and P. have unique, countably additive extensions to all Borel events on 29,
s that for each Borel set 5 = 2% P,(5) and P_(S) are defined. The following
two lemmas solve for the priors assigned to (, by P, and P.

» respectively,
Figure 13.6 * Halmos (1974): 212, theorem A,
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Lemma 13.6
P(Cy) =L

Proof: C, is a disjoint, countable union of fans. Since each of these fan

assigned zero probability by P, the sum of these probabilities is zeroi
P, (C,) = 0 by countable additivity. Hence, P; (Cy) =0

Lemma 13.7
P(Cy=1

Proof: For each i > 1, let G, = the sct of all Boolean sequences e of length'

such that [¢] < C, and for no ¢ c e is [€1< G Let G = | {le):ee G}
glance a

t Fig. 13.8 reveals that |G,j=3“"". Also, for each e€ G;, P_(e
1/2% = 1/4". Since for all distinct e, e

additivity that:

P(G)= ) P9

ecGi

By countable additivity and the fact that G; Gty = , we have:

For each Borel set S = 2%, define P, to be the 50-50 mixture of P, and P.
Py(S) = 0.5P,(S) + 0.5P_(5).

The following lemma shows that P, satisfies (b).

=G| =
III4!

The Logic of Reliable Inquiry

—r.rl/l////’.

Probability and Reliability 311
Lemma 13.8

o | =
=]

E, is an open door measure for K, C, H.

; ; Proof: (i) Py(e) = 05P_(e) = 1/2"0+1 > 0_ (ii) Suppose [e] — C, # 5. Then

’ 8 P.(e) > 0. But then:
I
4 PG, o) = Toe&C) _ O05P(e&C,) + 05P_(e&Cy) | 03P (e&Cy)

Pole) Py(e) =T Ry
RELON
! k PG(E)
Figure 13.8 :

The last identity is by lemma 13.6. A similar argument using proposition 13.7
stablishes condition (iii).

Let fi, be a conditionalizer who starts oui with measure P. Le{ us now

onsider how fp fails. The following lemma is very useful in studying the
“asymptotic performance of conditionalization:

Lemma 13.9

Let P be an arbitrary probability measure and let S < 2° be a Bovel set.
‘ P
Then Lim,., P(S, eln) = 1 <> Lim,_, . LEI%S) _
Pie|n,S)
roof: Since P(S, eln) = 1 — P(S, g|n),
' G, [€]n [e] = &, it follows by fini

Lim,_, o P(5, ¢ln) =t < Lim,_ ., P(5,¢ln) =0
30—-1)

41'

<> Lim,_, M =
P(S,eln)

< Lim,_, ., i{m = oo {by Bayes’
PS)Pistn, 5) theorem)

< Lim, ., M = oo (since P(S), P(5)
P(e[n,.5) are positive
constants). B

The ratio on the right-hand side of the lemma is called the fikelihood ratio
for §. 1t is also clear that if the likelihood ratio stabilizes to a fixed value, then
o{Cy» £{1) stabilizes to a fixed value less than 1 in the limit, The following
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¥, ¥ S
ol io and priors of P, N N N
lemma solves for the likelihood ratio and pr 0 Vot AU Wolfo W\ o/t Y1 i,
Y a Ys ¥z g8 {16 Y16 ¥ 8 {16915
Lemma 13.10 T O ARV
For each e € 2%, y
0 1 1 /1
( ) Po(e, C}g) _ P+(e) A % . 4
a) —= ———, .
Poe,Cy)  P(e) ;_ §5
(b) PO(CJI) 0( h) ) Very Bad = data streams
on which 2, agrees everwhere
Proof of (a): with P
Figure 13.9
Py(e,Cy)  Pole &Ci)/Pole) _ Pole &C,) d

Foe, : Fole£C)/Fole)  Fole &) Moreover, there are data streams on which the likelihood ratio changes
0.5P. (e &) + 0.5P (e &()) : )

T 05P,. (e &Cy) + 0.5P_ (e &C)

_05P (e &)
T 05P_(e &)

_ P {e)
T P.(o

Bad = {e: In ¥m > n, [e|m*0] is not a subset of Cp}.
(by lemmas 13.6 and 13.7) o )
{ & & Bad, then Py(C,, &|m) goes up for a finite time and then remains fixed
at a value less than 1. Furthermore, Very Bad and hence Bad are both

ncountably infinite, which may be seen as follows: let &€ 2° Encode 0 as 10
nd t as 11. Then the sequence 7 such that foreach i > 1, (¢,,,

(by lemmas 13.6 and 13.7).

(b) Follows immediately from lemmas 13.6 and 13.7.

Let us now consider where f, fails to graduall}f decide,. h 11111 th; 11f1r;1I anIf
[e] € C,, then Py(C, €) = 0, so fip, is correctly c.ertam of the falsehoo on g
remains so, since Py(e) > 0 whenever ¢ i-s consistent with ‘J]S SoP}.‘i'P0 (Izlafaﬂ :
fail by refusing to approach 1 when h is correct. To se:*::1 mvt Oa:,?(; -
approach 1 when % is correct, consider the everywhere 1 ?ta 8 r(;1 .
lemma 13.10(a) and the definitions of P, and P_ we have for each n,

S0 no conditionalizer can do what is impossible, and some conditionalizers
(even those who always “leave the door open” concerning  alternative
_hypotheses) can fail in uncountably many possible worlds to arrive at the truth
even when a trivial method is guaranteed to do so. It remains to consider
whether every solvable inductive problem is solved by some conditionalizer or
other. It is unreasonable to demand a strict conditionalizer to conjecture 0 or
1 unless he is certain, since a strict conditionalizer can never take back g 0 or
a 1. The natural criterion of success for a conditionalizer is therefore gradual

Polm G _ PoClm) 172"
PInC)  P-(lnmy 172

So by lemma 13.10(b), we have that for' eaf:h n, PO(Qh, £in) =f18)(5C1,",) =e gfmf
on the data stream {, fp, never updates 1t§ initial conjecture o .f or ctomi
Notice that the same phenomenon will arise on any data strearrzi or wt ieh
likelihood ratio remains unity forever. This will occur on any data str iy

Proposition 13.11 (T. Seidenfeid)
the following set (Fig. 13.9):

Let Gy, be as in example 2.5. Then there exists a countably additive

Very Bad = {&: Vn, {&|n*0] is not a subset of C,}. probability measure P, on 2° such that Bp, gradually decides -~ h given 2°,
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Proof: Let e € 2*, [h(e) = n. Then define: I’g remains to see that f, gradually decidesc h given 2% Let ¢ 2°. Suppose

& Cy- Then there is an n such that [¢|r] < C,, since G, is a union of fans. Then

P_(e)=1/2 it is immediate that for each m > n, P,(C,, e|n) = 0, so Be, stabilizes to 0 on &,
- - 0 if [e1<C, which is correct. Now suppose ¢ € C,. By lemma 13.9, it suffices to show that
P
! if nis odd and e ends with e pl(sln_’ 2o
FUETE if nisoddand e ends (eln, Cy)
P.(e) =ﬁ 2 . For this it suffices, in turn, to show that both the even and the odd subsequences
3EF 2 if nisodd and e ends with 1 of likelihood ratios go in infinity:
P 1
R otherwise. s o Pilel@n), G, C_},} =o and Lim,_ Plel@n + 1), G, 9) =0
L 32 Pi(el(2n), C,) PlelZn+ 1), C)

P_ is just as in proposition 13.5, so once again we have that P_.indch;
countably additive probability measure on 2° with P_((,) = 0. As Fzgure__lfj'
should make clear, the values assigned by P, also add up to 1 owl:r'-d
segments of a fixed length, so just as in the proof of proposition 13.5, P, indug
a unique, countably additive probability measure on 2°. :

Since P, assigns each fan in C, probability zero, we have by the proo
lemma 13.9 that P, (C,) = 0, so P.(C,)} = 1. For each Borel set 5§ < 2%, defi

On the odd subsequence we have:

P1(S|(2n + 1)’ C.h) B 1/3((2u+1)+1}/2 B 22n+1
Piein+ 1),C) 1/t g

while on the even subsequence we have:

i(g|(2n), Ch) _ 1/3(2:1).’2 B 272,;
Pieln), G 12 3

P,(S) = 0.5P,(5) + 0.5P_(5).

To see that both subsequences go to infinity, observe that 28/3* > 3. Let ke w
be given. Either ratio cxceeds k by stage 4log, (k) and remains above k

hereafter. So by lemma 13.10, P,(C,, ¢|n) correctly approaches 1 as n goes to
infinity, |

Then by lemmas 13.7 and 13.10 and an obvious analog of lemma 13.6, we
have that: :

Pe.C) _Pule)
Pl(es a) P, (8)

. -
H L yL
\ 9

) The examples show that not all initial, joint probability measures are equal
when it comes to finding the truth about a deterministic hypothesis, Even an
open door measure can result in failures on uncountable sets of data streams,
‘while choosing another measure may guarantee success no matter what. Since
a familiar criticism of personalism is that one’s initial probabilitics are
arbitrary,® this is a consideration that might be taken into account in
constraining one’s choice.® The logical perspective on induction therefore has

2|
A-IIIII,///I.‘

(=)
—'-III,///J‘

=)
B |-
—_
|
|
o | —
N —
o |-

=
O N
)=
3]
—
b

* This advice pertains more to purely subjective personalists than to those who
think that the likelihoods are given by an objective statistical model. The latter are not
free to tinker at will with the probabilities P{E |7}, and these are the probabilities that
drive the convergence arguments in the examples.

