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Learning and Belief Revision

carning can be described as a process of acquiring new information. This
cqﬁisitiﬂn can take forms as different as things are that can be learned. We
¢:. ‘He learned that she cheated on him’ or *She learned about his disease’, hut
‘She learned a langunage’ or ‘He finally learned how to behave’. The first two
ntences are about a change in informational state induced by accepting a fact,
gefting to know something. The latter two are different, they describe a situation
inswhich an inductive acquisition process came to a successful end.

The first kind of learning—getting to know about facts—is formalized and
analyzed in the domain of belief revision and the diverse frameworks of epistemic
and doxastic logics. The main aim here is to formalize the elementary dynamics
of knowledge and epistemic attitudes towards incoming information,

The second kind—Tlearning as a process—is studied within the framework of
rmal learning theory. In this framework a general concept (language, gramnar,
heory) gets to be identified by an agent on the basis of some elementary data
entences, results of experiments) over a long period of time. The learning agent
i allowed to change his mind on the way, and the process is successful if it results
in convergence to an appropriate hypothesis. In a sense this kind of learning is
built on top of the first kind, it consists of an iteration of simple getting-to-know
events.

Inn this chapter we propose a way to use the framework of learning theory to
evaluate belief-revision policies. Our interest is shared by at least two existing
“lines of research. Kelly, Schulte, & Hendricks (1995) and Kelly (1998a,b, 2004,
* 2008) focus on bringing together some classical belief-ravision policies (among
© others those proposed by Boutilier, 1996; Darwiche & Pearl, 1997; Grove, 1988;
Spohn, 1988) with the framework of function learning {see Chapter 2, Section
2.1.3, and for more details Blum & Blum, 1975). In this attempt the possible
concepts 1o be learned or discovered are the possible sequential histories. The
problem of prediction which secms to be at the heart of this approach is obviously
ugeful for modeling certain kind of scientific inquiry. However in general, changes
of epistemic states do not have $o happen according to some prescribed sequence.
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They are often governed by sequences of facts that are closed under permutatioy

with respect to their informational content. :
Martin & Osherson (1997, 1998) have also worked on establishing the connectioy
between learning theory and belief revision. Their attempt has its roots in th

classical AGM framework (Alchourrén et al., 1985) and treats belief revision ag a.
two step process: the shrinking of the current belief state to accommaodate the ney
information (belief coatraction) and the incorporation of the data (sce Levi, 1980).

In this approach, the dominant features of modeling inductive learning as iterated
belief revision are that the belief state is treated syntactically, as a set of sentences
of a given language, and is assumed t0 be a full-blown theory (closed under the
operation of consequence], incoming data get a fully trusted welcome, and last but
not least, the agent does not explicitly consider other, perhaps counter-factual,
possibilities,

Following Gierasimezuk (2009a,c} and Dégremont & Clierasimezuk (2009) we
advance a different line of research. On the inductive inference side, we are
interested in the paradigm of language learning which is more general than the
atorementioned function learning approach. We assume that the data are observed
in a random manner, so that in general predicting the future sequence is not
feasible, or even relevant. Ag possible concepts that are inferred we take sets
of atomic propositions. Theretore, receiving new data corresponds to getting to
know about facts. On the side of belief revision we follow the lines of dynarnic
epistemic logic (see Van Benthem, 2007). Hence, we interpret current beliefs of
the agent (hypothesis) as the content of those possible worlds that he considers
most plausible. The revision does not only result in the change of the current
hypothesis, but can also induce modification of the agent’s plausibility order.

We are mainly concerned with identifiability in the limit (Gold, 1967). In
the first part we restrict ourselves to learning from sound and complete streams
of positive data. We show that learning methods based on beliof revision via
conditicning (update) and lexicographic revision are universal, i.e., provided certain
prior conditions, those methods are as powerfut as identification in the limst, Those
prior conditions, the agent’s prior dispositions for belief revision, play a crucial
role here. We show that in some cases, these priors cannot be modeled using
standard belief-revision models (as based on well-founded preorders), but only
using peneralized models {as simple preorders). Furthermore, we draw conclusions
about the existence of tension between conservatism and learning power by showing
that the very popular, most ‘conservative’ belief-revision methods, like Boutilier’s
minimal revision, fail to be universal, In the sccond part we turn to the case of
learning from both positive and negative data. Here, along with information about
facts the agent receives negative data about things that do not hold of the actual
world. We again assume these streams to be truthful and we draw conclusiong
about iterated belief revision governed by such strearns. This enriched framework
allows us to consider the occurrence of erroneous information. Provided that
errors occur finitely often and are always eventually corrected we show that the

gion method is still reliable, but more conservative methods fail.
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m a philosophical standpoint, and many arguments against it can be
ave been) formulated (see, e.g., Getticr, 1963). One of them is that in fact
Jze is a dynamic phenomenon and it rarely occurs in the form of irrevocable
tos of certainty. Alternatives oscillate around the concept of knowledge as
lief. The strength of safety is in the guarantee it gives: the safe belief is
langered by the occurrence of true data. If we restrict our considerations
hful information, or at least asswme that mistakes happen rarely, safety
s6 reformulated in terms of stability. In other words, knowledge emerges
hen stability is reached. The need for such a notion appeared in many different
meworks: from reaching an agreement in a conversational situation (see, e.g.,
‘er, 1965, 1990} to the considerations in the domain of philosophy of science
. e.g., Hendricks, 2001).
i this work we account for and characterize the emergence of hoth: the
rictive kind of knowledge {certainty) and stable belief. We explicitly formulate
‘conditions under which certain belief states give raise to the cmergence of

h epistemic and doxastic states.
Tinally, inspired by Nozick (1981), Rott (2004} puts forward that perhaps:

[...] knowledge {should] be made of still sterner stuff—stuff that also
survives (a modest amount of) misinformation.

Tn the following sections we will show that under the requirement of CONVErgence
to stable belief some policies are still reliable if a finite number of errors occur

and they are all corrected later in the process.

4.1 Iterated Belief Revision

= In our analysis of single agent information-update and belief revision we will
‘redefine the framework of dynamic epistemic logic in order fo simplify things.
As we are herc concerned with the gingle-agent case and moreover, we take the
incoming information to be propositional, we will focus on the notion of epistemic

state, i.e., a set of possible worlds.

Definition 4.1.1. A possible world is a valuation over PROP, and it can be
identified with a set s C PROP. We say that p is frue in s (write s = p) if and
oy if p € s.

The uncertainty range of an agent is represented as a set of worlds that the
agent considers possible.

A pair (S, 8), where S is an epistemic state and s € § is colled o pointed epistemic

state.

Definition 4.1.2. An epistemic state is a set S C P(PROP) of possible worlds.
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With respect to the setting defined in

% associated to the epistemic model A =
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(i), ).

Chapter 2, epistemic states of
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W/~ in other words, a pointed

Definition 4.1.3 (Semantics of Lry, in episternic
agent Lry, in the epistemic states e the followin

SskEp iff pes

Ss e i it is not the case that ¢
SskEpvy if sEpors=g
SskEKe iff SC |

Accordingly, our simplified approach will be extended to the doxastic framework,
By enriching the epistemic state with a plausibili

plausibility states. To model beliefs, we need to specify some subset S CSof

the epistemic state, consisting of the possible worlds that are consistent with the

agent’s beliefs, The intuition here is that, although the agent considers all worlds

in his epistemic state possible, some of them are seen as more ‘desirable’, those
will be given as the minimal ones according to the plausibility order.

states). We interpret the single
g way.

o

Definition 4.1.4, A prior plausibilit

¥ assignment S — < § Gssigns to any epis-
temic state some plausibility

order based on the original epistemic state.

Definition 4.1.5. 4 plausibility state 4s g pair

(S, <) of an epistemic state S
and a total preorder < on S, called o plavsibility

relation.

