S

o finitely identify a language means to be able to recognize it with certainty
fter receiving some (specific) finite sample of the language. Such a finite sample
hat suffices for finite identification is called definite finite tell-tale set (DEFTT,
‘short, see Lange & Zeugmann, 1992; Mukouchi, 1992). One can interpret
tich & DET'T as the collection of the most characteristic (from a certain point of
w) elements of the set. It has also a different connotation that is based on the
riinative power of its elements. We can think of the information that is carried
‘particular sample of the language in a negative way, as showing which of the
potheses are inconsistent with the information that has arrived, and therehy
iminating them. A set § is finitely identifiable if its finite subset has the power
eliminating al% possibilities under consideration which are different from 5.

Trom the characterization of finite identifiability (Mukouchi, 1992), we know
hat if a class of languages is finitely identifiable, then the identification can be
one on the basis of corresponding DFTTs, i.e., finite subsets of the original
1guages that contain a sample sufficient for fuute identifiability. We will call a
earner that explicitly uses some DFTTs in the process of identification a preset
earner. The name derives from the fact that such a learner is equipped with extra
ormation about the DFTTs prior to the identification. A number of issues
erge when analyzing computational properties of the definite finite tell-tales
wed in identification. Since DFTTs are by no means unigque, it can obviously
i ngeful to obtain small definite tell-tales. In this context we distinguish two
notions of minimality for DFTTs. A minimal DFTT is a DFTT that cannot
& further reduced without losing its eliminative power with respect to a class
of languages. A minimal-size DFT'T of a set S, is a DFTT that is one of those
vhich are smallest among all possible DFTTs of S. In order to investigate the
omputational complexity of finding such minimal DFTTs, we will have to restrict
ourselves to finite classes of languages. Even though it is a very heavy restriction,
t creates the possibility of grasping important aspects of the complexity of finite
entification. We will next move back to more general cases and investigate
tiow the use of the class of all (minimal) DFTTs can influence the speed of finite

FaY vl

96 Chapter 6. On the Complezity of Conclusive Ubd@

identification.

In the previous chapters we linked the notion of finite identification with
convergence to irrevocable knowledge. The idea of eliminating possibilities thy
are inconsistent with the incoming data is essentially the same ag in the concept

update in dynamic epistemic logic (see, e.g., Van Ditmarsch et al., 2007). Presenﬂy

we discuss, given the epistemic state S, the computational complexity of;

1. deciding whether convergence to irrevocable knowledge via update is possiblé

(whether S is finitely identifiable);

2. given that the class ig finitely identifiable, finding minimal samples thét;

aflow eliminating uncertainty (finding minima) DFTTsY;

3. given that the class is finitely identifiable, finding minimal-size samples thy
allow eliminating uncertainty {finding minima)l-size DF T'Ts). :

We argue that the investigations into the complexity of finite identification give’

new perspective on the complexity of the emergence of the resulting state, the state:
of full certainty, that corresponds to the K operator in S5 systems of epistemiy

togic (sec Chapter 2). -

The computational tasks can also be interpreted as a motivation for explicit]
introducing a new actor, a teacher, Her role is to decide whether learning {given a
certain learnahility condition) can be successful, and if it can beyto find and provid
to the learner minimal samples that will lead to the emergence of knowledge

The analysis of complexity of those tasks assumes a number of conditions on the :
teacher and the learner: helpfulress of the teacher and eagerness to learn of the
Iearner. Those are not controversial, however they constitute enly one of many :
possible learning and teaching attitudes (other profiles are discussed, in a different

setting, in Chapter 7).

The plan of this chapter is as follows. We first recall some relevant learnability -

notions and the definition and characterization of finite identifiability. We will
introduce the notion of preset learner that performs identification on the basis
of some DFT'Ts, and characterize the notion using the concept of subset-driven
learning. Then we will agk the question of how difficult it is to find DFTTs of
various kinds. We present the refined notions of minimal DFTT, and minimal-size
DETT. We show that the problem of finding a minimal-size DFTT is NP-complete,
while the problem of finding any minimal DFT'T is PTIME compjutable. Therefore,
it can be argued that it is harder for a teacher to provide a minimal-gize optimal
sample, than just any minimal sufficient information. Then we analyze the
possibility of a recursive function that explicitly provides all minimal DFTTs
of a finite language. We call the type of finite identification that requires the
existence of such a function strict preset finite identification. For the case of finite
classes of finite langnages we apply a computational complexity analysis—here
finding the set of all minimal DFTTs turns out to be NP-haed. In the more

97

Basic Definitions and Characterization

s s of infinite classes of finite languages, we aliso Show “uhat th:%]l:e. ta];e
. e_r%?l Iy h itely identifiable classes which are not recursively strict preset finitely

e ily end we compare finite identification with the conccp't of fast_est
eﬂtif:l&bie-_ o t'le and s;how classes for which recursive finite identifiers ex1sl1;,
e lc%entlﬁcali)?nbe recursively finitely identified in the faste:st WaY. That 1s1
! Whmi (;2;1 Ithc')se clagses no lrecursive function exists that gives access to al
o because

minimal DFTTs for each language in the class.

.1 Basic Definitions and Characterization

: 3, the
ot U C N be an infinite recursive set, we call any 5 C U, a i?r}gu1algi inlgexed
L{?]—;ase we will be interested in any class of languages that Grm; {uf ‘%ion
geﬂfﬁ; of r{;cursive languages, i.e., a class € for which a computable func
ami]

[N x U —+{0,1} exists that uniformly decides C, i.e.:

. 1 ifwgS'LJ
f(("‘rw)* 0 ifw%&-

\g 2 Lo 1,225 {6}
P 1(183 C 0] be {S S . ,Sn}, a
1 la al l}S 83 1s chnap Cr We W Ell aiSO CONs ‘
as OC [lIlite SCt 3, 1IN Wthh Case we Wlll use JC [OI the set co tclln g dl C3 O
) 3 [+ Ik 1 ces

L ie, Ie={1,...,n} , . N
S:etS'Il‘E C£1-:1)t2£iocrl an{d Lbaq{c' definition are as introduced in Chapter 2. We recall
"he nof, sic

those that are most important for the content of the prege{lt chapte'r; sefined by
LFinite identifiability of a class of languages from positive data is de

-the following chain of conditions.

Definition 6.1.1. A learning function L:
1. finitely identifies S; E.C on £ iff, when inductively given g, ot some point L
gives a single oulput i;
2, finitely identifies S; € C iff it finitely identifies S; on every € for 5y;
3. finitely identifies C iff it finitely identifies every Si € C. |
A class C is finitely identifiable iff there is a learning funclion L thal finitely
identifies C.