¢ There is some evidence of such concerns in the statistical literature: e.g., Foster
(1991). Diaconis and Freedman (1986) show that for some prior probability measures,
Bayesian updating is not reliable in a classical sense (it does not have a unit likelihood
of converging to the truth regardless of which likelihood parameter is the true one). If
- likelihoods are interpreted strictly as limiting relative frequencies so that parameters
. pick out determinate subsets of A/, then their question is of just the sort under discussion.

Pt 0

-
-
=

W
W=

1
Figure 13.10
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relevance for philosophies of induction and confirmation that are bas .

. , . e & success Logical
updating by Bayes’ theorem. In fact, an important and general questio reliability
Bayesians is whether or not conditionalization actually prevents succes
ideal agents when success is possible. In other words: Pel-r Per

R
Feaninll
: X Probabilisti
Question 13.12 X saccess failure reﬁasil;;s ¢
If h is gradually decidable . given X, does there exist a strict S
conditionalizer that gradually decides. h given X? Figure 13.11

Regardless of the outcome of the question for arbitrary, ideal met"od 3. Probabilistic Reliability

conditionalization is definitely restrictive for the class of all arithmetica]
definable methods. Recall from chapter 6 that this class includes highly ideal
methods much more complex than computable methods.
Since the conjecture of a conditionalizer is a real number, we must spe
what it is for such a method to be arithmetically definable."We will represent
the conjecture as an infinite decimal expansion and require that for each given
n, the arithmetical definition of § determines the nth position of f(h, e). For §
to be computable, we will require that there be a program M such: th;
M{[h, e, n] returns the nth decimal position of B(h, e).
Now we have the following result:

In the preceding section, the reliability of conditionalization was analyzed from
the logical point of view developed in the preceding chapters. But advocates of
conditionalization as an inductive method rarely adopt the logical perspective
just considered. Their sweeping convergence claims are based on probabilistic
rather than logical reliability. Logical reliability demands convergence to the
truth on each data stream in X, Probabilistic reliability requires only con-
vergence to the truth over some set of data streams that carries sufficiently high
probability (Fig. 13.11).

* Let P be a probability measure on A,

a decides. H gradually with probability r in P
<> there exists K ¢ Bo such that

(1} P(X) = r and
(2) « decides,. H gradually given K,

Proposition 13.13
Let G, = {8}, as in proposition 7.19. Then
(1) h is computably refutable with certainty but

(2) no avithmetically definable conditionalizer can even gradually ver:f

! Similar definitions can be given for the other notions of success, including the
or refute, h.

discovery case. Now we can state the sort of result that some probabilists have
n mind when they say that conditionalization will arrive at the truth, The
ollowing proposition says that the conditionalization method f, that starts
out with measure P has a unit probability according to the measure P of
approaching the truth value of an arbitrary Borel hypothesis. Observe that this
esult imposes no restrictions on the probability measure P other than
countable additivity.

Proof - I C, v [€] 0 K = &, then P(h, €) = 0. Hence, a conditionalizing meth
is consistent. Apply corollary 7.24.

So if an arithmetically definable agent elects to update probabilities
by Bayes’ rule, he may have to pay a price in terms of logical reliabilit;
Even under liberal standards of constructiveness, the respective aims.
short-run coherence and long-run reliability compete rather than reinforce oné
another,

Proposition 13.14°

Let P be a countably additive probability measure on W. Let & Bo.
Then P({e: Bp gradually decides, o on &}) = 1.
7 In fact, no hyper-arithmetically definable method can succeed, either. Cf Kelly and

Schulte (1995), For a definition of the hyper-arithmetical functions, cf. Rogers (1987)

8 For a different sort of restrictiveness result for conditionalization, cf. Osherso
and Weinstein (1988). Their result concerns discovery rather than assessment, afid
its model of Bayesian discovery would be considered controversial by some
Bayesians.

Proof: Halmos (1974): section 49, theorem B, shows that f, can identify in the
: limit each 4 e with probability 1 in P. Let £, be the set of probability 0

? For a detailed discussion of this similar results, cf. Schervish et al. {1990).



318 The Logic of Reliable Inquiry Prohability and Reliability 319

e

\\\\\\\ P(D- ) <rf2

= PSP < rf2

discard shaded area

Figure 13.13

Proposition 13.16 The approximation theorem

For each countably additive P, for each S € Bo

(a) for each r > 0 there is an O € X% such that § < O and
P(O) — P(S) <.

(b) there is an R e 112 such that S = R and P(R) = P(5).

Figure 13.12

“neglected” in the case of hypothesis . The union of all these sets still has
probability 0 by countable additivity. )
_ ~ Proof: Royden (1988): 294, proposition 7, &

Proposition 13.14 entails that each Borel hypothesis is decidable in thi '
limit with probability 1. It can also be shown that if we are willing: to
countenance an arbitrarily small but positive probability of error, then eé_uih
Borel hypothesis is decidable with certainty. These facts are summarized a
follows.

This fact implies the following proposition, which places the approximation
theorems into the context of the characterization theorems of the preceding
chapters. The proof illustrates how a probabilist can neglect the ragged
“periphery”'® of a complex hypothesis while leaving most of its probability

Proposition 13,15 .
Proposition 13,17

For each countably additive P, for each (  Bo ‘
For each countably additive P, for each S € Bo,

{a) for eachr >0, w is decidable . with certainty with '

probability 1 — v in P; (a) for each r > 0, for each h € w, there is K € Bo such that

P(K)> 1 —rand C,e ALIK]Y;

(b) for each h e w, there is K € Bo such that P(X) =1 and
Ci e AIK13-

(b) w is decidable . in the limit with probability 1 in P.

Proof: (b) follows from proposition 13.14. (a) follows from proposition 13.1¢

below. - Proof: (a) Let S5 € Bo be given. We want to find X such that P(X) > 1 —r

and S e ALK )5, By proposition 13.16(a), we can choose open sets O, F such
that S =0, § =P, P(O) — P(§) < /2 and P(P) — P(§) < r/2 (Fig. 13.13).
Thus, P(S) — P(P) <r/2, since P —§ =& — P.

So we have a closed P = .5 that differs in probability from .S by less than
#/2 and an open O <.5 that differs in probability from .S by less than r/2. By
finite additivity, P(O — P) <r. Now we may “neglect” this difference by
choosing X =0 —P. Evidently, P(X)>1—r, and since KnS =
K P =% n0, we have S € ALK ]%. The argument for (b) is similar, except
that we end up with a = approximation from within and a 11§ approximation
from without whose difference has probability zero. |

In light of the strong, negative results of preceding chapters, this is amazing
Problems unsolvable even with strong background knowledge in the logica
sense are all solvable in the limit with unit probability and are decidable wit
certainty with arbitrarily high probability.'® Arbitrarily low or zero prob
abilities of error hardly seem worth haggling over. Indeed, some probabilist
refer to unit probability events as being almost sure or practically certain.

The usual proof of proposition 13.15 involves the following result as
lemma. It states that every Borel set is “almost surely” I14 and is a X7 set wit
arbitrarily high probability. Moreover, the approximating sets can always b
chosen as supersets (Fig. 13.12). :

U T did not say boundary, because in the measure 1 case, not all of the boundary is

19 In Hght of chapter 9, these tesulls carry over to discovery problems as well. ignared. Otherwise, all hypotheses would be decidable with certainty with unit probability.
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Probabilistic reliability is easier to achieve precisely because the proba
entitles himself to augment his background knowledge by removing a set 2,
probability zero from X, whereas logical reliability demands success o e
of K. That the probabilist’s “negligible” sets may be uncountably 1_nﬁn .
when the data, the hypothesis, and its negation all start out with nons
probability is clear from propositions 13.5 and 13.7. It is a fine thing for
realist that alleged canons of inductive rationality entitle him to claim suffic
knowledge to solve all inductive problems in the limit. A competent skep
on the other hand, will reject this blanket entitlement to knowledge as
technically disguised form of dogmatism (Fig. 13.14). :

We have seen in chapter 4 that local underdetermination and demo_n__
arguments depend on missing limit points in the boundary of the hypoth.es
The probabilistic convergence and approximation theprems _]IISt. descn_bed
imply that the boundary of a hypothesis (in the topological sense) is always
set of negligible probability. In other words, arbitrarily high to'p-olog;gg}
complexity can be discounted in a set of arbitrarily small' probability, and
complexity higher than the A} level can be neglected in a set of ze
probability. - g

This discussion may shed some light on the stubborn persistence of debat_ _
between realists and skeptics. The antirealist looks at a problem and points out
that it has high topelogical complexity and hence a high glegree .of .u_nde _
determination, subjecting it to demonic arguments against logical reliability, as
we saw with Sextus Empiricus. The realist focuses on size rather tha__n
complexity. He observes that the boundary of the hypothesis, in. \fvhich aﬁ]l‘:b_'_f
the antirealist’s complexity resides, is a set of negligible proba_blhty. Nﬂlth’?_l:‘
position contradicts the other. The difference is one of emphasis on different,
objective mathematical features of the problem at hand. ' :

If, indeed, the scientific realism debate hinges to some extend on one’s
attitude toward neglecting the logically “rough” peripheries of hypotheses
it is of the utmost epistemological import to understand how it is that th¢
axioms of probability guarantee that this periphery is always nqglepta?le. Ip
the next section, I will focus on the crucial role of countable additivity in thi
regard.

