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Cc. 1. LEWIS S HERITAGE

arence Bonjour (1985: 97, 147-8) draws our attention to some pas-
ages in C. L Lewis’s An Analysis of Knowledge and Valuation. Lewis
gues that the degree of confidence that we have in n information
s (for n > 2) gathered from independent and partially reliable
itnesses’ is positively affected by their congruence (1946: 243-53). The
e idea is that the more congruent the information is, i.e. the better
meshes or fits together, the more confident we may be that the
information is true. On one side of the continuum there is foll congru-
ce, viz. when the witnesses all provide us with precisely the same
information. On the other side of the continuum there is complete
ack of congruence, viz. when the witnesses provide us with items of
information that are mutually exclusive. Between these extremes there
re various gradations. Suppose that we are informed by one witness
hat a particular person drives a Porsche and by another witness that
he is a millionaire. 'This is more congruent information than when we
e informed by one witness that the person in question drives a
- Porsche and by another witness that he is homeless. Lewis (1946: 338)
only distinguishes between congruent and non-congruent information
“sets and proposes a probabilistic criterion to draw this distinction.

In Bonjour, ‘coherence’ has been substituted for ‘congruence’, be-
cause of its role in the coherence theory of justification. We will
‘present a precise and seemingly plausible interpretation of Lewis’s
- claim and will name this interpretation ‘Bayesian Coherentism’. Then

! Lewis actually talks about ‘relatively unreliable witnesses’ (1946: 346). Pollowing Ols-
son (2002b: 259), we substitute “partial reliability’ for “relative unreliability’.

* Coherence is a property of information sets. At some junctions we also talk abour the
coherence of information, the coherence of reports, or the coherence of particular propos-
itions for ease of presentation. Nothing hangs on this and each such occugrence can readily
be rephrased in terms of information sets.
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case the tests are highly reliable, whereas in the other case they
shly unreliable. Then clearly, our degree of confidence that the
g:. the fanlty gene is in the overlapping area will be lower in the

we will construct a model of independent and partially reliable v
nesses to evaluate whether Bayesian Coherentism is defensible, '

The results of our analysis are twofold. First, on our interpretag
of Lewis, Bayesian Coherentism will turn out to be too strong a thesig
Our analysis will show why the quest for a probabilistic measure th
induces a coherence ordering over information sets is in vain, Secoﬁ'ci
our analysis will suggest a way to salvage certain intuitions that undes ;
lie Bayesian Coherentism. This can be achieved if we accept that ther, road area for possible locus with an overla? betwe.en these ;;(:as
cannot exist a coherence ordering, but only a coherence quasi-orderin that coincides with the relatively narrow area in the first case. en
over information sets. ; ciéa y, our degree of confidence that the Jocus of the i.?aulty gene is
the overlapping area will be lower in the latter than in the former

+ than in the former case.

. Eow coherent is the information? This time suppose that the only
onice is that in one case both tests identify precisely t-he s:iu?ae
vely narrow area, whereas in the other case each test identifies

T-2. BAYESIAN COHERENTISM t2 standard way of expressing these claims is as ceteris paribus

Aimis. When gathering information from independent and ?arﬁally
g_'e”:.ible sources, the following claims seem to hold t‘rue. Flrs.t, tElle
. expected (or equivalently, the less surprisja.lg) the information is,
the greater our degree of confidence, ceteris paribus. Second, the rnor‘e
sliable the information sources are, the greater our degree. of Fonfl—
ence, ceteris paribus. Third, the more coherent the information is, th‘e
preater our degree of confidence that the information is true, ceteris

Suppose that we receive items of information from independent dnic
partially reliable sources, say, observations, witness consultations, ex
pesimental tests, etc. Then what determines our degree of confidenc
that the conjunction of these items of information is true? Conside
the following procedure. We are trying to determine the locus of th
faulty gene on the human genome that is responsible for a particula
disease. Before conducting the experiments, there are certain loci tha
we consider to be more likely candidates. We run two tests with inde
pendent and partially reliable instruments. Bach test identifies an area:
on the human genome where the faulty gene might be located. It
turns otrt that there is a certain overlap between the indicated areas. T
is plausible that the following three factors affect our degree of confi
dence that both tests are providing us with correct data, ie. that the .
faulty gene is indeed located somewhere in the overlapping area.

“The third claim is a core claim of Bayesian Coherentism. To make it
re precise we introduce the following terminology. LeF us assume
that we obtain the information items R;, ..., R, from n mdependfmt
and partially reliable sources. Then S = {Ry, ..., Ry} is an inform'atloln
ot Now let § be a set of such information sets. Then the following is
‘the first tenet of Bayesian Coherentism:

(1) How expected are the results? Compare two cases of the above
procedure. Suppose that the only difference between the cases is that,
given our background knowledge, in one case the overlapping area is
initially considered to be a highly expected candidate area, whereas in
the other case the overlapping area is initially considered to be a highty
unexpected candidate area for the faulty gene. Then clearly, our degree
of confidence that the locus of the faulty gene is in the overlapping area
will be lower in the latter than in the former case.

(ii} How reliable are the tests? Again, compare two cases of the above
procedure. Suppose that the only difference between the cases is that

“(BC,) For all information sets 8, 8" € §, if § is no less coherent t‘han g,
2 then our degree of confidence that the content of 3 (ie. the
conjunction of the propositions in $) is true is no less than our
degree of confidence that the comtent of S is true, ceteris

paribus.

What the ceteris paribus clause in (BC;) indicates is the following. Thle
irmpact of the coherence of the information set on our degree of llZOI]f'l-
dence satisfies (BC,), assuming that how expected the information is
and how reliable the sources are does not vary from information set to




2 - Information Information - 13

“count of coherence should be able to offer a coherence measure
2 function of the probabilistic features of § and §' so that § is no
erent than §' if and only if m(8) > m(S".

instance, suppose that we are trying to identify the culprit in a
: case. Consider the information set § = {R; = [The culprit is
h)’, R, = [The culprit drove away from the crime scene in a
ault]}. R, is the binary propositional variable whose values are Ry
“R;. We assume that, in a population of suspects who stand an
4l: chance of being culprits, the French are in a minority, but most
ke French drive Renaults and Renaults are rarely driven by anyone
ois not French, Then we may well have the following joint
babilities: P(R,,Rz) = .10, P(R,, =R,) = .01, P(—R,,R;) = .01 and
Ry, —R;) = .88. Intuitively, this information set is highly coherent.
. up ose on the other hand that we are dealing with the information
= {R] = [The culprit is French], R} = [The culprit is a Presby-
_man]} We assume that the French and the Presbyterians are both
orities in our population of suspects and that French Presbyterians
ery rare indeed. Then the following joint probabiliies may
old: P(R],RL) =01, P(R},=R}) =10, P(~R],R}) =.10, P(-R], °R})
79. Intuitively, this information set is strongly incoherent. A meas-
f coherence should determine whether S ranks higher in the
oherence ordering than §'. As an illustration we calculate Shogenji’s
asure #, for both information sets. Remember that m; is the ratio
f: the joint probability of the propositions in the information set over
¢ product of their marginal probabilities. Thus, in our example:

information set. Certainly our degree of confidence in less coheres
information is, on occasion, greater than our degree of confidence §
more coherent information. This may happen when the less cohereﬁ
information is more expected or when the corresponding witnesses ar
more reliable. But a Bayesian Coherentist contends that the cohereng,
of an information set increases our degree of confidence assuming tha
we keep all other relevant factors, viz. the expectance and the reliah
ity, fized. :

What exactly constitutes the coherence of an information set?
number of proposals have been put forward over the years. Lewi
(1946: 338) proposes the following criterion: ‘A set of statements, or a se
of supposed facts asserted, will be said to be congruent if and only if they ax
so related that the antecedent probability of any one of them will be increase
if the remainder of the set can be assumed as given premises’ (italics in
original), Tomoji Shogenji (1999) defends a coherence measare tha
equals the ratio of the joint probability of all the propositions in § ove;
the product of the marginal probabilities of the propositions in ., Ertk
J. Olsson (2002b: 250) suggests as a possible measure of coherence the
ratio of the joint probability of the propositions in § over the probabil
ity of the disjunction of the propositions in S. Branden Pitelson (2003
defends a measure of coherence that is based on the Kemeny an
Oppenheim measure of factual support. We will return to these pro
posals in Section 2.6.

There is one thing that all these proposals share, viz. their probabJI
istic nature. We return to the information set § = {Ry, .., Ry} cot
tained in the set of information sets S. Let R; be the binary

propositional variable whose positive value is R; and whose negativ ) m(S) = P(R,, R;) -10 ~ 826,
value is —R; for i =1, ..., n. The probabilistic features of an inform ' ' P(Rl}P(Rz) (10 + .01)(.10 + .01)
tion set are fully expressed by the joint probability distribution ove P(R;,Rg) _ .01 ~ 826,

N
Ry, ..., R,. We can express the second tenet that defines Bayesian my(S) =

P(R)P(R))  (.01+ .10)01 +.10) -~
Coherentism as follows:

ince m,(S) > my(S), the Shogenji measure squares with our intuitive
‘fanking of coherence in this case,

We take (BC;) and (BC,) not only to be the core of Bayesian Coher-
‘entism, but also to have a certain independent plausibility,. However,

(BCz) A coherence ordering over § is fully determined by the probabil:
istic features of the information sets contained in 8.

So, for any two information sets S == {R;, ..., Ry} and & = {R
, R} }, how the coherence of $ compares with the coherence of § is
fuﬂy determined by the joint probability distribution over Ry, ..., Ry

? Following Quine (1960: 168), we use square brackets to refer to the proposition
and the joint probability distribution over R/, ..., R!. Hence, a Baye

éxprcssed by the enclosed sentence.
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we will present an impossibility result to the effect that these tﬁe

g > 0fori=1,...,nTo keep things simple, let us assume
1
cannot jointly be true.