The correspondence between the learning-theoretical setting and the Cplq;iﬁlt];

framework is set to be as in Chapter 4. Namely we take U :zlfi‘t;; ém jl:lset Of,
l it C PROP a possi .
¥ ot of propositions, we call any s S . 1

le:' Eglsvirlds SI'J —p{51 Sq,...} is an cpistemic state. Throughout a large E?rllr:

ssible = {51,89,... o rac pert
EF zhiq chapter the epistemic states are taken to'be hmtfa._ OthOAWI?B.(‘ﬁ(; ai‘; e
themkto‘ be indexed families of recursive sets of propositions. Accordingly,

Chapter 6. On the Complexity of Conclusive Updy Basic Definitions and Characterization 99

text (positive presentation) £ of s; is a sound and complete infinite sequence:gf
propositions from PROP allowing repetitions, that are satisfied in s;. For simplicig
we will continue here with the number-theoretical framework, but we would lile:
the reader to bear in mind that the epistemic interpretation of these resultsiig
straightforward. .
Let us recall the necessary and sufficient condition for finite identiﬁability_
(Lange & Zeugmann, 1992; Mukouchi, 1992). It involves a modified, strongg
notion of finite teli-tale (Angluin, 1980}, namely the definite finite lell-fale set:

if fapu(S,6) = 1, then S is a DFTT of S5
9 for every i € N there is a finite S C N, such that fu(S,4) = 1.

A first observation about the dfit-function is that it cannot attribute two
¢ N, such that ¢ # 7 to one finite set 5 .

Proposition 6.1.6. Let C be a class of languages and fou be o dfti-function for
“Then there is no finite S € N such that for some 1,7 € N, such that i # § and

dﬁ‘t(‘s’?L) =1 and fdftl.(817) =1.

roof. Assume that there is a finite § € N and 4,7 € N such that fari(S,7) =1
nd faree(9,4) = 1. Then, by definition of funt, S is a DFTT of both \5; and S;.
y the definition of DFTT, i = j.]

Definition 6.1.2 (Mukouchi 1992). A set D; is a definile finite tell-tale set fo
S; e Cif

1. D'.', g Sﬁ)

£ Dj is finite, and Now we will show that in fact the condition given in Theorem 6.1.3 is equivalent

3. for any index §, if D; C S then 5; = S;. o the existence of such dftt-function.

Finite identifiability can be then characterized in the following way. Theorem 6.1.7. A cluss C is finitely identifiable from positive dato off there is o
g ifit-function for C.

Theorem 6.1.3 (Mukouchi 1992). A class C is finitely identifiable from positive

data iff there is an effective procedure D : N —» P<%(N), given by n > D, thal

on inpul 1 produces a definite finite tell-tale of S;.

roof. (=) Let us assume that C is finitely identifiable. Then, by Theorem 6.1.3
here is an effective procedure D : N — P<¥(N), given by n = Dy, that on input
§ i ‘produces all elements of a definite finite tell-tale of S;. Let S'C N be a finite set
In other words, each set in a finitely identifiable class contains a finite subset nd 1 € N. We define f : P<¥(N) x N — {0,1} in the following way:
that distinguishes it from all other sets in the class. Moreover, for the cffective:
identification it is required that there is a recursive procedure that provides such
DFTTs. :

Let us first observe that if a language S; contains a DFTT, then every text for

5; cnumerates all elements of this DFTT in finite time.

s 1 D =5

(5,4) =
15,9 0 otherwise.
T.et us observe that f is a dftt-function for C:

1. fis recursive: given S and 4 the function f uses D to produce a DFTT of
S;, and then compares the obtained D; with 5. Such a D; always exists by
the definition of D;

Proposition 6.1.4. If ¢ is a text for 5; € C and S is u finite subset of S; (iri
porticular a DFTT of §;), then there is ann € N, such that set(e[n) is a superset.
of S.

Proof. Let us take a finite § C Sy, and s—a text for S;. Assume for contradiction 2. if f(5,4) =1 then S is obviously a DF'I'T of 5;;
there is no n € N such that sct(e[n) is a superset of §. Then that means thab
there is & € N such that k € § € §; and for all n, £, # k. This contradicts the

definition of text. 7 |

3. for all 4 € N there is a finitke § C N such that f(S,1) = 1, by the definition
of D.

(=) Let us take a class C and assume that there is a dftt-function for C. Let

Theorem 6.1.3 gives the characterization of finite identification in terms of _ us take S € C. The standard text et for S, is defined in the following way:

a recursive procedure that generates DET'Ts. Below we present a new way of
toll—.taJe Set.‘;: being given--by a decision procedure. We wili call such a procedure_ £ = yn{n € 5;), and
a dftt-function. :

ifneS;

| otherwise.

Definition 6.1.5. Let C be an indexed family of recursive sets. The dftt-function

n
for C is a recursive function fap : P<“(N) x N — {0,1}, such that: " £

00 Chapter mplexity o OnNCLusSive pd TeSE
pler 6. On the C i i ; I
¢ Compl ity f Conclusi Un : Preset Learning 0

" ‘V\Ze dc(:ﬁ-ne DN ?<”(N) in the following way: On input 4, D constiy
-he stan gld text for S; in a step by step manner. At each step n, D perfl~
a search for a S C set{e [n) such that fuee(S,4) = 1. The first ;)ne found

this manner is taken to be D,. By Definiti :
T s o be D;, efinit; r it y
recursive and P; is a DFTT of Sz-j.(1on of Jan and Froposition .

aposition 6.2.4. Let L be a preset learning function based on f. If f safisfies
Jition 2 of Definition 6.1.5, i.e., for alli € N there is a finite 5 C N such that
) = 1, then L is recursive on any finitely identifiable class.

We will now show that preset learners can identify every finitely identifiable

i;WOW'G hmlfe shown thailz]?FTTS for a finitely identifiable class can be give
equivalent ways. It is important to remember that Jars may not recognis,

DEFTTs of a given language, but it is guaranteed to know about” oposition 6.2.5. If a class C is finilely identifiable then it is finitely identified

at least on ‘a preset learner.

Drgof. Assume that C is finitely identifiable, then by the Theorem 6.1.7, there
s dftt-function fags for C. We will show that I, the recursive preset learner
ased on fag Anitely identifies C. First, let us observe that by Proposition 6.2.4,
is recursive. By Proposition 6.2.3 we have that for any ¢ text for some .5; € C,
is (at most) once defined. Let us take £ a text for S; € C. By the definition
text and DFTT for all j # 4, there is no n € N and no § such that S C
ct(e]n) & £(S,7) = 1. By the definition of fage we get that 35 € S; f(5,4) =1,

d by Proposition 6.1.4 there 3n, 5 (S C set{efn) & f(5,9) = 1). Take the
mallest such n. Then L(e[n) = 1i. M

6.2 Preset Learning

Let us now tur i
ooy 18 19 tu-m to our central notion of preset learning. Tntuitively, a Drese
s v a q M To1 '
o dg‘ unction uses a recursive decision function, such as the dftt-functio
. . . -
ned in the previous section, as a guide in the process of identification

gﬁf‘,nglcéncﬁ‘i.z fﬁt 7§<:(R{;)& | i € N} be a class of languages, e—a tent foi
some 5; ; on s P x N = {0,1 be a recursive functi '
learning function 7, based on [s defined ’én}the follow;nzz?jafmtmn A b
. ni set(eln) C Sy if for that § 48 C set{eln) f(S,7) =1
{cfn) = &Vk<n Lglk)=1; *
T otherwise.

