72 .
Chapter 4. Learning end Belief Revigi

learning process. Throughout this chapter we have been mainly interested.
(;?m;i‘l;%ience to the actual world on the basis of infinite data streams. In the settin
ang ! ve, sounfi, an(li .complete data streams we have exhibited that conditioniy
' exzcographlc revision generate universal learning methods. Minimal revigic
fails to b&t universal, and the crucial property that makes it weaker is itg ?S}'Q
;(})nscll:zatlsm. Moreover, we have shown that the full power of learniné csaflcr)lr'l'
Wzlgtgolexgech w}hen the underlyin.g. prior plausibility assignment is assured to 1;)'
unded. 11‘the case of positive and negative information, hoth conditionis
?.lld lex1cographlc revision are universal. Minimal revision again is not. Fi i
in the setting f)f fair streams (containing a finite number of erro;‘s ths;nt afllian'
}%oré"}elcted lF:i.l}'CI' in the strea.un.) lexicog.rz.;phic revigion again turns out to be univeriz
oth conditioning and minimal revision lack the ‘error-correcting’ propert '
F1'1ture work consists in multi-level investigation of the relationshi ‘b:fj;-
lea]'nlng theory, belief revision, and dyramic epistemic logic. Th(;re IS)LI g :lwee
many links still to be fonnd, with interesting results for everyone invol cc; L\B;Var
seems to be especially interesting is the multi-agent extension of our ;recs{llt 5 h?t
terms of the efficiency of convergence it would enrich the multi-agent a ‘5- )
!to mforlmation flow, an interesting subject for epistemic and doxaftic 10;510;;}1"
11]1;;01 elnctlve aspect would p.robably be appreciated in formal learning theory, \.Jvhere"
e smgle—ajgent perspective is clearly dominating. Another Wéy to BXi‘E;Ild the:
f.ramework is to allow revision with more complex formulae. This would‘ erl :
111?11 .to tl}e AlGM approach, and to the philosophical investigationﬁinto thep oo
of scientific inquiry, where pussible realities have a more ‘theoretical’ charlgﬁz(iss'

apter 5
Epistemic Characterizations of Identifiability

this chapter we will further investigate the conmection between formal learning
heory and modal-temporal logics of belief change. We will again focus on the
anguage-learning paradigm, in which languages are treated as sets of positive inte-
1 In the previous chapter we focused on the semantic analysis of identifiability
he limit. Now, we will devote more attention to the syntactic counterparts of
ur, logical approach to identifiability, focusing on both finite identifiability and
sutifiability in the Yimit, We will show how the previously chosen scmantics can
reflected in an appropriate syntax for knowledge, belief, and their changes over
me. The corresponding notions of learning theory and dynamic epistemic logic
are given in Chapter 2.

" Our approach fo inductive learning in the context of dynamic epistemic and
pistemic temporal logic is as follows. Asin the previous chapter, we take the initial
ase of sets to be possible worlds in an epistemic model, which mirrors Learner’s
tial uncertainty over the range of sets. The incoming pieces of information
fe taken to be events that modify the initial model. We will show that iterated
pdate on epistemic models based on Anitely identifiable classes of sets is bound
i lead to the emergence of irrevocable knowledge. In a similar way identifiability
4 the limit leads to the emergence of stable belief. Next, we ohserve that the
structure resulting from updating the model with a sequence of events can be
‘iewed as an epistemic temporal forest. We exphicitly focus on protocols that are
‘assigned to worlds in set-learning scenarios. We give a temporal characterization
f forests that are generated from learning situations of finite identifiability and
dentifiability in the limit. We observe that a special case of this protocol-based
‘setting, in which oaly one stream of events is allowed in each state, can be used
to model the function-learning paradigm. We show that the simple setting of
terated epistemic update cannot acconat for all possible learning situations. In

S
1 this chapter we are concerned with logical characterizations of learning, hence we will
aften rofer to languages of certain logics. To awoid confusion for the time being we will replace

: the name language learning with set learning (see Section 2.1).

ey
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the end we conclude our considerations and present possible directions of furthef;

work.

5.1 Learning and Dynamic Epistemic Logic

Following our observations abont the power of the conditioning revision method
(Chapter 4) we will still be concerned with epistemic update. To recall the ides,
let us consider some simple examples of single-agent propositional update.

Example 5.1.1. Let us take a single-agent episteric model M = (W, ~, VY,
where W = {wy, ‘tUg,’l.J.’g}; =W x W, PROP = {p;,p2, 73, P4} and the valuation
V i PrOP — P(W) is defined in the following way V{p1) = {un,wa,ws}, V(ps) =
{wi,wa}, Vips) = {wo, wa}, V(pa) = {ws}, in other words: wy |Ep1 Apa A —pg A

Py, wa b= P APz Aps A p, and wy = py Aps Apa A —py. Let us assume that

ws is the actual world, and that the agent receives propositional information that
is consistent with wy in the following order: py,ps,pa. Receiving p does not
cﬁange anything—every world satisfies p,. Then p; comes n, eliminating s
.?mcc w3 = pa. The agent is now uncertain only between wy and wq. The l@s;;
mfomation pa allows deleting wy because wy £ py. The uncertainty of the agent
now disappears - the only possibility left 1s we. Moreover, whatever true { consistent
with the actual world wy) information comes in, 1wy cannot be eliminated.

In fact, if any of the worlds is the aclual one, and the agent will receive fruthful
m‘.-_,d complete propositional information about i, he will be able to cventually
eliminate all other worlds, and therefore gain full certainty about his situation.