41l wwitnesses are equally reliable, ie. py=p and g : g for
., n.° Hence, to model partially reliable witnesses we impose
llowing constraint on P, '

L3. MODELLING INFORMATION GATHERING p>q>0.
Suppose that there are n independent and partially reliable sources
that each source i informs us of a proposition R;, fori=1, ..., n
that the information set is {Ri, ..., Ry} Let us call R; a fact varight
and REPR; a report variable, REPR; can take on two values, viz. REP
and “REPR;. REPR,; is the proposition that, after consultation with thi
proper source, there is a report to the effect that R; is the casé
-REPR; is the proposition that, after consultation with the prope
source, there is no report to the effect that R; is the case. We constric
a probability measure P over R,, ..., R,, REPR,, ... , and REPR,,, satis

fying the constraint that the sources are partially reliable and independ
q
ent.

e ate two aspects to the independence of the sources to con-
" '.First, the coherence of the reports is of little consequence when
itnesses have based their reports on information that was corr‘a-
muicated between themselves or when they have inferred t1-1e1r

oits from facts other than those that they are reporting on. Consider
Hation on our earlier example. One witness informs us that the
prit had a French accent and the other witness informs us that
' 'culprit drove off in a Renault. Supposing that most French have
arich accents and drive Renaults and few non-French have French
Eénts or drive Renaults, the coherence of the wimess reportsl Pro—
des a strong boost to our degree of confidence that the culprit is a
ault driver with a French accent, It would indeed be a remarkable
cidence to receive independent witness reports that fit together so
¢ll. But the coherence of these reports would be of little consequence
one witness had told the other witness that the culprit drove off in a
Renault and the latter had inferred from this information that the
culprit had a French accent. The coherence of the reports vs.tould alafo
e: of little consequence if both sources saw the culprit drive off in
what they took to be a Repault and one of the witnesses had inferred
from this that the culprit had a French accent.” Independent witnesses
are supposed to gather information by, and only by, observing the
facts they report on. They may not always provide a correct assess-
ment of these facts, but they are not supposed to be influenced by
the reports of the other witnesses, nor by the facts on which other
witnesses report,

For the coherence of the reports to be of any consequence, the
witnesses must be partially reliable. The chance that the reports of fully
reliable witnesses are false is nil, i.e. P(REPR;|-R)) = 0 fori=1,...,
Our degree of confidence is raised to certainty in whatever fully reliable
witnesses report, regardless of the degree of coherence of these Teports,
On the other hand, fully unreliable witnesses pay no attention whatso:
ever to the facts on which they are reporting, It is as if they flip a coin or
cast a die to determine what they will say. Let the true positive rate be
pi: = P(REPR;|R;) and let the false positive rate be 4 = P(REPR;|-R;);
Then, for fully unreliable witnesses, pi=gfori=1,.. ., n Clearly, the
reports of fully unreliable witnesses should be of no consequence to our
degree of confidence regarding the matters attested to, regardless of the
coherence of the reports.” Hence, we stipulate that the witnesses in:
which we are interested here should be more informative than fully
unreliable witnesses yet less informative than fully reliable witnesses,

* Qur model of partially reliable sources matches interpretation (i} of ‘dubious infor
mation-gathering processes’ in Bovens and Olsson (2000: 698). Our model of independent -
sources can be found in Bovens and Olsson (2000: 690 and 696-70 and 2002: 143-4) and in
Barman (2000: 56-9).

* The reader might ask why fully unreliahle witnesses are not modelled as consistent
liars, i.e. P{REPR|R;} =0 and P(REPR;}-R;) = 1. The information of consistent liars is -
actually a very reliable guide to belief formation. We simply need to turn around the trath-
value of the report to get to the truth of the marter,

¢ We will show that Bayesian Coherentism is false even in the simple case in which the
7 witnesses are equally reliable. So there is little point in investigating the more complex case
| involving unequal reliabilicy levels for the various witnesses. . .

7 Of course if the witnesses independenily observed thas the witness drove off in what
- they took to be a Renault, then the coherence of their observations w?uld increase. our
confidence that the culprit is a Renault driver. But the coherence of their reports as such
would not increase our confidence that the culprit is a Renault driver with a French accent.
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th respect to the report in question.” This reliability parameter
oritinuous and strictly decreasing function of the [ikelihood
P"l .e. the proportion of false positives over true positives.

: ter this ratio is, the less reliable the witness report is. For tully
le witnesses, the false positive rate g equals the true positive
and v takes on the value 0, whereas for fully reliable witnesses
e positive rate q equals 0 and v takes on the value 1. Since the
5365 WE consider are neither fully reliable nor fully unreliable, r
ges over the open interval (0, 1).

ie that v measures the reliability of the witness with respect to the
in question and not the reliability of the witness tout court. To see
distinction, comsider the case in which g equals 0. In this case, r
~hes its maximal value 1, no matter what the value of p is. Certainly,
tness who provides fewer rather than more false negatives, as meas-
. ¥ 1 — p, is a more reliable witness tout court. But when g is 0, the

We provide the following probabilistic interpretation of what cogg
tutes independent witnesses. Let there be a certain chance p tha
will receive a report to the effect that the culprit has a French acca
given that he does indeed have a French accent and a certain ch
that we will receive a report to the effect that the culprit has a Frey
accent given that he does not have a French accent. p and q reflect he
skilful the witness is at recognizing Prench accents. Now suppose
we come to learn that the culprit was driving a Renault or we come
learn that another witness reported that the culprit was driving
Renault. Since the independent witness who reported on the culpri
accent strictly attended to the culprit’s accent, not to the culprit’s ¢
or repotts about the car, p and g remain unaffected. This stipulati
translates into the following constraint on P. All report variables REP
are probabilistically independent of all the other fact variables Ry g
all the other report variables REFPR;, given the fact variable R; f

o

i=1, ..., n. In formal notation: ility of the witness with respect to the report in question is not affected
the value of p > 0. No matter what the value of p is, we can be fully
(1.3) REPR; I Ry,REPR,, ..., Ri_y,REPR; |, Ry, afident that what the witness says is true, since ¢ = 0—i.e. she never
REPR R, REPR,{R; fori=1 nt rovides any false positives. We will use the elliptical expression of wit-

i1 -y S at{I\is =1 ..., nm

ess rehabﬂity to stand for the reliability of the wimess with respect to the

i i i S t in question, not for the reliability of the witness tout court.
Or equivalently, in the terminology of the theory of probabilistic ca rmd

cond, we define parameters ; for i =0, #. Remember that a
?rl;ti T:YET Sg e iCTEEﬁS]:fZSRERgﬁRfmm all other fact variables Ky an t' variable R; can take on a positive value R or a negative value —R;
catee of confiden '- j the sum of the joint robablhues of all combm—

The degree of confidence in the information set is the conditional j=Llonals j p

Hons of i negatwe values and n — i positive values of the variables
, R,. For example, for an information triple containing the
roposmons Ry, Ry, and Ry, a4y = P(—R;, —Ry, Ry) + P(—Ry, Rz, —R3)
(Ry, 7Rz, ©R3). That is, 4 is the sum of the joint probabilities of all
mbinations with two negative values and one positive value. Call
“dy, ..., Ay the weight vector of the information set

{Ry, ..., R,} and note that Zal =1,

“We show in Appendix A.l that given the constraints on P in (1.2)
nd {1.3), the following relationship holds:

joint probability of the propositions in the information set, given that
all the reports have come in, ie. P(R,, ..., R,|REFR,, ..., REPR,

For simplicity, we suppress the conditionalization by introducing the
posterior probability function P*:

(1.4) P*Ry, ..., Ry) = PRy, ..., Ry[REPRy, ..., REPR,).

Some additional notational conventions will permit a simple represen-
tation of this posterior probability. First, it will prove useful to define a
parameter v:= 1 — q/p which characterizes the reliability of the wit-

10 We will later show that the results in Chapters 1 and 2 do not depend on this
articular choice of a reliability measure.

! One needs 1o be careful when talking abour the likelihood ratio in Bayesian confirm-
tion theory. Sometimes the likelihood ratio is defined as above (e.g. in Howson and
Urbach 199%; 29), sometimes as the reciprocal p/q (e.g. in Pear] 1997: 34).

® This notation was introdeced by Dawid (1979} and has become standard notaton, Sée
Pear] (2000) and Spirtes ¢t al. (2000).
® See Reichenbach {1956) and Salmon (1998).

o
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(1.5) P*(Ry, ..., Ry) =

consider the following two situations, In the first situation we ch
three propositions that are the positive values of independent pr
itional variables. The witnesses tell us, respectively, that the culprit (
was a woman, (R;) had a Danish accent, and (R;} drove a Pord, §
pose that our population of suspects is composed so that lear
that one or two of these propositions are true (or false) does
change the probability of the other proposition(s). The diagrain
Figure 1.1 depicts a possible joint probability distribudon over

variables R, R,, and R; and presents the corresponding values for
for i =4, ..., 3. In the second sitnation we choose three equivai'e
propositions. The witnesses tell us, respectively, that the culprit (

was wearing Coco Chanel shoes, (R}) had a French accent, and'(__3
drove a Renault. OQur population of suspects is composed so that
and only people with French accents wear Coco Chanel shoes, and
and only people who wear Coco Chanel shoes drive Renauls. Th
diagram in Figure 1.2 depicts a possible joint probability distributio;
over the variables R}, R}, and R} and presents the corresponding value
for @, for i=0, ..., 3. Note that gy — dq: The prior joint probabil
of the information in the former information set is equal to the pr

4,=0.064
a4;=3x0.096=0.288 Rl
a,=3%0.144=0.432
4;=0.216

0.096

0.095 0.096

0.216
R,

Fre. 1.1 A diagram of the joint probability distribution over the variables Ry, Ry, and Rs
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R/, R,
TN
0.936
R,
L

* A diagram of the joint probability disnribution over the variables Ri, R, and R}

probability of the information in the latter information set. In
i words, the information is equally expected in both sitnations.
i;;pose that the sources are twice as likely to issue a true positive
than a false positive report, i.e. p = 2q and hence r =1 = .50.
by (1.5), our degrees of confidence after we have received the
ts from the sources in these two situations are, respectively,

064

r2 187 and
064 % 509 4+ .288 X .50 4+ .432 X .50 + 216 X .50°

P*R, Ry, Ry) =

064

R}) = #3354,
064 X 50% + 0 % .50" + 0 X .50% + 936 x .50°

PR,

ice that for equally expected information and equally reliable
ces, the posterior probability is greater in the second situation
an in the first. And indeed, the information does fit together more
tightly in the second situation. Hence, the comparison of these situ-
ons constitutes one example of the impact of relative coherence that
fully consistent with the tenets of Bayesian Coherentism. But we will
w show that Bayesian Coherentistn does not hold in general.