An epistemic state together with some prior plausibility assignment constitite
a plausibility state. Here as in the case of plausibility models we will assume the
plausibility relationg +o be arbitrary total preorders. We will sometimes essentiafly
require their non-well-foundedness,

The language Lpox is interpreted on plausibility staf;

es in the same way as
Lpr,. The missing clause of belief is given in the following

way:
S <, s | By if Jw < sVu<wu g
In the case when < is well-founded, the usual definition of

the most plausible worlds’ holds, ie., if (S, <)
s€ .5

‘belief as truth in al]
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In standard learning theory such positive, sound and complete data streg;
are called ‘texts’ (see Chapter 2). They are restricted only to the streams in wh;
all the observed data €; are cither singletong {r} (consisting of a positive atg
P € PROP) or § (‘no observation’}. The above definitions allow observing mg;
than one atomic fact at a time, In our formalism each piece of informa
over finite g;, and therefore the classical learning theory
ours.

Until now learning methods have been described generall
epistemic states into belief sets in & way dependent on the
In order to approach the subject of learning as an iterated
we will now turn to the more constructive part of our paradigm——the belief-revisio
methods themselves, The long-term aim that we have
investigate learning methods that are governed by belief-revision policies,

We define a belief-revision method as a functi
transforms plausibility states.

incoming informatig

Definition 4.1.11. A belief-revision method is g Junction B that given ap
plausibility state (5,<) and a data sequence o = (o, ..., )
n), outputs a new plausibility state

R((S: <} o) = (57, Sa)

Our notion of belief-revigion method is more general than the one of classical
belief-revision policies. The ]
for one step of revision. Hence, each time they take only one piece of incoming
information. The above definition makes our methods dependent on a finite history
of events, b obvicusly i ac

As in the cas
revision methods might be expected to fulfill, This time most of the properties
will be defined in terms of bolief operator B, as given in Section 4.1, First we give

two versions of data-retention, the property that states that beliefs are expocted
to reflect the incoming information

counts for the classical policies ag a special cage,

Definition 4.1.12. A belicf-revision method is weakly data-retentive if after the

revision the most recent piece of data is belicved, i.e., for ¢ = (o1, . C Op)

, we
have

if p € oy, then (59, <9) E Bp.

Definition 4.1,13. A belicf-revision method is strongly data-retentive if all the
observed data are believed, i.e., if o = (O1,-..,00) then Jor every 1 < i< p:

if p € 0; then (5%, <°) |= Bp,

In the case of belief-revision methods we can define two types of conservatism.
Unlike general learning methods, belief-revision methods output the whole revised

tion Tanges
setbing is equivalent to

y as ways of converting
belief-revision process::
1
in mind is to define and’
on that, given some data sequence,

v
(of any finite length.

atter are memory-free, can account by default only -

¢ of learning methods there are some basic requirements that, belief.
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. i eak form in which the belief itself
So, congervatism can fake a wea : .
b Sta!t:i; g})l(;‘ new piece of data has already been believed, ‘o; a strtc')nf
;hif%he whole plausibility state does not change under new information,
whic

¢ been already believed.

ion 4.1.14. A belief-revision method is weakly .conslcrvative if 7,‘t k.ee?zi
mtw;l I ef z‘uhe.n it i3 confirmed by the new information, i.e., for eueryt{::;' >
mep esich that (87, <) | B(/\ p} and for every formula 0, we have :
RO 1 3 2=

(87, <7)  BO dlf (57, <7) = B,
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e:. 'I]i i 1,15, A b li 'f evLsion metho v \4‘{3. / 1 .{‘JE’B.S
h € ihc pla.’u,s"ibzlzty stale when the new cia,ta, hﬂ:s Lll? E(ld-‘y been behcued, B €y
LATL el £

very finite p © PROP s.L (57, <) |= B{/\ p), we have
a (Sa—, So—) — (SO'*,{J’ Su*p)‘

W define the notion of data-drivenness as in the case of learning methods:
e

ofinition 4.1.16. A belief-revision method is data-driven if it is both weakly
efinitl .1.16. 3 :
iairetentive and weakly conservative,

‘As mentioned before, belief-revision methods work on whole plausl.blclllt,y cs;rgciz
- : o it » 3
; Slrllésvs a refined notion of keeping track of past events. History _Ellhetpe;ates
lsefa revision methods do not distinguish between the same plausibility st
elief-revis ]

that have different pasts.

finition 4.1.17. A belief-revision method 4s history-independent z;; ztabz':gsd
" lepena ; ¢ £ recently o
2 tput and the mos
&l e depends only on the previous ou ‘ : ;
ttﬂ”?}_ f,m?f;r ezcry finite p C PROP and all finite data sequences o,m, we have
ata, i.e., ; C

i (57, 2°) = (57,<7) then (57, <) = (7, <").

4.2 Tterated DEL-AGM Belief Revision

~drive is follows
All revision methods satisfyinlg the i?%l\i Zoit;}:’;c‘i :;"j ;liéa ;?;I;;lelsems 4
- the}l's"?co?juﬁﬁMfrrc)):ti\i:ng S with new belief ¢, then ¢ belongs to S # ¢
chon, on 1"?; 1 ’?985). However, as we will see below, AGM methods arﬁ
(AlChOI‘ln‘"gn'f sir(’)n ly data-retentive, nor strongly conservative. Bclow. we v:.l
oo f‘eﬁeﬁéiﬁ . basicg nalitative belief-revision methods that met con&udcra. e
COHSld'er L ?e}i d nacinic epistemic logic research: conditioning .(update), 1ex1]<?:o—
atte?t'lm'l e illl(rafdical upgrade) and minimal revision (conservative upgra.c}e) (t 05
gzzii:slezvgfapter 2). We will investigate the propertics of hemogeneous iterate
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revision, i.e., sequences of revisions governed by one particular helief-revigig
policy.!

4.2.1 Conditioning

We want to focus now on the conditioning revision method, which correspongd
to update in dynamic epistemic logic (see Van Benthem, 2007, and Chapter 2
To briefly recall the notion, npdate operates by deleting those worlds that
not satisfy all the new data. The minimal requirement for rational application ¢
update is that the incoming information is truthful. We redefine the notion ¢
update for our epistemic states in the following way.

Definition 4.2.1. Conditioning is a belief-revision method Cond that takes an

epistemic state S together with o prior plaustbility assignment <g, e, a plaus

bility state, and a finite set of propositions p and ouiputs a new Plausibility state

in the following way:
Cond{(S, <5}, p) = (5, <4),
where $° = {s € S|s = A p}, and <§ = <gl5*.

The conditioning revision methed is obviously weakly data-retentive. Moreover,

one can say that it treats the incoming information very seriously—it deletes

all worlds inconsistent with it, The deletion cannot be reversed—in this sense

conditioning is the ultimate way to memorize things. Below we prove that
conditioning is strongly data-retentive.

Proposition 4.2.2, Conditioning revision method on (5, <g) is strongly data
retentive.

Proof. Let us take o = (y, ..., o) and assume that Cond((S, <)o) = (87, <),

We have to show that the conditioning revision method Cond is strongly data-
retentive, ie., if , for every 1 <4 < s

it p € g; then (57, <%) |= Bp.

Each time the new information o; comes in all worlds that do not satisty it are
eliminated, therefore S¢ = || A (Jolj. Hence for every world s € S, we have that

sE= AUe. Soin the resultting model every proposition that ever occurred in o is
believed. [

Conditioning, being an AGM revision method, is weakly conservative. We will
show that it is not strongly conservative.

TAn alternative, complementary view is to alternate heliefrevision policies depending on the
status of the incoming information. In such a case the level of donbs {or conservatism) with
which one can accept the incoming data depends on the lovel of the roliability of the inconing
information (see Raltag & Smets, 2008a; Van Benthem, 2007). We wiil not be concerned with
such heterogencous policies, but we view them as an interesting topic for future work.
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ot us take a seqguence of data o and assume that Cond((S, g),.a) =
“We have to show that the conditioning revision method Cond is not

(57,<7) = (57, <),

i us consider the following example. Assume that $° = {{p,q}, {p}},
i}, and the plausibility gives the following order: {p,q}<{p}. Then clearly

(5°,<°) E B\ ).
ever, after receiving p, the revision method Cond will eliminate world {p} and
o !

o (87,<7) £ (87, <70),

‘We have shown that apart from being data-driven (We_akly data,-retentiwlfe
nd weakly congervative) conditioning is strongly data-retentive but not strongly

pnservative.