We have shown that a preset learning function based on a dftt-function can
ﬂentify any finitely identifiable class. In the next section we will discuss some
further properties of preset learning.

Set-Drivenness and Subset-Drivenness The fact that the preset learner
based on a df$t-function is universal with respect to finite identification indicates
hat for finite learning it is enough to care at each step only about the content of
“'the finite sequence presented so far, In particular, a preset learner only checks
whether the sequence includes a subset with certain properties. It does not pay
attention to the order of elements and repetitions. Learning functions that work

“this way are called set-driven.

Tt is easy to see that on any text for a langnage in the class such a function

haS at InOSt one il’lte 4 g i
] ger Vahle. I:[l Crer al We i i ;
o L) one i ,. ' WIH Call bllch lea.lnﬂlg flll‘lCthIlS (a.

21zﬁ11;181;i(;nf6.2.2l. A learning function L is (at most) once defined on C iff for
it e for a language from C and ; . ‘
L(eth) = 1. ge fr and n, k € N such that n # k: L{gin) =+ or
Definition 6.2.6 (Wexler & Cullicover 1980). Let C be an indezed family of
recursive sets. A learning function L is said to be set-driven with respect to C
iff for any two texts &, and €3 for some languages in C and any two n, k € N, if
seb{eq [n) = seb{eslk), L{eiIn) # 1 and Ligalk) # T (i.e., they both have a naturel
number value), then L{ei[n) = L{gy k).

p " ,
roposition 6.2.3. Every preset learning function is (at most) once defined.

5;;0({ Letq C bel a class of languages. Assume that [is a preset learning function
be g (');‘1}1%113;11\/0 f, and, for contradiction, that I is not (at most) once defined
- Ahen, there is e—-a text for some S; € C and £.n e N \
> 5 , € N such that ¢
;Lu(: }!Eghyé TLaﬂd L(ef.n) # 1. Assume that ¢ < n. Since L is total, there s fn?tl,
at L(gIn) = i, and so, by the definition of L, 45 C set(e[n) f(S,4) =1

and Vk < n L{elk) = 1. The latter gives a c <L)
that L(e[¢) - g) =1 e latter gives a contradiction Wltjh the assumption
' A

P Cl\/kls?reov.er., we can show that if for every ¢ € N, f judges at least one finite
& w0y positively then the preset learning function based on F s recursive

Tt has been shown that set-drivenness does not restrict the power of finite
identification.! This is different from the general case of identification in the limit,
where set-drivenness does restrict the power of identification.

" gheir proof of Theorem 6.2.7, Lange & Zeugmann construct & learner very similar to our
preset learning function. We wonld like to thank the anomymous reviewer of The 28rd Annual
Conference of Learning Theory 2010 for pointing us in this direction.

102 Chapter 6. On the Complexity of Conclusive Upda Preset Learning 103

Theorem 6.2.7 (Lange & Zeugmann 1996). A class C is finitely zdentzf abl
and only if C s findlely identified by o sei-driven learner.

‘o If L{e1[n) = and sct{ei[n) C set{eqlk) and for all £ < k, L{e2[£) = 1, then
L{g1In) = L{ea[k).

‘Tn other words, assume that a subset-driven learning function on an initial
ment £/n gives an integer answer. Then if there is some other text that at
6 point enumerates all elements of efn, and up to that point no answer was
given, then the function is bound to give the same integer answer,

We will show that any preset learning function based on a dftt-functia
set-driven.

Theorem 6.2.8. Let C be a cluss of languages, and fam be o dftt-function for
If L is a preset learning function based on fau, then L is set-driven with respect
to C.

Proof. Take C, fams and L as specified in the theorem. Assume that g, and
are texts for some languages in C; n, k € N; set{e:[n) = set(ez[k); Liein) =
and L{es|k) # 1 (they both have an integer value). Assume that L{e;|n)
Then, by the definition of I, set(e1In) C 8, 35 C set(e[n) f(5,4) = 1 and
¥e < n L{g;[£) = 1. The same holds for L{e:[k) and some j € N. We have:ts
show that i = j. i

Assume for contradiction that ¢ # j. Then, since set(e[n) = set(eqlk
35 C set{erfn) C sct(ealk) f(S,7) =1 and set{eo7k) C 5;. This means that the
is a finite set S that is a DFTT for S; and at the same time § C S; for some § #
This gives a coutradiction with the definition of DFTT. '

Theorem 6.2.11. Let C be a class of languages, and fup be a dftt-function for
If L is a preset learning function based on fap, then L is subset-driven with
sspect to C.

Proof. Take C, fage and L as specified in the theorem. Assume that £; and &, are
texts for some languages in C; L(efn) =/ and set(g;[n) C set(ez[k) and for all
'k, L{ga[€) = T. We have to show that then L(e,n) = L{ey[k).

By the fact that L{ein) =}, we know that there is ¢ € N such that sct{e, [n) C
and that 35 C set(e;In) f(S,7) = 1. Then 35 C set{z(|n) C set(ey[k) such
that £(9,7) = 1, i.e., set{ea[k) includes a finite set S such that § is a DFTT for
Hence, by the definitions of text and DFTT, set(e:[k) C S;. Moreover, ane of
the assumptions is that for all £ < k, L{gz[£) = T. Therefore, L(ea1f) = 1. O

“The connection between subset-driven finite identifiers and preset learners is
en tighter. Every subset-driven learning function that finitely identifies a class
‘a preset learner (with respect to some [},

A stronger notion of set-drivenness is possible. Definition 6.2.6 restricts £l
condition to those situations in which I gives an integer value. The alternative

concept is as follows. ¥

. .)) heorem 6.2.12, Assume C is a class of languages and C is finitely identified by
Definition 6.2.9 (Wexler & Cullicover 1980). Let C be an mdemed f armily ; - whset-driven learning function L. Then L is a preset learner (with respect to
recursive sets. A learning function L is said to be strongly set-driven with respec some f). s
to C iff for any two texts &, and ey for some languages in C andanytmon,k;EN i Lot subsetodri) g £ ion I, fmitely identits C. We defi .
if sct(e1 1n) = set(ea1k), then L(ey [n) = L(glk). s .oof. et subset-driven learning function nitely identify C. We define f in

The preset learner based on an fape for C is not strongly set-driven wi
respect to C. Consider the folowing simple example. Let C = {5 = {1,2,4},5;
{1,3,4}}, and let &, = (1,2,4,...) and g5 = {1,4,2...} be two texts for 5."L
us compare the outputs of the Jearning function in the two cases of the initia
segments of) and g9: L({1,2,4)} = 1+ and L({1,4,2)) = 1. The content of %
two sequences is the same but the outputs of L are different. '

From Theorem 6.2.7 we know that set-drivenness does not restrict fi
identifiability. The notion of preset learning leads to a conecept of subset-drivel
learning, that is itself related to set-driven learning.? y

fs,4) = 1iff, for some T' C 8, L{T) =1.

e show that Ly, preset learner with respect to f, is equal to L.