Allow me fo Ho hum,
introduce my PH=0.
Jriends. \ \

Figure 13.14
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Figure 13.15

" 4. Countable Additivity

- All the results reported in the preceding section assume countable additivity.
- Countable additivity was introduced by Kolmogorov'? for expedience, and

most probabilists have followed suit.

The general condition of countable additivity is a further restriction ... —a
restriction without which modern probability theory could not function. It is
a tenable point of view that our intuition demands infinite additivity just as
much as finite additivity, At any rate, however, infinite additivity does not
contradict our intuitive ideas, and the theory built on it is sufficiently far
developed to assert that the assumption is justified by its success.!3

Without countable additivity, we would be left with the apparently magical
possibility that the probability of the whole could end up being more than the
sum of its parts when it consists of a countabie infinity of nonoverlapping parts.
In particular, a countable infinity of probability zero parts could add uptoa
set with probability one (Fig. 13.15).'* That scems strange,

On the other hand, countable additivity has the awkward consequence that
probabilities on a countable partition of ' must be “biased” in order to add

'2 Kolmogorov (1956).

13 Halmos (1974): 187.

!4 This is an instance of what DeFinetti (1972; 143} calls nonconglomerability. Let
T = {#;,..., 5, ...} partition N\, Then P is conglomerable in I1 just in case for all
measurable events C, P(() = Z,.,, P(E, ). In the example, we have P(5) = 1 but for
each i, P(5, S)P(S) = P(S) =0 s0 %, P(5, 5)P(S,) = 0. Schervish et al. (1984) show
that subject to some conditions concerning the existence of conditional probabilities,
every merely finitely additive P is nonconglomerable in some partition (depending on

P). The “strangeness” of nonconglomerability is sometimes cited as an argument for
countable additivity.
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finite additivity
finite partition

countable additivity
countably infinite partition

Figure 13.16

—

up to 1, since if the same probability is assigned to each cell, then the sum.mu
be either 0 or infinity (Fig. 13.16). DeFinetti puts the issue this way:

Suppose we are given a countable partition into events K, and let us put
ourselves into the subjectivistic position. An individual wishes to evaluate th
p; = P(E;): he is free to choose them as he pleases, except that, if he wants to:
be coherent, he must be careful not to inadvertently violate the conditions of.
coherence. Someone tells him that in order to be coherent he can choose the
p; in any way he likes, so long as the sum = 1 (it is the same thing as in the
finite case, anyway!). :

The same thing?!!! You must be joking, the other will answer. In the finitc.
case, this condition aillowed me to choose the probabilities to be all equal, ot
slightly different, or very different; in short, T could express any opinion
whatsoever. Here, on the other hand, the content of my judgments enter into
the pictare: T am allowed to express them only if they are unbalanced. . ..
Otherwise, even if I think they are equally probable ... T am obliged to pick
“at random” a convergent series which, however T choose it, is in absolute
contrast to what T think. If not, you call me incoherent! In leaving the finite
domain, is it I who has ceased to understand anything, or is it you who has
gone mad?'?

In keeping with this spirit, DeFinetti and L. J. Savage’® have prop
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ropositions 13.14, 13.15, and 13.16, We will sce that the objectionable bias
posed by countable additivity is involved directly in these arguments. In
section 13.5, it will be shown, moreover, that countable additivity is necessary
r obtaining the probabilistic convergence and approximation theorems at
issue. If probabilistic convergence theorems are to serve as a philosophical
antidote to the logical reliabilist’s concerns about local underdetermination and
inductive demons, then countable additivity is elevated from the status of a
mere technical convenience to that of a central epistemological axiom favoring
scientific realism. Such an axiom should be subject to the highest degree of
philosophical scrutiny. Mere technical convenience cannot justify it. Neither
can appeal to its “fruits,” insofar as they include precisely the convergence
theorems at issue.

Let us consider in a concrete example how the bias imposed by countable
additivity can make universal hypotheses decidable with arbitrarily high
probability, as is claimed in proposition 13.15(a). Sextus argued that no matter
how many 1s have been observed, the next observation might be a 0, so “every
observation will be 17 is not verifiable with certainty. The complement {{} of
this hypothesis is the union of all fans of form [(1,1,1,...,0)] (ie., with

handles consisting of a finite sequence of 1s followed by a single (0). Let % be

the fan of this form with exactly { 1s occurring in its handle, as depicted in

Figure 13,17,

Suppose that the prior probability of the hypothesis in question is r (i.e., that

P({{}) = 7). Then P({{}) = 1 — r, by finite additivity. Since the fans are disjoint,
the sum of the probabilities of the individual fans is exactly P({{}) = 1 —r, by
countable additivity. Since this infinite sum is the limit of the finite initial sums
of the series, it follows that for each u > 0, there is a position n in the series
such that the probability left in the remaining fans is less than u (Fig, 13.18).
In other words, the bias imposed by countable additivity is in this case a bias
for seeing refutations of {{} sooner rather than later.

For measute u decidability, the scientist is entitled to assume that none of

th'e fans after position »n will ever be entered. This amounts to cutting the infinite
tail off of Sextus’s argument, so that the demon runs out of opportunities to
fool the scientist. Let ), = {{}. Let & = {{} U the union of all fans veering off

{UIN W“Mﬂlﬁ!li
A ¥

1 I

foundational interpretations of probability in which countable additivity is
guaranteed. For frequentists, the issue is more readily settled, since limi
relative frequencies do not always satisfy countable additivity.!”

From the logical reliabilist perspective, there is another reason to questi
countable additivity. It will be seen in this section how countable additivity
is invoked in probabilistic convergence and approximation theorems 1i

il

{& 5

135 De Finetti (1990): 123

16 Savage (1972). o

17 For example, we can have each natural number occur in a collective with limitin
relative frequency O by having it occur finitely often, but the limiting relative frequent
that some natural number will occur is unity, since only natural numbers occur.: D
Finetti chided “frequentist” practice for failure to respect this failure of countabl
additivity on their interpretation: “So far as T know, however, none of [the frequentists
has ever taken this observation into account, let alone disputed if; clearly it has beel
overlooked, although it scems to me I have repeated it on many occasions” (De Finett
1990: 123).

0

Figure 13.17
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High probabilities of inductive success by a given time may evaporate

; i thod a that ; . . . ;
from { at a stage <n. Clearly, there exists an effective me " depending on how the evidence comes in. For example, if the hypothesis states

guaranteed to decide - k by time r given X

. verified by the tenth toss already exceeds 0.999, but the probability that it will
1 ife<{ s be verified by the tenth toss given failures on the first nine tosses is just 0.5. So
unlike logical reliability, which never disappears with time, a high probability
of success can be an evanescent virtue.

A unit probability of success with certainty is permanent, assuming that
data of probability 0 are not encountered. But universal hypotheses cannot
always be verified with certainty with unit probability. For suppose that
P({}) =r where 0 <r < 1 and the remaining 1 — r probability is distributed
n a countably additive way over the diverging fans, so that P(RY > 0, for
 infinitely many 7. To succeed with probability 1, the method must succeed on
- {,since P({{}) = r > 0, and must also succeed on infinitely many fans veering off
“from {, since infinitely many such fans carry positive probability. Sextus’s
- demonic argument shows that no possible method has this property.

On the other hand, if Ci € Bo, then decidability in the limit is guaranteed
with unit probability when P is countably additive, by proposition 13.15. Now
- we consider the role of countable additivity in the argument for this claim. Let
us return to the simple and familiar case of finite divisibility, introduced in
“chapter 3. In this example, (., is the set of all infinite, Boolean-valued data
streams that stabilize to 0. We know that Chyen € 25 — IT% and that Gy 18

countable. So if h,, is to be decidable,. in the limit with probability 1, as
proposition 13.17 says, then there must be some set & of probability one such
that ¢, e II[K )2 In other words, K is to be neglected.

What does X look like??! Enumerate Crpnasel, e, e If we repeat
the above discussion of Sextus’ argument, treating {¢*} as a hypothesis, then
we have that for each specified u, we can find a fan F [k u] containing &
such that P(T Tk, u]) — P({€"}) < u (Fig. 13.19). This is again because countable
additivity forces us to drop probability on the complement of {c°} in “lumps”
on the countably many disjoint fans veering off from &, so that it is eventually

a(h, e) = {

0 otherwise.