4. AN IMPOSSIBILITY RESULT

disprove Bayesian Coherentism, it will suffice to construct a single
counter-example to (BC,) and (BC;). Note that for information triples,
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a4y +day + 4, +a; = 1. Hence, from (1'5), our degree of confid
that the reports from three independent information sources are tr
is given by the formula:

(18) P*(R],Rz, R3) =

Now pick any two information triples S and §' with joint probaby
distributions that yield the respective weight vectors <{dyg, dq, dz, 45,
<.05,.30,.10,.55> and <a,d},d,, d, >= < .05,.20,.70, .05 >. T
posterior joint probability that the information is true is plotted

Figure 1.3.

We do not know how to construct a coherence measure for inf
mation triples. But this does not matter. Our strategy will be to sh,
that any coherence measure would leave (BC;) and (BC,) vulnerable's
counter-examples. Ifence, no reasonable proposal for a cohere
measure could ever succeed.

By (BC,), a coherence measure that induces an ordering should. b
function of the probabilistic features of the information set. Since th
weight vector is the only relevant information of the probability distri
bution in determining our degree of confidence that the information';
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measure should be a function of only <dp,dy,4,,45> and
) ,a, >. However, for the present example, whatever measure
& will violate (BC,). To see this, first notice that the informa-
and §' is equally expected, since ¢q = a;,. Suppose that we pick
re m: sO that mT(S )y = my(8). Then for any value of r € (.8, 1),

iolated. It is not true that the more coherent the information
greaﬁer our degree of confidence, ceteris paribus, since
! R}) < P*(Rq, Ry, Rs) over this interval, Or suppose that we
measure m4 o that my(8) > my(S"). Then for any value of r € (0,

Cp).is faise. It is not true that the more coherent the information
.greater our degree of confidence, ceteris paribus, since
Ry, Ry) < < P*(R!, R}, R}y over this interval. Thus, no measure of
ce can be constructed that determines our relative degree of
nee when all other determinants, i.e. the expectance of the infor-
n and the reliability of the witnesses, remain the same for both
mation sets. For the weight vectors in question, the reliability of
ources changes which information set will merit the greater degree
afidence. Similar results can be generated for information sets of
> 3."2 Hence, we can conclude that there cannot exist a measure
oherence that is probabilistic and induces a coherence ordering for
rnation triples (BC;) and that simultaneously makes it the case that
shore coherent the information set, the more confident we are that

g
do -+ a7+ ¥+ (1 —adp —ay — )7

nformation is true, ceteris paribus (BCy).

e might raise the following objections. First, we have shown that
degree of confidence is a function of the reliability r and the
ht vector < dg, ..., 4y > It may well be the case that there is
ther determinant D of our degree of confidence which differs from
iability, expectance, and coherence and which is also a function of r
<dy, ..., 4;>. (BCy) may well be true if we keep the reliability,
the: expectance, as well as D fixed under the ceteris paribus clause. We
o-not have a general argument to the effect that there is no such
crminant D. However, to successfully revive Bayesian Coherentism
will have to be the case that in our counter-example D has no
mmon value in the region r = (0, .8} and in the region r = (.8, 1). If
here are any two points in these respective regions for which D is the

Ty
0

Fra. 1.3 The posterior prabability for information triples with weight vectors < ag, i

4y, 4y > = <.,05, .3,.1,
reliability parameter ¢

It is not possible to construct counter-examples of this nature for information pairs,
formation sets of size » = 2. This does not mean that Bayesian Coherentism is true
information pairs, In Chapter 2, we will show that there also does not exist a coherence
tdering over the set of information pairs, violating (BCy).

55> and <ap, 4, a5, a)> = <.05,.2,.7,.05> as a function of thi
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same, our counter-example will continue to apply. We cannot beg
respond to this objection without a hint of what such a determin
might be " )
Second, one might object that our result is an artefact of the sp
choice of the reliability measure . However, our result holds fo
measure in the class of measures that are a continuocus and a sis
monotonically decreasing function of the likelihood ratio x = ¢/p.’!
is so because the curves of the posterior probability functions
criss-cross when plotted against v will also criss-cross when ploj
against x = 1 — 7, and hence against any continuous and strictly nio
tonically decreasing function of x that maps the interval (0, 1) ontd g
interval (0, 1). Note that the reliability measure only depends on x; a5
not also on, say, g. To see this, suppose that the measure Werg.
depend on both x and g. We keep x constant and change the valueof
(and accordingly the value of p). The witness reliabilicy would thetels
change, whereas, by (1.5), the posterior probability of the informa
would remain constant, which is unintuitive.

i other values of r. But note that this criss-crossing of curves
¢ occur for all pairs of information triples that satisfy condition
will be instructive to compare concrete examples of pairs of
tion triples in which this criss-crossing occurs with examples
. of information triples in which this criss-crossing does not

: let us consider a case in which this criss-crossing does not occur.
turn to the information triples in Section 1.3, viz. § = {R, = [the
: was a wornan], R, == [the culprit had a Danish accent], R; = [the
prit drove a Ford]} and §' == {R] = [the culprit was wearing Coc.o
¢l shoes], R, = [the culprit had a French accent], R = [the culprit
a Renault]}. Suppose that, given background information about
uspects, the weight vectors are respectively <dg, ..., 43> =
64,.288,.432, 216> and <ap, ..., 4;> = <.064,0,0,.936>.
e 1.4 plots the posterior joint probability that the information
h respective triple is true as a function of the reliability measure.
ice that these curves do not criss-cross. Hence, our degree of confi-
¢e in the information content of S is greater than our degree
oﬁfidence in the information content of §', no matter at what level
I.5. WEAK BAYESIAN COHERENTISM ix the degree of partial reliability of the witnesses. For this
How troubling should this negative result be? Curicusly, our mode
first seemed to leave some hope for a probabilistic account of cohs
ence, but then we were able to show that Bayesian Coherentism do
not hold up for certain pairs of information triples. This negative resy
hinges on a stipulation of the weight vectors of the pairs of inform
tion triples so that (i) the prior joint probabilities of the propositions'-_f
the information triples are the same and (ii) the curves of the posterio
joint probability as a function of the reliability of the witness
criss-cross—i.e. for some values of r the posterior joint probability
the propositions in one information set exceeds the posterior joint!
probability of the propositions in the other information set, and vid

5 ) I3 1 r
'* Purthermore, one might object that, if there exists such a determinant D, then cohié I PHR', R, R'S)
ence may well be a function of <4, ..., 4,>> and some other feature d of the probabili oL, T N T
distribution so that the coherence measure m is not exclusively a functon of <ay, ..., 4, 0 0.2 0.4 0.6 0.8 Lo r

4 may be some marginal probability, as in the Shogenji measure. This could be so, as long as:
D is also a function of 4, so that our degree of confidence is independent of d. For example:
let PXRy, ou, Ry) ~ D, withm = d gi{ <dg, ..., 63> yand D = dla( <ag, ..., >
But once again, what determinant D could qualify for this role?

Fic. 1.4 The posterior probability for information triples with weight vectors <ag, 4,
W0, > = <.D64,.288, 432, 216> and < 4}, 8}, 4}, 45 > = <.064,0,0, 936> as a function
of the reliability parameter ¥
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a"p=0.064 : s highly negatively relevant with respect to the other propositions
a'"=0.336 RY RS nd R}. 8" seems more coherent than a set of three independent
a'';=0.236 positions, since RY and R} fit together so well. Yet $” also seems
"

a5 0.364 po

oherent, since R;" fits so poorly with R’; and R;". We want to say
there just is no fact of the matter as to whether S is more or less
nt than §”. No coherence ranking can be defined over the pair
1. And indeed, if we plot the posterior joint probability for these
:information sets, then we find criss-crossing lines just as in
e 1.3

So why is it that the conjunction of (BC,) and (BC;) does not
erally hold? We can split up (BC;) into two components:

0.364 .
it
R3

Fic, 1.5 A diagram of the joint probability distribution over the variables RY,RY and CE) The binary relation of *. .. being no less coherent than ... over
8 is fully determined by the probabilistic features of the infor-
pair of information triples, the tenets of Bayesian Coherentisy mation sets contained in §.
succeed.

But now compare the following two information triples. The triple
is as before, but the tiple §" = {R! = [the culprit was wearin
Coco Chanel shoes], R} = [the culprit had a French accent], R =il
culprit drove a Ford]}. Suppose that in our population 40 per cent
suspects wear Coco Chanel shoes, and all and only suspects who we
Coco Chanel shoes have a French accent. Also, 30 per cent of ol
suspects drive Fords. However, 84 per cent of the suspects who we:
Coco Chanel shoes and have a French accent drive Renaults and ont
the remaining 16 per cent of them drive Fords. We have represente
the probability distribution for §” and calculated the weight vects
<.064, .336, 236, .364 > in the diagram in Figure 1.5.'* Which of thes
two information sets has the appearance of being more coherent? On
the one hand, one might say that § is less coherent, since the propos:
itions in § are probabilistically independent whereas $7 has two prop-:
ositions, viz. Ry and Ry, that are maximally positively relevant, i.e
they pick out coextensive sets of suspects. On the other hand, oné
might say that § is more coherent, since $” contains a proposition R/

C;) The binary relation of *... being no less coherent than...’ is an
' ordering.

“weakened variant of Bayesian Coherentism can be salvaged if we are
illing to give up (BCY). Orderings are complete, reflexive, and transi-
tive binary relations; quasi-orderings are reflexive, transitive, but not
necessarily complete binary relations.'® Our suggestion is that the
Bayesian Coherentist give up on the completeness requirement on the
binary relation of coherence. In other words, (BGC;) needs to be re-
placed by

(BC,) A coherence quasi-ordering over § is fully determined by the
probabilistic features of the information sets contained in §.

Let us name the conjunciion of (BC)) and (BCZ) “‘Weak Bayesian
Coherentism’. According to Weak Bayesian Coherentism, there exists a
coherence quasi-ordering over § that is fully determined by the prob-
. abilistic features of its constituent information sets, Furthermore, if

- § is no less coherent than §', then our degree of confidence that § is
™ Observe in the diagram chat .336 + .064 = .40; 40% of the suspects wear Coco Cha- :

nel shoes and have a French accent; .236 + .064 = .30; 30% of the suspects drive Fords;
A064/.40 = .16; 16% of the suspects with Coco Chanel shoes and French accenss drive
Pords. We assume thac the remaining 84% of the suspects with Coco Chanel shoes and
French accents drive Renaults; .336/.40 = .84.