‘onditioning on Epistemic States Conditioning can change.: the ﬂnclierlgmg
':a',ﬁsibility order only by deletion of possible w‘orlds. If update 15 peli‘lfox ‘me 01}
pistemic states that lack plausibility structure, in some cases, whll.e.t e 1a115e ;)

.éerta'mty of the agent shrinks upon new data, the‘emergence of full cer a1;1 ly
an occur. Conditioning can be considered succe.ssful-lf the actual guess 15} ﬁm ely
dentified (sec Chapter 5 and Dégremont & Gierasimezuk, 2009). In-t sis igse
he iteration on any daia stream consistent with any world s allows eliminating
neertainty in a finite number of steps.

4.2.2 Lexicographic Revision

Texicographic revision corresponds to radical upgrade in dynamic epistemic logic.

‘When facing new information, it does not delete states, it just makes all the worlds
satisfying the new piece of data more plausible than all the worlds that do not

‘satisfy it and within the two parts, the old order is kept.

Definition 4.2.4. Lexicographic revision is o belief-revision method Lex that

- takes an epistemic state S together with a prior plausibilily assignment <g, i.e., a

plausibility state, and a finite set of propositions p and cutputs a new plausibility
state in the following way:

Lex((S, <g), p) = (5, <),
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: ; ision 1 servalive.
where for all t,w e S: position 4.2.7. The lexicographic revision s not strongly consert

f. Let us take a sequence of data o and assume that Lex{{S, S), o) =(S,<%).
h;1V€ to show that the lexicographic revision method Lex is not Str'OI}gly
Sefvative i.e., it is not necessarily the cage that it keeps the szm}e plausibility
m: ‘when the new data is already believed. Formally, for every finite p C PROP
ch that (87, <%) = B(A p), we have

(8, <7) = (8,<77).

EGwiff(t<Gwort <bwor(te “/\pil/\w S H—v/\pll)),
where: <5 = <sl Apll, and <& = <sI|= A pl.

Lexicographic revision is not strongly data-retentive on arbitrary sequences
of data. However, if the data sequence is sound with respect to a world in the
episternic state, strong data retention holds. Moreover, this type of revision is not

strongly conservative. Let us go through the arguments for each case. fet us consider the following example. Assume that S = {{p,q}, {p}, {a}},

q}, and the plausibility gives the following order: {p,q} gf {p} <7 {q}.
"Phen cle;ariy (5, <7) & B{A p). However, after getting p, the revision method
I put world {g} to be more plausible than {p}, and therefore

Proposition 4.2.5. Legicographic revision is not strongly data-retendive on arbi.
trary data streams.

Proof. Let us take a finite sequence of data o — (71,...,0,) and assume thaf
Lex((S, <),0) = (5, <7). We have to show that the lexicographic revision method (8, <7) # (8, <7).
is not strongly data-retentive, i.e. it is not the case that for every 1 < ¢ < n;

if p € o; then (S, <%) |= Bp.

immary Lexicographic revision is strongly data-retentive on streams that are

Let us take S = {{p}, 19t} o = ({p},{¢}), and assume any initial ordering on ound with Tespect to some possible world. On the other hand, it is not strongly

S, e, {p} < {¢}. Pirst oy = {p} comes in, and p starts to be believed. After
receiving o3 = {g} the most plausible state becomes {g}, so pis no longer believed,
i.e., ﬁB/\G‘]_. 3

onservative.

.2.3 Minimal Revision
Observe that ¢ in the above proof is not sound and complete with respect .

to any possible world in . Therefore, in the learning-theoretic setting that we
described in Chapter 2, & cannot, possibly appear in the first place. In this sense
the lexicographic revision is especially well suited to learning and scientific inquiry-—
it’s behaviour improves on data streams that are assumed to be consistent with
reality. Let us see that, it is so.

"he minimal revision method corresponds to conservative upgrade in dy‘n&'u.m'c
‘episternic logic (see Van Benthem, 2007). The most plauSlblcl \n.rorlds satislying
he new data become the most plausible overall. In the remaining part the old

“order is kept.

efinition 4.2.8. Minimal revision is a belief-revision melhod Mini that. takes
.an epistemic state S together with o prior plausibility assignment <g {'bie..,. a
lausibility state) and a finite set of propositions p and outpuls o new plausibility
tate in the following way:

Proposition 4.2.6. Lezicographic revision method on (S, <5) is strongly data-
retentive on deta sequences that are sound with respect {o some s € 5.

Proof. We have to show that the lexicographic revision method Lex is strongly
data-retentive on sound data sequernces. Let us take a plausibility state {8, <s),
s € § and 6—a data sequence that is sound with respect to s, i.e., set(o) C s.
After reading o, for all the worlds # that are most plausible with respect to < in
St is the case that | AUej| Ct, ¢ = B Ale. Tt is so because by assumption
there is at least one such world, s. O

Mlnl((S: SS)) P} = (Sa Sg‘)a
‘where for all t,w e S:
t<Gw ifft <g w ort € mine (S, <g)

While adhering to the desired form of strong data-retention, lexicographic

where: gg?“”’ =<sHteS|td minSs“ Apll}-
revision is not strongly conservative.

The minimal revision method is not strongly data-retentive {not even on sound
data streams). But, on the other hand, it is strongly conservative.
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Proposition 4.2.9. Minimal revision on (S, <s) is not strongly d,ata-reten.
on all data sequences that gre sound with respect to some s €S,

Proof. Let us take a sequence of data ¢ = {(oy,. .. ' 0x) and assume ¢
Mini(($,<),0) = (5,<7). We have to show that Mini is not strongly day
retentive, i.c., is not the case that for every 1 <g < g

it p € o; then (S, <7) & Bp.

Let us take § = el {a}, {p, 0t} o = ({p}, {g}) a data sequence consistent w;
world {p, ¢}, and assume that the initial ordering on S is {¢} < {p} <{p,q}. Af
receiving oy = {p} the Plausibility ordering hecomes {p} <= {4} <o {p.¢}. Th
o2 = {q} comes in-—now our method gives the ordering {q} <f1.02) ip} <loroy

{p.q}. So pis no longer believed although it was included in a1, Le., after the

second piece of data, “B{A ay).

Proposition 4.2.10. Minimal TeViSion ig strongly conservative,

Proof. et us take 5 sequence of data o and assuine that Mini{(S, <), ) = (S, S”);

We have to show that the minimal revigion method is strongly censervative, ie., it

keeps the same plausibility state when the new data ig already believed. Formally,

for every finite p C Prop such that (S, <) |= B({A p), we have
(5, <7) = (8, <o),
Let us take p C Prop such that (S, <9) = B(A p), we have to show that
(3,27) = (5, <o),

Let us assume that (5,<7) # (8, =*). This means that after receiving p the
plausibility order hag been rearranged. By the definition of Mini, this could
happen only in the cage when among the most plausible in (g, <7) there was no
world ¢ such that ¢ < lell- But then also (S, <7) b BIA p). Contradiction, 7

The precise relation between the minima] revision method and the notion of
conservatism is an interesting subject of further investigation. Our definition of
strong conservatism indicates that minimal revision ig the only strongly conserva-
tive belief-revision method. Hence, the concepts of minimal revision and strongly
conservative revision are equivalent.