Example 5.1.2. Let us egain take o similar epistemic model, this time with the
Jollowing valuation V(p1) = {wr, we, wa}, Vpa) = {wi,wa}, Vips) = {wy}. Now
anly one world, namely w., can get identified by receiving truthful and complefe,
propositional information. In case wy (or ws) is the actual world, the agent will
never be able to eliminate wy (or wy and wy), and thercfore the uncert‘alﬁ'nty will
always remain.

5.1.1 Dynamic Epistemic Learning Scenarios

In Examples 5.1.1 and 5.1.2, the uncertainty range of the agent is redised as new
pieces of data (in the form of propositions) are received. The information comes
from a completely trusted source, and as such causes the agents to eliminate
the worlds that do not satisfy it. In learning theory it is common to assume
the trgthfulness of incoming data, and therefore, in principle, it is justified to
use epistermtic update as a way to perform the inquiry (for such interpretation of
update see Van Benthem, 2006). It is important to note that public anpouncement
is not; the main notion of dynamic epistemic logic. Our update-based approach to

1. Learning and Dynamic Epistemic Logic ' L
sarning gives the first conmection, but dynamic cpistemic logic can typically also
-1 with varieties of ‘soft information’ that is less trusted {see Scction 2.2).

" In this section we will present single-agent learning scenarios in the framework
¢ doxastic epistemic logic. We base our investigations on the learning-theoretic

“framework defined in Section 2.1.

First, the initial learning model is a simple epistemic model whose worlds
orrespond to the initial class of scis.

 Definition 5.1.3. Let € = {81, 5,...} be a class of sets such that for all i € N,
5; € N. Our initial learning model M is a triple:

(T’VC: ~ V&):

where We = C, ~ = We x We, Vo : PROPUNOM — P(We), such that S; € Ve(pa)
iff n € S; and for each set 5, € C, we take a nominal i € NOM and we set

Veli) = {53}

In words, we identify states of the model with sets, we also assume that our

" agent does not have any particular initial information or prefercnce over the

possibilities. The interpretation of the propositional letiers is as follows. Let
€ = {51, 5s,...} be a class of sets, and let U = IJC be the universal set of C.

' For every piece of data n € U we take a propositional letter p,. The nominals

correspond to indices of sets. They can be interpreted as finite descriptions of sets
or as theories that describe possible sequences of events.

In the previous chapter we analyzed our central topic of dterated update. The
definitions of data strearss, data sequences and related notions remain the same
for this chapter. We will be concerned with sound and complete data streams (see

Section 4.1).

5.1.2 Finite Identification in DEL

The research in dynamic epistemic and dynamic doxastic logic often touches the
subject of converging to some desired states: (common) knowledge or (joint)
true belief (see, ¢.g., Baltag & Smets, 2009a). In this respect it is concerned
with multi-ageni versions of the belicf-revision problem. In this section we will
show how to use the notion of finite identification to characterize convergenee to
irrevocable knowledge. To establish the first connection we will restrict ourselves

to the single-agent case.

Definition 5.1.4. [terated epistemic update of model M with an infinite data
stream & stabilizes to M iff there is an n € N, such that for allm > n, Mem =
M. In such cases we will sometimes write that the generated epistemic model

ME stabilizes to M.
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In our comsiderations we will use the characterization of finite identifiability

sets from positive data (Mukouchi, 1992). First we recall the notion of the finite :
definite tell-tale set, :

With respect to the langunage of epistemic logic Lrr given in Deﬁ%’liﬁion 2.2.3,
he following corollary corresponds to the semantic characterization in Theorem

Definition 5.1.5 (Mukouchi 1992). 4 set D; is @ definite finite tell-tale set 5f.:.

Corollary 5.1.8. The following are equivalent:
S, eCif .

1. D; €5, 1. O is finitely identifiable.

We S; the generated epistemic
i 1 . 2, For every S; € We and every dato stream e for 5;

o model M stabilizes to Ml = (W, ~', Vo), where Wi = {5:} and M, Si e
3. for any index j, if D; C S then S; = S;. .

The non-computable case of finite identifiability can be then characterized in

* Proof. From Theorem 5.1.7 we know that 1is equivalent to:
the following way.

Theorem 5.1.6 (Mukouchi 1992). A class C is finitely identifiable from positive

# Tor all S; € We and every data stream £ for 5; the generated epistemic model
data if and only if for every set S; € C there is a definite finite tell-tale set D;. -

M, stabilizes to Mp = (W[, ~',V¢), where Wg = {5} and ~={(S;, S}

We are now ready to show that epistemic update performed on finitely identi-

(# => 2) Let us take S; € W¢ and data stream ¢ for S; and assume that the
fiable class of sets leads to irrevocable knowledge.

generated epistemic model MG stabilizes to M = (WZ,~', e}, where ’VV('} = {Sz}
and ~'= {(S;,8:)}. Then, by definition of the semantics of £ BL, M8 |= K,
since it is true that for all S; € K[S], we have that Mg, S5 |= 1. |
(2 = #) Let us assume that for every S; € We and every d?ta ’st;ream e for
5 the generated epistemic model M§ stabilizes to Mg = {(W¢,~', V), where
W4 = {8} and Mg, S; = K i. This means that for all 5; € K[Si) we. have that
JVE'; S; |= i. Buf from definition of ¢he valuation Ve we know that 5; is the only
state in Wp that, validates 4. Therefore ~' = {{S;, Si) }- O

Theorem 5.1.7. The following are equivalent:

1. C is finitely identifiable.

H

2. For every S; € Wi and every date stream & for S; the generated epistemic
model Mg stabilizes to My = (Wh,~ V), where W), = {5} and ~' =
{(Si1 Si)}'

Proof. The proof of this assertion consists mainly in understanding our earlier
scrantic definitions and arguments, and seeing that they conform to a simple -
syntactic pattern definable in epistemic logic. Nevertheless, for once, we add some
explicit formal detail to show how this works.