** The crossing point can be obtained analytically by solving P*(R,, Ry Ry) =
P*RY{,R],RY) for r € {0,1) using equation (1.5). This point lies at r 7= .68,
¢ Various terms have been used in the literature. See Sen (1970: 7-9},
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true is no less than our degree of confidence that § is true, cetéf
paribus. In our example, an ordering is defined over {S,5'} but n,
over {8, 8"},

How does our analysis affect the coherence theory of justifications
The coherence theory is meant to be a response to Cartesian scep'

cism. The Cartesian sceptic claims that we are not justified in believing.
the story about the world that we have come by through various

information-gathering processes (our senses, witnesses, etc.), since Wi
have no reason to believe that these processes are reliable. There are

many variants of the coherence theory of justification. We are inter:

ested in versions that hinge on the claim that it is the very coherenc
of the story of the world that gives us a reason to believe that the

story is likely to be true. 'This is not the place to defend a full-fledged
version of the coherencc theory of justification, but we will argue that

the substitation of (BC ) for (BC,) is not damaging to this claim.

First consider the following analogy. Suppose that we establish that
the more a person reads, the more cultured she is, ceteris paribus. We
conclude from this that if we meet with a very well-read person, then:
we have a reason to believe that she is cultured. It may not be suffi-:
cient reason, but it is a reason nonetheless. Now suppose that we also:
establish that sometimes no comparison can be made between the'
amount of reading two people do, since reading comes in many shapes’
and colours. We can only establish a quasi-ordering over a set of

persons according to how well read they are. This does not stand in
the way of our conclusion. :

We have shown that, as long as our sources are independent and.

partially reliable, the more coherent an information set is, the more
likely its content is to be true, ceteris paribus. We conclude from this
that, if the story of the world is a very coherent information set, then
we have a reason to believe that its content is likely to be true. Again,
it may not be sufficient reason, but it is a reason nonetheless. And
similarly, the fact that we can only establish a coherence quasi-ordering
over information sets does not stand in the way of this conclusion.
What is misguided in the coherence theory of justification is the

persistent attempt to construct a measure that imposes an ordering on

sets of information sets. The coherence theory is thought to be lacking
unless we have a clear measure of coherence that permits us to order
information sets. What we have shown is that the insistence on such a
measure is wrong-headed, since there simply is no such measure that

Information - 27

also respects (BC,). A coherence theory that draws on a probabilistic
measure of coherence must make do with a quasi-ordering.

- Opponents of the coherence theory may try to get some mileage
it of our result. Indeed, a radical response to what has been demon-
atrated would be to discard the Coherentism part of Bayesian Coher-
entism—i.e. {(BC;). But our formal model actually discourages this
sove. Our model shows that if § is indeed more coherent than
en our degree of confidence in the content of § should be greater
aian in the content of §, assuming that the sources are equally reliable
ind the information is equally expected. The opponent of the Coher-
entism part of Bayesian Coherentism will need to show that this
formal model is not fit to deal with Cartesian scepticism.

A more moderate response to our analysis would be to tinker with
BC,), i.e. with the Bayesian part of Bayesian Coherentism. We have
'oposed altering (BC}), but others have tried to tinker with (BC)).
The idea underlying such proposals is that probabilistic accounts of
cherence cannot do justice to the richness of this concept, and that
egative results are 1o be expected when one works within such an
impoverished structure. For instance, it has been argued that the co-

“herence of an information set should take into account explanatory

elations between the propositions in the set, and that these relations

“cannot be adequately represented by probabilistic information (e.g.
‘BonJour 1985: 99-101). If one takes into account the full richness of

the notion of coherence, then it is possible to construct an ordering—

and hence to respect (BCiZi)—of information sets, or so the argument

goes. At this point in time we may not have a principled way of doing

“so, but proponents argue that this is the challenge that the coherence

theory of justification must take up. We take no dogmatic stand on
this issue, but remain suspicious of any claim to the effect that there
are aspects of uncertain reasoning that resist a strictly probabilistic
analysis.
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Lle nor to information sets of the same cardinality. Let us look at a

yamples.
igst, SUppose that a murder has been committed in Tokyo. We are

g to locate the corpse and, given our background knowledge,

square inch of Tokyo is just as likely a spot as every other square
4 Suppose two witnesses independently point to a particular house.
s'is certainly coherent information. Alternatively, suppose that one
witness points to some broad area on the map and the other witess
points to an area that is no less broad. The overlap between both areas
a large district of Tokyo. There is little doubt that the information in
o first case is more coherent than the information in the second case,

And yet the prior probability that the information of the witnesses in
first case is true is much lower than the prior probability that the
rimation of the witnesses in the second case is true, for the house is
much smaller region than the district,

‘Second, BonJour poses the following example of information sets
hat can clearly be ordered with respect to their relative coherence.

~onsider the following two information sets: § = {JAll ravens are
lackd, [This bird is a raven], {This bird is black]} and § = {{'This chair is
town), [Blectrons are negatively charged], {Today is Thursday]} (1985:
6). There is no doubt that set $ is more coherent than set §'. And yet
there is no reason to assume that the prior probability that the infor-
ation in S is true equals the prior probability that the information in

2
Coherence

2.I. UNEQUAL PRIORS

In the previous chapter we showed that there cannot be a measur
that induces a coherence ordering—i.e. a binary relation which is com
plete, reflexive, and transitive—over the set of possible informatid
sets. This does not exclude the construction of a measure that induce
a coherence quasi-ordering—i.e. a binary relation which is reflexiv
and transitive. So far we have only coasidered a special case—we haw
laid out a procedure to order pairs of equal-sized information sets th

share the same prior probability that their respective constitutive prop.
ositions are all true. In effect, we have partitioned the set of all info
mation sets into subsets 8 of information sets that have the same
cardinality and the same prior joint probability a;. Within each o
these subsets § we have constructed a procedure to impose a quas
ordering over 8. Let " be the binary relation of being no less coherent
than. Then for pairs of information sets S = {Ry, ..., R,} and § =

{R, ..., R,}, our procedure can be stated as follows: 18 true.

- Third, we also make judgements of relative coherence when the
information sets are of unequal size. For instance, consider the para-
gm case of non-monotonic reasoning. Certainly the information
air § = {[My pet Tweety is a bird], (My pet Tweety cannot flyl} is
ess coherent than the information iriple 8’ = {[My pet Tweety is a
ird], [My pet Tweety cannot fly], [My pet Tweety is a penguin]}. The
inclusion of the information that Tweety is a penguin is what brings
. ) . . “coherence 1o the story. What we want is a measure that induces a
representing the function for their posterior joint probability for S is _coherence quasi-ordering over information sets in general, not just

7 / :
strictly above the cgrve for §' over the interval r € (0,1). We have information sets of the same size and with equal prior joint prob-
assumed that the witnesses are equally reliable and will discuss this. abilities.

assumption in Section 2.4. :

We should be able to do better than this, Qur intuitive notion of
one information set being no less coherent than another information
set is not restricted to information sets whose content is equally prob-

{2.1) For all §, §€8 if § and & have the same cardinalify'
and PRy, ..., R) =ag=ay = PR}, ..., R)), then S § iff
P¥Ry, ..., Ry) = P*R(, ..., R)) for all values of the reliabilits
parameter v € {0, 1),

In other words, S is no less coherent than 8§ if and only if the curvé'

Various attempts have been made to provide a probabﬂistlc account
“of the notion of coherence. In the previous chapter we showed that
“the search for a measure that imposes a coherence ordering on the set
“of information sets is in vain. However, a coherence quasi-ordering
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should suffice for the purposes of the coherence theory of justificy
Thus, in this chapter, we will take on the project of showing he;
construct a general measure that imposes a coherence quasi-ords
on the set of information sets,

The notion of coherence also plays a role in philosophy of scien
Kuhn (1977 321-2, quoted in Salmon (1990: 176)) mentions cp
ency as one of the (admittedly imprecise) criteria for scientific th
choice (along with accuracy, scope, simplicity, and fruitfulness). Salig
(1990: 198) distinguishes between the internal consistency of a the
and the consistency of a theory with other accepted theories. In discy
ing the latter type of consistency, he claims that there are two aspects
this notion, viz. the ‘deductive relations of entailment and compatib i
and the ‘inductive relations of fittingness and incongruity’. We prop
to think of the internal consistency of a theory in the same way
Salmon thinks of the consistency of a theory with accepted theo
Hence, the internal consisiency of a theory matches the epistemolog
notion of the coherence of an information set: How well do the vario
components of the theory fit together, how congruous are these co
ponents? Salmon also writes that this criterion of consistency ‘seem

.to pertain to assessments of the prior probabilities of the theori
and ‘criies] out for a Bayesian interpretation’ (1990: 198). Followin
this line of thought, we will show how one can construct a coherene
quasi-ordering over a set of scientific theories and how our relativ
degree of confidence that one or another scientific theory is true i
functionally dependent on this quasi-ordering. That the relation 1s.
quasi-ordering rather than an ordering respects Kuhn’s contentio
that consistency is an imprecise criterion of theory choice. Indeed,
some cases, it is indeterminate which of two theories is mor
coherent. :

ke To see this, consider the following analogy. We not only use
uén. of coherence when we talk about information sets, but
: 'éxample, when we talk about groups of individuals. Group
rence tends to be a good thing. It makes ant colonies more fit
jval, it makes law firms more efficient, it makes for happier
ete. It makes little sense to ask what makes for a more coher-
p independently of the particular role that coherence is sup-
o play in the context in question. We must first fix the context
ish coherence purports to play a particular role. For instance, let
ontexe be ant colonies and let the role be that of promoting
ductive fitness. We give more precise content to the notion of
eience in this context by letting coherence be the property of ant
és that plays the role of boosting fitness and at the same time
es our pre-theoretic notion of the coherence of social units, A
& fillin for the notion of coherence will differ as we consider
boosts for ant heaps, efficiency boosts for law firms, or happi-
s Boosts for families.

i jlarly, it makes little sense to ask precisely what makes for a more
erent information set independently of the particular role that co-
rence is supposed to play. The coherence theory of justification and
the Kuhnian appeal to coherence as a criterion of theory choice ride on
articnlar common-sense intuition. When we gather information
Hm independent and partially and equally reliable sources, the more
herent the story is, the more confident we are that the story is true,
teris paribus. Within the context of information gathering from such
urces, coherence is a property of information sets that plays a confi-
rice-boosting role.