4.3 Learning Methods

In learning theory the learner is taken to be a function that on each finite
sequence of data outputs g conjecture——a, hypothesis from the initially given set
of possibilities. We will follow this intuition here——our learning is performed by a

niti 3.2, A learn . !
Deﬁnltlz)r; f ?01 ), we have that if I{S,0) # 0 then
sequences 0 = 101, - - -,
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Definition 4.3.4. A learning methad is weakly conservative if for all data se

pition 4.4.1. A belicf-revision method R, together with o prior plausibility
quences @ = (a1,...,0,) and ¢ finite p C PROP, we have: :

gnment S — <g, generales ¢ learning method Ly, called a belief-revision-based
ipc ﬂ LS, ) then L(S,0) = L(S,c  p). g method, and given by:
o . Lp(S,0) = min< R(S, <g,0),
The analogous concepts: conservatism, in learning theory has been shown tq:
restrict the class of languages identifiable in the limit, as has been consistenc
(see, e.g., Jain et al., 1999). We will not go into details of these arguments here;
Let us just mention that our concept of learning method is different from tha
of the learning functicn in formal learning theory. These are assumed to ontput:
integers that are indices of sets in the initial class. Our learning methods are’
working directly on sets and output the entire set corresponding to current beliefy
In this respect our approach is more ‘semantic’ and accordingly learning methods:
may turn out to be more powerful. :
For hrevity’s sake we will sometimes combine the two weak conditions of
conservatism and data-retention together under the name of data-drivenness.

re mine (57, <'} is the set of all the least elements of S with respect to <! (if
oh least elements exist) or © (otherwise).

Now, an inferesting set of questions arises. Is it the case that data-retention
“conservatism of belief-revision method is ivherited by the corresponding
belief-revision-based learning methods? Do history-independent, belief-revigion
methods generate memary-free learning methods? Below we list and discuss several
pendencies between belick-revision methods and learning methods generated
1t thern.

position 4.4.2. If a belicf-revision method R is weakly date-retentive then
Definition 4.3.5. A learning method is data-driven if it is both weakly data- generated learning method Ly is weakly data-retentive.

retentive and weakly conservative. : . .
i df. Let us take a helief-revision method R and some epistemic state together

h a prior plausibility assignment (5, <g). Assume that R is weakly data-

Last but not least, an important aspect of learning methods is their memory : ;
ntive, i.e., if ¢ = (o4, ..., 0,) is a data sequence then:

concerning past conjectures. Below we define the limit case of a memory-free

learning method.
Vp € gy, (57,<%) E Bp.

We need to show that if Lp(S,0) # @, then o,, T [ Lg(S,0). Let us then assume
hat Lp(S,0) # 9, i.c., there is a <% minimal element in 5. Then in every world
nimal with respect to <g every p from a,, holds:

Definition 4.3.6. A learning method is memory-free if, at each stage, the new
belicf set depends only on the previous belief set and the new data, i.e., for any
finite p © PRrROP:

if L(S, oY= L5, o) then {5, 0% p) =L(S,0" % p).
(8,0) = L(5,0") (8,0 p) = L( ) ¥p € o mineg (5%, <3) € |5l
A condition analogous to this in Definition 4.3.6 has been considered in formal
learning theory and is known under the name of memory limitations (see, e.g.,
Jain et al., 1999). :

iere ||pj| stands for the set of possible worlds that include p. Therefore, in every
imal world the conjunction of the o, holds:

minSE(Sav Sg} - ” /\Uﬂ”!

4.4 Belief~-Revision-Based Learning Methods

Finally, we are ready to put all the picces together and describe learning that is -
based on belicf-revision methods. We build a learning method from a belief-revision
strategy in the following way. We take an epistemnic state, put some plausibility
order on it, and simulate a certain belief-revision method while receiving new
information. The answer of the learning method each time consists of the most
plausible worlds in the plausibility state. Such a learning method still outputs just
the belief states but it bases its conjectures on the constructive work executed in

the background by the belief-revision method. '

o C mmingg (57,<%).

ince (57, <Z) = R((S, <g),0) = Lr(S, o), we have that

o, C ﬂ Lg(S,0).

The next two propositions are proved in a similar way.
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Proposition 4.4.3. If R is data-retentive then the induced learning method Ej

18 data-refentive.

Proposition 4.4.4. If o belief-revision method I is weakly conservative then 1
induced learning method Ly is weakly conservative.

It remains to show how belief-revision and learning methods relate to each

other with respect to their memory Hmitations.

Proposition 4.4.5. A learning method generated from a Ristory-independent

belief-revision method does not have to be memory-free.

Proof. We prove this proposition by showing an example—a helief-revision method
that is history-independent but the learning method that it induces is not memory:
free. Let R be the lexicographic rovision method (that corresponds to lexicographic
upgrade in DEL, sec Chapter 2), all the worlds satisfying the new data become

more plausible than all the worlds not satislying them; and within the two zones

the old order is kept. R is clearly history-independent. Fach time the revision
takes into acconnt only the Jagt output in the form of an epistemic plausibility state
and the new incoming information. 'To see that Ly is not memory-free consider.
the following two plausibility orders on § = 5 = 1}, {a},{p. q}}. Assume that -

for some o and ¢
L. R{(S, <g),o) gives the plausibility order: {p} <s {p.q} <s {g}:
2. R((8", k), o") gives the plansibility order: {r} <s {q} <& {p,q}.

It is casy to observe that Lg(S,0) = Ly(5",¢"). Assume now that the next

observation p = {g}. Then clearly Lg(S,o%p) = {p, q}, while Lp(S, o'+ p} = {q}.

Therefore, for the belicf-revision method R there is a data, sequence p such that:
Lp(S,0) = Le(5',d’), but Lp(S, 0% p) £ Lp(8',0" % p).

A

Summary et us briefly summarize the results we have obtained so far. Data-
reteation and weak conservatism are preserved when a learning method is penerated
from a belief-revision method, However history-free belief-revision methods are
still able to remember more than just the last conjecture of the generated learning
method. "This is so, because they ‘keep’ the whole plausibility order for ‘further

use’,

: 5%
Tonuergence

Convergence

: .oes it mean for a learning method to be reliable with res:;pcct to the initial
tomic state S7 It means that it is possible to relly upon it to ﬁnd the re%ﬂ
1'in finite time, no matter what the real world is, as long as 1.t belongs to
gikren initial epistemic state S and as long as -tl.le data stream is sound and
mplete (for a discussion of reliability in belief-revision see Kelly et al., 195‘)5)‘.1 I‘n
his sction we investigate reliability with respect to convergence fo thfe correct
lief: The expected result is not knowledge understood a8 full c:erFamty, bgt
her '.a, kind of belief that is guaranteed to persist -Lmder true mlformatlon. In thls
ting, an agent can be right in believing something but he m1g}}t not knov?r 1t-.

dentification in the limit guarantees the convergence to thg right hypothesis,
“4t a finite stage the answers of the learning method stabilize on the correct

Definition 4.5.1. An epistemic state S s identified in the limit on positive data

i learning method L if and only if for every world s € 5 and every sound and
: inplete positive data stream for s, there exists o finite stage after which L outputs
2 singleton {s} from then on*

“Tn general we can attribute identifiability to the epistemic states by requiring
at there is a learning method that identifies the state.

Definition 4.5.2. An epistemic state is identifiable in the limit (I'BSI?. ﬁn?tely
ntifiable) on positive data if there ezists a learning method that can identify it
the limit (resp. finitely identify it) on positive data.

Particular learning methods differ in their power. The most powerful among
em are those that arc universal, i.e., they can identify in the limit every class
entifiable in the limit.

]jeﬁnition 4.5.3. A learning method L is universal on positive daela if Fmd qnly if
t can identify in the limit on positive data every epistemic state that is identifiable
in. the limit.

We are especially interested in learning methods that are generated from

“belicf-revision policies. For brevity’s sake we will use the notion of identification i

the limit while talking about belief-revision policies. By a belief-revision methlod
identifying S in the limit, we mean that the belieﬂreyision method togethc‘r with
some prior plausibility assignment generates a learning method that identifies 5
in the limit (as given in Definition 4.5.1).