(1 = 2) Let us assume that € is finitely identifiable. Then, by Theorem 5.1.6,
for every set S; € C there is a finite definite tell-tale set D; C S such that D; is
not a subset of any other set in C. Let us then take one S; and the corresponding
finite definite tell-tale set D;. For every data stream € for S; there is a finite initial
segment, e[m, such that D; C set(e[m). Then by stage m every S; such that
i % 7 has been eliminated by the update. ]

(2 = 1) Leb us assume that for every S; € W, and a data stream & for S;, the
generated epistemic model A4§ stabilizes to M = (W}, ~', V;), where Wh =5
and ~" = {(S;, 5;)}. Assume that C is not finitely identifiable. Therefore, by
Theorem 5.1.6, there is a set S; € C such that every finite subset of S; is included
in some S; € C such that ¢ # 7. Then for all n, if ME™ = (W5 ~ein, V1™ then
{S:, 85} € WE™, so M& clearly does not stabilize to Mg = (W}, ~' Vo), where

¢ = {8} and ~' = {(S;,5,)}. Contradiction. 8 O

The above results provide a characterization of the outcome of finite id{:nt'{ﬁcm
tion in the simple language of epistemic logic. To incorporate more dyna,muz:s into
the syntactic counterpart of finite learning we can use the language Lpar.

Corollary 5.1.9. The following are equivalent:
1. C is finitely identifiable.

2, For every S; € We and every data stream ¢ for 5; there is ann € N such
that for all m > n, Me, S E (A set{efm))] K.

Proof. This equivalence follows directly from Coroliary 5.1.8 and the semantics ()Df
Lpar, Definition 2.2.8.

2Ty bring out the future behavior more explicitly in our syntax, we could also for}rl}ulate this
resull in terms of repecied announcement, in a version of pubiic announcement logic that also
allows Kleene star. We forego such extensions here.
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5.1.3 Identification in the Limit and DDL

‘srmative events. This long-term agpect cc}tgld bfe f;));rlr;i}]ll/lz? 1;15221.1123;1;0(2?'
iblic announcement .logic wilth plfogram op‘era 1011;:,{?;1 that,ﬂﬂs,stm, d o teraticn
.hi'le this‘ See’?]ira zt;ﬁfgzsf;g%czlnfe;?u??s;l Téezzt'ling theory: its resemblancet, to
o t?l&n?) Tn what follows, we will show how to establish the conn.ectlo%a,
empomd Zﬁ:é of some recent developments that have linked dynamic epistemic

m%, FLevist:sznglic temporal logics, via the crucial notion of a pro.‘foccjl.. S
1 sﬁcﬁ this connection, we need to turn to the more gencral version of D.
asech ;i e’uient models and product update (Baltag et al., l1998}. We will just give
.hie absolute basics here, referring mainly to the literature.

In Chapter 4 we extensively discussed the interrclation botween identiﬁabili!y 'i _
the limit, update (conditioning), and the notion of belief. Now, on the basis of
those results we can give the following corollary.

Corollary 5.1.10. The following are equivalent:

1. C is identifiable in the limit.

2. There is a plausibility preorder < C W x We such that Jor every S; € We and
cvery data stream e for S; in the generated episternic model MG, ming W :
stabilizes to {5;}. _ 52.1 Event Models and Product Update

3. There ewists a plausibility preorder < C We x We such that for every
S € We and every data stream ¢ for S; there is n € N such that for all:
m2>n, (Mg, <), S (A set(em))]B . '

terated update can be placed in a more gcner.a.} perspective. Obv10us}g;r ;ﬁzs
o information does not have to be propositional. It does. not even o i

: COmmlg 1111'11 uistic. Tt can be any cvent that itsell has an eplstm"mc structure.

};‘z E;z;ge; C%larllges. caused by such arbitrary cvents.s, we Wlill now 1T1tro{1ucit§;i

tiotion of event model, which represents the epistemic and informational cont

of what ‘happens’.

Definition 5.2.1. An event model is a iriple:
. &= (Ei (Ni)aeA,Pre)a

S . v . e
here E # B is a set of events; for every agent a € A, ~; is a binary cqmyalenci
lati’onj on B, apdpre: B — Lgy, i3 ¢ precondition function where Lpr, ﬁsl;r, ;e
o ‘ o, ; 2 ( A led a
of formulae c;f some epistemic language. A pair (E,e), where e € E is ca

‘pointed event model.

Clause 3 gives a characterization in public announcement legic with the operator
of absolute belief.®> The plausibility order nsed in the above corollary is defined
and discussed in Section 4.5. Tt is based on the characterization of identificatio
in the limit and the concept of the finite tefl-tale set (sce Section 2.1).

