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Setting and Motivation




Chapter 1

Introduction

This book is about change. Change of mind, revigion of beliefs, formation of
conjectures, and strategies for learning. We compare two major paradigms of
formal epistemology that deal with the dynamics of informational states: formal
learning theory and dynamic epistemic logic. Formal learning theory gives a com-
putational frarnework for investigating the process of conjecture change (see, e.g.,
Jain, Osherson, Royer, & Sharma, 1999). With its central notion of identification
in the imit {Gold, 1967), it provides direct implications for the analysis of langnage
acquisition (see, e.g., Angluin & Simith, 1983) and scientific discovery (sec, c.g.,
Kelly, 1996). On the other hand, directions that explicitly involve notions of
knowledge and belief have been develeped in the area of philosophical logic. After
Hintikka (1962} established a precise language to discuss epistemic states, the
need of formalizing dynamics of knowledge emerged. The belief-revision AGM
framework (Alchourrdn, Gérdenfors, & Makinson, 1985) constitutes an atlempt to
talk about the dynamics of epistemic states. Belief-revision policies thus explained
have been successfully modeled in dynamic epistemic logic (see Van Benthem,
2007}, which investigates the change in the context of multi-agent systems. Recent
attempts to accommodate iterated knowledge and belief change is where epistemic
logic meets learning theory.

Although the two paradigms are interested in similar and interrelated questions,
the communication between formal learning theory and dynamic epistemic logic
is difficult, mostly because of the differences in their methodologies. Learning
theory is concerned with the global process of convergence in the context of
computability. Belief-revision focuses on single steps of revision and constructive
manners of obtaining new states, and the porspective here is more logic- and
language-oriented.

Learning theory has been formed as an attempt to formalize and understand
the process of language acquisition. In accordance with his nativist theory of
language and his mathematical approach to linguistics, Chomsky (1965) proposed
the existence of what he called & lenguage acquisition device, a module that
humans are born with, an “innate facility’ for acquiring langnuage. This turned out

)



4 Chapter 1. Introduciion

to be only a step away from the formal definition of language learners as functions,
that on ever larger and larger finite samples of a language keep outputting
conjectures—grammars (supposedly) corresponding to the language in question.
The generalization of this concept in the context of computability theory hag taken
the learners to be number-theoretic functions that on finite samples of a recursive
set oubput indices that encode Turing machines, in an attempt to find an index
of a machine that generates the set. In analogy to a child, who on the basis of
finite samples learns to creatively use language, by inferring an appropriate set
of rules, learning functions are supposed to stabilize on a value that encodes a
finite set of rules for generating the language,

Learning theory poses computational constraints. Learning functions are most
often identified with computational devices, and thig leads to assuming their
recursivity. There are at least three mutually related reasons why learning theory
has been developed in this direction. One comes from cognitive acience: Church’s
Thesis in its psychological vergion; one is practical: the need of implementing
learning algorithms; and finally there is a theoretical one: limiting recursion is
in itself a mathematically interesting subject for logic and theoretical computer
science.

Church’s Thesis says that the human mind can only deal with computable
problems. This statement underlies the very popular view about the analogy
between minds and Turing machines {for an extensive discussion see Szymanik,
2009). This assumption is compatible with investigations inso the implementa-
tions of learning procedures as effective algorithms. For similar reasons also the
structures that are being learned are often considered to be computable—indeed,
they are handled by minds which compute, or by algorithms. However restrictive
these computability conditions might seem, learning remains a phenomenon of
high complexity. Identification in the Timit (Gold, 1967), the classical definition of
successful learning, requires that the conjectures of learning functions, after some
initial mind-changes, stabilize on the correct hypothesis. This exceeds compuitable
resources, in fact it is an uncomputable, recursive in the limit, condition: there is

astep k such that for all steps n > k£ the computable learning function outputs
the correct hypothesis, Therefore, the question whether a structure is learnable
falls outside the range of computable problems. Classes of sets for which such
learning functions exist, Le., learnable classes, constitute the domain of lirniting
recursion theory, an autonomous topic of research in theoretical computer science.