Hence, if P is countably additive and r > 0, thﬁ?n his dec_:idablec by sopxt(:1 fi
time n with probability 1 — rin P. Since the an.c1§:nt skcptlca! e}rgun}?eilt is dri
by concerns of error in the indefinite future, 1!; is not surprising t .; 1l;111 aj
of rationality imposing the attitude that a um\‘fersal hypothesis V:'{li | e re
sooner rather than later should have antiskeptical consequences. t m‘lgt
claimed that such an attitude is justified, bccauss: finite bemg§ ng}'e no inf g.
in what happens in the long run. But be thz?t as it may, S}lch in 1dcéer‘1tcefo? _
to be reflected in the utilities we associate w1_th outcomes in the 11;l e n1} 1eh]"’1"u']-;-
rather than in general axioms governing rational beliefs about what will ha pe
thenin the example at hand, we have not only decidability with cer}tlalnt{ (:vlt
high probability}, but an a priori bound (cglcu]ate_d from P) 1:.rll.t ow hci)c
will take to arrive at the right answer with a given Pr.oba ; 11 z g
something far stronger than what is claimed in proposition 11 . .Eh nce :
discount “trifling” probabilities of error concerning a universa ll}ypo * 16511,- _
only interesting question remaining is how long we have to w:ntlsn 1fﬁ \;ent
sufficiently sure we are right'® and whether a computer could e

. 20
recognize counterexamples.

18 Assuming that the data are generated by independent and identicaﬁy dlStéﬂ?)ﬂit
(11D} trials of an experiment yiclds an even strogg;{:r resulg, narg:]g;,ltt};l:tr; t: gfge (E:rea ty
ion always decreases with time, with well-known ounds ToasE:
OBfuI:[efrlvlkt:illzof?o oneyacccpts JID as a general postulate of rationality, countable additlt\]f;g
is often treated as such. For that reason, 1 focus on the convergence theorems th
nly countable additivity. ) ' .
8uSSm{l;a'l?hisymay not be true of hypotheses of higher complexity, as we shall see sho‘rtl%ét_s
20 These questions have been drawing increased attention from compute/: scien st
under the rubric of PAC (probably approximately correct) learn%nlg.thcory. t prt::ﬁng,
the resulis of this theory depend not just on countable additivity, but on s
independence assumptions as well.

! The construction that follows is a minor adaptation of the standard proof that

the [0, 17 interval can be partitioned into a meager set and a set of Lebesgue measure
zero (Royden 1988; 161, no. 33b.)
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. ¢ have:
almost entirely used up (Fig. /3.19). For each r€[0, 11, w

X F
=7,
2 2"

n=1

Define for each r € [0, 1]:22

“ r
O [r] = Ul _T[k, “2—;;}
i — P(C,,. )< Als
i * by construction, P(O[r] oo
open, & ¢ Ofr] and, by gk
ga[:g (IJS [ri)g O[r}if r < (Fig. 13.20). Now define:

<« 1
R B nDl O[F]

2 ji y - SISGCII(HI Oi Opel’l § ,
o SInce C&Cll g 18 1nCiu
Cff P——
fin

babilities
13.21). So we have a nested sequence of open set around & whose pro =

set.
22 OT#] is an example of a nowhere dense, closed
23 @ is a meager sct.
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Probabilistic Reliability without Countable Additivity

We have seen that countable additivity suffices for probabilistic reliability over
1l Borel hypotheses, It remains to see that probabilistic reliability is impossible
0 achieve for some merely finitely additive probability measures,

. Lets return again to Sextus’s argument. Let ), = {{}, where ¢ is the
verywhere 0 data stream. It makes life too easy for the scientist if P{{h =0,
o le’s set P({{}} =035, so P{T) =05 as well, Now let’s turn to the
robabilities of the fans veering off from ¢ that form & countably infinite

Proposition 13.18

There is a Sinitely additive probability measure P on 2° satisfying the
| COnstraints just described (Fig. 13.22}, B

L - ignore

=172
Figure 13.22
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Figure 13.22 depicts an exact reversal of the epistemologiglgl situa.ti
guarangteed by.countablc additivity. Instead of most of the prob;tb‘i ;t):; 1:2?5_3

i f time, we now ha

ing exhausted after a finite amount o ime, :
@tl?: Hrlr%ass on I} is exhausted after any finite amoqnt off tgne. V:’)h; 1
(t)he limit was formerly negligible, it now carries the full weight of the probat ility
on {%hat happens to a conditionalizer that starts 0;;11 v;:ith {ZT:;]h i::c}]l-f
i ich i { n zeros. The fan de
9 Consider {|n, which is a sequence o 1] €
r{{gasNuf)ﬁw consider the fan F, = [({Im)y*1]. #, hlas a handle cop51?;nfr:f1§1 0
ll' d by a 1. and hence is the mth fan veering off from { in Fig e 2
f; OWE h nsf: = ,,f F < [¢|n]. Since the union of all th‘e ¥, has probaﬂ 11 1t¥ I?
ocrl ?fg also_ hE,lS probability 0.5, finite additivity yields P([C{l}r?l].: _1_ "ha
?sn each finite data sequence consistent with {{} has probapl( {1{:}}, [C.ln ic
e Lo dseam
P({C_}) = (,5. Conditionalization fails to approagh 1 on : surear r’cfutabf
has a probability of failure of at least 0.5, despite the fact s e
ith c:rtainty over all of A in the logical sense. Moreover, this h LG obab
\cr)vf error is never diminished through time. Thls show.rs‘ tha1t3t1 fdepends
limiting success of Bayesian method reported in proposition 1. |
iasi f countable additivity. . N -
te ]z;\?csffncgflzsé Ze: from this example that the finitely additive versions

propositions 13.15(a) and 13.16(a) fail.

possible method (conditionalization or otherwise) can refute the hypothesis in
the limit with probability 1. This is the main result of the chapter.

Proposition 1320 (with C. Juhl)

There is a merely finitely additive probability measure P on N such that
hyi, is not refutable . in the limit with probability 1 in P,

.: Proof sketch: (a detailed proof is presented in the appendix at the end of the

chapter). Let S denote , s = 181 € stabilizes to 0}. The idea is to place discrete,

. nonzero probabilities summing to 0.5 on the countably many elements of §
and to use the latitude permitted by dropping countabie additivity to add a
_ thin cloud of “virtual probability™ of total mass 0.5 just outside of S so that

any IT5 superset of § picks up this extra mass (and hence differs in probability

rom S by 0.5) and any [12 nonsuperset of S loses the mass on some element
f.§ (and hence has a pr

obability strictly less than that of S) (Fig. 13.23).
hen we have that § has no I1% approximation that differs in probability by
-a set of measure 0, from which the proposition follows. The bulk of the proof
-m section 139 is devoted to showing that the metaphor of the thin cloud

~of probability 0.5 is in fact consistent with the axioms of finitely additive
. probability. 2]

Note that we cannot recover from this construction any fixed lower bound
on the difference between the probability of § and the probability of an
arbitrary IT§ approximation to § because finite additivity alone ensures that
‘the elements of § carry arbitrarily small probabilities, and we cannot be sure
which of them will be missed by a I} nonsuperset of S.

The mysterious cloud of probability adhering to .S throws a wrench into

the countably additive argument (presented in section 13.4) that &
refutable . in the limit with

Proposition 13.19

Let P be the merely finitely additive measure jyst deﬁnfzi. Le: C,,t= “{f
Then no possible assessment method o. can verify h with certainty Wi
a probability (according to P) greater than 0.5.

in 18
probability 1. It is interesting to consider whe;; the
breakdown occurs. Recall that the convergence argument in section 134
involves the construction of an infinite sequence of open supersets O[ 1], O[1/2],
Of1/4],...of ¢, n =3 . We observed that the probabilities of these open sets
converge to the probability of § and then invoked continuity (proposition 13.1)

Proof: 1f « never outputs 1 with cs:rtainty on {, therrlr ]c;c Ifl.':uolcsi Sw‘ﬂloﬁgogzlﬂj
0.5. So suppose ¢ declares its certainty foy hon {|n CeWhose wrong on sa¢
data stream in the union of the faps veering off fron_l e e o e
{|n. The probability of this (cofinite} union of fe%nsolg .5, ¢
probability that o has committed an error is again 0.0,

So when we relax countable additivity, t.h‘e demons of logic;aéaleléi‘t;g{s_

can return to haunt the probabilist. The Skf_:pthlSIl’l of the cxampe gan be me

less extreme by mixing the finitely ac.i(_htlve. measur i & o

. appegr ntably additive measure. Then conditionalization can Teatr i
Stam:?;né;’?uand yet a healthy, skeptical concern gbgut refutation in

e}x(lrl))i)unded future will always remain, if jthc hypothesis is trut;,). chiovable
! It remains to show that probability 1 success may be un |

Discrete mass on elements 172 "virtual " cangh
of § missed by every Hg b 2 "virtua Bmass caugnt
non-superset of < y every [15 superset of §

TN ———— .
§;.....-'-§

e . \dh
i i imit hen countable additivity is droppe

by arbitrary methods in .the hmlf[mg case w ey and 13.16(t o —

so that the finitely additive versions of prppOSltII? e thome & \ — S

i i is
fail. The following construction ach)mpllshes '1‘ I); e that it Jomi
3% hypothesis and a finitely additive probability _
2
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to argue that the intersection R of these sets has the same proba a random algorithm is run by a machine that flips coins as part of its
0 ar ‘

S$. But in this case, each open superset O[r] of S is a fortiori a II§ su
of §. Hence, cach such set catches the probability clou.d_ around S, tog
with all the probability on §, and therefore has probability 1. Thus, the
is 1 rather than P(S) = 1/2. N E

The general idea is that in countably additive measures, COI'.ltl
determines the probabilities of events of higher Borel cor.nplexﬁy as the limit
probabilities of events of lower Borel compilexity. Th.e thin clouds of probab;
admitted by finite additivity block this determination, and thereby block:
countably additive, measure 1 approximation and convergence argumen

. But when someone turns on a computer, one evidently does so because
one is uncertain about what the machine will do on the input provided. One
s pot uncertain about the input one will provide to the machine (the designer
of the algorithm may have been uncertain about that), Nor s it that the machine
s actually equipped with dice or decaying radium atoms; it is paradigmatically
discrete and deterministic. The user of a deterministic machine is, in fact,
pncertain about what the output will be on the input he is interested in because
he operation of the program is too complicated for him to see in his mind's
ye in an instant. If it weren’t for this kind of uncertainty, there would be no
omputer industry.