Let us additionally note that the last clauses of Corollaries 5.1.8,5.1.9, and
9.1.10 describe the persistence of the relevant doxa,stic—episteﬁnﬂc states. In fact,
under the conditions of update, it is the case that as soon as the desired doxastic.
epistemic state is reached it cannot be lost later in the Process. '

Until now we have shown how $o model learning scenarios in dynamic epistemic
and doxastic logic. In order to explicitly express the possibility of convergence as
a temporal property, we will view the structure gencrated by iterated epistemic
update as a temporal branching model. In this we follow the recently established

bridge between dynamic epistemic and epistemic temporal logic (see Van Benthem
ct al., 2000}

For every agent a € A, the relation ~£ encodes that agent’s epistemic info;‘mta—
’ J ‘ ition funchi wvents o
ti Laking he precondition function pre maps even
. about the event taking place. T’ ; ou P : :
zgiI;temic formulae. An event will be executable in some state only if that state
. ’ L L t.
tisfies the precondition of this even . ‘ |
- 1Thc eﬁcc]i of updating an epistemic model M with an event model £ can be

computed according to the product updute.

iti = r~ V) be an epistemic model and € =
finition 5.2.2. Let M = (W, (~)aca, : :
](?B('3 (T‘E)m:; pre) be an cvent model. The product update of M with £ gives a

new epistermnic model M ® € = (W', (~4)acs, VY, where:
1. W ={(we)jwcWkecE&w = pre(e)}:

5.2 Learning and Temporal Logic

We have shown how basic results connecting dynamic epistersic logic and learning
theory can be given syntactic formulations in terms of the & and B operators,
However, we are still missing a crucial dimension, the temporal one. Implicitly,
we already considered the temporal aspects, since in fact the knowledge and

£ .
. . . . . C ot e w and e ~ ¢
beliefs stabilized only after some finite sequences of announcements or other 2. (w,e) ~ (') f wea o

FGiven the reduction axioms of dynamic doxastic logic for “factual fo:!rmulae’, such as the
nomical i, an equivalent, formulation would be: There is a plausibility precrder < C We x We

such that for every S; ¢ We and every data siream ¢ for S; there is m € N such that for all
m>n, (Mc,<), 5 = BUAstem) ;. 8

9 and the valuation is as follows: (w,e) € V'(p) iff w € V(p).

Iustrations of the strength of product update can be %oqnd in/(Balta.gt&Ql\{f][fS;,
2004: Van Benthem, 2010; Van Benthem & Dégremont, 2010; Dégremont, .
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5.2.2 Dynamic Epistemic Logic Protocols finition 5.2.5. An cpistemic temporal model H is a tuple:

By making a step from dynamic epistemic logic into epistemic temporal logic w
can analyze the temporal structure of update. Redefining the iterated episterni
update in terms of protocols (sce Fagin, Halpern, Moses, & Vardi, 1995; Parikh
& Ramanujam, 2003) will bring us closer to the temporal setting. A protoco
specifies sequences of events that are admissible in certain epistemic situation;
It this section, following Van Benthem et al. (2009), we will give the definition o
local protocols and episternic models generated with respect to a protocol. B
doing this we prepare the grounds for om learning-theoretic setting.

A protocol P maps states in an epistemic model to sets of finite and infinite:
sequences of event models closed under taking prefixes. It defines the admisgsible
runs of some informational process: In general, not every sequence of events may:
be possible at a given state. ' .

Let E be the class of all event models, Every state of the epistemic model;
is assigned a set of sequences (infinite and finite) of event models closed unde
taking finite prefixes, an element of the set

Prot(E) = {P € P(E* UE“) | P is closed under finite prefixes}.

Definition 5.2.8. Let us take an epistemic model M = (W, {(va)aca, V). A local’
protocol for M is a function P : W - Prot(E).

(VV, E, H, (Nu)ueAa V):

here W £ O is a countable set of initial states; 2 is a cgunta.ble s?t of events;

C WS is a set of histories (sequences of events starting at states fro*rr.a W)
'Ias‘ed under non-empty finite prefizes; for eagh a € A,'Na cCH X-H,%Sh afn
quivelence relation; end V. PROP — P{H) is a valuation. We write wh to
enote some finite history starting n the state w.

We sometimes refer to the {W, X, H)-part of an 'ETL rlnodel ag the te?mpoml
rotocol this model is based on. We refer to the information of an agent o at h
ith JC,Jwh] = {vh! € H | wh ~, vh'}. o N
. The question is now how to make the step from dyn?umc episternic 'olglc 1o
pistemic temporal logic. The relation between the two frameworks has‘ a, rez{x;ﬁ b
een studied (see, e.g., Van Benthem & Lin, 2004; Va.TI Ben.them & Pz},cult, 20 )
n particular, it has been observed that iterated eplstfeml.c updatc. in dynaimc
épistemic logic generates epistemic temporal forest&:. satisfying F:ertaln proper 1;&.
_.-(see Van Benthern et al., 2009). We will refer to this construction by For(M, P)

; ine it below. -
aﬂd\gzh(:;nstruct the forest by induction, starting with t1.1c epistemic model_ qnd
and then checking which evenis can be executed accor@ng to t'hf: pI‘:HCO]ldlthIl
“function and to the protocol. Finally, the new information partition is upd'{tcjed‘
at each stage according to the product update. Since prgduct 1}p'd{1te dcsC{:rll es
purely epistemic ghange, the valuation stays the same as in the initial model.

Until now we have been concerned with the ¢ n-generated epistemic model M,
where ¢ln is some sequence of propositions. We will now provide an analogous
notion of a model generated from a sequence of event models but according to
some specific local protocol. L
Definition 5.2.6 (ETL forest generated by a DEL protocol). Each epistemic
model M — (W, (~M}uca, VM) and o local protocol P s W — Prot(E) generates

Yan ETL forest For(M, P) of the form:

Definition 5.2.4. Let M = (W, (~,)aca, V) be an epistemic model. We define
the (P, e[n)-generated epistemic model M7 inductively, as follows:

A Pelo - M

MP,E{H,+1 _ (WP,@:M—&-I’NP,E[nJrlgvP,EIn—H)J where:

WHeH o {5 | s € WHIm s |= prefe, ) & eln+1 € P(s)};
~Peintl — ~Een rva,‘s[nJrl;

V‘h;ﬁf”Jrl - VP,s[n [Wp,ern,—ﬁ-l.