Summing up, the motivation of language acquisition initially directed learning
considerations towards a recursive frameworlk, with agents represented as certain
type of number-theoretic functions. The discipline has been restricted to the
functions that satisfy the limiting conditions of convergence on certain data,
structures. One might say that the domain has been taken over by successful,
ultimately reliable functions (for learning theory in terms of reliability see, e.g.,
Kelly, 1998a). The observation that reliability is the feature that distinguishes

suceessful learning functions from other posstble mind-change policies led to

elaxing the recursive paradigm. Learning theory hzlls been re-interpreted asl thf%'
meworlk for analyzing the procedural aspects of science, and became a s‘t;‘u(‘y o1
Sgformation flow and general inquiry. This _resu].tcd in the tI‘(?ELtHlCl:lt of clnmal
; sarning theory as the mathematical embodiment of a pormatlve epistemo clgily.t
1In philosophy of science and general epistemologyl there is no‘need to as.sgl:ﬂe : aLf
.theory change is governed by a compultable [;11nct10n. In}mechately after 110]_:)1)‘1.1154
he heavy machinery of computability, learning fuheory hnked. to the prob e.nplgtglfs
“of knowledge and belicf revision (see, e.g., Hendricks, 1995; Jain et al., 1999’. elly,
11998), with attempts to plug the 1'eady-to-usc.3 frameworic of successful convergence
into the considerations of werated belief-revision. .

.. On the other side, a logical approach to belief-revision has boen pr9posed in
“the so-called AGM framework {Alchourrén et al., 1985), where tk.u% beliefs of an
agent are represented as a logically closed set of sentences of a particular ]a.ng;)mig(}.
A {new) belief-representing sentence gets introduced to the set and {?au‘seizs a le l.et
change, which often leads o the necessity of removals t{? kecl? the bohofls (,onststenh.
- AGM theory provides a set of axioms that put some I‘&tlfﬁ}l'lahty Cfvn‘stramts on sue
revisions and allow the evaluation of various bel?ef—rf.e\{l33011 policies. Pz{escntl)(fz,l 5}
very promising direction of combining the beilef—l:evmlo'n framewo'rk- \jv%th‘ moda.
logics of knowledge and belief gives us a way tf) investigate revisions in af,l ‘more
linguisticatly-detached way. In this thesis we will lfmk a't these problems from a
recently developed perspective of dynamic epistemic logic. o o

The framework of dynamic epistemic logic compriscs a fam]l)'r of logics gf
explicit informational actions and corresponding knm_rvledge agd beiu?f changes.m
agents. The information flow consisting of update actions performed in a stepwise
manner can be defined as transformations of models. Those transf_ermaf‘,lons can l?e
studied and analyzed explicitly by combining techniques from eplsf.,emlc, doanFic,
and dynamic logic. Being logics, dynaric epistemic systems come with a, f;emant}cs,
but also with syntax: a formal language and a proof theory. Interestmgly, mce
in learning theory, one of the sources is natural 1anguage and commu‘mcatloln,
but others include cpistemology, and theories of agency in computer science (1.11
particular Baltag, Moss, & Solecki, 1998; Gerbrandy, 1999a, developed basic
update mechanising that will be used in this thes.is)'. By oW many zmth(}r‘s see
dynamic epistemic logic as a general theory of social mfﬂrmatlon.— and prefe%ence—
driven agency, which has led to growing links with temporal l_oglcs, game theory,
and other formal theories of interaction (see Van Benthem, 2010). All these more
recent themes will return at places in this dissertation.

This thesis brings learaing theory and dynamic epistemic logic togethc'r on
two levels. The first link is semantic. We combine local update mechanisms
of dynamic epistemic logie, that constitute constructive step—by-—step changes
of current epistemic states, with the long-term temporal modeling offered by

1For the characteristics and history of this lino of research see, e.g., the Stanford Encyc‘lopedia.
of Philosophy entry Formal Learning Theory by Oliver Schulte.



ing: heory. In terms of benefits of the paradigms, learning theory receives

gtructure of well-motivated local learning actions®, and dynamic epistemic
1ogic gets a long-term ‘horizon’ which it missed {this approach is developed in
Chapters 3 and 4). The second link is syntactic. Dynamic epistemic logic has its
syntax and proof theory, fearning theory does not. We show how basic notions
of learning theory can be given simple perspicuous gualitative formulations in
dynamic epistemic languages {the syntactic link is developed in Chapter 5). In
the long run this perspective offers a chance of generic reasoning calculi about
inductive learning.

Ek

The content of this thesis i organized in three parts. Let us give a brief overview
of the chapters.

In Part I we introduce the setting and the motivation of the thesis. Chapter 2
gives mathematical preliminaries to the basic frameworks of formal learning theory
and logics of knowledge and belicf. Chapter 3 is intended to methodologically

compare the two frameworks and provide a conceptual ‘warming wp’ for the next
part.