- One way to try to resolve the uncertainty in question is to turn on the
machine, provide the input, and run it! But here we face a difficulty: how long
do we wait before concluding that nothing will ever come out? In short, the
halting problem becomes an empirical probiem for the user of the machine.
But this is just the sort of problem that can be “solved” with arbitrarily high
srobability along the lines discussed in section 13.3. If this is “good enough”
n the empirical case, then it should be good enough for computation, and hence
or formal proof.

The reader may object at this point. In the empirical case, it is no
ontradiction to suppose that all ravens are black, and it is no contradiction
o suppose that some raven is not black. But in the computational case, if the
rogram we know the machine to be running halts on input n in k steps, then
t is a fact of elementary arithmetic that it does so. If we place probability 1 on
he axioms of clementary arithmetic, the axioms of probability theory dictate
hat we already have probability 1 or 0 on the outcome of the compuiation in

6. Probabilistic Mathematics and Nonprobabilistic Science

Philosphets have long been accustomed to examine mathema_t?cal metl.ro
terms of logic and to study scientific method in terms of‘ p1:0ba}b1hty. Empiricis
like Hume attempted to provide an account of this dlstlnctlon.' Mathema
on their account, is the mere comparison of ideas within the mind, as though
one idea could be laid on top of the other and seen directly, all at once, I?y
mind’s eye. Empirical generalizations, on the other hand, qannot be comp
against the future “all at once” so Sextus’s argument applies. . s
Nowadays, few would assent to such a picture of mathqmancal method
The modern theory of computability has shown us how to view formal pr
systems as computable positive tests. In chapter 6, 1 argued_ that a compute
akin to an empirical scientist in that it can scan mathematical structures, |
by finite chunks. Recall that the halting problem was 1;econs"[ructed in Chap
6 as an instance of Sextus’s skeptical argument against 1nduct(1}vedgs;nerailzbat:_1_
indsi it i from uncomputability to Godel’s celebra ' o . .
ilrlllc(l)lrlrrllglseltggéslst ;:sgﬁsngs?ltl:etiﬁnd. One intergretation of these results is t Blﬁ} this tObJectlofn hputs the cor'npu.ter sser in E;l d‘1le'mma}11. If he dgeg not
effectively checkable mathematical proofs are limited in their powet by preci not\y ‘; 0: fjof‘fleho dt e Cl‘zmpu'[t&;mn ina \{ancz, ¢ is incoherent lal,n er}])(;e
the same sorts of demonic arguments that plague inductive genera}lzatlon Th ffg lonal. Uf i he tl(:es IJOWt ¢ answer in 3 va111cz,e6, going to the trouble
difference, however, is this. In discussions of proof, we take demonic argume 1 ;314961186 o 'uStln.%_ ;3 Comgube_; 1: again irra 1ocrlla ) . .
seriously, while in discussions of inductive method, we discard them in set t %{;;10\’51‘, 11(1i ul lei1 y probabilis 1110 lregsonmg o0es occur in usmg a com-
probability zero. To underscore this difference in attitude, let us consider W uter. When undergra U&‘teS write their r.st comp}lter'program and it goes
ili ioht look like if it were approached fro nto an 1pﬁn1te loop, their degrees of‘ belief that it wﬂl. eventually halt go
the ghfﬁﬁoﬁeiﬁﬂ(?:;ggs I::fre lenient point of view own rapidly, and they eventually terminate the computation and look for the
robabilistic . _
g éomputer scientists have recognized for some tin}c that what appea ug.
intractable from a purely logical point of view can be viewed as tra'ctable_ if
measure is introduced. For example, expected complexity thefjry imposes 2
uniform measure over the (finite) set of inputs of a given size, as tho gh
for each input size we are uncertain which inputs of that size we W
encounter. The result is that some problems that seem to be mtracta:'t:)
in the wotst case are tractable in the expected case. Tl_lere al§0 };25 bfa_
interest in finding tractable random algorithms for primality testing,”* whe

The same may be said of mathematicians looking for proofs. Many
mathematicians are uncertain whether P = NP, but they are inclined to believe
hat it is false, in the sense that they would try to prove its negation first. Such

251 am disregarding uncertainty about the program the machine runs, the fdelity
f the machine to its program, and the input provided to the machine. The kind of
ncertainty one has when one turns on a computer is clearly not the sum of these, or
omputers would never be used.

26 e N
24 g o Solovay and Strassen (1977) and Adleman and Manders (1977). Note the similarity to Plato’s Meno paradox.
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opinions suggest personal degrees of beliel on an undecided propositig xew, ¥>0 there is an § = 2% SllCh. that P (&) = L—r and CG3nZR .iS
. a7 : R-clopen. Each R-clopen subset of 2% is a finite union of fans (cf exercise
arlthlrfnt':ttlz conceded, at least provisionally, that degrees of belief shoul 4.14). Since this union can be specified by a lookup table, it follows that 5 ~ R
entertalined over m;thematical propositions, then probabilistic reliabil is Q‘{-Tecurs?ve. So by proposition_?.S, some gqmputable r.nethocu} decides @ with
quickly removes many skeptical concerns in the philost?phy (?f mathem_g :Cﬁﬂamty given R, .(cfil'lfl hel}ce.‘f"lt}l probability 1 — r given 2 ). Thus, we see
Let § = o be a purely computational problem that is arithmetically definab ;‘that by the probabilistic reha‘pihst ] s.tandards of success, Tumig Compl'ltab},lit}'
that for some n, S € £4. Then by the universal indexing theorem,?® the is no upper _bound on what is effectively computable (up to “mere trifles” of
80 ; f ’ h x" uncertainty in the computer user). '
an i such that for each x, The point is that uncomputability is about quantifiers over the natural
numbers. Countably additive probability permits us to truncate the infinite
universe of quantification up to “trifles,” and thus to dismiss the demons of
uncomputability along with those of induction. So there is some pressure on
the tradifional view that the stringent standards of logical reliabilism should
be relaxed in the philosophy of science but not in the philosophy of
mathematics. In either case, lowering standards flatters our abilities.

(*) S(x) had HJ)1 VyZ et T(19 <X, Yoo ’yu>= yn+1)'

where (i, n, k) <= program i halts on input x in k steps. Assummg that': we.
uncertain about what will happen when we feed a coplputer a given inpu;
we are in fact uncertain about the extension of the Turing predicate T. In ligh
of our uncertainty about the extension of T, the statemel}t &) may be tho.

of as an empirical hypothesis, to be investigated by running dlfferent-progra
indices on different inputs for different amounts to tume, obser\_rmg w
happens. For simplicity, I adopt the convention that we receive a binary d
stream such that a 1 or a 0 at position {({X, y1,.-> Yl Vur 1 mdl-cates wh
T(ia (x, Yise o yr:>s Yu+t 1) or i T(I’ <X, Yiseo o yn>7 yn+1)= _TGSPGCUVfﬂY- Iﬂ Othf.',
words, the purely formal question “xe 87" may be viewed as posing:th

foltowing inductive problem:

7. Probabilistic Theories

So far, the discussion has proceeded as though hypotheses always pick out a
determinate subset of A/, But some scientific theories, including our most
fundamental theory of matter, entail only probability statements concerning
observable events. Moreover, even a thoroughly deterministic theory like
classical mechanics can be viewed as making only probabilistic predictions if
it is assumed that real-valued measurements are all subject to a normally
distributed probabiiity of error.