Let us take ¢ a text for some language in C and take n such that for all k& < n,
ik) = 1. 1t is sufficient to show that in this case L(e[n) = L;(efn).

First, assume that L(z[n) =t. Then, since L is subset-driven, for no § C
t{e[n), 1.(S) # 1 (otherwise L{c[n) would have the same value). So for all
C set(g|n} and all ¢, f(S,1) = 0. Hence, L;{e[n) = 1.

Next, assume that L(efn} = 4. Then, because of the set-drivenness of I,

‘ ',. set ,i)=1and L =3ii diately follows.
Definition 6.2.10. Let C be an indexed family of recursive sets. A learnif (£tn),) and Ly(sfn) = i immediately follows =

function L is subset-driven with respect to C iff for any two texts &1 and 52 fo
some longuages in C, and any n, k € N:

Having established the set- and subset-drivenness of preset finite identifiers,
we will now turn to investigating the complexity of finding DFTTs that govern
he preset finite identification. Until now we have focused on the availability of
any DITT for each language from a class. Of course, a language can have many
different DFTTs. In the next section we will distinguish different types of DFTT
and discuss their usefulness for finite identification.

21n fact, if one considers (instead of once-defined functions) functions that keep outputting
the same value after having given a value once, then the concepis of strongly set-driven
subset-driven coincide. This would also make the anomaly vanish tha% preset learners areniot
strongly set-driven. '

&

104 Chapter 6. On the Complezily of Conclustve Updy Eliminative Power and Complexity 105

6.3 Eliminative Power and Complexity 3.1 The Complexity of Finite Identifiability Checking

has already been mentioned in the introduction to this chapter, we aim to
ialyze the computational complexity of finding DFTTs. In order to do that we
safrict ourselves to finite classes of finite sets. One may ask about the purpose of
wrther reduction of sets that are already finite. In fact, if a finite class of finite
sats is finitely identifiable, then each element of the class is already its own DFTT.
owever, finite sets can be much larger than their DF'TTs. For example, we can
take a class of the following form:

Identifiability in the limit (Gold, 1967) of a class of languages guarantees ih
existence of a reliable strategy that allows for convergence to a correct hypothes
for every language from the class. The exact moment at which a correct hypothe
hag been reached is not known and in general can be uncomputable. Things' ai_
different for finite identifiability. Here, the learning function is allowed to answa
only once. Hence, the conjecture is based on: certainty. In other words, the lear
must know that the answer she gives is true, because there is no opportunity f ;
a change of mind later. "

Knowing that one hypothesis is true means being able to exclude all oth
possibilities. In this section we define the notion of eliminative power of a pie
of inforrmation, which reflects the informative strength of data with respect to
certain class of sets.

C = {85; = {24,2" first odd natural numbers} | i=1,...,n}.

this case reduction to the minimal information that suffices for finite identifica-
{ion, 24, makes a significant difference in the complexity of the process of learning.
The learner can simply disregard all odd aumbers and wait for an even number.

Definition 6.3.1. Let us toke C an indezed class of recursive languages, an
z € |JC. The eliminative power of x with respect to C is determined by o ﬁmctw_
Ele :{JC — PN), such thai:

heorem 6.3.4. Checking whether o finite class of finite sets is finitely identifiable
15 polynomial with respect to the number of sets in the cluss and the mazimal
cardinality of sets in the class.

Ele(z) = {i|z ¢ 5 & 5; € C}. roof. The procedure consists of computing Fle(z) and checking whether for each
S.eC, BIS;) = I —{i}, where I = {i | S; € C}.

" Let us first focus on computing Elg{x) for z € |JC. We take a class C and
sume that |C| = m, and that the largest set in C has n clements.

In the first steps we have to obtain | JC. After this, we list for each element of
{JC the indices ®f the sets to which the element does not belong. In this step we
have computed Elz{z) for each & € {JC. All components of this procedure can
clearly be performed in polynomial time with respect to mn and n. It remains to
ieck whether for all S; € C, |),cq, Ple(x) = Ic — {i}. This involves essentially
n]y the operation of sum. [

Additionally, we will write Elg(X) for | ex Ble(z). .

In other words, function El; takes z and cutputs the set of indices of all th
gets in € that are inconsistent with z, and therefore in the light of = they ca
be “eliminated”. We can now characterize finite identifiability in terms of th
eliminative power. E
Proposition 6.3.2. A set D; is a definite teli-tale sel of S; € C iff

1Dy C S5 From this analysis we conclude that checking whether a finite class of finite
dots ig finitely identifiable is a quite easy, polynomial task. Nevertheless, as we
w in the example in the beginning of this section, it can be time consuming if =
d m are large numbers.

2. D, is finite, and
3. Blz(Dy) =N—{i}.

Moreover, from Theorem 6.1.3 we know that finite identifiability of an indexe
family of recursive languages requires that cvery set in d class has a DFTT
Formally:

6 3.2 Minimal Definite Finite Tell-Tale

We are now ready to intreduce one of the two nonequivalent notions of minimality
of the DFTTs. We will call D; a minimal DFTT of S5; in C if and only if all
the elements of the sets in [; are cssential for Anite identification of S; in C, ie.,
taking an element out of the set D; will decrease its eliminative power with respect
to C, and hence it witl no longer be a DFTT. We will observe that a language can
have many minimal DFTTs of different cardinalities. This will give us a caunse to
itroduce another notion of minimality—minimal-size DFTT.

Theorem 6.3.3. A class C s finitely identifiable from positive data iff there is @
effective procedure D : N — P<¥(N), given by n > D, that on input 1 produces a
finite set D; C S;, such that y

Ele(D;) = N— {i}. 3

106 Chapter 6. On the Complexity of Conclusive Uy, Eliminative Power and Complerity

Learning functions are bound to be guided by the clements that are present * Ele{z)
to them in texts. In order to converge quickly there is no reason for the learne 1 12,4}
to look especially for a certain minimal or minimal-size DFTT, because thes 2 {1,3,4}
might not appear soon enough in the text. However, being able to recognize 3 {2,4%
minimal DET'Ts can intuitively guarantee that the right answer occurs as & 4 {3}
as it is objectively possible. If it is not the time of convergence buf. the memg 5 {1,4}
of the learner that we want to spare, having access to all minimal-size DFTT% 6 {1,2,3}
obviously uscful. Finding the minimal-size DFT'Ts can certainly be attributed i

an efficient teacher, who locks for an optimal sample that allows identification

Table 6.1; Eliminative power of the elements in | JC with respect to C
Definition 6.3.5. Let us lake a finitely identifiable indexed family of recurs .

i
languages C, and §; € C. A minimal DFTT of &, in C s a D; C S, such that: - set a minimal DFTT
1. D; is a DFTT for S; in C, and \ {1,3,4} 13,4}
. {2,4,5} {4,5}
2. VX ¢ Dy Ele(X) #£ I — {i}. _ {1,3,5} 13,5}
Theorem 6.3.6. Lei C be a finitely identifiable finite closs of finite sets. Findi 0 {4,6} {6}

a minimal DFTT of S; € C can be done in polynomial time.