H= (IVH,]E> H) (NQ)GEA, V), where:

1. WH =W,

2. H is defined inductively as follows:
The protocol-based approach to update has a straightforward temporal in-

terpretation. The question is how iterated product update can be interpreted
in epistemic temporal logics, which are widely used to study the evolution of
a system over time focusing on the information that agents possess. And this
perspective is exactly what we need.

Hy = W o

Hyor = {{wey .. eni1) | (wer. .. en) € Hyy M w b= pre(ensa)
ond (e1-..enp1) € Plw)};

H = Upgpew i

e Mo
5.2.3 Dynamic Epistemic and Epistemic Temporal Logic 3 Ifw,w € WY, then w ~q v iff w7 v)

; ! 4 tates in an event
4. whe ~, vl iff whe, vh'e € Hy, wh~, vl e and ¢ are stales

Epistemic temporal logics are interpreted on epistemic temporal forests (see, e.g., ;
model £ and ¢ Nﬁ e;

Parikh & Ramanujam, 2003).
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Finally, wh € V(p) iff w € VM{p).

The correspondence between the iterated product update and an epistemi
temporal forest relies on some properties of epistemic temporal agents. To be
precise, it hag been shown that the structures of iterated DEL update are in fact
epistemic temporal forests that satisfy the following conditions: perfect recal]
synchronicity, uniform no miracles and propositional stability. Let us 1ntr0duce
those epistemic multi-agent assurmptions.

Definition 5.2.7. Let us toke H = (W, 5, H, (~g)aca, V) to be an epistem'z'c
temporal model.

Perfect Recall H satisfies perfect recall iff
for all whe, vh'f € H if K jwhel = Ka[vh'f], then K [wh] = Ka [vR].

5.2.4 Learning in a Temporal Perspective

12t us now sec how the above construction can he used to analyze learning
enarios.

earning Event Models In our learning setting the incoming information has
purely propositional character. A simple event learning model can be obviously
adsociated with every such piece of data in the following way.

Definition 5.2.9. Let C = {5, 8y,. ..} be a class of sets and, as before, U = Jc
15 the universal set of C. Let E : N — B be a function that transforms an integer into
in event model in the following way: for eachn € N, E(n) = &, = ({e}, ~™, pre,),
here ~ = {(e,e)} and preg{e) = p,. Similarly, if S C N, E(S) = {E(n) | n € 5}.
The condition of perfect recall expresses that agents do not forgct past

3 ; i 1 k siti 1 lett
information as further events take place. In: other words, for every piece of data n from I/ we take a propositional letter

Then for each p, we take a simple public announcement event model. By
nhaking the conceptual transition from the simple propositional update to the
event models we want to show that our framework conforms to the general setting
escribed in the previous section.

Synchronicity H satisfies synchronicity iff
for all wh, ok’ € H if K Jwh] = Ky[vh'], then lengthfwh] = lengthfuh’].

Synchronicity is satisfied if the agents have access to some external discrete

clock and thus can keep track of the time. Lbcal Set-Learning Protocol Intuitively, given a state 5; € We, our protocol

P should authorize at S; any w-sequence that enumerates S; and nothing more.
Owr set-learning scenarios allow any enumeration of elements of a given set,

herefore, the corresponding local protocol can he defined in the following way.
&

Definition 5.2.10. Let C = {51, 5,...} be a class of sets and U = | JC be the
wniversal set of C. For every S; € We, the set-learning local protocol, P{S;), is
he smallest subset of (E{(I7))* that contains:

Uniform-No-Miracles H satisfies uritform no miracles iff

Jor all wh, vk’ € H such that wh ~, vk’
and for all ey, e9 € 32 with whey,vh'ey € H
if there are sh”,th" & H such that sh"e, ~, th"ea, then whe; ~, vh'es.

Uniforin-No-Miracles means that if an agent cannot distinguish between a
history terminating with e; and a history whose last event is e, then at
any time if he is unable to distinguish between two histories wh and vi/
then he is still unable to distinguish between whe; and vhey. This property
characterizes local ‘updaters’ that do not take into account the whole history
but that proceed in & step-by-step manner. :

{f:w = E(S) | [ is surjective},
and that is clesed under non-empty finite prefizes.

Set-learning local protocols restrict the admissible sequences of events only in
ferms of content, and not in terms of ordering. It is easy to observe that such a
ocal protocol can replace the sets in learning scenarios. In principle we can then
skip the precondition check and instead decide whether an event can take place
ust on the basis of the protocols. We will return to this issue in the end of this

Propositional Stability # satisfies propoesitional stability iff for all wh, whe €
H we have p € V(whe) iff p € V(wh).

The following result says that the iterated product upda%e of an epistemic :
model M according to a protocol P generates an epistemic temporal forest that
validates the above-mentioned epistemic properties.
Theorem 5.2.8 (Van Benther et al. 2009). An ETL-model M is isomorphic to the -
forest generated by the sequential product update of an epistemic model according

to some state-dependent DEL-protocol iff it satisfies perfect recall, synchronicity,
uniform-no-miracles and propositional stability. 8

* To sum up we will now complement our definition of the initial learning model
Definition 5.1.3) with the local set-learning protocol.

Definition 5.2.11. Let C = {S1,5,...} be a class of sets such that for all i € N,
; © N. The initial learning model with local protocol consists of:
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1. an episteric model M, =
c = (We,~,Vg), where W, =

Vo VY, e C_CJN:I/V .