3Tn this chapter we will focus on identification in the limif. Finite identification is investigated
in the context of epistemic logic in Chapter 5. N )
4Tn terms of belief, it means that the agent’s conjectures stabilize to the complete true belief

about the actual world.
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Definition 4.5.4, Ay epistemic state S is identified in the limit on Posttive
by a belief-revision method R if there ezists a prioy plausibility assignment § e
such that the generated belief-revision-based learning method Ly identifies ¢
the limit on positive data,

The ahove definition requires the existence of an appropriate initial plausih; _
assigniment. In principle it can be a completely arbitrary preorder. However,
might want this prior plausibility assignment to satisy certain assumption,

cognitive realism or rationality. The properties that are often required of suéh-

priors are well-foundedness and totality. Well-foundedness assures that a minjr;
state is always exists and it is posstble to point to it as to the current helief. Totalj

as standard assumptions of preference relations in doxastic epistemic logic (s
e.g., Dégremont, 2010).

Definition 4.5.5. An epistemic state S 45 standardly identified in the limit g
positive date by a belief-revision method B if there cwists g (total) well-founde
prior plausibility assignment S+ <g such that the induced belief-revision-base
learning method T, wdentifies S in the limit on positive data.

We define the analogous notion of universality for standard identifiability.

Definition 4.5.6. A revision method s standardly universal on positive datq

it can standardly identify in the Gmit on positive data every epistemic sigte that:

is identifiable,

Our aim now is to show that some of the DEL-AGM revision methods generate

a universal learning methods, The main technical difficulty of this part is the.

construction of the appropriate prior plausibility order. To define it we will use
the concepts of locking sequences introduced by Blum & Bhun {1975} and finite
tell-tale sets proposed by Angluin (1980). For the latter we will use the simple
non-coteputable version. We will refine the classical notion of finite tell-tales
and use it in the construction of the suitahle prior plausibility assignment that,
fogether with conditioning and lexicographic revigion, will generate universal
learning methed.

The first observation is that if convergence occurs, then there is a finite sequence
of data that ‘locks’ the corresponding sequence of conjectures on a correct answer.
This finite sequence is called a ‘locking sequence’,

Definition 4.5.7 {Blum & Blum 1975). Let an epistemic state S, a possible world
s €5, a learning method I, and 6 finite data sequence of propositions, o, be given.
The sequence o is called o locking sequence for s and I if

L set{o) C &,
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; en L = L{S,c#*a),
ny data sequence «, if set{a) C s, then L{5,a) ( )

1 4.5.8 (Blum & Blum 1975). If a learning method L identifies possible
af .th.e limat then there exists o locking sequence for L on s.

. characterization of identifiability in the limit (see Theorem 211;41) t?ii
h_(_%I_C IEiL?ed to account for arbitrary classes, _by droppm% ﬂfc ablblzw?n a
"ere‘bcal))ility It requires the existence of finite sets that allow dr 5

ompu )

ugion withous the risk of overgeneralization.

i istemic state over a set PROP of

: Angluin 1980). Let 5 be an epis sel PROP of

rp_al 4#3212@.3(; suih that PROP and S are at most countable. If S is iier;ﬁfgil)c

mwlii:;t on p’oeitive data, then there exists a lotal map D S — P<( ,
& i ‘

by s+ 125, such that D; is a finite tell-tale for s, i.e.,

D, is finite,
Ds C s,
if Ds C+C 5 thent =s.
. Let S be an epistemic state over a set PROP of atomic senFer?ces, qgcltl) }thdrilz
of 9;1 S are at most countable. Let us also assume that § is 1dent11da, eE 18
Il i . . " S
RQIF B;t on positive data by the learning method L, i.c., for ev‘ery w?ur P
e"lmcry sound and complcte positive data stream for s, there exists a
ev

; , 4.5.8,
e after which L outputs the singleton {s} from then on. }l?y1 Lemrsnz 108
ivery s € § we can take a locking sequence o, for L on s. For any

lefine D, := set(o,).

1. D, is finite because locking sequences are finite.

2. D, C s, because set(a,) C 5.
3. if D, C ¢ C 5then # = 5. Assume that there are 5,1 € §, SIEihtthz;t 8 %z
S c ) . : : P
D, itive d and complete data s
t C s. Let us take a positive soun : . :
?ndtDs glfth_af for some n € N, e[n = g,. Because o is a locking Sequ(,IlC(;
suc § , lockd

fzi I, on s and set(g) == ¢ C s, L converges to s on €. Therefore, I does no
identify £, a state from S. Contradiction.

1
This concludes the proof.

i . The
We will use the notion of finite ‘tell-tale’ to construct an ordering of 5. T

ibili : iabl
-aim is to find a way of assigning the prior plausibility order that allows reliable

. S . + will
belief revision. We will base the construction on ﬁmi:,e. tell—tralleg, tl))g;n)wv&)m wi
introduce one additional condition (see point 4 of Definition 4.5.10, be .
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Deﬁnition 4.5.10. Let S be a countable epistemic state with an injective yn
i85 = N, and D' be a total map such that D' : § — P<“(PROP), given by
s = D having the following properties: [

1: s, is included in s;. In this case, D), is included in 1, and s is included

in sa, so (by Condition 3 of Definition 4.5.10), we have that s; = sa.

Contradiction.

1. D, is finite, . sy is included in s1. This cage is similar: D} is included in s and s
ig included in 51, so (by Condition 3 of Definition 4.5.10}), we have that

y .y
2. D! Cs, 52 = s1. Contradiction.

8 if DL CtCs then t = 3, (:50 3. 8 is not included in sg, and 55 is not incladed in s;. In this case, from

' the assumption that D/, is included in s;, and that s is not included i
s9, we can infer {by Condition 4 of Definition 4.5.10), that i(s;) < i(s2).
But, in a completely similar manner (from D, included in 51, and g
not included in &), we can also infer that 4(sy) < i(s;). Putting these

together, we get i(s1) < i(se) < i(sy). Contradiction.

4. i DL Gt but 5 Gt then i(s) < i(2).
We call D' an ordering tell-tale map, and D! an ordering tell-tale set of s,

Definition 4.5.11. For s,t € S, we put

For the inductive step {n+ 1): Suppose s1. 8. ... Spp1 18 a proper cycle of

s =p t if end only if D] C ¢. length 1+ 1. We consider two cases:

We take <p 1o be the transitive closure of the relation <p. Case 1: Therc exists k with 1 < k < n such that sy is included in sp4. 1 <K,
- then it is easy to see that the sequence s5q,...,85-1, Skt+1;- - - {obtained
by deleting s from the above proper cycle of length n + 1} is also a
proper cycle, but of smaller length (n). Contradiction. Similarly, if
k =1, it is easy to see that the sequence sy, 53, ..., Sp41 {Obtained by
deleting 82} is a proper cycle of smaller length (r). Contradiction.

Lemma 4.5.12. For any identificble epistemic state S and any ordering teEZ
tale map D', the relation <p is an order, i.c., <p. is reflezive, transitive and.
antisymmetric.’

Before we give the proof let us introduce the notion of a proper cycle in <
N sg 1s not included in $gy1 for any 1 < & < n. In this case, we have
that for all 1 <k < n, D;_is included in sg4q but s is not included
in sg+1. By Condition 4 of Definition 4.5.10, it follows that we have
fop < fsgpys for all & =1,...,n. By the transitivity of <p, it follows
that 45, < i,,,,. But by Condition 2 of Definition 4.5.10, 51 = spy1,
hence iy, > 1,,,. Contradiction.

Definition 4.5.13. A proper cycle in <j» is a sequence of worlds 51,...,8q, with
> 2, and such that:

1. D, s included in sipy (for alli=1,... n— 1).
2. 81 = 8y, bul

3 81 ﬁé 8. .

. We will now show that <pr, used by the conditioning revision method, guar-
ntees convergence to the right beliet whenever the underlaying epistemic state iz
identifiable in the limit.