Proof. Assume that the clags C: X Table 6.2: DFTTs of €

1. is finitely identifiable;

1. We construct a list of the elements from | JC.
2. is finite;

| i 9 With each element x from | JC we associate Ble(x) = {i]= ¢ S;}, te., the
¢ ooy o ke e . set of indices of sets fo which x does not belong (names of sets that are
inconsistent with). Table 6.1 shows the result of the two first steps for C.

From the assumptions 1 and 3, we know that for each S; € ¢ a DETT exist.s;
in fact S; is its own DFTT. i
The following procedure yields a minimal DFTT for each §; € C.

9. The next step is to find minimael DFTTs for every set in the class C. As an
We want to find a set X C 5; such that

ezample, let us take the first set S ={1, 21 3}. We order elements (JS}:Sl, Tnd
take the first element of the ordering. Let it be 1. We compute Elc’(o { ”}),
it turns oul to be {2,3,4}. We thercfore accept the.set {3,4‘} as a smaller
DFTT for 81. Then we fry lo further reduce the obtained DF TT, by checking
ihe next element in the ordering, let it be 3. EEC({3,4} - {3}) = {4} #
{2,3,4}, so 3 cannot be subtracted without loss of eliminative power. PZB
perform the same check for the last singleton {4} 'It turns orut th.;t §3, 1
cannot further be reduced. We give {3,4} as a minimal DFTT of 5;.

BUX) = Ic — {i}, but V¥ € X EUY) # I — {i}.

First we set X := 3.
We look for the minimal % € X such that EI(X ~{z}) = Iz —{i}. If there is no

such element, X is the desived DF'TT. If there is such an x, we set X 1= X — {z},
and repeat the procedure.

Let |S;| = n, where | - | stands for cardinality. The number of comparisons
needed for finding a minimal DETT of ; in € is bounded by n”. H 4. We perform the same procedure for all the sets in C. As o resull we gel

Iixample 6.3.7. Let us consider the class minimal DFT'Ts for each S; € C presented in Table 6.2

C={85={1,3,4}, 8 = {2,4,5},5; = {1,3,5}, 8, = {4,6}}.

3Checking only singletons is enough hecause the eliminative power of sefs is defined as the
sum of the eliminative puwer of its elements.

E
The procedure of finding minimal DFTTs for sets in C is as follows.

108 Chapter 6. On the Complezity of Conclusive Updyp Eliminative Power and Complexity 109

6.3.3 Minimal-Size Definite Finite Tell-Tale set minimal-size DFTTs
Minimnal DFTTs of a language include all information that is enough to exchig {1,3,4} {1,4} or {3,4}
other possibilities and involve no redundant data. We can use the notion {2,4,5} {2}

{1,3,5} {1,5} or {3,5}
{4,6} {6}

eliminative power to construct a procedure for finding minimal-size DFTTs of
a finitely identifiable finite class of finite sets €. Minimal-size DFTTs are the
minimal DFTTs of smallest cardinality. _

We assume that |{C| = m. To find a DFTT of minimal size for the set S; &
ane has to perform a search through all the subsets of S; starting from smgleto

Table 6.3: Minimal-size DFTTs of C

looking for the first X, such that FI(X;) = I — {i}. ot o minimal DFTT minimal-size DFTTs
DFTTs of minimal size need not be unigue. Which one is encountered ﬁrs
depends on the manner of performing the search. Below we describe a possible {1,3,4} {3,4} {1,4} or {3, 4}
way of searching for minimal-size DFTTs on the example discussed before, {2,4,5} {4,5} {2}
11,3,5} {3,5} {1,5} or {3,5}

Example 6.3.8. Let us consider again the class from Example 6.3.7, namely

{4,6} {6} {6}

C= {5 =1{1,3,4},5 = {2,4,5}, 5 = {1,3,5}, Sy = {4,6}}.
Table 6.4: A comparison of minimal and minimal-size DFTTs of C
1. We conslruct e list of the elements from | JC.

erformed a search through, in the worst case, all combinations from 1 to | S}, to
find t\he right set X C 8, such that Fl.(X) satisfies the condition of eliminating
1l hypothesis but h;. So, for each set 5;, the number of comparisons that have to
e performed is: ‘

2. With each element © from | JC we associate Blp(z) = {d | x ¢ S}, ie, the
set of hypotheses for sets to which = does not belong (names of sets that

are inconsistent with x). Table 6.1 presents the result of the two first Sths
JorC.

3. The next step is to find minimal-size DFTTs for every set in the class C:

!

nl

7+

R

2(m—2) | 3ln_3)!

As an example, let us toke the first set Sy = {1,3,4}. We are looking for
X G St of minimal size, such thot Flo(X) = Iz — {1}

‘Computational Complexity It is costly to find minimal-size DFTTs. As we
ave seen above, our procedure leads to a complete search through the large space
-of all subsets of a language. We calt this computational problem the MiNiMAL-STZE
DFTT Problem, and define it formally below. In words, the problem can be
‘phrased as checking whether 5; € € has a DEI'T of size k or smaller.

(a) We look for {x} such that z € Sy and Ele({z}) = {2,3,4}. There is
no such singleton.

(b) We look for {z,y} such that z,y € S and Elc({z}) = {2,3,4}. There
are two such sets: {1,4} and {3,4}. -

4. We perform the same procedure for all 5; € C. As a result we get minima . TDefinition 6.3.9 (MINIMAL-s1ZE DFTT Problem).

size DIFT'Ts for each of C, the resull is presenied in Table 6.8. Instance A finite class of finite sets C, a set S; € C, and a positive integer

Let us now comparc the two resulting reductions of sets frgm € (see Table 6.4). k<15

The case of 5, shows that the two procedures give different outcomes.

Question Is there @ minimal DFTT X; C 8; of size < k?

We are going to show that the MiNnimMAL-s1ZzE DFTT Problem is NP-complete
by pointing ont that it is equivalent to the MINIMUM COVER Problem, which is
know to be NP-complete {Karp, 1972). Let us recall it below.