A logical reliabilist’s approach toward such theories depends on how the
probability statements are interpreted. A thoroughgoing personalist takes all
probabilities to be someone’s coherent degrees of belief. This is a fairly clear
proposal and it causes no difficulty from a logical reliabilist’s point of view.
Recall that the personalist typically advocates a double reduction of probability
to degree of belief and of degree of belief to betting behavior, Hence, the problem
of inferring physical probabilities reduces, on this view, to the problem of
reliably discovering the odds at which the subject will bet on a given event. The
personalists themselves have proposed such inferential procedures in their
foundational discussions of the meaning of probability. So in this sense there
is no incompatibility between logical reliabilism and the purely personalistic
account of physical probabilities, It is just that the data streams, to which the
probabilities in quantum theory are logically connected, concern somebody’s
acceptance or rejection of various proferred bets,

It seems strange that the probabilities in quantum mechanics should
- literally refer to somebody’s opinions. So it is common, even among advocates
. of personalism, to allow that the probabilities introduced in scientific theories
refer to objective, physical realities. As we have seen in chapter 2, one such
view is that physical probabilities either are or at least logically entail limiting

CS(S, X3y ¥y, ... Pty yd Pt 1> T L.
3_( = 2%

Suppose we have a computable method o that decides s @ “{ith certair_;_t
Let ¢ be the unique data stream corresponding to the true extens'lon of T 1t
immediate that & is computable. Then we can decid‘e S by runmning o(x, e
greater and greater initial segments e of ¢ and passing along the first certain
conjecture of & (.., the first one occurring after “1").Soa computabie SCle}ltlﬁC
decision procedure for the scientific problem generated by'S yu:ldﬁ an .ordl 5
decision procedure for S. But if we follow the .moder.n point of view, it shou
suffice to have a probabilistic solution to this inductive problem. Say tha't__._
probability r recursive just in case there is a computable method o that decide

ith probability r. _
? WlItthisp immedia}tIe that for each x, (5 € £2, Thus, for each x, (5 e Bo. Let
be a probability measure on Bo. By proposition 13.14, we have that for each

27 This discussion is closely related to ideas in Garber (1983). Garber pyopq%tjf‘_
degrees of belief over entailment relations, in the spirit of tht.e 'precedmg discussion. o
is interested in how old evidence (evidence already conditioned on) can raise s
posterior probability of a new theory. His answer is that one later conditions on i
formal fact that the data is entailed by the theory. N

28 Cf. proposition 7.4 and the example following proposition 1.18.
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relative frequencies of experimental outcomes. As was shown in chapters; s follows:
9, this logical connection between probabilistic hypotheses and the
stream permits a nontrivial learning-theoretic analysis of the assessmeén
discovery of such hypotheses.

A careful frequentist cannot adopt all of the methods and results
Kolmogorov’s probability theory, however, since many of those results.
proved using countable additivity, and we have seen that countable additi

is not satisfied by limiting relative frequencies.?® Moreover, for those who

B(E, hy) = P(E).

n otl‘ler.words, given only that the true propensity function if P, one’s degree
f belief in E should also be the propensity of Z. Given this principle, evidence
‘can bear on propensity hypotheses via Bayes’ theorem:

used to the Kolmogorov axioms, frequentism appears to be an elemen Py(he) PSS, Bp)

fallacy. The strong law of large numbers, which is a consequence to: {] Byhp,8) = =202 8 (Bayey theorem)
Kolmogorov axioms, implies that if P corresponds to independent trials: wi B

a fair coin, then P{LRF, s(heads)) = 1. In other words, the probability _ BhpyP(E)

an infinite sequence of independent flips of a fair coin will have a limiting relative (the direct inference principle).

frequency of 0.5 is one. But a unit probability falls far short of logical neces
as the discussion of probability one convergence in this chapter m:
abundantly clear. From the point of view of a probability theorist who starts
out with the Kolmogorov axioms, the frequentist simply confuses a mea;
one property of sequences with a logical definition of the probability of an
outcome type in an infinite run of trials. The problem is compounded by t
fact that there are stronger “measure one” properties than the strong la
large numbers that could have been chosen to define probability, and there
a lack of motivation for choosing one such law rather than another.*®
Such reflections lead to the propensity account of objective probab
This account telis us just three things about propensities: they satisfy
Kolmogorov's axioms; they are physical rather than mental; and whatever th
are, they do not entail limiting relative frequencies of outcomes in the data
stream. Evidently, this proposal permits free use of Kolmogorov’s axioms
sidesteps the nettlesome project of forging a logical connection between
probability and the data stream. But there seems to be a principl
conservation of mystery operating, for it becomes unintelligible on the pro
pensity view (a) why propensities should be of any practical interest to anyon
and (b) how we could ever find out about propensities with any reliability, sing
they are globally underdetermined in the sense of chapter 2. i
The propensity theorist responds by tying personal degrees of belief to pro
pensities by means of an axiom known as the direct inference principle. Let L
be a probability measure representing personal degrees of belief. Let P be som
arbitrary probability measure over the events thought to be governed by pr'g'_)
pensities. The hypothesis that propensities are distributed according to P may b
abbreviated as hp. Then the direct inference principle may be stated roughly®

F($)

The direct inference principle also makes propensities figure into one’s
persqnal expected utilities for various acts, and hence makes them relevant to
practical deliberation. Without it, propensities are irrelevant, inaccessible
_metaphysical curiosities, whether or not they exist (Fig. 13.24). T,here are somt;
Who 'mamtain that propensities are no worse than any other theoretical entities
in th%s rfagard. But I reject the analogy. Theoretical entities can be unobservable
in principle and yet figure into determinate, logical predictions about observable
events.‘ For example, the light waves in Fresnel’s optical theory figured into
d?dUCtIOH.S of exact positions for diffraction bands. Propensities are very
dllT'erel}t, in that a propensity theory entails only propensity consequences

W}ych n turn bear no logical connection to the data stream, even in the limit,
W1thc_>ut the direct inference principle, propensities are entirely insulated from.

experience.

But now the question is: Why accept the principle? Some defend it

2% Historically, this seems to have been the decisive argument when most probabi
theorists dropped von Mises’ theory in favor of Kolmogorov's axioms (Van Eambalge
1987). :

39 The law of the iteratred logarithm is such a theorem (Billingsly 1986).
neofrequentist could strengthen his theory by defining probability in terms of this la
rather than in terms of the strong law of large numbers.

31 A more sophisticated account is stated in Levi (1983): 255.

evidenceandaction

Figure 13.24
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I do not mean to suggest that hybrid probabilism is a mistake. 1 only
vish to make it clear that the apparent advantages of the view (e.g., its
orrespondence with statistical practice and its ability to overcome global
nderdetermination) come at the expense of a clear, logical account of what
cience is about, of what its import is for observation, and of how scientific
nethod leads to the truth. Logical reliabilism begins with a clear, logical
ccount of precisely these issues. Accordingly, its strengths and weaknesses are
omewhat complementary to those of today’s hybrid probabilism. Logical
eliability resuits are hard to apply in particular cases because it is hard
o say in particular cases what the empirical import of a hypothesis actually
. But on the other hand, the relations between empirical content, under-
determination, computability, methodological recommendations, and the
reliability of inquiry as a means for finding the truth all stand out in bold
relief.
. Atthe very least, logical reliabilism provides a vantage point from which to
e questions that do not arise naturally within the hydrid probabilist
perspective; questions such as whether updating one joint probability measure
would be more reliable than updating another concerning a given hypothesis,
More ambitiously, logical reliabilism is a persistent remnant of the ancient idea
that scientific inquiry should have a clear logical connection with finding the

truth, in an age in which both philosophy and professional methodology urge
us to forget about it.

as an “incorrigible background stipulation” that reguires no }ugtiﬁ fi
But I am not so sure. Suppose there is an omn}potent, omniscien
Suppose this god has an infinite tape marked out with squares 1abeled_:
the propositions expressible in some language more expressive than an
will ever use. The god also has an infinite supply Qf infinitely divisibl .
Then, for his own amusement, he places a mud pic on each t‘a}lale square
that ’the masses of the pies satisfy Kolmogorovs_; axioms w:}t1 respect
the corresponding propositions (normalizing to unit mass on the tautol.o..
After this is done, he determines the truth va}ll.les of all the senten.cf;%-_
zapping some universe into existence, without giving any thought to h%s m
ics. N .
v For all that has been said about propensities, they cc?uld be the masse
the god’s mud pies. These masses are real and they satisty t.he KO]IHOg_Q___r_o
axioms. Certainly, they don’t entail limiting relative freq:;encws f;ll_' tollltc
" ion is; Why should I, in accordance wi &
of experiments. The question is: W .
infere}:]'nce principle, contribute 2.4%, of the stake on a bet that an ?I%ha pg:luc_
will be emitted from a given uranium atom because the mass of the mud
ition i 7 1 see no reason. :
on that proposition is 0.0247 : ' .
In aprecent text on Bayesian phllosophx of science, Ho“fso'n ;lmd Ilj)ﬂ{?,'l
argue for the direct infererence principle by mterpretmghsttati;tlca I;fl?o abL_ :
imiti i i inting out that those e
s limiting relative frequencies an(‘:l poin . that tho 0 bet
2.ccordancg with known limiting relative frequenmbts v\fﬂl minimize t};m hr;l]m
relative frequency of losses. This defense of the principle suCt_:Efeds, u‘t1 ]g L
undercutting its importance, since the admissu?n- thaF prop‘enm_tles elntal ! 11}
relative frequencies opens propensities to empirical investigation -e;.qng )
discussed in chapter 3, with no detour through_ personal probabi :ities i)r
inference. Of course, it is still possible on then.* gpprqacl} to stu E, al 0.1:lg1
lines of section 2 of this chapter, whether cond1t10nahzatf0E té)gett) 211"1 }Vl e
irect i inciple is ¢ i ther methods might be, both for ide:
direct inference principle is as reliable as o ' ' o
i h a study the direct inference princip
d for computable agents, but in such a s . ' I
?sna restrictiolil on one’s choice of possible inductive strategies rather than:t
theoretical linchpin of statistical inff:rence. . . ' __
In summary, logical reliabilism is compatible w}l:h ;lhe fou'mll::tf;lsq?fif];lés
i lism, even though there mig
frequentism and of pure personalism, : £ be quit
i i d frequentists who nonetheless i
about actual practice {(e.g.,, with avowe : 0 no s
itivi i the logical reliabilist approac
countable additivity). It is harder to square ( roach ¥
i i id wvi which globally underdetermin
the increasingly popular hybrid view in _ ercerotmines
it degrees of belief by the direc
ropensities are connected fo personal s of . : :
grirf)ciple. That position avoids standard objections reluset:dd aiamstd;;sg cég !
i i t a cost that should not be neglected. Accor .
petitors, but it does so a ul e e
i i i n about propensitie i
science is arbitrary {but coherent} opinio si
nothing about what will be observed (except for more propensities, about whic
the same may be said), even in the limit.

