hapter 7

Supervision and Learning Attitudes

n philasophy, logic and psychology the word ‘learning’ is used to denote a variety
f phenomena. In this chapter, as in the previous ones, we take the phrase ‘to
earn’ $0 mean ‘to acquire information in order $o arrive al a certain (correct)
ionclusion’. In this we follow the lines of learning theory (see, e.g., Jain et al,
1999) where learning consists of a sequence of mind changes that should lead to
a correct conclusion. All belicf states visited on the way there, together with
_the correct one, are drawn from some given set of possibilities that constitutes
“the initial uncertainty range. To be more specific, let us try to describe in those
erms the process of language learning. Agent L’s (Learner’s) aim is to ‘arrive’
“at 8 grammar that correctly describes his native langnage. This scenario can be
represented by a graph in whiech the vertices represent possible grammars and
an edge from vertex s; to vertex s; labeled with o stands for a possibility of a
mind change from grammar sy to 5y that is triggered by the incoming information
. The properties of such a graph are determined by features of the initial range
of possibilities, the language being learned, and the nature of agent’s learning
strategy. Then, the process of learning can be represented simply as a ‘journey’
of L through the graph until he finally reaches the correct grammar. Obviously,
other inductive inference processes can also be described in this way.

The setting can be enriched by the prescnce of another agent, let us call
her Teacher, 7', who decides which data arc presented to L, in which order, etc.
In other words, we can introduce another player who supervises the process of
learning and manipulates the data in order to influence the speed and accuracy of
convergence. The analysis of the role of the teacher has been increasingly present
in formal learning theory (e.g., sec Angluin, 1987 for the minimally adequate
teacher in learning from queries and counterexamples, and Balbach & Zeugmann,
2009 for recent developments in teachability theory).

Tn this chapter, we investigate the interaction between Learner and Teacher in
a particular kind of supervision learning game that is played on a graph. Learner’s
information state changes while he moves around the graph, from one conjecture
to another. Teacher, having a global perspective, knows the structure of the
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éﬁnition 7.1.1. A directed multi-graph is a pair G = (V, E) where V 5 a
+ of vertices and -V xV = Nisa Junction indicating the number of edges

Jefween any lwo vertices.

graph, and by providing certain information eliminates some initially possip
mind changes of L. We are interested in the complexity of teaching, which*
interpret in a similar way as in Chapter 6. Assuming the global perspective.
Teacher, we identify the teachability problem with deciding whether the sucge
of the learning process is possible. We interpret learning as a game and hence w;
identify learnabitity and teachability with the existence of winning strategies in
certain type of game. In this context, we analyze different Learner and Teache
attitudes, varying the level of Teacher’s helpfulness and Learner’s willingness to
learn.

The sabotage game is defined in the following way.
Definition 7.1.2 (Léding & Rohde 2003a). A sabotage game
SG={V,E,v,vy)

We interpret our learning game within the existing framework of sabotage game,
(Van Benthem, 2005). We start by recalling sabotage games and sabotage modil
logic. Then, we explore variations of the winning condition of the game, providiﬁg.
sabotage modal logic formulae that characterize the existence of a winning stratepy
and their model-checking complexity (in other words: the complexity of deciding
whether a player has a winning strategy in the game) in cach case. Thens
observe the asymmetry of the players’ roles, and we allow Teacher to skip mave
and we analyze how such removal of strict alternation of the moves affects oy
previous results. Finally, we recapitulate the work and discuss possible extensicns

With respect to the previous chapter, which alzo deals with computations,
complexity of teaching, we will now, in a way, take a step back. We will lose the
detailed view on the content of epistemic states. Instead, we will gain the glob
picture of the process on conjecture change, and will be able to see the influenc
of intentional attitudes on the complexity of teaching. E

is given by a directed maulti-graph {V, E) and two vertices v,v, € V. Vertea:.v
represents the initial position of Runner and v, represents the goal state (the aim

of Runner). A .
" Buch match consists of a sequence of positions and ts played as follows:

1. the initial position (Fy,ve) 48 given by {E,v);
. 2. round k + 1 from position (Ey,vy) consisls of:

(a) Runner moving to some Vg such thot E(vg, veq1) > Q, and then

* (b) Blocker removing an edge (v,v") such that Ex(v,v") > 0.

The new position is {Eyy1, vy}, where Byyy(v,07) = Bp(o,v') — 1 and, for
every (w,u') # (v,v), Epgalu, ') = Bplu, '),

" 4. the matcls ends if a player cannot make a move or if Learner reaches the
goal state, which 1s the only case in which he wins.

7.1 Sabotage Games

In other words, Blocker removes an edge between two states v, v’ by decreasing
the value of £(v,v') by 1. As we will see later, this description of the game based
o0 the ahove definition of nmlti-graphs can lead to some technical problems when
we want to interpret modal logic over these structures. Therefore, we will now
present an alternative definition, which we later show to be equivalent with respect
to the existence of a winning strategy’.

As we already mentioned, our perspective on learning leads naturally to the frame
work of sabotage games. Sabotage games are useful for reasoning about variois
interactive processes involving random breakdowns or intentional cbstruction in &
systern, from the failures of server networks to the logistics of traveling by public.
transport. We argue that it can also be interpreted positively, as some form of:
learning. But before we get to that, we first introduce the general, basic frameworls

: e _ . ; : labels. A directed
of sabotage games. Definition 7.1.3. Let ¥ = {a1,...ax} be a finite sel of labels =

: labeled multi-graph is o tuple G© = (V,€) where V is a set of vertices and
A sabotage game is played in a directed multi-graph, withgtwo players, Runner: €=1(E,,..., &) 15 a collection of binary relations &, CV x V for each a; € X
and Blocker, moving in alternation, with Runner moving first. Runner moves by ' Y "
making a single transition from the current vertex. Blocker maves by deleting any::
edge from the graph. Runner wins the game if he is able to reach a designated’
goal vertex; otherwise Blocker wins. '

To define the game formally let us first introduce the structure in which:

sabotage games take place, a directed multi-graph (see, e.g., Balakrishnan, 1997)
#

In the above definition, the labels from ¥ are used to represent muitiple edges
between two vertices; £ is simply an ordered collection of binary relations on V/
with labels drawn from ¥. Accordingly, the modified definition of sabotage game
is as follows.