Running time Let us now analyze and discuss the rupning time of this proce-
dure. First we necd to compute Fle(z) for | JC. From the Theorem 6.3.4 we know -
that it can be dene in polynomial time. Now, let us approximate the number
of steps needed to find a minimal-size DETT of a chosen set S; € C. We again
assume that [C} = m, and S; has n elements. In the plocudmeﬁdeqcubcd above we

o

: g carni 111
HO Chapter 6. On the Complexity of Conclusive Updy Preset Learning and Fastest Learning

Let us again take a finitely identifiable class C, and S; € €. Now, consider the

Definition 6.3.10 (MiNmmMAL COVER Problem).
~ollection I; of all DFTTs of S; € C.

nstances Collction 1 of subscls of o finte set I posiive mieger b < o finition 6.4.1. Let C be an indexed family of recursive se'ts- C 15 finitely
Question: Does I contain a cover for X of size k or less, i.c., a subset P’ . Jentifiable in the fastest way if and only if there is a learning function L s.1.:
with | P’} < k such that every element of X belongs to af least one memb . :
OfP’I? < Y f 9 emb Leln) =i iff ADI ey DI Csetleln) &

' —ADF € ; DF C set(e[n — 1).
Theorem 6.3.11. The MINIMAL-S1Z8E DET'T Problem is NP-complete.

' - 11 call such L o fastest learning function.
Proof. First, let us observe that by Theorem 6.3.3, MINIMAL-812E DFTT Problem We unll call such

is equivalent to the following Problem:

Definition 6.3.12 {MiNIMAL-s1z8 DF'T'T” Problem).

Intuitively, the fastest learner has to explicitly store all DFTTS of all lallguages
i1 the given class. Then he makes his conjectures on the basis of 1':119 ocCiITence
of the DFTTs in the given text. However, we do not have to prov;db('a a set otj éxl]l
i3 ici > i , ‘accessible
Instance: Collection {Bl(z) | = € S}, positive integer k < |5l yF'T'Ts of all languages explicitly. Rather, we will define them to be ac

i : .) : ia a decision procedure.
Question: Docs {Ei(z) | © € S;} contain o cover for Ip — {i} of size k or less; :

i.e., a subset Y; C {El(z) | = € S;} with |Yy] < k such that every element of
{El(z) | = € 8;} belongs to ot least one member of Y; ? :

Definition 6.4.2. Let C be an indexed family of recursive sets. The complete
dftt-function for C is a recursive function fo g P<“(N) x N — {0,1}, such that:

It is easy to observe that MINIMAL-51ZE DFTT’ Problem is a notationalk
variant of MINIMUM COVER Problem, i.e., we take I' = I, P = {Elz) |2 ¢ 8,
(and therefore [P| = |;]), and X = Ip — {i}. Therefore MINIMAL-S1ZE DFTT"
Problem is NP-complete, Since the MINIMAL-81ZE DFTT' Problem is equivalent;
to the MINIMAL-S1ZE DFTT Problem, we conclude that the MINIMAT-SIZE:
DFTT Problem is also NP-complete. 3

1. feau(S,i) = L if and only if S is o DFTT of 5;;

2 for cvery i € N there is a finife S C N, such that fe.qu(S,1) = 1.
Theorem 6.4.3. A class C is finitely ideniifiable in the fastest way if and only if
‘there is a complete dfti-function for C.

Proof. (=) Let*us take a class C and assume that it is finitely idchti_ﬁable in
the fastest way, i.e., therc is a learning function L that finitely identifies C, agd
satisfies the condition of Definition 6.4.1. We define f: P<“(N) x N — {0,1} in

the following way:

According the our previous considerations, the MINIMAL-8iz& DFTT Problem
may have to be solved by an optimal (‘good’) teacher, who is expected to give:
only relevant information to guarantee fast learming. Tn this sense our result shows
that the task of providing the most useful information for finite identification is’

1 i 3rC s LT) =i,
NP-complete.

0 otherwise.

f(Sv"") =

i 1 First, let us obscrve that f is recursive because I is recursive and there are only

6.4 Preset Learning and Fastest Learning bt ey T C 6.
Ngw we ha;ve_to show that f is a complete ditt-function f01‘.C. Let us c.)bﬁferve
that for every ¢ € N there is a finite § T N, sucl-l thaF F(8,4) = 1. Tlm"i is s?;
because [finitely identifies C, and so, it finitely identifies an S; e Coon atex

that enumerates S; in increasing order. It remains to show that:

Let us now return to the concept of the preset learner. This concept is based on
the intuition that it is easier to identify a complicated, large finite structure or .
an infinite language solely on the basis of their DFTTs, treating those as finite
symptoms of the underlying structure. In particular, the use of minimal DFTTs
and their iufluence on the speed of finite idensification gives rise to an interesting
set of questions. A very natural one is how DFTTs can be used by such preset
learning functions. In this section we introduce the notion of fastest learner that
finitely identifies a language S; as soon as objective ‘ambiguity’ between languages
has been lifted. In other words, we will define the extreme case of a finite learner
who decides on the right language as soon as any DFTT hasbeen enumerated.

f(§,4) =11 5isa DFIT for S;.

(=) Assume that f(S,7) =1, then II'C S L(T) = i. By the d(?ﬁnitiozl ?Tf
fastest learner L we have that 3D7 € B; D! Cset(T), i.c., there is a DFT ‘
of §; included in T and hence also in 5. Since 5 C 5;, S then has to be a
DETT for S; as well.

112 Chapter 6. On the Complerity of Conclusive Upg, Preset Learning and Fastest Learning 113

'(;:h()) rf&isumc tha‘i }.15' is a DFTT for S; anq, for contradiction, that F(8,4) finition 6.4.4. Let C be an indexed family of recursive sets. The min dftt-
her S- mea,ng at YI' C 8 L(T) # i. Take £ any text for §; an action for C is a recursive function fminape: P™0(N) x N — {0,1}, such that:
€= 0o *e g s clearly a text for S;, but L is not the fastest learner on

Contradiction. S.4) =1 4f and only if S is a minimal DFTT of Si;

. fmz'n—dﬁt(
(<) Assume that there is a complete dftt-function, f.gu., for C. We defit
to ‘be the preset learning function based on Je-ase. Then, by Proposition ¢ ;g
finitely identifies C. We have to show that L is the fastest learner, i.e fol

S5 € C and any text ¢ for S e

9. for every i € N there is a finite S C N, such that fom aps(S, 4} = L.

heorem 6.4.5. A class C is finitely identifiable in the fastest woy yf there is a
n-dfit-function for C.

Proof. (=) Assume that a class C is fAnitely identifiable in the fastest way. Then,
Theorem 6.4.3, there is an effective function feqmt : P (N) x N — 10,1} such
hat fodn(S, 1) = 1iff S is a DF'TT for S; and for every i € N there is a finite set
' N such that foam(S,%) = 1.

We define fuiname : P9 () x N — {0, 1} in the following way:

Lietn) =4 it 3D] € Iy D] Csetleln) &
-3Df € I; DF Cset(eln - 1).

‘(:>) f.—‘xssume that L{efn} = i and, for contradiction, that the right-ha
side of the above equivalence does not hold. Then there are two possibilifieg

L VD! € Iy D] & set(zn). But then from the assumption that L(eln)
by the definition of L we have also that set(e[n) C S; and 38 C set(efn
such that f, gge(,4) = 1. Hence, by the definition of Jedree, S is a_DFTT'.o
S; and S C set{eIn). Contradiction.