rais

8. Logic and Probability

may be merely apparent. The first point was that probabilistic methods may
ail in the logical sense to solve problems solvabie by simple, nonprobabilistic
ethods. Then 1 examined some probabilistic convergence theorems and
howed how they depend on countable additivity, a powerful epistemological
‘axiom rejected by some personalists and inconsistent with frequentism that is
often advertised as a mere technical convenience. To address the objection that
gical reliabilism is a cranky, skeptical viewpoint that is never taken seriously,
I appealed to the analogy between induction and computation that was
developed in chapter 6. According to this analogy, the demonic arguments of
logical reliabilism are routinely taken seriously in the philosophy of mathematics,
Finally, I reviewed the standard interpretations of stochastic theories, arguing
that the logical reliabilist perspective is compatible with pure personalism, pure
frequentism, and mixtures of personalism and frequentism. The view that mixes
personalism and propensity theory is founded on the direct inference principle,

which is questionable exactly insofar as it is required to link propensities to

32 Levi (1983): 255. evidence and to practical action.

33 Howson and Urbach (1990).
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9. Proofs of Propositions 13.18 and 13.20 Lemma 13.22

Proposition 13.18 {A, co-A} partitions @,

Let %, = [{|n*1]. Then there is a finitely additive probability meas
P on the power set of 2° such that

i P) = 0.5,
(ii) For each cofinite union S of fans in {F,: ne @}, P(5) = 0_5 il
(iii) For each finite union S of fans in {T,:new}, P(5) =0, .

Proof: A nco-A = (¥, since if Q contains a cofinite union of fans in {Finew}
then (. does not, and conversely. {{} € co-4 and each X € 2 is in A. Let Q,,
Q2 0. Suppose Q,Q, € 4. Then Q, wQyeAdand Qe co-A. I Q, ¢ A and

Qpeco-A ther_l QiwQaed If Q;, Qyeco-A then Q, UQ,eco-A and
0, € A. So by induction, each element of @ is in A U co-A4. 7]

Proof: Define Define for each Q e ©:

& is an algebra on N < N € ©® and © is closed under finite unio
and complementation.

1 fQedand{eQ

05  fQedand{¢Q
ierCo—AandCeQ

0 if QeCo-Adand{ ¢ Q.

Let @ be an algebra on A, PQ) =

P is a finitely additive probability measure on © <«
(1) for each 5@, P(5) >0,

2 PA)=1and

(3) If $6. 51, .., 8, is a finite sequence of pairwise disjoint elemeﬁ__t

of ©, then | J 5,—e®::>P(U S )=3 PS).
i=1 i=1 i=1

In light of lemma 13.22, P is uniquely defined and total over @. P also has
properties (i), (i), and (iif) of the proposition.

- We now verify that P is a finitely additive probability measure on ©. By
lemma 13.21, the proposition follows. Number the conditions in the definition
of P from 1 to 4. We must show that finite additivity is satisfied when Q.,Q;
satisfy each possible combination of such conditions. The combinations are
(1, 1), (1, 2),(1,3), (1,4), (2, 2),(2, 3),(2,4), (3,3), (3, 4), (4, 4). If Q,, Q, € A then
Q1 N Q3 #* J, so finite additivity is trivially satisfied. This accounts for (1, D,
(1,2),(2,2.1f{eQ,,{eQ,then Q, ~Q, # &, so finite additivity is satisfied.
This accounts for (1, 3), (3, 3). In case (1, 4), P(Q,) = 1 and PQ,)=0Q,uvQ,
satisfies condition 1 so P(Q,uQ,)=1=P@Q,) + P(Q5). In case (2,3),
P(Q ) =1/2and P(Q ;) = 1/2.Q; L Q,, satisfies condition I so PQ,u@,)=
1=P@Q)+ P(Q,) In case (2,4), P(Qy)=1/2 and P(Q;)=0. Q,UQ,
satisfies condition 2 so P(Q U Q,) = 1/2 = P(Q,) + P(Q,). In case (3,4),
P(Q,)=1/2 and P(Q,) = 0. Q, u Q, satisfies condition 3 so PQ,ui,)=
1/2=PQ) + PQy). In case (4,4), P(Q,) =0 and P(Q,)=0. Q,uQ,
atisfies condition 4 so P(Q, U Q) = 0= P(Q,) + P(Q,). ]

Lemma 13.21

If P is a finitely additive probability measure on an algebra ® on N\
then theve is a finitely additive P’ defined on the entire power set of.
such that for all S € ©®, P(§) = P'(5). (Unlike the countably additive
case, the extension is not necessarily unique.) B

Proof: Consequence of the Hahn Banach theorem (Ash 1972).

In light of lemma 13.21, it suffices to prove that there is a finitely ad
measure satisfying the intended constraints over some algebra of subsets
Define:

2 = the set of all cofinite unions of fans in {F,: ne w}. Proposition 13.20 (with C. Juhl)

There is a merely finitely additive probability measure P defined on 2
such that hy,, is not refutable - in the limit with probability 1 in P.

@ = the least algebra containing {{} L B.

Consider two different types of elements of @.

QeA< forsome ReB, R Q. Proof: Let § = Ci g Define:

Qeco-A=Q €A By ={Stu{PelldScPlu{{ehees
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Let © be the least algebra containing all elements of ©,. Let Q €@, The
define:

=

Q eA<3IR el such that S =R and R -5 =
QeB<1 finite F <8 suchthat S —F = Q and T = Q.
Qeco-B«Q €B.

Figure 13.29

Lemma 13.23 (Closure laws)

For each Q, R ¢ @:

(@) If QeAdand R e A then Q UR € A.

®) IfQeAdand R e A then Q U R e A.

(© If Qe dand R € 4 then Q u R € A.

(d) IfQeBand R e B then Q UR €B.

(€) If Q €co-B and R € co-B then QU R eco-B.
(f) If QeBand R €co-Bthen Q U R eB.

Now, define four subclasses of ©:

T, = An B (Fig. 13.25).
T, = A n co-B (Fig. 13.26).
I', = An B (Fig. 13.27).
I, = A co-B (Fig. 13.28).

- Proof: All these results are immediate except for (b}, Let co-©, denote the set
of complements of elements of &, A term is a finite intersection of sets in
0, v co-@,. Each Q € @ can be expressed as a finite union of terms.
Suppose Q e Aand R € A, Write Q = | | X and X = | ) ¥, where X and Y
are finite sets of terms. In each term, we can intersect all the finite subsets®* of
S into one finite subset of S, all the complemented, finite subsets of . into
one complement of a finite subset of 5, all the I12 supersets of .S into one g
superset of S, and all the complements of IT supersets of .§ into complements
of 113 supersets of 5, since the finite scts, the cofinite sets, the I13 supersets of
S and the complements of T1% supersets of S are all closed under finite
infersection. We may now assume that each term in (X Y} is expressed in
this normal form.

Suppose for reductio that Q w R e 4, so that | ) (X U ¥) e 4 (Fig. 13.29).
Suppose some term 7 in X U Y involves an uncomplemented subset of §.
Since | J(X U Y)e 4, there is a P eT1® such that P — § < (X v Y). But
no element of 7' is in P —§, s0o P ~S<{J(XuY) — {7}) and hence
UX oy -{ahed

Let K be the result of removing from X U ¥ all terms in which uncompie-
mented subsets of § occur. Hence, UKed The remaining terms in K are of
one of two types: type (i) terms are of form 4 ~ B and type (ii) terms are of
form 4 ~ B, where 4 is a TI3 superset of S and ‘B is the complement of a
subset of S. Since A<= B, 4B =A. So type (i) terms reduce to the form
4, where 4 is a 1% superset of .

Figure 13.27

G O

Figure 13.28 ** These are all singletons.
igure 13.
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» €€ Q. Contradiction. The same argu-

Suppose for reductio that K consists of only type (ii) terms. Then'
is a finite union of complements of 15 supersets of S. So there

ment applied to )
Gos - - » G, € 115 such that for each i <n, S <G, and PP © @ works when Q & co-B.

]
- Q €0, th ique.
Q then let TQ denote the unique F guaranteed by lemma 13.25. Now |

:: ﬁ o , ly- B V S 1 . Enumerate 5 a8 & )

UK:;'QO_G_E.

P({e[il}) = 17201,
For cach finite F = § define:

PP = ); P'({e}).