5; S?’ROEUNOM — P(We), such that S; € Ve(p,) iffn c 8, and;' X W

: € C, we take o nominal i and we set Vel(d) = {5} i ana for eac

5 Finite Identifiability in ETL

his section we will give a general characterization of finite identification in
, language of an epistemnic temporal logic (see Emerson & Halpern, 1986; Fagin
1 4l., 1995; Parikh & Ramanujam, 2003). The aim of this section is to give a
smula of epistemic temporal logic that characterizes learnable classes of sets.

2. for each S; € Wp, a set-learning local protocol PS5},

. sistemic Temporal Language
previously used set of noming]

NOM, PROPyy = {4 | 4
, wou = {g; | 1 € NOM}, and we assume that PROPyo, C PrOP

yntax The syntax of our epistemic temporal language Lgoy- is defined in the
sllowing way.

_ p=plwleVe| K| FolAp

where p ranges over a countable set of proposition letters PROP. K¢ reads: ‘the
gert knows that ¢'. Symbol F' stands for future, and we define G' to mean —F—.
Aip means: ‘In all infinite continuations conforming to the protacol, ¢ holds’,

Definiti istemni .

fon 1;1 1((1)/[1/1 5.?&11% j&EplbtemlC Temporal Learning Forest). A learning mod:

Pce(E) (e Ve )jtoge.fher with the local set-learning protocol P - WG ;
generates an ETL forest For(M, P) of the form: B

H= (W’H!E:H: ™~y V), where:

1 Wht .= . . . .

W=, Semantics Lprrs is interpreted over epistemic temporal frames, #, and pairs
the form (g, h), the former being a maximal, infinite history in cur trees, and
he latter a finite prefix of £ (see Van der Meyden & Wong, 2003; Parikh &

amannjam, 2003).

2. H s defined inductively as follows:

HG = W'H’
Definition 5.2.13. We give the semantics of Lurrs. We skip the boolean clauses.

Hyp1 = {(wer ... eppy) | (wei ... e,) € H,, M
! We take h T ' to mean that b is an initial segment of I, and p € PROP.

¢
and (e1...en41) € P(w)} ¢ w = pre(eny)
H = Uncrew Hrs

H,e,whf=p M wheVip)

. H,e,wh'= Ko Hf foralle, b if vk € Klwh] then H, &', oh' = ¢

3. H . 15 E 1 1%
Fwve W, then w r v iff w ~M 4, H,e,wh = Fyp iff there is 0 € * 5.t wh! = who and H, &, wh’ =@

H,e,wh | Ap I for all ¢’ € P(w) such that wh C & we have M, wh =

4 whe ~, Ve iff whe, ub'e’ € Hy, wh ~ oh' and e = o
’ The modality ‘A’ refers to the particular infinite sequences that belong to the

chosen protocol associated to w. It can he viewed as an operator that performs a
© global update on the overall temporal structure, ‘accepting’ only those infinite
. historics that conlorm to the protocol.

To give a temporal characterization of finite identifiability we need to express
the following idea. In our epistemic temporal forest, for any starting, bottom node
S; it is the case that for all branches in the future there will be a point after which
the agent will know that T started in S;, which means that he will remain certain
about the partition of the tree he is in. T he designated propositional letters from
PROP oy correspond to the partitions, which can also be viewed as underlying
theories that allow predicting further events.! Formally, with respect to finite

identifiability of sets, the following theorem holds.

5. b 7 h U d
j Eﬂalh 1 o4 Utll (I;t?t”l [‘ . PR.
’ " Op U PROPNOM — )1: (11) 28 iﬁﬁ?led n tﬂue

® for cvery p € PROP, wh € V(1) iff w € VM(p);

o for every q; € PROPyow, wh € Vig) iff w e VM),
The above construction is i i 3
_ : N 1s 1n strict correspondence with th
generated epistemic temporal forest of Definition 5.2.6 Our oot e of

slight simplification in poi concept allows
point 4 because of N 5 a
anuouncement events. of the very simple structure of onr public

At this poi '-
1 point we have the temporal structures that correspond to the learning

Sltua.tl()n. Ihe next btep 15 L() wve a telll T 1 maCtellZa'EIOlt O-{ fOIeS S thalt
Sa Sj,iflele ia}lyCO[}} g poa’Ch ¢

4The characterization involving designated propositional letlers can be replaced with one that
uses nominals as markers of bottom nodes. For suck an approach see Dégremont & Gicerasimczuk,
2009.

I
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Theorem 5.2.14. The following are cquivalent:

1. C is finitely identifiable.

2. For all Sy € We and e € P(S;) the learner’s knowledge about the inifial state

stabilizes to Sy on € in the generaled forest For(Me, P).

4. FOI‘(M(}, P) f: i —* AFGK(_[E

FProof. {1 + 2) This equivalence restates the earlier result (Theorem 5.1.7) in

terms of epistemic temporal forests,
{2 & 3) Let us first observe that in our generated epistemnic temporal fores
For(Mg, P) the following holds:

Sih~ S;H T S; ~ S; and h =4 5.1y

Now let us analyze the structure of Clause 3. For(Me, P} | ¢ stands for a choice’

of the partition of the forest, and hence, implicitly, for the initial node $;; the

. ¥
the temporal prefix AF stands for: ‘on every infinite continuation of S; consistent

with the protocol there is a point’. Hence, it expresses that for'all & for S, there
Is a special finite point, a point in which the epistemic temporal fragment of the
tormula G'Kg; holds, Following this cbservation, to conclude thé proof it suffices
to show the following proposition:
Proposition 5.2.15. Let S; € W™ and S;h € H. The following are equivalent:
1. For all o € ¥, such that Siho € H, K[S;ho] = {S;ho};
2. For(Me, P), S;h | GKg,.