1 if feam(S,4) =1 & —3T C 8 feam(T,) = 1,

0 otherwise.

fmin-dfth(‘s's 'L) =

"he function fiimdss 18 recursive, because S is finite and feqa is recursive.

=) Assume that there is an effective function fuars © P¢(N) x N — {0,1}
ch that fuinds:(S,4) = 1 iff S is a minimal DFT'T for .S; and for every i € N
Kare is a Anite set S C N such that frnam(S, 1) = 1.

We define feag : P<(N) x N — {0,1} in the following way:

3

fear(S, 1) =

2. 3Df € D; D¥ C set(sln — 1). Since L{gIn} = i, by the definition of [,
have that Vf? <n L{e[f) = 1 and hence (a) V£ < n—1 L(e}f) = t. Moreover
by the definition of foqp, (b) foans(set(eln—1),4) = 1 and by the definiti
of DFTT, (c) set(e[n — 1) C S;. From (a), (b) and (c) we can conclude tha

L(gfn — 1) = 4. This contradicts the fact that L is (at most) once defined
¢ 1 #3rcs fmin—dftt(Ta iy =1,

(+=) Assume that for & a text for S; € € and n € N the following holds: 0 otherwise.

i i i i i is fini ‘ .
ADT e Dy D Cseteln) & he function foae is recursive, because S is finite and fuin.am is recursive. U

-3DF €Dy DF C setefn — 1) :
Then, by (2}, for all k < n there is no S such that § C set(ek) and g.41 Strict Prosct Learning
f(S, i) = 1. Hence, by the definition of I for all k < 1, L(aﬁc} # 4. Since &
is a text for S; it can not enumerate any DFTT of some different set in C
hence we have that for all k < n, L(e[k) =t. By (1) and the definition o
Jodte We get that 39 C set(eln) Jeane(S51) = 1. So, L{z[n) = 4. 8
This completes the proof. V

The reader may have expected a stronger notion of preset learncr for which a
cursive function F exists such that that for cach S, F(4) is a finite set of DFTTs
or . As announced before we will now be interested in learners that have
ab their direct disposal all minimal DF T'Ts of languages from the given class.
Obviously, such a situation is only generally possible in the case of classes of finite
anguages. We will consider both possibilities: the one of finite classes of finite
anguages and that of infinite classes of finite languages. ‘We define strict preset
finite identifiability in the following way.

.The above theorem gives a condition of fastest finite identifiability. For any
finite set and i € N, the function f decides whether § is a DFTT of S;. In other
words, the class of all DETTs of C, {I; | S; € C}, is uniformly decidable. In
fac1f, .the function that the fastest preset learner uses does not have to gi;re &
positive answer every time it sees a DFTT, it is enough if the function signals the
occurrence of every minimal DFTT, b .

Definition 6.4.6. A finitely identifiable class C is strict preset finitely identifiable
iff there is a recursive function F @ N — P<¥(N) such that F'(i) oulputs the sel of
all minimal DFTTs of S5

115

Chapter 6. On . :
i n the Complexity of Conelusive i preset Learning and Fustest Learning
usly, the class C is finitely identifiable. Moreover there exists a recursive

Computational Complexity of Strict Preset Learning Let us ag;
S ag;
learner L that finitely identifies C and can be defined in the following way:

Eﬁfﬁ;& ’%i; ;‘3‘80 (;f ; finite class of finite sets. To compute the set min-;
DFTT for all Sf-bf' € € we need to perform the procedure for finding a g
deteribed em‘]lije ‘ s eS ord.ermgls of elements in S;. Therefore the simple proee;
that finding tt l| (in ectmp ,6'3'2) has to be performed n! times. This ; c‘ed
: & the set of all minimal DFTTs is in general quit 5 i

in fact the problem is NP-hard. quite costly. We show)y

i if 2i € set(en),
Ligtn) = .
pl T(L,£,k) if 2k + 1 € set(e[n).
o can easily observe that | S} =2 <= wi(4) J. Minimal DET'Ts of S; are
- and, in case @;(i) |, also {20uyT (3,4,) + 1}}. Tt is clear that no total
jve function F' such that

g(d) = {{21}, {2(pyT (3,4, 9)) + 13}

Proposition 6.4.7, Finding min-D; of S; € C is NP-hard

Proof. i

Inini}; d{t i (J)jasy to observe that once we enumerate I of S we o _
al-size DF i 1 as i» WE Ca -

T _DSilZCThfSTHT of Sitﬁl polﬁrnomlal time by simply picking OrL;e af fhelzlanij;ll ;

. teans that the MINIMAL-81zE DFT : 8

olynomi . T Problem for S;

polynomially reduced to the problem of finding D? for ;. i can be given, because its existence would solve the Halting Problem.

‘Therefore, the strict preset learner for the above class cannot he recursive.

ince the recursive fastest learner exists (defined in the proof above), the fastest

ner cannot be strict preset. Hence, we can conclude that even in the case of

ses of finite languages strict preset finite identification is propetly included

finite identification and in fastest finite identification. A gimilar result can be

fown for the minimal-size strict preset finite identifiability, i.e., when the learning

finction requires the set of all the minimal-size DEF I s,

the‘ivwcoﬁzﬁt?;l -msi‘;? ‘Eo the case of .inﬁnite classes of finite sets. We will com i
ettt mcurg.iv ILt preset lfea.rnmg and fastest learning in the more geni N
s ol thét t.hei S? s We will proceed with a number of examples. Firgt vy
and in the preset wzelyjulfu(tﬂiiiisatlgafloatrgtﬁnii;tdy idegﬁﬁable it e
- L wag, b ' strict preset finitely identi
TuriIIIll .L}Ifafcf}gom-ug we will use the Manter of speech threB;ife wifllgzsl&at ;
£ machine if we mean that e is an integer that codes a Turing rnachinee ;S.

f(a) = {b,c} will mean th
’ > at f(a) codes the fini : g :
us recall the notion of Kleene’;E %‘Pfedicatz | nite set contairing just b and ¢, T

ear

0. There exists a class C that is finitely identifiable, but for

roposition 6.4.1
exists such that for each i, F'(i) is the set of all

hich mo recursive funclion £

Definition 6.4.8 (T-predic
(T-predicate (Kleene, 1943)). T(e,,y) holds iff ¢ is a Turing inimal-size DETTs for 5.

machine that on input x
: performs computation y.
Proof. The argument is analogous to the one given in the proof of Theorcn 6.4.9.

Tet j : N2 = N be a recursive pairing function (bijection) with inverses 71 and ja.

Let us , ; .
€t us recall that with the use of the T-predicate the Halting Problery can he
g “We now consider the class C = {5; | i € C}:

defined in the following way:

T (e, e y) =

1% Pell . oo e o
(’() ‘L Si = {3.71(?‘)’332(?‘) + 11 S(U‘yT(T”?ﬂ y)) + 2}

“The set of all minimal-size DFTTs of 5; is {{3(pyT (4.4,)) + 2}} in case @i{1) L
Cand {{34: (1)}, {342(2) + 1}} in case (YT, Therefore the minimal-size DFTTs of
S; cannot be given by a fotal recursive function, because its exisbence would sobve
|

the Halting Problem.