Now for each Q & @, define:

Also let 7Y be an arbitrary II5 superset of S. Since S ¢ 11} and 11} is clo
under countable intersection, we have that :

(9’—5)—UK=(9”—5)—£JDG}=(9”¢E\0@)—5 # &,

So (9 —.5) is not a subset of {J K. Since ) is an arbitrary TT4 superset o
|) K ¢ A. Hence, |} (X u Y)¢ A. Contradiction. So K involves at least on
type () term AnB. AnBed since A is a 112 superset of S ap
4 — 5 < 4 B. But the term 4 N B is either a subset of Q or of &, so eith
Q or R is in A. Contradiction. :

I=P(%y) if Qel
PQ) = 03+ P(F)  ifQer,
05-P(F,) i QeTl,

P(F5) ;
Lemma 13.24 Q if Qel,,

{1—‘19 rz: rss r4} partitions o,

Proof: First it is established by exhaustion that the I's are pairwise disjoil
Suppose € B r co-B. Then 3 finite 7 = S such that§ —F, = Q and
and there is an F, such that § — 7, = and /F, € Q. But since S is infin
and 7, F, are finite, there is some e€ S — (F; U ) such that e Q and e €
which is a contradiction, Hence B  co-B = (. Evidently, 4 n A = (. Thi
the T's are pairwise disjoint.
Now it is shown by induction that ® T u T, uT;w T, Eviden
® < A U A, so it suffices to show that @ < Bu ¢o-B. :
Base case: For each £€S, {¢} € co-B, choosing F = {&}. § € B, choosi
F = 5. Let ® be a I superset of 5. Then R € B, choosing F = &.
Induction: By definition, Q € B <+ Q, € co-B. Union is covered by the p
ceding lemma. '

Lemma 13.26

P is a finitely additive probability measure on

Progf: L

th’;fo rftﬂtizséj%; O L both Q and R are in 4 or if both Q and & are in

cases () Q¢ 31; dS(;{ ﬁéllIEe szg;htlwti: is trivailly satisfied, This leaves Jjust the’
1 ; .

finally (d) Q e T, andj{;}} Qe 2and R ely; () Q T, and & eT,; and

In case (a) (Fig. 13.30), PQ)=1-pP

1323, QuRe I} 50 PQ UR) = 1 (-‘}—Q) and P(R) = P'(F). By lemma

— P,(-‘FQ,UQ{)' Suppose Q NR = [ (Note:

Lemma 13.25

For each Q € ©, there is a unique, finite F < 8§ such that § — F =o,
and}"ngrS—TgQandﬂng. :

Proof: By the preceding lemma, {B, co-B} partitions ©. Suppose Q € B. The
(*) 3F such that S —F =@Q and F = Q. Suppose distinct F, G satisfy ¢ some I, set

Without loss of generality, suppose s€¥ — G. Since F =, e an

Figure 13.30
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some I1 7 set

Figure 13.31

Figure 13.33

fi d R cannot overlap in Figure 13.30’.) Then 7, < To ;
;? ere{ Oi 5% Enﬂfgi and hence P'(F, 4) = P'(F,) — P'(Jy). So P(Q U X
1B, 20 =1 — [P, — PO = PQ)+ PR). n

In case (b) (Fig. 13.31), P(Q) = 1/2 + P(7,) and P(R) = 1/2 — P'(%).]
lemma 1323, Qu R eI, s0 PQUR)=1— P'(ﬂ-'qu). Suppo:?e QnX =&
Then ., = }’R_. So ’{FQU'R. = fﬂt — TQ and hence P’(?RUR) = P (jFR) —fP( )
So PQUR) = L~ Pl o) =1~ [PT) = PUI =172+ 1124 P(T)
P{T)y=P(Q) + P(R). r o

T casEeQ © (Fig. 1332, PQ)=1/2=P(F,) and P(R) = P(y)

By lemma 1323, QuUR el; so P(QuUR) xfl / AdPh(TQU%?.((TSupp)ose

= Then 7, = %F,. So %, zfQﬂxan elfxce QuR
B~ P ). Henee QS Ry~ 03 P 1) 12 [P~ P
1/2 = P'(F) + P'(Fg) = P(Q) + P(R). ,

/ n cgs(eZ)(d) (Figz.{ 13.33), P(Q) = P'(F,) and P(R) = P'(F;). By Ie%xl:nz_:;
1323, QuZRel, so PIQUR)= P’(L'FQUR). Suppose @ N K = @.H ben
since Q =%, and R =Jp, FqFg =0 and J, =% Tz en
Py 0ug) =P Ug) + P(Jz) = PQ) + P(R). -

of G, or by failing to stabilize to zero on an element of Cy- Since hy,, is not
refutable . in the limit (cf. chapter 3) we have that Fuil(s) &5, We need to
show that P"(Fail(x)) > 0. Case I; Failo(x) # . Let ee Fail(«). Then €5, so
for some i, & = &[i]. So P"({e}) = P'({e[i1}) = 1/2*1 > 0. Case IT: Fail (o) = (.
Then since fail(oc)_;é “ (J, we have TFail{x) # . Since Fail) = &, (a) S =
Stabo(a). Also, (b) Staby(a) € 112, since we can define:

& € Stabo(o) < Va 3m > n, ofh . £lm) # 0.

Then since % aili(o) = Staby(a) - S, we have that Fail{a) € A. Since § <
Fails(e), Fail{x) € co-B. So Failg(a} € T,. So by the definition of P, P"(Fail (o)) =
. 0.5 > 0. S0 no method « can refute - hy,, in the limit given 2° with probability

iin P”. 8

Exercises

. i L -1. V. 2
By lemma 13.26 and lemma 13.21, there exists a finitely additive probability 13.1. Prove proposition 13.2

measure P’ extending P to the power set of AL Now, let o be an arbltri
assessment method. Let Staby(x) = {a:a stabilizes to 0 Og e}; i
fuifj(oc)=;5'tabo(oc)ﬁ5 , let Fail (o) = Stabo{o) NS, and let Fail(e) = Fai ltlgi(:h O]
Fail (). Since C, =5, Faillx) is the set of al_l‘d‘ata streams on w1 i
failsoto refute. h in the limit, either by stabilizing to 0 on an elem

132 Prove proposition 13.1. (Hint: let Qo Qu.....Q

ss+ -+ DE an w-sequence of
matually disjoint Borel sets sets.) Use the fact that

Then observe that the intersection is over a downward nested sequence of Borel sets
and apply continuity to the probability of the intersection. On the other side, let Q,,
Q-3 Q,, ... be a downward nested sequence of Borel sets. Use the fact that

:) Qr’ =Qo— .Q) (Q: - QH—I)‘

Then apply countable additivity to express the probability of the union as a limit of
finite sums.)

Figure 13.32



346 The Logic of Reliable Inguiry

13.3. For each re{0, 1), let P. he the probability measure on 2“ corresponding
independent flips of a coin that comes up 1 on each trial with probability ». Suppos
Fred’s initial joint probability measure P is a mixture of finitely many F,s. Is Fred reliab
concerning the hypothesis constructed in propesition 13.5? '
134 Show that gradual identification can be accomplished with probability 1. (Hin
apply proposition 13.17 to the degrees of approximation of each hypothesis.)

14

Experiment and Causal Inference

13.5. Define
P is a countably additive probability measure on A} < We'll never
know until
(1) V5 €A%, PSY = 1, L AN

2) PIN) =1, and
(3} ¥ sequence So, Sy, .., S ..+ Of pairwise disjoint AY sets,

y 5..) = ¥ PG
=0 n=0

o

=

SHEA‘E::»P(
0 U

Let P be a countably additive probability measure on Af. Let § e Bo. Define:

1. Introduction
I(S$) = {fE(A?)“’IS =y fs}-

e Until now, 1 have represented the scientist as a passive observer who watches
the world pass before his fixed and undirectable gaze. But in fact, an
experiment is not just a question put to nature, it is an act that changes the
state of the world under study in some way. This chapter examines active,
experimental science from a logical reliabilist point of view. Since the issues
that arise are more complex, the development will be correspondingly more
heuristic and suggestive than in the preceding chapters. What follows may be
thought of more as an outline than as a fully articulated theory.

Since Aristotle’s time, empirical science has aimed at discovering necessary
laws and causal mechanisms rather than merely contingent generalizations.
Does scientific method measure up to this aim? Scholastic realists held the view
that essences may be observed directly in virtue of a special power of the mind,
and that this ability accounts for the reliable discovery of necessary truths.
Nominalistic scholastics like William of Ockham undercut this theory by
denying that essences could function in causal accounts of perception. Method-
alogy was then faced with explaining how necessary conclusions can be drawn
from contingent evidence if the natures grounding the necessity are not given
in perception. For example, even if all ravens ever observed are black, the
essence or DNA of ravens may indeed admit of other colors that happen not
to have been realized for accidental reasons.

Francis Bacon thought that experimentation could bridge the gap between
contingent data and modal conclusions. The manipulation of nature was
supposed by him to somehow provide access to essences rather than to mere
accidents. David Hume held, to the contrary, that necessary connections

PYS)=inf } P(&)

Ee TES) iew
P* is called the outer measure generated by P. It can be shown that®?
If P is a countably additive probability measure on A2 then P* restricted to B
is the unique, -
countably additive probability measure on Bo such that P & P*.

Using this result, prove proposition 13.16. (Hint: use exercise 13.1.)

35 (Royden 1988} 295, theorem 8.
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