"y what follows we take the size of any multi-graph G = (V, E) to be bounded by: V|+
max{ E{v,w) | v,w € V} V3.
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Definition 7.1.4. A labeled sabotage game B’. doing this we establish that our modification of the definition makes only a
ght difference and that the previous contribution is valid for our notion. We

867 = (V, &, v, vg) start by formalizing the two problems.

is given by a directed labeled multi-graph (V, €) and two vertices v,v, € V. Verfs
v represents the initial position of Runner and v, represents the goal state.?
Bach match is played as follows:

Définition 7.1.6 (SABOTAGE DECISION PROBLEM).
‘stance Subotage game SG = (V, B, v, v,).

. L. i T3 2 0] strat in SG¥
1. the initial posttion (E, vy} is given by (£,v); Questlon Does Runner have a winning strategy in

i o E p ok ok k ete . " The B-SABOTAGE DECISION PROBLEM is very similar. The only difference is
% round b 1 from position (€7, o) with &= (8, - £a,), eonsists of : Hat it is concerned with slightly moditied structures - labeled sabotage games.
(a) Runner moving to some vg.y such that (g, vgyq) € Sfi for some a; €

and then Definition 7.1.7 (8-SABOTAGE DECISION PROBLEM).

(b} Blocker removing an edge (v,v") with label a; ({v,v") € &k ) for som Instance Labeled sabotage game 3G = (V, &, vo, vg) -

A Question Does Runner have a winning strategy in SGE?

it ™ k41 k+l . ok k - .

;iz 6fnew£c?sz?,r.)n i (E7 v, where 5%?” o Suj ~ 1,0} and 8‘1‘4"1 Theorem 7.1.8. SABOTAGE and Z-SABOTAGE are polynomially equivalend.
o Jor all i 3, .

Proof. The two problemms can be polynomially reduced to each other.

(:>} SABOTACE can be reduced to B-SABOTAGE. Given a sabotage gaime 3G =
(V, B, vo,vy), let m be the maximal number of cdges between any two vertices in
the graph, i.e.:

3. The match ends if o player cannot make o move or if Runner reaches th
goal state, which is the only case in which he wins. '

Tt is easy to sce that both versions of sabotage games have the history-fre
determinacy property: if one of the players has a winning strategy then (s)h
has a winning strategy that depends only on the current position. Then, each
round can be viewed as a transition from a sabotage game SG¥ = (V, Ek,vk,wg)
another sabotage game SG'° = {V, E¥FL ug 0, vy}, since all previous moves becom
irrelevant. We will use this fact through the whole paper.

It is easy to see that in labeled sabotage games, the label of the edge remove:
by Blocker is irrelevant with respect to the existence of a winning strategy. Wha
matters is the number of edges that is left. '

m = max{E{u,u) | (u,v') € (V x V)}

Then, we defing the labeled sabotage game F(86) = (V,&,vo,vy), Wh'ere £ =
(&,.- ., Em) and each & is given by & = {{(u,w) € V x V| E(u,u.’).z i}

© We have to show that Runner has a winning strategy in 8G iff he has one
f(86). The proof is by induction on n — the number of edges in 5G, i.e,
7= E(v,v’)EVXV E(v,?). Note that by definition of f, f(SG) has the same number

of edges, i.e, n= SEE g

=gl

i=1
The base case

Observation 7.1.5. Let 567 = (V,&, v, v,) and 86 = (V,£' v, v,) be two. Straightforward. In both games Runner has a winning strategy iff vo = vg.

labeled sabotage games that differ only in the labels of their edges, that is, The inductive case

(=) Suppose that Runner has a winning strategy in the game 8@ = {V, B, vo, vy)
with n + 1 edges. Then, there is some vy € V such that E(vg,v1) > 0 and Runner
has a winning strategy for all games S6' = (V, E', vy, 1) that result from Blocker
removing any edge (i, u') with E{u,u’) > 0. Note that all such games SG’ have
just n edges, so by the mduction hypothesis Runner has a winning Strategy in
. f(SG"). But then, by Observation 7.1.5, Runner also has a winning strategy m all
games f(SG)’ that result from removing an arbitrary edge from f{8G). This is so
because for any removed edge (u, /), the only possible difference between f(3G')
and f(3G) is in the labels of the edges between « and u’ (in f(8SG') the rem?\.red'
label was the largest, in f(8G)’ the removed label is arbitrary). Now, by definition

Jor all (v,v') € Vx V, |{&, | (n,0") € &3 = HEL, | (v,0) € EL 1,

where | - | stands for cardinality. Then Runner has a winning strategqy in SG%
he has a wining strategy in SG™.

The existing results on sabotage have been given for the non-laheled version of
the game. In what follows we show that the problems of deciding whether Runner:
has a winning strategy in sabotage games SG and SG¥ are polynomially equivalent.