(1 = 2) Assume that IC[S;h] = {S;h}. By the definition of the valuation V, we

get that For(Mc, P), Sih |= ¢;. Then, by the assumption and the semantics of K, .

we get that For(Me, P), Sih |= K¢;. Finally, since For(Mg, P) satisfies Perfect

Recall and by the definition of protocel P, we get that For(Me, P), Sik = GKg;. :

(2 = 1} Now, assume that For(M¢, P), S;h = GKg;. Then, by the semantics
of K and by (5.1) we get that for all o € Z*, such that Siho £ H, K|S;he] =

In Chapter 4 we mentioned the adequacy of epistemic models and update with
respect to the modeling of finite identification. However, we have been mostly
concerned with identification in the limit. In the next section we will explore the

language of a temporal logic that can express the condition of identifiability in
the limt. 4
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2.6 Identification in the Limit and DETL

arder to give a temporal characterization of identifiability in the limit we need
5 be able to express beliefs of the learner. Therefore, our temporal forest§ t.;howluld
Helude a plausibility ordering. In Chapter 4 we have shown that COHdltlf)nlllg
ipdate) is a universal learning method from truthful data. In other yvords, 1.11‘1;.}_10
ase of identifiability in the limit, eliminating the worlds of an epistermic plausibitity

miodel is enough to reach stable and true belief. This allows considering very
specific temporal structures that result from updating a doxastic epistemic model

ith purely propositional information.®

Pefinition 5.2.16. An epistemic plausibility temporal forest H 4s a tuple:

(I"Va 2» }I: (Na.}aeA) (Sa)aE.Aa V)

where W # 0 is a countable set of initial states; ¥ 4s a countable set of events;
H CWE* is a set of histories (sequences of events starting at states from W) closed

under non-empty finite prefizes; for each a € A, ~o € H x H i3 an equivalence

elation, <, € H x H is u plousibility preorder; and V : PROP — P(H) is o
aluation. We write wh to denote some finite history starting in the state w.

Doxastic Epistemic Temporal Language

'.Syntax Our doxastic epistemic temporal language of Lpgri+ is defined by the
- following induetive syntax.

wi=pl-wleVe|Keg| Bl Fel|Ap

where p ranges over a countable set of proposition letters PROP. Ky reads: ‘the
agent knows that ¢, and By: ‘the agent believes that ¢’. Symbol F* stands for
uture, G is defined as =F—. A meang: ‘in all continuations ¢’. .
LpppLe is interpreted over epistemic plansibility temporal forests. its semantics
g for the most part the same as Lz Below we give the semantics of the missing

-clause, the beliel operator B.

: Deﬁnition 5.2.17.

H,wh |= By iff for all vk, if vk’ € ming Klwh|, then H,vl/ = ¢

We again start with an initial learning epistemic model that corresponds to

“a class of sets and a local set-learning protocol. This time we want to add a
"plausibility ordering to generate an episternic plausibility temporal forest. The

construction is defined in the following way:

SFor more complex actions performed on plansibility models in the context of the comparison
between dymamic doxastic and doxastic temporal logic see Van Benthem & Dégremont, 2610.
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Definition 5.2.18 (Learning Forest). A learning model My = (We, ~M, v

¢
together with the local set-learning protocol P+ W — Prot(E) and a plausibilit;

preorder <M C Wo x We generates an DETL forest For(M, P, <) of the form
H = (WHE H, ~ <, V), where:

1LWHR E, H, ~ and V are defined as in the generated epistemic tem
forest, Definition 5.2.12;

2. If w,v € WY and wh,vh' € H, then wh < oh’ iff wh ~ vh' and w <M y

As in the case of finite identifiability we will now provide a formula of doxastie

epistemic temporal logic that characterizes identifiability in the limit,
Theorem 5.2.19. The following are equivelent:

1. C is ideniifiable in the lLimit.

2. There exists g plausibilily preorder < C Wz x We such that for oll S; Wc
and & € P(5;) the learner’s belief about the initiul state stabilizes to S; one:

in the generated forest For(Mg, P, <). i

3. There exists a plausibility preorder < C We x We such thaf For(Mg, P, <) -

4 — AFCBq,.

Proof. (1 < 2) This equivalence follows from the existence of an appropriate
preorder; defined in Section 4.5, and its adaptation to the notion of episternic

temporal forest.

(2 < 3) The proof has & strategy similar to the proof of Theorem 5.2.14.

This time the crucial observation is that in For(Mpc, P, <), Sih < SihtifE 5 <
S;and h =M, !

Let us observe that the last clauses of Theorems 5.2.14 and 5.2.19 can be
strengthened to exclude the condition of persistence of the doxastic-epistemic
states. In our setting, once such a state is reached, it cannot disappear. In the
above characterizations this can be reflected by dropping the temporal operator
G

The above theorems give simple syntactic temporal charactbrizations of finite
and limiting learning in doxastic epistemic temporal logic. We do not provide any
proof theory for these notions, any ‘logic of learning’. However, we do pereeive this
as an interesting direction for future work. Moreover, we are cspecially interested
in giving temporal characterizations of various learning-theoretic facts, e.g., the
existence of tell-tale sets or the locking-sequence lemma (see Chapter 4). Farther
questions concern modifications of our syntactic temporal characterization and
observing what notions of learning can be obtained this way.
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7 Further Questions on Protocols

ieorm-No-Miracles states that any two histories that arc ngt distingm'shable
S agent’s perspective cannot get distinguished by extending them with the
a;lneirxlrengt (or two indistinguishable event states). In our learnability context a