In the previous chapter we derived a parsimonious expression for
posterior probability that the information is true which we
ceive from independent withesses who are partially and equally

2.2, CONSTRUCTING A MEASURE 4
P*R,y, ..., R) =

"
Z ai‘.T'".
i=0

We will construct a formal measure that permits us to read off a cohet:
ence quasi-ordering from the joint probability distributions over th
propositional variables whose positive values are constitutive of th
information sets. The problem with existing accounts of coherence i
that they try to bring precision to our intuitive notion of coherence:
independently of the particular role that it is meant to play, This is:

Remember that 7:= 1 — r, with r being the reliability parameter equal
to 1 — q/p. The true positive rate p:= P(REPR;|R,) is greater than the
false positive rate g:= P(REPR;|-R;) which is greater than 0 for
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oy will be to assess the coherence of an information set by meas-
the proportion of the confidence boost that we actually receive,

i=1,..., 1 <dg -.., a4,>> is the weight vector of the informat
set 8 = {Ry, ..., Ry}. Bach 4; is the sum of the joint probabilitiés

all combinations of i negative values —R; and n — i positive values R ¢ to the confidence boost that we would have received had we
the propositional variables Ry, ..., R,. : this very same information in the form of maximally coherent infor-
A maximally coherent information set has the weight vecy ;
<dy,0, ..., 0,dy> with @y := I — dg. Let us assume that we aré put this formally, let us turn to our example of independent tests
ther certain that the content of the information set is true nor cert entify sections on the human genome that may contain the locus
that it is false, All items of information R, ..., R, are equivalen enetic disease. The tests pick out different areas, and the overlap
since ag = PRy, ..., Ry) and dy =a, = P(—R,y, ..., "Ry and-ih een the areas is a region . The information is more coherent
joint probabilities of all other combinations of propositions are sé i the reports are all clustered around the region ¢ than when they
0. If one of the remaining 44, ..., or 4, exceeds 0, then the iterm attered all over the human genome but have this relatively small
information are no longer equivalent and the information set loses f overlap on the region 0. The information is maximally coherent
maximal coherence. It is some feature of <a,, ..., a,> that defe every single test points to the region o, We assign a certain prior
mines the coherence of the information set. For maximal coherence; bility that the locus of the discase is in the region . With
needs to be the case thata; = 0 fori =1, ..., n — 1. But it is not ¢ ¢ coherent reports, our confidence boost will be greater than with

coherent reports, Let us measure this confidence boost by the ratio
¢ posterior probability—i.e. the probability after we have received
e reports—over the prior probability that the locus of the disease is in

at all what feature we are looking for when assessing and comparing
cases of non-maximal coherence. :

To determine this feature, here is how we will proceed. Suppose t
we have a range of suspects for some crime. We question the witnessé
who provide us information about what car the culprit was driving, th
culprit’s accent, etc. All this information picks out a certain subset!
the original suspects that satisfy all these features. Let’s suppose th
only Jean and Pierre satisfy these features. The information that led
to pick out fean or Pierre may have been maximally coherent, E
instance, it may be the case that each witness provided a report that it
was either Jean or Pierre who was the culprit. Or it may be the case th
one witness claimed that the culprit is from Marseille and the oth
witness claimed that the culprit is a sailor and that all and only inhal
ants from Marseille are sailors in our population of suspects. Burt th
information may also have been less coherent. One witness might ha
said that the suspect had a French accent and the other witness that th
suspect was a Presbyterian. The population of suspects contains a large
subset of suspects with French accents and a large subset of suspects
who are Presbyterians, but only Jean and Pierre are Presbyterians with
French accents. We learned in the last chapter that for any particul
value of the reliability parameter r, our confidence boost that either
Jean or Pierre is the suspect is much greater when the informatio
comes to us in the form of maximally coherent information rather
than in the form of less than maximally coherent information. Our

*
B({Ry .. ) Ry}) = ot 0 Ko
PRy, ..., Ry)

determine this confidence boost it is sufficient to know the weight
or <dy, ..., dy> and the reliability parameter r, since P(R,,
R,) equals 4, and since P¥(R;, ..., R,) is a function of the weight
ctor and the reliability parameter.

If we had received the information that the locus of the disease is in
epion o in the form of maximally coherent information, then our infor-
ation set would have contained n reports to the effect thar the locus of
& disease was in region o, Le. {Rcf, e, Rg} We can inipose a
obability measure P™* over the propositional variables RY, ..., R
th the corresponding weight vector <lup, 0, ..., 0,4, > We insert
his weight vector into (2.2} and calculate what our degree of confi-
ence would have been that the locus of the disease is in region ¢, had
e received the information as maximally coherent information:

dg

max:k o oy
p=E(RY, ., RY) = T
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Hence, our confidence boost would have been f the second tenet—viz. that the quasi-ordering of being no less

went than is determined by the probabilistic features of the infor-
P™*(RY, ..., RY)

Pmas(Ry, . RY)

(2.5) ™Ry, ..., Ra}) =
the general case, we would like to be able to assess and compare

sherence of information sets that may not have the same cardin-
1id may not share the same joint prior probability that their
ve contents are true. Our strategy is to assess the coherence of
formation set by measuring the proportion of the confidence boost
we actually receive, relative 1o the confidence boost that we would
veceived, had we received this very same information in the form of
aally coherent information. Also, in the general case we would like

Since the prior probability P™(RY, ..., R?) = PR,, ..., R.)
the proportion of the confidence boost that we actually receive, o
tive to the confidence boost that we would have received, had
received this very same information in the form of maximally cohere
information, equals

2.6) Ry, ..., R} = M ;& able to make the claim that the more coherent an information set
bRy, ..., Ry the greater this proportional confidence boost, ceteris paribus, in

_ P*Ry, .o, Ry)/PRy, ..., Ry) i the ceteris paribus ciause‘ requires- that the reliability parameter v

pmaxk (Rclrj o Rff) [pma (R(l,’ . Rg) &ld constant, Now we run into precisely the same problem that we

PYR,, ... R, 11..1to b:afore Some pairs of information sets {S,S'} are such that

= > ¢,(3") for some values of r, whereas ¢,(S') > ¢,(8) for other values

P max*(R?’ .-, RY) To safeguard our current claim, we follow the same strategy We

__ o taf sose an ordering on a pair of information sets if and only if the curves

i ai t represent the proportional confidence boosts as a function of r do
; :
=0

{ criss-cross. In formal terms,

This measure is functionally dependent on the reliability parameter
Clearly, our pre-theoretic notion of the coherence of an informati
set does not encompass the reliability of the witnesses that provide
with its content. So how can we use this measure to assess the relat
coherence of two information sets?

Let us look at what we did in the special case in which informatié
sets § and § have the same cardinality and P(R,, ..., R,) = 4,
a,=PR!, ..., R!). We salvaged the core of Bayesian Coherentism by
imposing an ordering on a pair of information sets if and only if th
curves representing the posterior probabilities that the contents of th
information sets are true as a function of r do not criss-cross. Formall
Sz §ifand only if P*R,, ..., R,) > PHRY, ..., R)) for all values o
the reliability parameter r € (0, 1). This permitted us to respect the
first tenet of Bayesian Coherentism—viz. the more coherent an infor
mation set is, the greater our degree of confidence that its content
is true, ceteris paribus—while remaining faithful to a weakened

) Forall ,8' €8, S =8 iff ¢.(S) > ¢,(8) for all values of the
reliability parameter ¥ € (0, 1).

s procedure induces a quasi-ordering on the set of information sets
“general, whatever their cardinalities and whatever the prior joint
obabilities that their contents are true. We will see that this distine-
on squares with our willingness to make intuitive judgements about
the relative coherence of information sets,

‘The reader may wonder whether our general-case procedure entails
ur special-case procedure. The answer is straightforward. In the
ecial case, we assume that the cardinalities of the information sets
are equal and that the prior probabilities that the contents of the infor-
mation sets are true are equal—ie. gy = a). From (2.2) and (2.6), it
follows that we can write the posterior joint probability that the con-
tent of the information set is true as follows:
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@) PHRy, o Rp) = -2 p R 1.
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Jay > max (L, ay/ag), ¥i=1,...,n—1
is a necessary and sufficient condition for S §
for n = 2 and is a sufficient condition for § = &' for

n > 2

1t is clear from (2.8) that

(2.9) Fc?r all 8, 8 €8, if § has cardinality m and §* has cardi.'n.'
with m =n and a; = o/, then P*Ry, ..., Ry) > P*R!
— 1

o .
Ry) if and only if ¢(S) > c(8") for all values of the relj
parameter r € (0, 1). :

the mote patsimonious staterment of the condition. However, it
st to interpret this condition when stated as a disjunction:

@ a, <ag &a >a, Vi=1,...,n—1,0r

ah >y & aifa; > agfay, Vi=1,...,n—1,
is a necessary and sufficient condition for § = 8 for
n = 2 and is a sufficient condition for § & & forn> 2.

Our procedure in the general case, as exp

‘ : ressed in {(2.7), in conjuse
with (2.9) entails our procedure in the ) e

special case, as expressed

Raf:her than assessing directly whether the curves criss-cross i
functions that measure the proportional confidence boost, w ot
a d@ﬁ“evlfence function. Consider two information sets S = :{Re e
and §' = (R}, ..., R!}. We calculate the weight Vectorsl’<a
am > and <df, ..., a, >. The difference function is defined as foﬁ

asy to see that (2.12) and (2.13) are equivalent.'

ot us now interpret (2.13). For n = 2, let § = {R;, R,} and consider
diagram for the joint probability distribution in Figure 2.1. There are
ecisely two ways to decrease” the coherence in moving from infor-
ation sets S to §: First, by shrinking the overlapping area between R,
dRZ (4, < a¢) and expanding the non-overlapping area (4} > a,), and
nd, by expanding the overlapping area (g, > 4,) while expanding the
n-overlapping area to a greater degree (a) /a, > a/ay). The example
f the corpse in Tokyo in the next section is meant to show that these
ditions are intuitively plausible.