*We will sometimes talk about edges and vertices of 867 = {V,E,v, "ug), meaning edges and
vertices of its underlying directed {labeled) muiti-graph (V, £). g
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of f, choosing v; is also a legal move for Runner in f(8G) and, since he can ;
every f(SG), he has a winning strategy in f(5G). '
{«+=) Runner having a winning strategy in f(SG) means that he can choog
some v: with {(vg, 1) € & for some 4 < m such that he has a winning strategy i
all games f(86)" resulting from Blocker’s move. Choosing v; is also a legal mevy
of Runner in 8G. Suppose that Blocker replies by choosing {(v,v'). Let us ¢ .
the resulting game 86¢'. By assumption and Observation 7.1.5, Runner also h;
a winning strategy in the game f{8¢") which is the result from Blocker choosi
{{v,v), E{v,v}). Since f{8G)" = f(36), we can apply the inductive hypothesis.
(<=} 3-SABOTAGE can be reduced to SABOTAGE. Given a labeled sabotage ga,ﬁj
S6* = (V,&,v,v,) with X% = {ay,...an}, definc the sabotage game F(s67y
(V, B, v,v,), where E(v,v') == |{&, | (v,v") € £,}|. -
Showing that Runner has a winning strategy in SG* iff he has one in I (SG:E
is straightforward, and can be done by induction on the number of edges in gG=
Le,onn =3 o |&l
Finally, let us observe that both f and f’ that encode the procedures o
transforming one type of graph to another, are polynomial, so the proof is complet

7.2 Sabotage Modal Logic

Sabotfzmge modal logic (SMI) has been introduced by Van Benthem (2005) to-
mvestigate the complexity of reachability-type problems in dynamic structures::

such as the graph of our sabotage games. Besides the standard modalities, i

also contains ‘transition-deleting’ modalities for reasoning about model changé"

that occurs when a transition (an edge) is removed. To be more precise, we have
formulae of the form $, expressing that it is possible to delete a pair from the
accessibility relation such that ¢ holds in the resulting model at the current, stat

Definition 7.2.1 (SML Langnage; Syntax). Let PROP be a countable set of :

propositional lctiers and let ¥ be a finite set of labels. Formulae of the languag
of sabotage modal logic are given by: .

pi=plopleVe| Ol fup

with p € PROP and o € 5. The formula B, is defined as W, and we will’

write Qg for VGEE Qutp and O for Vagz Galp.

The sabotage modal language is interpreted over Kripke models, that are here
called saboiage models.

Definition 7.2.2 (Léding & Rohde 2003b}. Given a countable set of propositional
lelters PROP and a finite set ¥ = {a1,...,0a,}, o sabotage model is o tuple
M = (W, (Ra,)aex, Val) where W is o non-empty set of worlds,%each R, C WxW
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. an accessibility velation and Val : PrOP — P(W) is o propositional valuation
inction. We will call o puir (M, w) with w € W o pointed sabotage model.

To get to the semantics of sabotage modal language, we first have to define

the model that results from removing an edge.

efinition 7.2.3. Let M = (W, R,,,... B,,, Val} be a sabotage model. The model
o) that results from removing the edge (v,v') € Ry, is defined as

(v,
My = (W, Ray, . By, Be, \ (v, )}, Rayysys - - - R, Val).

‘Definition 7.2.4 (SML; Semantics). Given a sabotage model

M = (W, (Ry)aex, Val)

“and @ world w € W, atomic propositions, negations, disjunctions end standard
‘inodal formulae are inferpreted as usual. For the case of ‘transition-deleting’
formulae, we have

(M, w) |5 Sap iff Ju,0" €W ((v,0) € Ry & (M(, ., w) = ).
One SML result that is of great importance to us is the SML model checking

complexity (combined complexity model checking, sce Vardi, 1982). We will use
it to reason about the difficulty of our learning scenarios.

Theorem 7.2.5 {(Léding & Rohde 2003b). The computational complexity of model

checking for SML iz PSPACE-complete.

7.3 Sabdtage Learning Games

In this section, we reinterpret the sabotage game in the broader perspective of
learning. We introduce vartants of the winning condition of the game. For cach
variant, we will provide a sabotage modal logic formula characterizing the existence

of a winning strategy. We also prove complexity results for model checking in
each case. We will work with previously introduced labeled sabotage games, using
the labeling of the edges to represent different kinds of information changes that
take Learner from one state into another.

7.3.1 Three Variations

A sabotage learning game is defined as follows.

Definition 7.3.1. A sabotage learning game {SLG) is a labeled sabotage game
between Learner (L, taking the role of Runner) and Teacher (T, taking the role
of Blocker). We distinguish three different versions, SLGhe, SLGhu and SLGue.
Moves ailowed for both players are those of the sabotuge game. There is also
no difference in the arena in which the game is played. However, the winning
conditions vary from version to version (Table 7.1).
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.nhelpful Teacher and Eager Learner (SLGue) Let us first consider SLGue,
he orig'mal sabotage game (Van Benthem, 2005). For any n € N, we define the
orrmﬂa 2 inductively as follows:

Game Winning Condition

BLGue I wins it L reaches the goal state, I' wins otherwise.
8LGhu T wins iff L reaches the goal state, I wins otherwise.
SLGhe L and T win iff L reaches the goal state. Both lose otherwise,

v5® = goal, Tagy = goal vV O H%

‘he following result is Theorem 7 of Loding & Rohde (2003h) rephrased for labeled
sabotage games. We provide a detailed proof to show how our lebeled deﬁmtlon
voids a technical issue present in the original proof.

Table 7.1: Sabotage Learning GGames
heorem 7.3.3. Learner has a winning strategy in the SLGue

B =V, &%, vg, vy)

f and only if (M(SG”),10) = 75, where n is the number of edges of s6E.

roof. The proof is by induction on .

he base case

' (=)} If L has a winning strategy in a game SG” with no edges, then he should
. glready in the Wmmng state, that is vy = v,. Thus, (M (36%), 1) = goal and
hience, (M{36%),m) = 1°.