Proof. The fact that <p is a preorder is trivial: reflexivity follows from the fact
that D is always included in s, and transitivity is imposed by constraction (by '
taking the transitive closure). We need to prove that <p is antisymmetric. In .
order to do that we will show (by induction on 7) that <p does not contain Theorein 4.5.14. The conditioning-based learning method is universal on positive
proper cycles of any length n > 2. ' data.

roof. We have to show that an epistemic model S is identifiable in the limit iff 5
is identifiable in the limit by the conditioning-based learning method. Obviously,
if S ig identifiable in the limit by the conditioning-based learning method, then S
is identifiable in the limit. We will therefore focus on the other direction, ie., we
will show that if S is identifiable in the lirnit by any learning method, then if is
identifiable in the limit by the conditioning-hased learning method.

1. For the initial step (n = 2): Suppose we have a proper cycle of length 2. As
\.Ne. saw, this means that there exist two states sy, s, such that 51 7 89, D;l
is included 1n 59 and D;Z is included in s;. There are three cases:

5 3 . . . . . .
. We use [, to distinguish from the original tell-tale function I (satisfying only the conditions
of Angluin’s Theorem).
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First let us assume that S, an epistemic state, is identifiable in the limj
hence it is at most countable. Let us then take an jective map 5 ; & 3T
Lemma 4.5.9 we can assume the map 1 that gives tell-tales for any s € g
the basis of D we will now construct a new map D' : § — P=“(Prop). W
broceed step hy step according to the enumeration of § given by 4.

", t. And because by Lemma 4.5.12, <, is antisymmetric we get that
DI .
diction. N - |
El;at the conditioning process stabilizes on {¢}, it is epough 'to of}r)servc
: aJd with respect to s, and therefore no further information from &
_O;lcﬂs (because conditioning is weakly conservative). So for any & > n,
nate >

- O
cond((S, <), elk) = {s}.
1. For s, we set D'(s1) == D(s).

1 4.5.15. The lexicographic belief-revision method is universal on positive
m 4.5.15. The
2. For s,,: For every k < n such that D, C s :
atomic proposition py such that Pr € 5y
following way.

and s, € s, we choog 2amS. .
and py, ¢ 5. We define Rest in ; of is analogous to the proof of Theorem 4.5.14. As far as S%mpza ?ehzfs
g_,.pI‘O 1 \I-adical upgrades with true information do exactiy‘ what upda C'Si' .
Cer;l?fcférence is that the rest of the doxastic structure might not stabilize,
y difersnce

Jy the minimal elements stabilize (on worlds indistinguishable from the real
y >

Rest .= {p, | k<n&p;¢65n&pk € s, & D, gsk&sngsk},
Ther, we set D =D, U Rest.

We have to check if I satisfies conditions of Definition 4.5.10.

“he preorder defined in the proof of Tlg-;)'rem' 31.15.35 lljgﬁf)gt ilﬁ;@ﬁﬁl:{l;{g;i}l{
ded. It is impossible to improve on this without los .1'} W
. is 1 nd setiing we need generalized p

: ty T}lll'lSh]:h:}gasz'ilgzil;%zoglprcorder,%vithout assuming lweﬂ—founde,dncs:s.
o b 11(;) defined as ‘truth in all the states that are plausible enough’ (this
it > e ntificrs: For every state s there exists some state ¢ gls' Su(fh
i tth rieigu;l states'w < t). This is equivalent to the standard definition in
asi:stlf:,t there exist minimal states (i.e., states < than all others).

i ini ision method.
et us now turn to the negative result concerning the minimal revision w

L. Df{ is finite, because D, and Rest are both finite,
2. D! C s, hecauge Dy and Rest are subsets of 5.

3. D CHtCsthent = s, because then D, c D

CtCs, and hence, by the
definition the finite tell-tale set ¢ = &,

What remains is to check the condition 4: If o
Let us assume the contrary: D'(s) € ¢ and s
possibilities:

(s) Ctand s ¢ ¢ then is) <3
¢t and i(t) < i(s). There aze two position 4.5.16. Minimal revision is not universal.

L 4(t) = i(s), but then s = ¢ and hence s C ¢. Contradiction.
2. 4(t) < i(s). Then, there is a Pbroposition p € D'(s)

v et Therefore, by the inductive step of the constr
Contradiction.

f. Let us give a counter-example, an epistemic state that is identifiable in the
of. Tet us f , 1ic .
€, but is not identifiable by the minimal revision method:

§ = {{r} {a}. {p,a}}-

h":e epistemnic state § is identifiable in the limit by the conditioniz}g rz,v_ljlzg
5 -
thod: just assume the ordering {p} <} {q;} i_ {;tt), Sr]}b ?Eng;;m;fieﬂgion

dering i i ification in the limit o v Vi
rdering that will allow identi i it
' : i dering before {p} (or belore {g}),
ethod. If {p,q} oeccurs in the or . \ : o
iinimal revi{sion method fails to identily {p} {{g}, relbpec‘tllvellyiictgol:c)lofaﬂ 5{32;
' i rdering then the minimal revision r

recede {p, g} in the ordering her _ ‘ .
nil‘t{]g} {pp q} on{any data stream consisting of singletons o.f prOpOSl(;lO;lStfrO;ll
{p,q} yOn ;H such data streams for {p, ¢} the minimal sta.te. will alternate betwe .
. i}qaﬁd {¢}, or stabilize on one of them. The last case is th.at ab lggstt(i)é:b(l}e
{p} and {q}, is equiplausibile to {p,q}. In such case {p,q} 11§h11§t011 eeI;{)SSible
because for any single proposition from {p, ¢} there is more tha A
world consistent with it.

such that p € 5 an,
uction of I, D'(s) ¢

We now have that [’ satisfies all ¢
it is an ordering tell-tale ma;
an order.

It remains to show that § is identifiable in the limit by the learning method::
generated [rom the conditioning belief-revision method and the prior plausibility
assignment <. Let us then take any s € .9 and the corresponding ['(s). Since
D'(s) C s for every €—-a sound and complete positive data stream for $, there
isn € N for which D’ (s) Cset{etn). Our aim is now to demonstrate that after
receiving the elements of €fn, s is the minimal element in g¢in
<p. Let us assume for contradiction that it is no
t# sand t <p 5. Since t e S we get that 1

onditions of Definition 4.5.10, and therefor
p. Hence, by Lemma 4.5.12, the corresponding <. i

with respect to
b, L.e., there is ¢ € S5 guch that
(s) C ¢, but then, by Definition
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' . i iti ative Data
Proposition 4.5.17. There is no standardly universal belief-revision meths Learning from Positive and Neg

ow extend our framework to account for revising with negation. Let us

Proof. There is an cpistemic state § that is identifiable in the limit by a leapy + the stream £ that consists of both positive and negative data:®
. . :

method, but is not standardly identified in the limit by any belief-revision meth;
Le., there is no belief-revision method that would, together with a well-foui;,
order < generate a learning method that identifies § in the limit. The follg
epistemic state constitutes such courtter-cxample;

set(e) € ProP U {p | p € PrOP}.

ons defined in Sections 4.1 and 4.5 (soundness and completeness of a
i "identifiability in the lirit, universality, etc.) are analogous for thlS. ?ase.
1.';,115 recall the definition of the epistemic state, together with the additional

Tz nme Ry anation how to interpret the negative information.

S is identifiable in the limit by learning method L, that is defined in the follow;

nition 4.6.1. Let PROP be the a (possibly infinite) set of atomic propositions.
way: !

sible workd is a waluation over PROP, and il can be identified wilh aisc.t
pOIIZS’ROP. We say that p is true in s (write s =p) iff p € 5, we say that p is
n s (urite s =F) iff p & 5.
ésition 4.6.2. Conditioning and lexicographic revision generate standardly
ersal learning methods for positive and negative dota.

L(S,0) = s, il n is the smallest such that set(c) C s,.