For n> 2, consider the diagram for the joint probability distribution
e igure 2.2 and let $ = {R), Ry, R;}. There are two ways to de-
¢rease the coherence in moving from S to §': First, by shrinking the
rea in which there is complete overlap between Ry, ..., R, (4 < dq)

»

o)

(2.10) S8, 8 = 48) — 6,8,

£(8,8) has the same sign for all values of 7 € (0, 1) if and on
the measure ¢(S) is always greater than or i alway:s smaller thO {h
measure ¢(S) for all values of r€(0,1). Hence, we c e
the gegeral procedure in (2.7) that induces a quasizorderinan o &
unrestricted set of information sets in a moge parsimonious fagshczzfr::' |

(2.11) Tor two information s /

ets 5,8 € 8,5 = § iff £(5. 8 > :
values of r € (0, 1). - 5,8 2 0 for al
Assume (2.12). Bither max(l, #}/a) =1 or max(l, dy/ap) == ay/as In the former

if the informatio !
n sets S and §' are of e i it i
qual size, then it is ase, it follows from the inequality in (2.12) that wy S dg and @ >, ¥i=1,..., n— L

to determine whether there exists a coher

: . ence ordering over these the latter ecase, it follows from the inequality in (2.12) that o) >4y and
directly from the weight vectors <a,, ..., By > andg< 4 fsets !fag > al fag, ¥i=1, ..., n— 1. Hence, (2.13) foﬁcwsfyAssumc (2.13). Supp(:lse (i) holds.
One need only evaliate the conditions under which h e fhy > “Trom the first conjoint in {i), max (1, aj/de) =1 and hence from the second conjoint in
difference function is invariable for all vat WAl the sign of the ), dfa > max{l, @/a),¥i=1,..., n— 1 Suppose (i) holds. From the first conjoint
B.1, we have shown that atues of 7 € (0, 1). In Appendix in @i, max(l, a)fa;) =4ayfay and hence from the second comjoint in i),

; /e > max(l, 4yfag),Vi=1, ..., »n— L. Hence, (2.12) follows,

* We introduce the convention that ‘decreasing’ stands for decreasing or not changing,
‘shrinking’ for shrinking or not changing, and “expanding’ for expanding or not changing. This
convention permits us fo state the conditions in (2.13) more clearly and is analogous to the
microeconomic convention to let ‘preferring’ stand for weak preference, ie. for preferring to
or being indifferent between in ordinary language.
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der two information sets using the general method in (2.11)
sut satisfying the sufficient condition in (2.13).
we wish to determine the relative coherence of two information
Cand §' of unequal size, we have no shortcut. In that case, we need
pply our general method in (2.11), i.e. we need to examine the sign
(s; S forall values of r € (0, 1). The example of Tweety in the next
5 will provide an illuscration of the procedure used to judge the
<lative coherence of information sets of unequal size.

4z

A CORPSE IN TOKYO, BONJOUR'S RAVENS
AND TWEETY

FiG. 2.1 A diagram for the probability distribution for information. pairs

es our analysis yield the correct results for some intuitively clear
o7 We consider a comparison (i) of two information pairs, (if) of
o information triples, and {iii) of two information sets of unequal

R, R,
(1) Information Pairs. Suppose that we are trying to locate a corpse
om a murder somewhere in Tokyo. We draw a grid of 100 squares
ver the map of the city and consider it equally probable that the
Grpse lies somewhere within each square. We interview two partially
ad equally reliable witnesses, Suppose witness 1 reports that the corpse
somewhere in squares 50 to 60 and witness 2 reports that the corpse is
omewhere in squares 51 to 61. Call this sitnation o and include this
Aformation in the information set $%. For this information set,
* = 10 and 4§ = [02.

Let us now consider a different situation in which the reports from
the two sources overlap far less. In this alternate situation—call it B—
‘witness 1 reports squares 20 to 55 and witness 2 reports squares 55 to
90, This information is contained in SP. The overlapping area shrinks
‘to @b = .01 and the non-overlapping area expands to a? =.70. On
‘condition (2.13)(3), SP is less coherent than S, since ag = .01
‘<4 =10anddf = .70 > aF = .02
" In a third situation v, witness 1 reports squares 20 to 61 and witness
2 reports squares 50 to 91, 8¥ contains this information. The overlap-
- ping area expands to aj = .12 and the non-overlapping area expands to
47 = .60. On condition (2.13)(il}, §¥ is less coherent than 8%, since
al = 12> 4% = 10 and af /o =30 > 1.2 = a7 /5.

s R,

Fi1c. 2.2 A diagram for the probability distribution for information triples

(@ >a, Yi=1,...,n—1); and second, by expanding the area i
which there is complete overlap {(a) > a4,) and expanding all the non
overlapping areas to a greater degree (di/a; > al/ay,Vi=1, .. .
n—1). This is a sufficient but not a necessary condition for n> 2.
Hence, if equal-sized information sets do not satisfy condition (2.13),"
we still need to apply our general method in (2.11), i.e. we need to"
examine the sign of £;(S, §") for all values of r € (0, 1). The example of:
BonJour’s challenge in the next section shows that it may be possible
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Now let us consider a pair of situations in which no ordering ¢
information sets is possible. We are considering information pair
# = 2, and so condition (2.12) and (2.13) provide equivalent neces
and sufficient conditions to order two information pairs, if there ¢
an ordering. In situation 8, witness 1 reports squares 41 to 0.
witness 2 reports squares 51 to 70. So ag = .10 and a? = .20, In
ation &, witness 1 reports squares 39 to 61 and witness 2 reports SqUgE
50 to 72, So 4; = .12 and 4§ = .22. Is the information set in situatio
more or less coherent than in situation &? It is more convenient her
invoke condition (2.12), Notice that a®/a® = 1,10 is not greater than
equal to 1.20 = max(l, ag/ug), nor is a% /a¥ a2 .91 greater than or equ;
to 1 = max (1, ag /a%). Hence neither $% > S nor 8¢ » $° hold true,

These quasi-orderings over the information sets in situations « an
P, in situations & and y, and in situations & and & seems to squ;
quite well with our intuitive judgements. Without having done ar
empirical research, we conjecture that most experimental subj
would indeed rank the information set in situation & to be mor
coherent than the information sets in either situations § or 7. Furthe
more, we also conjecture that if one were to impose sufficient pressﬁ'r
on the subjects to judge which of the information sets in situations §
and € is more coherent, we would be left with a split vote.

We have reached these results by applying the special conditions
(2.12) and (2.13) for comparing information sets. The same results
be obtained by using the general method in (2.11). Write down th
difference functions as follows for each comparison (i.e. let i = o an

j=Bleti=oandj=1vy andleti =18 and j = ¢ in turn): :

0.01

) 5(85,8%)

ay 1 a7 a + agF?
dy+ait + a7 ol palv 4 alre

(2.14) £i(8, 8 = c(SH — ¢,(§) =

Fic. 2.3 The difference functions for a corpse in Tokyo

As we can see in Figure 2.3, the functions £(8%, SP) and f(S*, §) ar
positive for all values of r € (0, 1)—so $® is more coherent than SP an
S'. But f,(8%, 8% is positive for some values and negative for other
values of r € (0, 1)—so there is no coherence ordering over $3 and &,
(ii) Information Triples. We return to BonJour's challenge. There is a
more coherent set, S = {R; - [All ravens are black], R, = [This bird is
a raven}, Ry = [This bird is black]}, and a less coherent set, § = R =
[This chair is brown], R, = [Blectrons are negatively charged],

g = [Today is Thursday]}. The challenge is to give an account of the
act that S is more coherent than §'. Let us apply our analysis to this
hallenge.

What is essential in § is that R{&R, - Rs, so that PR4IR;, Rp) = 1.
‘But to construct a joint probability distribution, we need to make
some additional assumptions. Let us make assumptions that could
plausibly describe the degrees of confidence of an amateur ornitholo-
“gist who is sampling a population of birds:
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(i) There are four species of birds in the population of initey
ravens being one of them. There is an equal chance of pic

a bird from each species: P(R,) = 1/4. . =27/64

(i) The random variables R; and R,, whose values are the :
itions R; and —R,, and R, and —R,, respectively, are pr'd"
istically independent: Learning no more than that a rave

(or was not) picked teaches us nothing at all about wheth
ravens are black.

(ifi) We have prior knowledge that birds of the same species
have the same colour and black may be an appropriate col

for a raven. Let us set P(R;) = 1/4.

(iv) 'There is a one in four chance that a black bird has been pi
amongst the non-ravens, whether all ravens are black or

ie. P(Rs|=Ry,—R;) = P(Rs|R;, ~R;) = 1/4. Since we kno Jour's ravens

that birds of a single species often share the same colour, th

is only a chance of 1/10 that the bird that was picked happe;

to be black, given that it is a raven and that it is not the ca

that all ravens are black, i.e, P(R;|-R;,R,) = 1 /10.

What is essential in information set §' is that the propositional
ariables are probabilistically independent—e.g. learning something
ut electrons presumably does not teach us anything about what
it is today or about the colour of a chair. Let us suppose that the
_-gmai probabilities of each proposition are P(R) = P(R}) =
'y = 1/4. We construct the joint probability distribution for RI, R,
R’ and specify the weight vector <d), ..., a, > in Figure 2.5."
The information triples do not pass the su)ﬁaent condition for the

These assumptions permit us to construct the joint probability dis
bution for R;,R;,R; and to specify the weight vector <dg, ..., 4
(see Figure 2.4).% '

a,=1/16
a4,=21/320 R, R, ctermination of the direction of the coherence ordering in (2.12).° So
=9/20 ¢ need to appeal to our general method and construct the difference
a,=27/64 .
W , do + P i+ EP
15)  fravens = fe(3,87) = 7 1 73 1= 1 T2 & atyd
ag + a7 + a4 agr ay +ait + a7 4 agr
9/64
e have plotted f,es in Figure 2.7. This function is positive for all values
27764 R, fr € (0,1). Hence we may conclude that S is more coherent than s,

which is precisely the intuitjon of which BonJour wanted an account.’

* Since R, R}, and R, are probabilistically independent, PR, R}, R)) = PR)PR})
(R') for all values of R}, R,,and R}. The numerical values in Figure 2.5 can be directly
.calculated

* Cleatly the condition fails for §' >8§, but it also fails for S §, since
& 7 94 << 1 == max(1, 25) = max (L, &y/a0).