(=) Tf (M(SGT), 0} |= ~3® then (M(SG¥), ) [ goal. Since v, is the only state
vhere goal holds, then we havc Vg = g, and therefore L wing S6¥ immediately.
The inductive case

(=) Suppose that 8G” has n + 1 edges, and assume L has a winning strategy.
Ihere are two possibilities: I’s current state is the goal state (that is, vg = v,), or
{ is not.

. In the first cgse, we get (M(SGZ), ) |= goal and hence (M(SG™),vo) = 75,
1 the second case, since I has a winning strategy in 86, there is some state
. € V reachable from vy, i.e., for some a; € & (that is, ('ug, v) € €7 ) such that
n all games SG(U W = {V, E(M,) apr Vs v,) that result from removing edge (u,u')
from the relation labeled @, L as a winning strategy.?

" All such games have n edges, so by inductive hypothesis we have

(M (SC0 ;0> v1) 9

for every odge (u, '} and label a;. Now, the key observation is that each M-image
Sf the game that results from L moving to vy and T removing edge (u, u'} with
abel a;, is exactly the model that results from removing edge (u, ') with a; from
he model M(SG™).* Then, for all such (u, ') and a;, we have

(M (867} 1) = 72

d'I‘he collection £, . i5 given by (€, & —{wu'ty. . 8 L)

#n the eriginal dcﬁmtmn of a sabotage game thlq is not the case. In the game, the edges are
plicitly ordered by numbers (the existence of an edge labeled with % implies the existence of
edges labeled with 1,...,k — 1); in the model, this is not the case. When we remove an cdge
from a game we always remove the one with the highest label, but when we remove an edge
from a model we remove an arbitrary one: the operations of removing an edge and turning a
game into a model do not commute.

The different winning conditions correspond to different levels of Teache
helpfulness and Learner’s willingness to learn. We can then have the cooperativa
casc with Helpful Teacher and Bager Learner (SLGhe). But there are two othe :
possibilities that we will be interested in: Unhelyful Teacher with Bager Learn
(SLGue), and Helpful Teacher with Unwilling Learner {SLGhu). .

Having defined the games representing various types of Teacher and Learne
attitudes, we now show how sabotage modal logic can be used for reasoning abo
players’ strategic powers in these games.

7.3.2 Sabotage Learning Games in Sabotag.é Modal Logi

Sabotage modal logic turns out to be useful for reasoning about graph-like striy
tures where edges can disappear; in particular, it is useful for reasoning aboy
sabotage learning games. In order to interpret the logic on our graphs we need 4
transform the arena of a labeled sabotage game into a sabotage model in whic
formulae of the logic can be interpreted. In fact, for each SLG we can oonstruct '
pointed sabotage model in the following stratghtforward way.

Definition 7.8.2. Let 867 = (V, &, ,v,) be a sabotage game and € = (€,)aex
The pointed sabotage model (M {SGZ} vy) over the set of atomic proposztm
PROP := {goal} is given by

M(3GE) == (V, &, Val),

where Val(goal) := {v,}. )

In the light of this construction, sabotage modal logic becomes useful fo
reasoning about players’ strategic powers in sabotage learning games. Bac
winning condition in Table 7.1 can be expressed by 2 formula of SML thé,_
characterizes the existence of a winning strategy, that is, the formula is true-in:
a given pointed sabotage model if and only if the corresponding player has
winning strategy in the game represented by the model. 2
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'It follows ZEhat (M(S6%),v;) = By and therefore (M(3G¥), u) = O B2, t Game Winning Condition in SML Winner
is, (M(S6%), o) = 125,

(<=) Suppose that (M (S6¥), v} |= goal vV O Hp®. Then, vy is the goal state aloue Y = goal, %y = goalV G H T Learner
else there is a state v; accessible from vg such that (M{SG®),v) k= B2, that is SLGhu 8% = goal, M, := goalV (OT A(OOY)) Teacher
(M (SGL)E wy o) = e, for all edges (1, w') and labels a;. By inductive hypothesiy SLGhe °:= goul, "%, = goal V OO4° Both

L has a winning strategy in each game that correspond to each pointed made]
(Ad (SGS)E‘;;"‘,), v;). But these games are exactly those that result from removi 3y
any edge from the game {V, £%, vp, v,) after L moves from vy to v;. Hence, L h;
a winning strategy in {V, E%, vy, v,), the game that corresponds to the pointe
model (M(8G¥),v0), as required. i

Table 7.2: Winning Conditions for SLG in SML

3.3 Complexity of Sabotage Learning Games

‘We have characterized the existence of a winning strategy in our three versions of
§1.Gs by means of sabotage modal logic formulae. In this section, we investigate
‘e complexity of deciding whether such formulae are true in a given pointed
nodel, i.e., the complexity of checking whether there is a winning strategy in the
orresponding game.

By Theorem 7.2.5, the model checking problem of sabotage modal logic is
'SPACE-complete. This gives us PSPACE upper bounds for the complexity of
eciding whether a player can win a given game. In the three cases, we can also
ive tight lower bounds.

Helpful Teacher and unwilling Learner (SLGhu) Now consider SL.Ghu, {
game with helpful Teacher and unwilling Learner. We define v2* inductively, as

T = goal, Yaia = goal V (0T A DIO7?).

Tn this case, Teacher has to be sure that Learner does not get stuck before he h
reached the goal state -— this is why the conjunct T is needed in the definiti;
of ¥1%,. We show that this formula corresponds to the existence of a winning
strategy for Teacher. . '
Theorem 7.3.4. Teacher has a winning strategy in the SLGhu

SGZ == (V, 80, Vo, ’Ug> k4
if and only if (M{8G%),u) | +E*, where n is the number of edges of s¢™.