Morcover, S ig identifiable in the limit by a revision-based learning methg
We take the conditioning revision method and < € 8% .9 defined in the followis
way: For any s,,s, € 8, s, < S if 1 2> m. Ti is easy to observe that < is na
well-founded, '

Let us now assume that § is standardly identifiable in the Hmit, Le., there is
belief revision method R and a well-founded order < on 5, such that the Jearni
method generated from R and < identifies S in the limit. If < is well-founded W
can choose the <-minimal element. Let as assume that it is s, for some k ¢ N
Obviously, for all n > k, 5, C sg, in fact there are infinitely many n & N such that
Sk < 8o and s, C s;. Therefore, all positive, sound and complete data steams for
such s, are also sound with respect to sg. If we accept the minimal assumption
of data~drivenness of belief-revision methods, we can easily sec that B will ng
change the <-minimal state from sp to any of s, for any sound and complete
data streams for s,,. Therefore R fails to identify in the limit Sp,foralln >k O

" In fact, any w-type order on & gives a saitable prior plausibility ﬂssigfmllent.
s take s € §. Since < is w-type it is well-founded, there are only finitely
iy more plausible worlds. For each such worl.d te s we collect a 1, €t such
ab pn, € 5 — ¢ (= stands for the symmetric difference oi. two set§). Ther.l we
cohstruct a finite data sequence o enumerating the all the mformatu?n obteal‘n‘ed
. this manner, including p, if p, € g or p, if p, ¢ s. Obviously o s an 1r11.t1a1
gment of sume data stream e for s, hence set(s) is enumerated in finite time
every data stream £ for s. After set{o) has been obse?\fed.all world§ that arc
ore plausible than s will be deleted (in the cage of .Condluor.lmg} or will become
lesd plaugible than 5. Hence, conditioning and lexicographic revision generate
universal learning methods.

roposition 4.6.3. Minimal revision is not universal for positive and negative

ey . L ata.
Summary In this section we considered a notion of reliability of a belief-revision

method. We used the concept of identifiability in the limit to define success of an
iterated belief-revision process. We have shown that some belief-revision methods
are universal, i.e., they identify in the limit all cpistemic states that are identifiable
by arbitrary learning methods. Such very powerful learning methods are generated
from conditioning and lexicographic revision (update and conservative (radical)
upgrade in dynamic epistemic logic). More conservative methods turn out not to
be universal. This indicates the existence of a tension between learning power and
conservatism. We can sce that the weakness of the minimal revision method lies
in ignoring information that is alrcady believed. Universal belief-revision methods
perform operations on plausibility states even if they do not influence the current
beliefs immediately. Thege operations pay off as the process continues,

Pmof We will give a counterexample, an epistemic state that is identiﬁablr;: i1'.1 the
it on positive and negaiive data streams, but is not identifiable in the hmlt'by
the minimal revigion method. Let us first introduce the sets crucial for consh:uctmg
the counterexample. Let Sy = {pi |1 €N}, Spos ={S: = {;lpo, .. ..,pz-} | i€ N},
Sreg 1= {Ty = S — {po...p;} | i € N}. Now we define our epistemic state in the
neg ]
following way:
8= {8, 0} U Spos U Sreg.

First let us observe that 5 is countable, and hence i is identifiable in th‘e limit:
- from positive and negative data {from the proof of Proposition 4.6.2). We will now

Tn learning theory such streams are called ‘informants’, sce Jain et al., 1999
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show that for any total preorder < on § there is & set in S that is not identi.ﬁ'-

in the limit by the minimal revision method. We will consider three bagie
w<SN,SN<®aIldSNNw. I

i of mistakes or lies). Eliminating worlds that contradict the incoming
ion is then risky and irrational. It is better to change bheliefs via some
methoed, that does not have any built-in mechanism of deletion. Let us
. ¥

5 the performance of upgrading strategies on erroneous data.
1. § < Sy. Let B C S be the set of all (7 such that Sy < €. There :

e consider errars, we will give up the soundness of data s.treanr‘ls‘, i.e.z., we
o . Jow data that are false in the real world. To still keep the identification of
(a) B # 0. Then there is a set ¢* such that B<Sy<CandCc g LS al world possible, the data streams ari re;:i{mred ttztbg fair’: there are only
. ’ ol : : \ very error is eventually corrected.
Then C is not identifiable in the limit by the minimal revision m tho y any errors, and every y

{(b) B =§. Then all sets from Spos 7€ at Jeast as plansible ag Sn. Tt

Hatnition 4.6.4. A stream € of positive and negative dota is fair with respect fo
etint] o |
Sw Is not identifiable in the limit,

1 s iff

2. 5w < 0. Again, let B C S be the set of all ' such that # < C. Let us ag is complete with respect 1o s,
consider two cases, s

there is n € N such that for all k > n, all the data in 3 = N\ &y , and

(2) B # 0. Then there is a set (7 such that Sy<B<CandCe Spos UG,

for every 1 € N and for every ¢ € ¢; such that s ¥ @, there exists some
Then € is not identifiable in the limit by the minimal revision meth

>4, such that P € gy.
{(b) B =0. Then all sets from Sneq are at least as plausible as . Then i

' ' . imi otions defined in Subsection 4.5 (identiflability in the limit, universality, etc.)
(o1 eiabiein the bt fined analogously for fair data streams. . ‘
We will now demonstrate that lexicographic revision deal,ls with errors in &
ul manner. Before we get to that we will introduce and digcuss the notion of
bsz’tional upgrade (which is a special case of generalized up,igra,de,. see Balltaig. &
ets, 2009b). Such an upgrade is a transformation of an e}ln:‘stlemzcmplamfﬂl)ﬂlty
te that can be given by any finite sequence of mutually disjoint propositional
ces %1, ..., Zn. The corresponding propositional upgrade (zy,...,=,) acts
n episternic-plausibility state (5, <g) by changing thg p.n.::order < as follows:
(#) By s nfinie. Then By has to contain infinitely many sets from Spos ~ orlds that satisfy x; become less plausible than all satistying z,, all the wor‘lds
i which case Sy is not identifiable, or infinitely many sets from $., jsfying 4 become less plausible than all x5 worlds, etc., up to the WOl‘ldS. Whll(lh
m which case () is not identiflable atisly =,. Moreover, for any & such that 1 < & < n, among the ?vgrldls satlsfyl_jag
the old order <g i8 kept. In particular, our lexicographic revision is & Spf)(flal
e of such propositional upgrade, namely in these terms lexicographic revision
h @ can be identified with the propositicnal upgrade {—, @).

3. ~ Sy. With thig assumption the elements of S, U8, can find themselve,
in one of the three parts of the preorder. We can have elements that ar
more plausible than § (we will call the set of such sets B1), equally plausib
as @ (set of those will be called B,) or less plausible than § (Bs). Since bl
cpisternic set is infinite, one of By, By and By has to be infinite. Letii
again consider three cascs:

(b) By is infinite. Then the argument from the above case holds. here f;

B,

(¢) By is infinite, Then Bj has to contain infinitely many sets from S,,,, in | .
which case all sets from Sy, (1 53 are not identifiable, or infinitely many mma 4.6.5. The class of propositional upgrades is closed under sequentia
sets from Sy, in which case all sets from Shneg N By are not identifiable :

roof. We need to show that the sequential composition of any two propositional

pgrades gives a propositional upgrade. Let us take X = (ml,...,.a:ﬂ) a-nd

= (¥1,...,%m). The sequential composition X} is equivalent to the following
ropositional upgrade:

4.6.1 Erroneous Information

If data streams are known to be sound and complete with respect to the actual
world, the most economical strategy is to shrink the uncertainty range by deleting.
those possibilities that contradict the data. This strategy is based on total trust
of the information source. However, in belief revision errors might be encountered

(LAY, T A B AY2, T AV, BT A Uy Ty A Y )

TO show this let us take an arbitrary epistemic-plausibility state {5, <g) and
apply upgrades X and Y successively. First, we apply to (S, <g) the upgrade X.
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We obtain the new preorder <%, in which all worlds satisfying 2, are less plagi
than all zy-worlds, ete., and within each such partition the old order <g is ka
Now, to this new epistemic-plausibility state we apply the second upgrads
obtaining the new preorder <Y, in which all y-worlds are less plausible than
wo-worlds, ete. However, since the upgrade Y has been applied to the preorder <
we also know that the new preorder <Z¥ has the following property: for ea(;,
such that 1 < j < m, within the partition given by y;, we have that all - World
are less plausible than all y-worlds, ete. At the same time in cach 7 and £, s
that 1 < 7 < mand 1 < k < n, in the partition (y; A %) the preorder gS
maintained.