© % It is not always the case that an information triple in which one of the propositions is
entailed by the two other propositions is more coherent than an information triple in

Fi. 2.4 A diagram for the probability distribution for the set of dependent propositions
in BonJour’s ravens

? Since R, and R, are probabilistically independent, P(R;, Ry, Rs) = P(R)YP(R;)P(R|
Ry, Ry) for all values of R, Rz, and R;. The numerical values in Figure 2.4 can be directly .
caleulated. !
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(iti) Information Sets of Unequal Size. Finally, we consider a comp
son between an information pair and an information triple. Ti
following example is inspired by the paradigmatic example of 1
monotonic reasoning about Tweety the penguin. We are not interest,
in non-monotonic reasoning here, but merely in the question of ¢
coherence of information sets. Suppose that we come to learn f
independent sources that someone’s pet Tweety is a bird (B) and th
Tweety cannot fly, i.e. that Tweety is a ground-dweller (G). Consida
ing what we know about pets, {B, G} is highly incoherent informatio
Aside from the occasional penguin, there are no ground-dwelling
birds that qualify as pets, and aside from the occasional bar, the
are no flying non-birds that qualify as pets. Later, we receive the
item of information that Tweety is a penguin (P). Our exten.
information set §' = {B, G, P} seems to be much more coherent thi
S = {B, G}. So let us see whether our analysis bears out this intuitio
We construct a joint probability distribution for B, G, and P rogether
with the marginalized probability distributions for B and G i
Figure 2.6. o

Since the information sets are of unequal size, we need to appeal
to our general method in (2.11) and construct the difference function:

. o
20.01; 4,=0.98; 4,=001 a,'=0.01; a,'=0; a,’=0.98; 4,'=0,01

2.6 A diagram for the probability distribution for Tweety before and after extension
{'Tweely is a penguin]

ﬁwcety

LI L L e e o

! —f =3 — =2
a, + ayr o dy ok apr
ag + T+ av +aP g+ a7 4 apr?

{2'16) fnveety :ﬁ’(sl; S) =

f; avens

We have plotted fiwey in Figure 2.7. This function is positive:
for all values of r € (0,1). We may conclude that § is more coher-
ent than S, which is precisely the intuition that we wanted to
account for.

0.2

0.1

[ 2 S B O O

0 0z 04 06 0.8 1.0t

Fig. 2.7 'The difference functions for Bonfour’s ravens and Tweety
which the propositions are probabilistically independent, For instanee, suppose that R, and:

Ry are cxtremely incoherent propositions, i.e. the fruth of R, makes R, extremely implaus-
ible and vice versa, and that R, is an excremely implausible proposition which in conjunc-:
tion with R, entails R;. Then it can be shown that this set of propesitions is not a more
coherent set than a set of probabilistically independent propositions. This is not unwel:
come, since entailments by themselves should not warrant coherence. Certainly;
{R1, Ry, Rs} should not be a coberent set when R, and Rz are inconsistent and Ry
contradicts our background knowledge, although Ry&R,  R;. A judgement to the effect

that § is more coherent than §' depends both on logical relationships and background
knowledge.

2.4. EQUAL RELIABILITY

We have built into our model the assumption that the sources are
equally reliable, i.e. that all sources have the same true positive rate p
“and the same false positive rate g. This seems like an unreasonably
~ strong assumption, since, when we are gathering information in the
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of coherence of complete information sets and not of some
1hsets of them.

d, to see why external reliability is required in our model,
some information set § which is not maximally coherent, but
imore coherent than an information set §'. Any of our examples
on 2.3 will do for this purpose. It is always possible to pick two
and ¢’ so that ¢s(8') > ¢(8). To obtain such a result, we need
i:ck a value of ¥ in the neighbourhood of 0 or 1 and pick a less
e value for 1, since it is clear from (2.6) that for ¥’ approaching
. ¢#(8"y approaches 1. This is why coherence needs to be assessed
’v'ré to idealized sources that are taken to have the same degree of

nal reliability.

actual world, we typically trust some’ sources less and some sgy
more. But our assessment of the relative coherence of information
has nothing to do with how much we actually trust our mforma
sources. As a matter of fact, we may assess the coherence of an'i
mation set without having any clue whatsoever who the sources 3
the items in this information set or what their degrees of reliability
An assessment of coherence requires a certain metric that fea
hypothetical sources with certain idealized characteristics. These hYp
thetical sources are not epistemically perfect, as is usually the ca
idealizations. Rather, they are characterized by idealized imperfectis
their partial reliability. Furthermore, our idealized sources possess
same degree of internal reliability and the same degree of ext
reliability. By internal reliability we mean that the sources fo
item within an information set are equally refiable, and by extei
reliability we mean that the sources for each information set’an
equally reliable, :

To see why internal reliability is required in our model, c0n51der

INDETERMINACY

ur-analysis has some curious repercussions for the indeterminacy of
mparative judgements of coherence. Consider the much debated
roblem among Bayesians of how to set the prior probabilities. We
chosen examples in which shared background knowledge (or
rance) imposes constraints on what prior joint probability distribu-
s are reasonable.” In the case of the corpse in Tokyo, one could
|l'imagine coming to the table with no prior knowledge whatsoever
botic where an object is Jocated in a grid with equal-sized squares,
hen it seems reasonable to assume a uniform distribution over the
qiares in the grid. In the case of BonJour's ravens we modelled a
eitain lack of ornithological knowledge and let the joint probability

following two information sets. Set S contains two equivalent prop
itions R, and R, and a third proposition R; that is highly negativel
relevant with respect to Ry and R;. Set § contains three proposi
R}, R}, and R and every two propositions in § are just short of be. ;
equivalent. One can specify the contents of such information sets su
as to make §' intuitively more coherent than S. Qur formal analys
will agree with this intuition. Now suppose that it turns out that.th
actual—i.e. the non-idealized—information sources for Ri, R}, Ry, an
R}, are quite reliable and for Ry and R’ are close to fully unreiiable. W
assign certain values to the rehablhty parameters to reflect this sitn
ation and calculate the proportional confidence boosts that actuall
result for both information sets. Plausible values can be picked for th
relevant parameters so that the proportional confidence boost for.
actually exceeds the proportional confidence boost for §'. This comeé
about because the actual information sources virtually bring nothing &
the propositions R, and R} and because R, and R, are indeed equiva
lent (and hence maximally coherent), whereas R] and R/, are short ofbein,
equivalent (and hence less than maximally coherent). But what wi
want is an assessment of the relative coherence of {Ry, Rz, Ry} an
{Rr R’ R;} and not of the relative coherence of {R;,R;} and {R!, R;}
The appeal to ideal agents with the same degree of internal reliabili
in our metric is warranted by the fact that we want to compare the

Note that this is no more than a framework of presentatdon. Our approach is actually
tral when it comes to interpretations of probability. Following Gillies (2000), we favour
uralistic view of interpretations of probability. ‘The notion used in a certain context
ends on the application in question. But, if one believes, as a more zealous personalist,
only the Kolmogorov axioms and Bayesian updating impose constraints on what
stitute reasonable degrees of confidence, then there will be less room for rational
rgument and intersubjective agreement about the relative coherence of information sets.
if one believes, as an objectivist, that joint probability distributions can only be mear-
zfill when there is the requisite objective ground, then there will be less occasion for
mparative coherence judgements, None of this affects our project. The methodology for
assessment of the coherence of information sets remains the same, no matter what
terpretation of probability one embraces,
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ort, indeterminacy about coherence may come about because
ity does not sufficiently constrain the relevant degrees of confi-
n this case, it is our epistemic predicament with respect to the
of the information set that is to blame, However, even when the
istic features of a pair of information sets are fully transparent,
“still fail to be the case that one information set is more coherent
or equally coherent as) the other. Prima facie judgements can be
on both sides, but no judgement tour court is warranted, In this
indeterminacy is not due to our epistemic predicament, but rather
robabilistic features of the information sets.

distribution respect the logical entailment relation between the p
itions in question. In the case of Tweety one could make use
quency information about some population of pets that constitute
appropriate reference class.

But often we find ourselves in situations without such reasé;
constraints. What are we to do then? For instance, what is the pr(').
ity that the butler was the murderer (B), given that the murdep
committed with a kitchen knife (K), that the butler was having an
with the victim’s wife (A), and that the murderer was wearing a I
jacket (J)? Certainly the prior joint probability distributions ove
propositional variables B, K, A, and J may reasonably vary widely
different Bayesian agents and there is little that we can point to in’
to adjudicate in this matter. But to say that there is room for legi
disagreement among Bayesian agents is not to say that anything: &
Certainly we will want the joint probability distributions to resp
among others things, the feature that P(B|K, A,])> P(B). Someti
there are enough rational constraints on degrees of confidence to w:
rant agreement in comparative coherence judgements over informat
sets. And sometimes there are not. It is perfectly possible for two
tional agents to have degrees of confidence that are so different
they are unable to reach agreement about comparative cohere
judgements. This is one kind of indeterminacy. Rational argurm
cannot always bring sufficient precision to degrees of confidence
vield agreement on judgements of coherence, :

But what our analysis shows is that this is not the only kind
indeterminacy. 'T'wo rational agents may have the same subjective
probability distribution over the relevant propositional variables
still be unable to make a comparative judgement about two infor
tion sets. This is so for situations 8 and & in the case of the corps
Tokyo. Although there is no question about what constitutes . th
proper joint probability distributions that are associated with: th
information sets in question, no comparative coherence judgem
about S% and §° is possible. This is so because the proportional co
dence boost for ¥ exceeds the proportional confidence boost for SE
some intervals of the reliability parameter, and vice versa for o
intervals. If coherence is to be measured by the proportional confi
dence boost and if it is to be independent of the reliability of th
witnesses, then there will not exist a coherence ordering for son
pairs of information sets.