Proof. Similar to the proof of Theorem 7.3.3.

Unhelpful Teacher and eager Learner (SLGue) Ior SLGue, which can be
entified with the standard sabotage game, PSPACE-hardness is shown by
eduction from QUANTIFIED BOOLEAN FORMULA (Liding & Rohde, 2003b).

> "heorem 7.3.6 (Loding & Rohde 2003b}. SLGue is PSPACE-complete.
Helpful Teacher and eager Learner (SLGhe} Finally, for SL.Ghe, the corsg

sponding formula is defined as elpful Teacher and unwilling Learner (SLGhu) Whereas at first sight,

LGhu and SLGue might seem to be duals of each other, the relationship between
hem is more complex due to the different nature of the players’ moves: Learner
moves locally by choosing an state accessible from the current one, while Teacher
moves globally by removing an arbitrary edge. Nevertheless, we can show PSPACE-
wardness for SLGhu. In the proof we will use the QUANTIFIED BOOLEAN FORMULA
QBF) problem, known to be PSPACE-complete.

% = goal, Ta1 = goal V 09

Theorem 7.3.5. Teacher and Learner have a joint winning strategy in SLGhe
86Y = (V, E°% vy, v,)

if and only if (M(SGP), vw) | v, where n is the number of edges of 8G™.
Proof. L and T have a joint winning strategy if and only if there is a path fro
g to v, From left to right this is obvious. From right to left, if there is such
path, then there is also one without cycles®, and a joint wihning strategy is th
one that follows the path and at each step removes the cdge that has just bee
used (it is essential that I moves first). The theorem follows by observing tha
e expresses the existence of such path. '

efinition 7.3.7 (QUANTIFIED BOOLEAN FORMULA PROBLEM).
nstance Let @ be an instance of QBF, ie., a formula:
@ = Jw Ve des .. QGa,)

where (F 45 3 for n odd, and ¥ for n even, and ¢ is a quantifier-free formulo

The above results for the three scenarios are summarized in Table 7.2. in conjunctive normal form.

51f this is not the case, i.e., if it is essential that L uses a path twiée, removing used ed :

could canse L to be stuck somewhere away from the goal. uestion s ¢ satisfioble?
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Theorem 7.3.8, SLGhu is PSPACE-complete. he dead- end #. When Learner reaches X;, he chooses to go towards B (because

he other option is a goal). Then Teacher removes the edge that goes from B to
X,, and Learner leaves the gadget.

'_ Let us now assume that Teacher wants (o make z; true, and therefore wants
Tearner to reach X,. First she removes three of four edges from X, to the dead-end
: . Then Learner reaches . Let us consider two cases:

Proof. From Theorem 7.2.5 and Theorem 7.3.4 it follows that SLGhu is in PSPA
PSPACE-hardness of SLGhu is proved by showing that the QUANTIFIED BOOLEA
FormuLa (QBF) problem, can be polynomially reduced to SLGhu.®

We will construct a directed game arena for SLGhu,, such that Learner ha,g
winning strategy in the game i the formula ¢ is satisfiable.

The J-gadget. Iigure 7.1 represents the situation in which Learner chooses th,
assignment for z; when i is odd. This part corresponds to assigning the value't
an existentially quantified variable. Learner starts in A4, and moves either left o
right; if he wants to make x; true, then he moves to X;, otherwise to X, Letu
assume that he moves right, towards X;. Then Teacher has exactly four moves
remove all the edges leading to the dead-end #. At this point, Teacher canno
remove any edge in some other place in the graph without losing. So, Learngr
reaches X;, and Teacher is forced to remove the edge that leads from B to X
because otherwise Teacher would allow Learner to reach the dead-end #. At thi
point Learner moves towards B, and in the next step exits the gadget. Moving
back towards X; would cause him to lose, because then Teacher could remove thi
edge between B and X; and Learner would be forced to enter the goal. :

*

1. Learner moves to X;. Teacher removes the last edge between X; and the
dead-end #, Learner moves to B, Teacher removes the edge to X; and
Learner leaves the gadget.

2. Learner moves to D. Teacher removes the four edges from X; to the dead-end
4, and then eliminates the remaining edge between X; and the dead-end 4.
Learner leaves the gadget.

§in
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Figure 7.2: The V-gadget

The verification gadget. Figurc 7.3 represents the situation in which Teacher
chooses one clause from . If Teacher chooses ¢, then Learner can choose one
literal z; from e. There are edges from x; to an Ei gadget if 1 is 0dd, and to a ¥
-gadget otherwise, leading directly to X; if 2; is positive in ¢, and to X; otherwise.
So, if the chosen assignment satisties 1, then for all clauses there is at least one
literal which is true, and leads to the opposite truth value in the correspoading
gadget, from which in turn Learner can get to the dead-end # (there are four
edges left) and win the game.

For the converse, if the chosen assignment does not satisfy , then Learner
gets to a corresponding point in a proper gadget, Teacher removes the edge from
this point to B, and the only option left for Learner is to enter the goal, which
mecans that he loses the game.

Figure 7.1: The J-gadget

The V-gadget. Figure 7.2 represents the situation in which '];eachor chooses the
assignment for x; when i is even. This part corresponds to agsigning the value to
& universally quantified variable.