Fengtheni [ this rule scems interesting. .
treng:if;liis;dz}:iﬁz 1;1'5001361em of identiécation in a more general perspective.
b;its to ‘be learned do not have to be sets, in particular ﬂ}?h‘ Il)lrot‘oc?ls 1do
ot have to be order-independent. Except for set.s, formal 1earlm]1g % 0013; is ixbslo
smeerned, for example, with learnability of fimetions (see S.ectm.n 2.1?). ,G‘Sbl (;

lities can even be more general, they can be classes of functions (scen.cmc?s)o
;?s] kind are at the heart of many inductive inference games, as .the C(;‘Idd gd,l-xtlle
Fleusis, see, e.g., Romesburg, 1978). Then the worlds can bel ﬁenz]f S\Z;nz

rotocols that allow certain sequences of events that can be de ne:‘l oy "
pogical formula. In particular, events might be assumed to occur in a certain order.
Let us consider the following example,

Example 5.2.20. Let us take two possible worlds: wy and wy such that:

1. the protocol for w allows all infinite sequences that contain all even numbers,
.\(md additionally require that whenever o number is 8 then the successor

should be 10;

2. the protocol for we allows all infinite sequences that contain all even numbers,
. and additionally require that whenever a number is 8 then the successor

should be 6.

As long as the learner receives even numbers different than 1.0 he cannot di.;tmgmsh
" between the two states, e.g., the two sequences, h, B, are in both protocals:

e h:2,46,8
e ' :4,2,6,8

Therefore, we can say thal whichever of the two is enumerated, wlrm . Ho}we:;er,
complementing both of them with the same cvent, 10, leads to ‘e miracle™—two
hypotheses get to be distinguished.

In principle, there is no reason why such “miramlous’ classes of llyl?otl}u{;szf;
shoutd be excluded from learnability considerations. Such cases show a St(',il etn‘g o
the protocol based temporal approach over the one—s.tep simple DEP updal :ation
latter is well-suited for set learning, because set-learning ‘pl‘OtD.C{.)lS are p{i:m]r;l[‘ aion
closed and in this sense they are reducible to Ithe pll‘CCOIldltIOﬂ che.c . ith
why we turned fo a more liberal setting of epistemic temporal 19g1(1: 1;1 w 1,1111 "
ihe ‘miracle’ of order-dependence is possible. What we (‘)bscrved‘ls t 1fa ‘ w1t.0n,
protocol we can obtain not only factual, but also genuine ‘procedural informati
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om both positive and negative information; studying systlcm.aticall-y t}fe eﬁ’ect.s of
ifferent restrictions on protocols. We are also interested in llnvestlgatlng various
snstraints one can enforce on learning functions (e.g:, conf;lstency, conslervatlsm
.+ set-drivenness) and comparing them to those of eplstel:_mc and doxastic agents
i doxastic epistemic temporal logies. Modal logics of belief change arc a natl_l?a]
iamework to study a variety of notions that underly such concep‘tf; of learnability.
‘Another important restriction on learning functions is- computs!,blhty. In the next.
hapter we will be concerned with computable learning functions in the case of
finite identification—the convergence to irrevocable knowledge.

in the model. Therelore, sometimes we can distingnish between hypotheses net
because a new fact comes in, but because of the way in which it comes in.

In general, thinking about learnability in terms of protoecols leads to a setting
in which the possible realities are identified with sets of scenarios of what should
be expected to happen in the future. In this sense, the most general realities ara
sets--they allow any possible enumeration of their content. Functions allow only
one particular scquence of events. In between there are a variety of possibilitics
for defining protocols that can be characterized in an arbitrary way. In genera]
our results in the previous sections are only the beginning of the logical study of
the richness of possible learning protocols.

5.3 Conclusions and Perspectives

Our work provides a translation of scenarios from formal learning theory into the
domain of dynamic epistemic logic and epistemic temporal logic. In particular;
we characterized the process of identification in the syntax of dynamic doxastic’
epistemic logic. Moreover, in the more general context of learnability of protocels
we characterized learning in the syntax of a doxastic epistemic temporal language
Hence, we showed that the proposal of expressing learnability in languages of:
modal-temporal logics of knowledge and belief (see Van Benthem, 2010) can be
made precise. ’ !

Our results again show that the two prominent approaches, learning theory -
and epistemic modal-temporal logics, can be joined together in order to describe, ™
the notions of belief and knowledge involved in inductive inference. We believe
that bridging the two approaches benefits both sides. For formal learning theory,
to create a logic for it is to provide additional syntactic insight into the process of -
imductive learning. For logics of epistemic and doxastic change, it enriches their
present scope with different learning scenarios, i.e., not only those based on the
incorporation of new data but also on generalization,

Moreover, as we indicated in the lasi section of this chapter the temporal .
logic based approach to inductive inference gives a straightforward framework for
analyzing various domains of learning on a common ground. In terms of protocols,
gets can be seen as classes of specific histories--their permutation-closed complete
enumerations. Fanctions, on the other hand, can be seen as ‘realities’ thas allow
only one particular infinite sequence of events. We can think bof many intermediate
concepts that may be the object of learning. Interestingly, the identification of
protocols, that scems to be a generalization of the scl-learning paradigm provides
what has been the original motivation for epistemic temporal logic from the start:
identifying the current history that the agent is in, including its order of events,
repetitions, and other constraints.

Further directions include extending our approach to other types of identifi-
cation, e.g., identification of functions; finding a modal frfmework for learning