Putting this together, we get that <£¥ has the following structure:

ingly, the other upgrade, (=, @) (21, .., o) (@, —p), has the following

AR ATIAG TP AT AP P AT AP, P NBLA TP P AZLA TP,

“p A gy A 0,0 A i A i)

1.6t us observe that some of the terms in the above upgrade are inconsistent.
ani eliminate them since they correspond to empty subsets of the epistemic-
lansibility state. We obtain:

(L1 Aw,.. T A, 21 A, .. Ty A ),

SXY XY Xy
Wzl 25 25w Avll 25 obqerva,tlon that the two propositional upgrades turn cut to be the same

N Al 28 28 Mo A )l 257 28 (2 Ayl ludes the proof. =

Moreover, within each such partition, the old preorder <g is kept. -
The ﬁnal observation is that the above setting can be obtained directly by th
propositional upgrade of the following form:

position 4.6.7. Conditioning and minimal revision are not universal for fair

oo " Conditioning does not tolerate errors at all. On any &; such that & gj §
anditioning will remove s and it does not provide a way to revive it. Minimal
ion, as it has been shown, is not universal on regular positive and negative
Ata gtreams, which are a special case of fair streams. ]

(:L'l AUy T Aln, TLAY2, - T AY2, .., T /\ym,---ymn"'\ym)-

Now we are ready to show that lexicographic revision is well-behaved on fa

streans. mmary In this section we have shown how the framework of iterated belief

evision can be enriched by the use of negative information. First, we investigated
yositive and negative information that is sound and complete. In this case,
h conditioning and lexicographic revision are standardly universal, i.e., there
well-founded total orders that, together with either of the two mentioned
Jief-revision methods, generate umversa,l learning methods. Minimal revigion
n turns out to be insufficient. Secondly, we define fair data streams that
g6 both positive and negative information. Such fair streams contain a finite
umbet of errors and every errvor is eventually corrected later in the stream. The
onditioning revision method again proves to be universal on fair streams, because
verrides inconsistent information. Conditioning and minimal revision lack this
rror-correcting property.

Proposition 4.6.6. Lexicographic revision generoles a standordly universal belzef
revision-based learning method for foir streams of positive and negative dala.

Proof. First let us recall that lexicographic revision, Lex, is standardly universal
on positive and negative data. For the above conjecture il is left to be shown
that it retains ils power on fair streams. It is sufficient to show that lexicographic
revision is ‘error-correcting’: the effect of revising with the stream ¢, o, @ is exactly
the same as with the stream o, p, where ¢ is a sequence of propositions. The
proof uses the properties of sequential composition for propositional upgrade.

Let us assume that length{s) = n. In terms of generalized upgrade we need &
demonstrate that the sequential composition (—g, ){(—a1,01) ... {~om, 0,) (p, i)
is equivalent to (—eay,01) . . (mog, o) (4, ). :

From Lemma 4.6.5 we know that propositional upgrade is closed under se
quential composition. Hence, in the equivalence to be shown, we can replace the:
composition (g, 1) . .. (-0, ,) by only one generalized upgrade, which we will:
denote by (x1,...,Zm). Now, we have to show that: (-, ¢)(z1,...,Tm) (e, @)
is equivalent to: (z1,...,Zm) (0, ). :

By the proof of Lemma 4.6.5, the composition (z1,...,Z,)(, ) has the
following form: '

.7 Conclusions and Perspectives

We have considered iterated belief-revision policies of conditioning, lexicographic
and minimal revision. We have identified certain features of those methods
relevant in the context of iterated revision: data-reteuntion, conservatism, and
history-independence. We defined learning methods based on those revision

(B1A Q. B A, 21 ARy T A i), policies and we have shown how the aforementioned properties influence the
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learning process. Throughout this chapter we have been mainly ing '
conver-g'ence to the actual world on the basis of infinite data, stroamc;y I 2 thot
of posztllve, sound, and complete data streams we have exhibited tl;e-mt ]cj the‘ SP-J
fan;l lexmographic revision generate universal learning methods, Minin?aljidl'mg
ails to bf? universal, and the crucial property that makes it weaker is it e
;c;nszzy)atlsgn. Moreover, we h‘ave shown that the full power of 1earningS:;
be Ia_b(i:o 1115\5* dw;wn thei underlyu?g. prior plausthility assignment is assumed tn
nded. nlthe case of positive and negative information both condit;
Fmd Iexwographlc revision are universal. Minimal rovision ag,ain is 1101'1 1;‘1011
:f)rf-g; s;tlt;?g fjf _flalrﬁstrea,ms ((?ontaining a finite number of errors th;;t ;ﬁa o
Ppeted X .cr 1'11 the .strealm.) Iexmoggrz.lphlc revision again turns out to boe unive.rg"
. ton ifioning anfl minimal revision lack the ‘error-correcting’ propert -
leamtill l;rshzv{;)lr; ({}c:ll;s;;tiir;;;ultj—lzvzl investigation of the relationship be)gwé
. 1y, be : n, an ynamic epistemic logic. There s Iy ¢
many links still to be tound, with interesting results for eve i A
seetns to be especiafly interesting is the Hlulti—ager;t exto%?iingflgz?ﬁesll Wh
‘Ezl lllrifsoslfn zifoiﬂé(g;nzﬁi fonvj(r;.rgenci i.t w?fuld enrich the multi-agent Zﬁi ¢
: ! . , Bresting subject for epistemic and doxastic logie. T
;I}llt:r‘a.mctllvi aspect would p‘robﬁbly be appreciated in formal learning theioc;g;cx.v}rl[(;
ﬁ. single a'ugent perspective is clearly dominating. Another way to ext(;nd thi
| i?lfgvf?;l; ;f Gfjl(\)dadlow revision with more complex formulae. This would .
e o the A .approach, and to the philosophical investigation into the
ol scientific inquiry, where possible realities have a more ‘theoretical’

1o chapter we will further investigate the connection between formal learning
‘g_fy_ and modak-temporal logics of belief change. We will again focus on the
e-learning paradigin, in which languages are treated as sets of positive inte-
In the previous chapter we focused on the sermantic analysis of identifiability
the limit. Now, we will devote more attention to the syntactic counterparts of
logical approach to identifiability, focusing on both finite identifiability and
ifiability in the limit. We will show how the previously chosen semantics can
teflected in an appropriate syntax for knowledge, belief, and their changes over
_ . The corresponding notions of learning theory and dynamic epistemic logic
given in Chapter 2.
_'ur approach to induetive learning in the context of dynamic epistemic and
emic temporal logic is as follows. As in the previous chapter, we take the initial
lass of sets to be possible wortds in an epistemic model, which mirrors Learner’s
tial uncertainty over the range of sets. The incoming pieces of information
aken o be events that modify the initial model. We will show that iterated
update on epistemic models based on finitely identifiable classes of sets is bound
lead %0 the emergence of irrevocable knowledge. In a similar way identifiahility
1 the limit, leads to the emergence of stable belief. Next, we cbserve that the
tructure resulting from updating the model with a sequence of events can be
ewed as an cpistemic temporal forest. We explicitly focus on protocols that are
assigned to worlds in set-learning scenarios. We give a temporal characterization
f forests that are gemerated from learning situations of finite identifiability and
identifiability in the limit. We observe that a special case of this protocol-based
setting, in which only one stream of events is allowed in each state, can be used
td model the function-dearning paradigm. We show that the simple setting of
_iterated epistemic update cannot account for all possible learning situations. In

perhaps
procé
character

UIn this chapter we are concerned with logical characterizations of learning, hence we will
often refer to languages of certaim logics. To avoid confusion for the time being we will replace
" the name language leorning with set learning (see Section 2.1},