Let ug assume that Teacher wants to make &; false. Then she leads Learner
towards X; by succesgively removing the edges between C' and X;. When Learner
already is on the path to X, Teacher starts removing an edge going from X; to

5The proof uses the same strate Y
2y to the one of Theorem 7.3.6 of Lidjng & Rohde {2003h).
We would like to thank Franlk Radmacher for suggestions abaut this pr oqglf { )
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Relazing Strict Alternation
willing Learner to learn as it is to decide whether an eager Learner can learn
I¥

resence of an unhelpful Teacher. ) |
}flfo[i the perspective of the standard sabotage games, our complexity result for
Chu means that with an additional safety” winning condition, sabotage games

o PSPACE-complete.

Hin

Ay Aj
| l !

1~ # 02 - # 03 — # C 4=

' g/i\. /l /J\ : -8LGue Learner wins il he reaches the goal PSPACE-complete
S g g g ﬁ 5 state, Teacher wins otherwise
Teacher wins iff Learner reaches the goal PSPACE-complete
state, Learner wins otherwise
SLGhe Both players win iff Learner reaches the NL-complete

goal state. Both lose otherwise

Q(— }{w"\,lv-

‘Winning Condition Complexity

/

5

Game

e ——

Figure 7.3: The verification gadget

With the above considerations, we can observe that Learner has a wingj
strategy in SL.Ghu, iff ¢ is satisfiable. Moreover, the representation can clearly
done in polynornial time with respect to the size of . This finishes the proof,

Table 7.3: Complexity Results for Sabotage Learning Games
Helpful Teacher and eager Learner (SLGhe) Finally, let us have look ‘&t
SLGhe. This game is different from the two previous ones: L and T win or laj
together. Then, a winning strategy for each of them nedd not take into accoun
all possible moves of the other. This suggests that this version should be les
complex than SLoue and SL.Ghu #

74 Relaxing Strict Alternation

As menticned above, in sabotage (learning) games the Players’ moves are ?&;32181)-
“metric: Learner moves locally {moving to & vertex accessible fm?.n tﬁe cm;rcézl o
‘while Teachér moves globally (removing any e-dge from.t.he grap E,le;nc .} 21 f‘g
“manipulating the space in which Learner is moving). Intuitively, both for faLL afner
“and an unhelpful Teacher, it is not always necessary to react to Tahfnolve gs uE; e
by giving immediate feedback (here, by removing an edg(?). . 1sb e? b to
“variation of a SLG in which Learner’s move need not.m principle be fo ¥
Teacher’s move, i.e., Teacher has the possibility of skipping a move.

(ST-CONNECTIVITY) problem, which is known to be non-deterministic logarithmic
space complete {NL-complete) (Papadimitrion, 1994), :

Theorem 7.3.9. SLGhe s NL-comgplete.

Proof. Polynomial equivalence of SLGhe and REACHABILITY follows from the | | - -
argui;em given 17 tho proof of Theorem 7.3.5 0 Definition 7.4.1. A sabotage learning game without St.rlct altemdatmn (; J;f: hla i
is a tuple SLG* = {V, &, v, v,}. Moves of Learner are as in SLG an : on;c‘ pi
chosen o vertex v, Teacher con choose between removing ar edge, 1}'? 1 Wt e
ihe next gume is given as in SLG, and do’ingl noﬂu@g, i which case 't e ne:cdiii e
is (V, £,1,04). Again, there are three versions with different winning conditions,

now called SLG*ee, SLG*hu and SLG he.

Table 7.3 summarizes the complexity results for the different versions of SLG
The complexity of these problems can be interpreted as the difficulty of deciding
whether certain aims of Teacher can be fulfilled. We can attribute the question of -
the existence of the winning strategy to Teacher, as she blready has the global
perspective on the sitnation anyway. Qur rosults say how difficult it is for her to -
decide whether there is a chance of success. The results agree with our intuition,
as coming up with a strategy to teach is easier if Learner and Teacher cooperate.
Following our interpretation it is the easiest for Teacher to check whether the
teaching will work out if Teacher assumes eagerness of Learner and she herself
daes her best to ensure that he succeeds. Moreover, the remaining two cases turn
out to be equally dificult — it is as difficult to decide whefher Teacher can force

After defining the class of games SLG*, the natural questipn a}*ises of how
the winning abilities of the players change from SLG to SLG*, since in the latter

"Safety concerns thosc properties that we want to hold througheut t}hebp.)lll'c;ccssfl }nhtii;sq;izg
i i ; : i Ily contrasted with reachability, whic
t is I being away from the goal. Safety is usual bility, wi res
ih:syc;temgto get into a certain configuration at some moment, here L reaching the goal {sce,

e.g., Radmacher & Thomas, 2008).
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Teacher can choose between removing an edge or doing nothing. In the p
of this section, we show that for all three winning conditions (SLG*ue, SI,0*
SLG*he), the winning abilities of the players remain the same as in the case
which players move in strict alternation. This is surprising in the SLGhu case. Tt
by no means obvious that if Teacher has a winning strategy in the game withgi;
strict alternation then she also has one in the regular version of the game, becaus
we might expect that removing an edge instead of skipping the move could regy}
in blocking the way to the goal. '

We start with the case of an unhelpful Teacher and an eager Learner, SLG*y
Note that although in this new setting matches can be infinite, e.g., in the gam
with unwilling L, if T skips her moves indefinitcly, L will just keep moving, an
hence the gaime will not be finished in finite time. However, in fact if Learner ca;
win the game, he can do so in a finite number of rounds. We start with a lemms
stating that if Learner can win some SLGue in some number of rounds, then h
can do so also if the underlying multi-graph has additional edges. :

Definition 7.4.2. Let X = {ay,...a,} be a finite set of labels. For directed labelc. ;

multi-graphs, G¥ = (V,&) and G = (V',£"), we say that G® is a subgraph of

G®f VOV and &, C &, for all labels a; € X

Lemma 7.4.3. If Learner has a strategy for winning the SLGue (V, €, v0,v,} in at.
most n rounds, then he can also win any SLGue {(V, &', v, v,) in at most n rounds,
£

where (V,£) is o subgraph of (V,£").