ALTERNATIVE PROPOSALS

aturn to the alternative proposals to construct a coherence
ing that were introduced in Chapter 1 and will show that these
sals yield counter-intuitive results. First, Lewis does not propose
measure that induces an ordering over information sets. Rather, he
s that coherent (or, in his words, congruent) information sets
ve the following property

P(RIRy, ..., R, Ry, oo, R) > PR foralli =1,

let us suppose that an information set contains n pairs of equiva-
ent propositions, but that there is a relation of strong negative rele-
nice (but not of inconsistency) between the propositions in each pair
“all other propositions. In other words, P(R;,R)> P(R;, Rj|

o Rion, Ripr, oo, Rjmt, Rty - -+, Ryg) & 0 but not equal to 0,
ach equivalent pair of propositions {R;, Rj}. Then one would be
'd-pressed to say that this information set is coherent. And yet,
ording to Lewis, this information set is coherent, because, assuming
n-extreme marginal probabilities, 1 = P(R|Ry, ..., R, Riyr, -+,
y> PR foralli=1, ..., 2n"
Second, Shogeniji proposes that

P(Rl,...,Rm)>P(R'l,...,Fg'l}

n -

IrR) [TPR)
i=1 i=1

i& S == 8§ iff my(8) = = my (8.

® For an example, see Bovens and Clsson (2000: 688-9).
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The following example shows that the Shogenji measure is coi;
intuitive. Suppose that there are 1,000 equiprobable suspects £
crime with equal proportions of Africans, North Americans; §
Americans, Buropeans, and Asians. Now consider the informatig
S = {R, = [The culprit is either an African, a North Amerid
South American, or a Buropean), R; = [The culprit is not Asian]}
§' = {R] = [The culprit is an African], R, = [The culprit is &
Youssou {a particular African), Sulla (a particular South American
Pierre (a particular European)J}. Since S contains propositions that pi
out coextensive sets of suspects, whereas there is relatively little 6y,
lap between the propositions in §', it seems reasonable to say that :
a more coherent set than S However, on the Shogenji measu
my(S) = gy = 1.25 <1.67 = 280 — (8. Our procedure, on
other hand, clearly matches the intuitive result in this case. The:p
portional confidence boost measure ¢, is maximal for the maxim;
coherent information set S containing equivalent propositions. Hen
the difference function f(8,8) = c(S) — ¢.(8") > 0 for all value
T € (0,1) and so, by (2.11), § is more coherent than §'.
Third, Olsson tentatively proposes that

_proposes that

s §iff
F(Ry, Ro)+F(Re, R) | F(R, RY)+F(R;, R)

Mf(s) = 2 — 2

= my ().

llowing example shows that this measure yields counter-intuitive
.lts. Let there be 100 suspects for a crime who have an equal chance of
s the culprit. In situation one, let there be 6 Trobriand suspects and 6
‘playing suspects; there is 1 Trobriand chess player. In situation
let there be 85 Ik suspects and 85 rugby-playing suspects; there are
o7k rugby players. Which information is more coherent—8={R, =
calprit is a Trobriand], R; =[The cu Ipritis a chess player]} or §' =
[The culprit is an Ik], R; = [The culprit is a rugby player]}?The
fformation in S seems to ﬂt together much better than in §, since
ve is so little overlap between being a Trobriander and being a chess
or and there is considerable overlap between being an Ik and a rugby
jer, But note that on Fitelson’s meastre me(S) 72 52> 48 =~ e (S").
« Fitelson measure behaves curiously for cases in which we increase
“overlapping area, while keeping the non-overlapping area fixed.
nitively, one would think that when keeping the non-overlapping
a fixed, then, the more overlap, the greater the coherence. And this
deed what our condition (2.12) indicates. Bur on the Fitelson
A6 asure, this is not the case. In Figure 2.8, we set the non-overlapping
ea at P(R;, —Ry) = P(—R,,R,) = .05. We increase the overlapping
rea do from .01 to .80 and plot the Fitelson measure as a function of
. in Pigure 2.9. 'The measure first increases from ap = .01 and
en reaches its maximum for @o & .17 and subsequently decreases
gain. We fail to see apy intuitive justification for this behaviour of the

(2.19) S §iff

P(Rls"',Rm) > P(R;,"'rRl{l)

o8) =
m(S) P(R; V...VRy) ™ PR[V...VR)

= mo(8). ;

The Tweety example shows that this measure is counter-intuitive
seems reasonable to say that the information pair S = {{My p
Tweety is a bird], [My pet Tweety cannot fly]} is less coherent than
the information triple 8’ = {[My pet Tweety is a bird], [My pet Twe
cannot fly], [My pet Tweety is a pengunin]}. But from Figure 2.6 we
read off that m,(S) = .01/.99 = m,(S").

Fourth, we focus on Fitelson's measure as applied to information
pairs. The Kemeny—Oppenheim measure is a measure of factual si
port when the marginal probabilities of R, and R, are not extreme

easure.

Where do these proposals go wrong? Lewis forgets that strong posi-
ive relevance between each proposition in a singleton set and the
ropositions in the complementary set is compatible with strong nega-
ve relevance between certain propositions in the information set. On
hogenji's measure, information sets containing less probable propos-
tions tend to do better on the coherence score, so much so that infor-
thation sets with non-equivalent but less probable prapositions may

P(Ry|R,) — P(R; |-R,)
P(R,|Ry) -+ P(R, [-Ry)
for P(R;) <1 and P(R,)> 0.

(2.20) F(Ry,Rp) —
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0 .

up of South Americans. Furthermore, informativeness is a
king characteristic of witness repotts, as is coherence. But this
sson to think that informativeness should be an aspect of

Olsson pays exclusive attention to the relative overlap be-
the propositions in the information set. But note that by increas-

symber of propositions one can increase relations of positive
rice while keeping the relative overlap fixed. Fitelson's measure
the degree of positive relevance between the propositions in
;mation set. But sometimes the relative overlap between

4;=0.9-a, ositions gets the upper hand in our intuitive jundgement of

- ]

G, 2. d.lagr m for th T 1y cisl utions of the il [OITAano e
R 8 A a the P obabili distriby (81 I
1 SEtS in oyp

ace.
clieve that judgements of coherence rest on the subtle inter-

ctween the degree of positive relevance relations and relative
p relations between propositions. To determine the nature of
abtle interplay, it is of no use to consult our intuitions. Rather,

g
f
E ieeds to determine the relative coherence through the role that
08 ence is meant to play—the role of boosting our confidence in the
B psitions in question. More coherent information sets are informa-
i on sets that display higher proportional coherence boosts regardless
07 the degree of reliability of the sources.
061 THEORY CHOICE IN SCIENCE
i Where does our analysis leave the claim in philosophy of science that
0.5~ erence plays a role in theory choice? We repeat the equality in (2.8).
L(')-—L—I__I_I_J_._J;J_}_v Jm,__l__‘__._\ : g
0.2 0.4 0.6 o8 a 22) PHRq, o Re) = o X e({Ry, - s Ro)

Fic. 2.9 The Fitelson measure my as a function of 4, < [L01

i .8] fof i .
I our counter-example to the Fitelson measure ] for the information séis

What this means is that our degree of confidence in an information set
can be expressed in terms of the measure ¢,(5) which induces a quasi-
ordering weighted by a factor. Note that this factor approximates 1 for
rger information sets (large #) as well as for highly reliable sources
2 1). Let us assume that we are comparing two information sets
that can be ordered. Then the relative degree of confidence for these
two information sets is fully determined by their relative coherence, if
either the sources are sufficiently reliable or the information scts are

score hi . .
re h‘Jgher than information sets containing all and only equivalen
. i . .
Ee:p‘)?o?s. We concur with Fitelson (2003) that an information
wi i
Ny all T:}d only equivalent propositions is maximally coherent
18 not possible for non-equivalen iti :
£ propositions to fit thi
s . 3 ' together better
: ]:Iquwalent propositions. Certainly, information sets with less
- o
probable propositions may be more informative —it js more infor-

mative wh ; .
€n a suspect points to Sufla than when she points to the - sufficiently large.
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One can represent a scientific théory T by a set of propb *mﬁ

{Ty, ..., Tm}. Let the Tis be assumptions, scientific laws, spée
tions of parameters, and so on. It is not plausible to claim that
proposition is independently tested, t.e. that each T; shields'o'_ff
evidence E; for this proposition from all other propositionsin
theory and all other evidence. The constitutive proposition:
theory are tested in unison. They are arranged into models tha
bine various propositions in the theory. Different models typ
share some of their contents, i.e. some propositions in T may plg
role in multiple models. It is more plausible to claim that each:m
M; is being supported by some set of evidence B; and that eag
shields off the evidence E; in support of the model from the
models in the theory and from other evidence. This is what it me
for the models to be supported by independent evidence. There
complex probabilistic relations between the various models in
theory. :

Formally, let each M; for i = 1, ..., n combine the relevant pr
ositions of a theory 'T' that are necessary to account for the indepe;
ent evidence ;. A theory T can be represented as the union of th
M;s.” Let M; be the variable which ranges over the value M sta
that all propositions in the model are true and the value —M; 3
ing that at least one proposition in the model is false. In Bayé:
confirmation theory, B, is evidence for M; if and only if the likelih
ratio

< that we are faced with two contending theories. The models
each theory are supported by independent items of evidence. It
s from (2.24) that, if (i) the evidence for each model is equally
ng, as expressed by a single parameter x, and, (ii) either the evi-
for each model is relatively strong (x ## 0, or, each theory can
ePresented by a sufficiently large set of models (large n), then a
.t degree of confidence is warranted for the theory that is repre-
by the more coherent set of models. Of course, we should not
the caveat that indeterminacy springs from two sources. First,
nay be substantial disagreement about the prior joint probability
:bution over the variables My, ..., M,, and second, even in the
ce of such disagreement, no comparative coherence judgement
& possible between both theories, represented by their respective
fitutive models. But even in the face of our assumptions and the
ats concerning indeterminacy, this is certainly not a trivial result
it the tole of coherence in theory choice within the framework of
yesian confirmation theory.

(2.23) x, = P
P(E; M)
is contained in (0,1). Hence, E; stands to M; in the same way as REP
stands to R; in our framework. Let us suppose that all the likelihot
ratios x; equal x. ¥ := 1 — x now plays the same role as r in our earli
model, We can construct a probability measure P for the constitue
models of a theory T and identify the weight vector <a, ..., a4, >
we translate the constraints of our earlier model, the following res
holds up:

# ‘This account of what a scientific theory is contains elements of both the syntactic vié#
and the semantic view. Scientific theories are characterized by the set of their models, as 0z
the semantic view, and these models (as weil as the evidence for the models) are expres:
as sets of propositions, as on the syntactic vicw.