In other wor .
i Oquifrlal 21(1}1: Cisr ’:}}118 question of whether Turing machine e stops on the inpuyd ¢
o 1t to the question of exi . . > input e
input e, existence of a computation y performed by ¢ on
Let us start wi . .

preset le;;talt W:lth an example f)f a finitely identifiable class for which «, recursi
er exists, but which is not strict preset finitely idgntifiable e

Theorem 6.4.9. The ; 4)
Te exists a class C that is finitely identifiable, but for which 6.4.2 Finite Learning and Fastest Learning

n SRy s . o
CU f CLIOT, ZLISls steh h f ﬁhz, F() & }beS‘ Ofﬂ',lm l
0 Fecursive fun 1207 l € t f]E at ar e 1) 28 T el& l LTI,

DFTTs for 5.
We have cstablished that recursive fastest identifiability does not require strict

preset learnability even in the finite cases. We will now turn to the more general
question whether every finitely identifiable clags has a fastest learner. The answey
is negative—there are finitely identifiable classes of languages which cannot be

finitely identified in the fastest way.

Proof. Let us consider the following class of finite sets ¢ — {8:]ie N}

S = {24, 2(pyT (3,1,) -+ 1}. ’

116 :

Chapter 6. On the Complerity of Conclusiy onclusions and Perspectives 117
Definition 6.4.11 (Smullyan 1958). Let A, B C N. A separating st ; |
§uch tﬁmﬁ AcCC f],ﬂ-d BNC=1{. In particular, if A and B are r‘iisjomt:t
itself is a separaling set for the pair, as is B. If a pair of disjoint sets A
has no computable separating set, then the two sets are recursively inseparak

1 the light of these discoveries about preset learning, we can give a compu-
al justification for introducing multi-agency to this setting. It seems to
tifiable to switch the perspective from the gingle agent, learning-oriented
“to the two agent game of learner and teacher. The responsibility of effective
jng, in the line with natural intuitions, is in the hands of the teacher, whose
'putational task ig to find samples of information that guarantee optimal
arning. Intuitively, it is not very surprising that the task of finding such minimal
amples can be more difficult than the complexity of the actual learning. As
, computing the minimal(-size} DFITs seems to go beyond the abilities of
Jearner and is not necessary in order to be rational or successful. However,
h a task is naiural to be performed by a teacher.

01l

The following tl'-leOI'CIIl says that there are effectively finitely identifiable ¢
of languages for which there is no effective fastest learner and no recursive fun
that could enumerate & minimal DFTT for each language. i

Theorgm 6:4.12. 'There exists a class C that is finitely identifiable but zs
ﬁmtely identifiable in the fastest way (and moreover there is no recursive fune
that gives a minimal-size DFTT for each language).

P N - . N et - - . - . : i i

! roof. .Leif, Aand B be fwo disjoint r.e. recursively inseparable sets. Let 2 5 Conclusions and Perspectives
¢ equiva ent' to Jy Ray with R recursive and let = € B be equivalent to 'S

with § recursive. We assume that for each z there is at most one y such ¢hat I

and at most one y such that Szy.

The class of languages {S; | i € N} is defined as follows:

We used the characterization of finite identification of languages from positive
ata to discuss the complexity of optimal learning and teaching strategies in
iite identification. We introduced two notions: minimal DFTT and minimal-size
JFTT. By viewing the informativeness of examples as their power to eliminate
ertain conjectures, we have checked the computational complexity of ‘finite
lacliability’ from minimal DFT'T" and minimal-size DFTT. In the former case
he problem turns out to be PTIME computable, while the latter falls into the
IP-complete class of problems. This suggests that it is easy to teach in & way
that avoids irrelevant information but it is potentially difficult to teach in the
most effective way. We also conceptually extended the characterization of finite
dentification and introduced the notion of preset learner. We compared variations
£ the latter with the idea of fastest finite identification. In particalar, we focused
1 the notion of strict preset finite identifiers that have at their disposal all minimal
DFTTs of every language in the class. Even in the setting of classes of finite sets
“this type of learning turns out to be restrictive with respect to finite identifiability.
We have exhibited a recursively fnitely identifiable class that cannot be recursively
finitely identifiable in the fastest way. Hence we have established a new more
" restrictive kind of finite identification.

Links between finite identification and dynamic epistemic logic have already
been established and described in Chapters 3-5. For dynamic epistemic logic the
restriction to finite sets of finite languages is very natural, so our analysis of its
complexity can be applied to strengthen this connection. The complexity of fastest
finite identification corresponds to the complexity of fastest conclusive update in
dynamic epistemic logic. It gives a new measure of computational complexity of
certainty— a measure that corresponds to the question of how difficult it is to
reach the state of irrevocable knowledge.

The main assumptions of learning theory and hence also of the present chapter
is the cooperative nature of the interaction between the learner and the teacher.
In the next chapter we will reflect nupon other possible learning attitudes.

8 ={24,2i+1}U{2j | Rji} U{2j +1| Sji}.

The idea is that {24, 2i + 1} is the exclusive domain of S; except that, for som
usually much larger m, Rim or Sim may be true, and then % ¢ &, or 21',+ 1e .;'n
resp(-.zctively. There can be at most one such m, and for that m (Tniy one of Rim
or Sirn can be true. However, since A and B are recursively inseparable there o
be no .recursive function f that malkes this latter choice for each i i

. tis cllear that to decide definitely that the language is 5, it suffices to encounter
Ziand 2441, s0 {24,2i + 1} is a DFTT for S;. But, if 1 € A, then {2i + 1} i .
a]?FTT for S;, and if { € B, then {2} is a DFTT for 5. To, be morc’ Tecise;;
{2+ 1} is & DFTT for S;if i ¢ B and {2i} is a DFTT for S; ifi ¢ A 1])311/’5 no.'
recursive learner can decide on this, so there cannot be 3 recurf:ive fastcs;c learner
or a function that gives, for each i, a minimal DFTT for S,. 0

In general there is no reason for preset learners to use only minimal DFTTSI
They can have a sct of DFT'Ts for each S; and only use those. The class given in'
the ‘proof of Theorem 6.4.12, for which no recursive fastest learner is possible can
obviously have a preset learner but the DFT'Ts do not incliide the minirlnal ones. :
‘ T.he fibove theorem shows that fastest finite identiﬁabilify is properly includod‘
in finite identification and hence also in preset finite identification. HBZ;l(’B W(; haw
sh(')wn. the existence of yet another kind of learning, even more demar;d,in thae
finite identification. Speaking in terms of conclusive update, our considorgationg
show that in some cases, even if computable convergence to éertainty is possible

1

it is not computable to conclude that at the f i
no 2 he first moment in whi jective
ambiguity disappears. ? hich objective