Progf. The proof is by induction on n. In the inductive step, for the case tha
T removes an edge which was not in the original multi-graph, note that the

resulting graph is a supergraph of the original one. Then we can use the inductive
hypothesis.

Theorem 7.4.4. Lel us consider the SLG (V, &, vy, vy} with (V,£) being a di
rected labeled multi-graph and v, v, € V. Learner has o winning strategy in the
corresponding SLGue iff he has o wining strategy in the corresponding SLG*ue.

FProgf. From left to right, we show by induction on n that if L can win the SLGue
in at most n rounds, then he can also win the SLG*ue in at most n rounds. In the

inductive step, in the case that T responds by not removing any edge, we first

use Lemma 7.4.3 and then can apply the inductive hypothesis.

The direction from right to left is immediate: if L hag a winning strategy

for 8LG*ue, then he can also win the corresponding SLGug by using the same
strategy. £l

The case of helpful Teacher and unwilling Learner is more interesting. One -

might expect that the additional possibility of skipping a move gives more power to
Teacher, since she could avoid removals that would have made the goal unreachable
from the current vertex. However, we can show that this is not the case. First,
we state the following lemmas. !

0
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emma 7.4.5. Consider the SLG*hu {V, &, vy, v,). If there is a path from vy to
; and there is no path from vy to a stale from where v, 495 not reachable, then
Teacher has o winning strategy.

“Proof. Let us assume that all states reachable from vy are on paths to v,. Then,
‘oven if T refrains from removing any edge, L will be on a path to the goal. Now,

oither the path to the goal does not include a loop or it dees. If it does not then
T can simply wait until L arrives at the goal. If it does, T can remove the edges

‘that lead to the loops in such a way that v, is still reachable from any vertex. O

Lemma 7.4.6. For all SLG*hu (V, &, vo,v,), if Teacher has a winning strategy
nd there is an edge (v,v") € &, for some a € £ such that no path from vy to v,
uses (v,v"), then Teacher also has a winning strategy in (V, £ vy, v,), where &

vesults from removing (u,v") from &,.

Proof. If v is not reachable from vy, it is easy to see that the claim holds. Assume
that v is reachable from vy. T"s winning strategy should prevent L from moving
from v to o' (otherwise L wins). Hence, T can also win if (»,v} is not there. O

Theorem 7.4.7. If Teacher has a winning strategy in the SLG*hu (V, &, vy, vy},
then she also has a winning strateqy in which she removes an edge in each round.

Proof. The proof is by induction on the number of edges n =3 - |&l.

The base case

Straightforward: there is no round becanse L cannot move.

The indudtive case

Assnme that 7 has a winning strategy in SLG*hu (V, £, vy, vy} with 3 .o |Ea| =
n-1.

If vy = g, it is obvious. Otherwise, since T can win, there is some v € V
such that (vy, v} € &, for some a € 2 and for all such v we have:

1. There ig a path from v to vg, and

2. (a) T canwin (V,&,v1,u,), or

(b) there is a ((v,v"),a) € (V' x V) x I such that (v,v"} € & and T can
win {V, £, vy, v,) where £ is the result from removing {v,') from £,.

It 2b holds, since |, . |€;} = n, we are done — we use the inductive hypothesis
to conclude that T hag a winning strategy in which she removes an edge in each
round (in particular, her first choice is ({v, ), @)). Let us show that 2b holds.

If there is some (v,v’) € V x V such that (v,v') € &, for some ¢ € ¥ and this
edge is not part of any path from v to v, then by Lemma 7.4.6, T can remove
this edge and 2b holds, so we are done.

If all edges in (V, £€) belong to a path from v to v, from 1, there are two cases:
either there is only one, or there is more than one path from v; to v,.
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In the first case (only one path) (vo, v1) can be chosen since it cannot be.
of the unigue path from v, to v,. Assume now that there is more than one
from vy to vg. Let p = (vq,vs,...,9,) be the/a shortest path from v, to vg. T
path cannot contain any loops. Then from this path take ; such that ¢ is'th
smallest index for which it holds that from v; there is a path {v;,2],,, .. RN
v, that is at least as long as the path following p from v, (ie., (o, v, ... U,
Intuitively, when following path p from v, to v, y, Ui 15 the first pomt at which oy
can deviate from p in order to take ancther path to v, (recall that we congide
the case where every vertex in the graph is part of a path from »; o ). N
it is possible for T to choose (1;,vj4,) € &, Let £ be the resulting set of edges
after removing (v, vj.) from &,. Then we are in the game (V, &', v, v,). No
that due to the way we chosc the edge to be removed, in the new graph it stil
holds that from vy there is no path to a vertex from which vy is not reachabl
(this holds because from v; the goal v, is still reachable). Then by Lemma 7.4,
T can win (V, &, 1n,v,), which then implies 2b.

Hence, we conclude that 2b is the case and thus using the inductive hypothe
T can win (V, &, vy, v,) also by removing an edge in every round.

perfect information based on sabotage games. Because of cur new interpretation
e were able to define sabotage learning games with three different winning
snditions. Then, following the strategy of Liding & Rohde (2003b), we have
nown how sabotage modal logic can be used to reason about these games and,
in particular, we have identified formulae of the language that characterize the
existence of winning strategies in each of the two remaining cases. We also
provided complexity results for the model-checking problem of these formulae,
Our complexity results support the intuitive claim that cooperation of agents
facilitates learning, Moreover, in our framework it $urns out to be as difficult to
decide whether a Feacher can force an unwilting Learner to learn as it is to decide
whether an eager Learner can learn in the presence of an unhelpful Teacher.

Viewed from the perspective of the standard sabotage games, our complexity
result for the game between a helpful Teacher and an unwilling Learner means
that also with a sefety winning condition, sabotage games are PSPACE-complete.
. From the game-theoretical perspective, sabotage learning games can be ex-
tended to more general scenarios by relaxing the strict alternation. The maves of
the players are of a different nature. Learner’s moves can be seen as internal ones,
‘moving to a state that is reachable from the current one, while Teacher’s moves can
be interpreted externally, removing any edge of the underlying graph. Once this
asyinmetry is observed, it becomes natural to ask what happens if from time o
time Learner’s move is not followed by Teacher’s move (e.g., Learner can perform
several changes of his information state before Teacher makes a restriction). Our
- results of Section 7.4 show that if we allow Teacher o skip a move, the winning
abilities of theplayers do not change with respect to the original versions of the
games. Tn the case of helpful Teacher and unwilling Learner, the result is quite
surprising since it says that if Teacher can force Learner to learn in the game with
non-strict alternation, then she can also do it when she is forced to remove edges
in each round. This result crucially depends on the fact that Learner is the first
to move, and does not hold in cage Teacher starts the game.

In this chapter, we have described the learning process purely as changes in
information stales, without going further into their epistemic and/or doxastic
interpretation.

We understand successful learning as the ability to reach an appropriate
information state, not taking into account what happens afterwards. Formal
tearning theory that treats the inductive inference type of learning situates our work
close to the concept of finite identification (Mukouchi, 1992) treated extensively
in previous chapters. Tn particular, we are not concerned with the stability of the
resulting state. Identification in the limit {Gold, 1967) extends finite identification
by looking heyond reachability in order to describe ‘ongoing behavior’. Fixed-point
logics, such as the modal g-caleulus (Kozen, 1983; Scott & Balker, 1969), can
provide us with tools to express this notion of learnability. Further work involves
investigating how fixed points can enrich sabotage-based learning analysis.

Moreover, in natural learning scenarios, e.g., language learning, the goal of

Corollary 7.4.8. Teacher has a SLG*hu-uwinning stmtegy in (V,&,vo, vy} iff she
has o SLGhu-winning straieqy.

As the reader might have noticed, the result that if Teacher can win a SLG*hu
then she can also win the corresponding SLGhu, relies on the fact that Learner it
the first to move. For instance, in a graph with two vertices and and one cdge — —
leading from the initial vertex to the goal vertex — if Teacher was to move hrst
she can win the SLG*hu only by skipping the move.

Finally, let us consider the case of helpful ‘Feacher and eager Learner.

‘Theorem 7.4.9. If Learner and Teacher have a joint SLG*he-winning strateqy in
(V. €, vg,v,}, then they have a joint SLGhe-winning strateqy '

Proof. If the players have a joint SLG*he-winning strategy, then there is an acyclic’
path from g to v, which L can follow. At each round, T has to remove the edge
that has just been used by L. O

Let us briefly conclude this section. We have shown that allowing Teacher
to skip moves does not change the winning abilities of the players. Using these
results, both the complexity and definability results from the previous section also

apply to their versions without strict alternation, in which Teacher can skip a
move,

7.5 Conclusions and Perspectives

We have provided a game theoretical approach to learning that takes into account
different levels of cooperativeness between Learner and Téacher in a game of
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the learning process is concealed from Learner. An extension of the frameworl
randomized sabotage games {Klein, Radmacher, & Thomas, 2009) could then'l;
used to model the interaction between Learner and Teacher.

Chapter 8

The Muddy Scientists

Imagine you are one of ten prisoners locked up for extensive use of logic. To make
you even more miserable, the guard comes up with a puzzle. He gathers all ten of
you and says: ‘Each of you will be assigned a random has, either black or white.
“You will be lined up single file where cach can see the hats in front of him but not
behind. Starting with the prisoner in the back of the line and moving forward,
you must each, in turn, say only one word which must be ‘black’ or ‘white’. If the
word you uttered matches your hat color you are released, if not, you are killed
on the spot. You have half an hour te pray for your life.” Then he leaves. One
" of the prisoners says: ‘1 have a plan! If you agree on it, 9 of us 10 will definitely
gurvive, and the remaining one has a 50/50 chance of survival.” What does he
~ have in mind?

Most probably the strategy that he wants to implement is as follows. First,
the prisoners have to agree on the following meaning of the utterance of the one
© who is the last in the line. If he says ‘white’, it means that he sees an even number
of white hats in front of him. If he says ‘black’ it means that he sees an odd
pumber of white hats in front of him. Hence, his utterance has nothing to do
with what he thinks his own hat is. ‘There is a 50/50 chance of the total number
black hats being odd or even, and a 50/50 chance of his hat being black or white,
so his chance of survival is the same. However, after this utterance the prisoner
that stands in front of him kmows for sure the color of his hat—he compares the
utterance of his predecessor with the number of white hats he sees in front of him.
If the parity is the same, he concludes that his hat is black, otherwise it is white.
He makes his guess aloud. Now the person in front of her takes into account the
first announcement and the second utlerance, sees the number of white hats in
front of her, and now she is also certain about her hat’s color, ete.

This epistemic scenario shows the power of multi-agent information exchange.
A very simple gquantitetive public announcement carries powerful gqualitalive
information. Agents can easily deduce nontrivial facts from implicit and indirect
information. Obviously, the information has to be relevant to make certain
deductions possible. For example, in the above scenario announcing ‘At least 5