Part IT is concerned with generally understood definability notions: expressing
learnability conditions in the language of epistemic and doxastic logic. Chap-
ter 4 gives a dynamic epistemic logic account of iterated beliefrevision, By
reinterpreting belief-revision policies as learning methods, we evaluate update,
texicographic and minimal upgrades with respect to their reliability on different
kinds of incoming information. We are mainly concerned with identifiability
in the limit. In the first part we restrict ourselves to learning from sound and
complete streams of positive data. We show that learning methods based on helief
revision via conditioning (update) and lexicographic revision are universal, ie.,
provided certain prior conditions, those methods are as powerful as identification
in the limit. We show that in some cases, these priors cannct be modeled using
standard belief-revision models (as based on well-founded preorders), but only
using generalized models (as simple preorders). Furthermore, we draw conclu
sions about the existence of tension between conservatism and learning power by
showing that the very popular, most ‘conservative’ belief-revision method fails
to be universal. In the second part we turn to the case of learning from both
positive and negative data, and we draw conclusions about iterated belief revision
governed by such streams. This enriched framework allows us to consider the
occurrence of erroneous information. Provided that errors occur finitely often and
are always eventually corrected we show that the lexicographic revision method is
still reliable, but more conservative methods fail,

2One approach to learning theary, learning by erasing (sce Section 2.1), uses update-like
actions of hypotheses deletion.

Chapter 1. Introduction

:In Chapter 5 we are again concerned with learnability prlop(?rtiesl gr‘lfa;yzed 1;1
ontext of epistemic and doxastic logic. Wt.a s.tudy both'ﬁmte Ildentz cation a.lrl
déntification in the Hmit. We represent the initial uncertainty of the 1e.a'rner as an
GD ic model and characterize the conditions of the emergence of irrevocable
le,eig:i ¢ in epistemic and dynamic epistemic logic. Then, we move t(‘) the case
of (i)c‘;;nti%abﬂity in the limit and we give a doxastic 1logic cha:ra.cterlzatlon of 131};53
“vonditions required for converging to true stable belief. Tollowing FBCQI‘H.: results
COI1(;he correspondence between dynarmic epistemic and temporal epistemic logics,
wrel, also pgive a characterization of learnability in terms of tcmpora'l p‘ro‘;o-cc?lst.er\gli’(z
“uge the fact that the identification of sets can be performed by the(l-llsl() Epli ,an(i
‘update. In the general context of learnability of protocols we (.:hat acterlz? ]m e1 ‘
imiting identification in an epistemic tempo%'al ‘fmd dOX&.St-lC tempor{:)v h?fngt i%d
S Our temporal logic based approach to inductive 11-1ference gives a strs‘ug grwc
“framework for analyzing various domains of learning on a common ground.

Part 111 consists of concrete case studies developing the general bridge tgat ‘:ﬁ
built further, while also adding new themes. In Chapter 6‘ we are c.onceixfe; ‘]R{l
he problem of cbtaining and using minim&ll samplc‘s of H'lfOI'lT'lH,thIfl tl.m. at;)‘:z
reaching certainty (i.e., allow finite identification). Wltk} the notion of e 1r§1;1n2:1 v
power of incoming information, we analyze the coml.}u.tatlonfal comple}clty? ndi %
such minimal samples. The problem of finding minimal-sized samp'les turns ow
to be NP-complete. Moreover, in the general case, we show that if we gssx.lm(i
learners to be recursive, there are gituations in which fulllcertaunty can bjsa 0 tatlikic
in a computable way, but it cannot be comput;.lbly 1‘ea.hzt?d by the leamer. ‘:.l't_ e
first possible moment, i.e., as soon as the objective ambignity bhe‘mfecn posst{ }11 1:3
disappears. We also investigate different types of- presef; I(L:arneTs, Lh_at are tal C({)I
to use the knowledge of such minimal samples in theu'f 1dent1ﬁf;a,t1011 pror:e ure.
Differences in computational complexity betweel? 1“eacl.11ng certgmty and reachtmg
it in the optimal way give a motivation for G-XPI]CIt].y mt.r.o.ducmg a new agent, a
teacher, and provide a computational analysis of teachability.

In Chapter 7 we abstract away from the cooperativer'less of the leaxnlcr al:l(.i Flée
teacher, the property that is uniformly assumed in learning t}%c.‘:}r_y. We 1_nvebt1g¢ e
the interaction between them in a particular kind of supervision learn.mg galri}e}s
based on sahotage games. We are interested in the cgmplemty of teaching, whic ;
we interpret in a similar way as in Chapter 6. Assurmr.lg.the global p?]lifp(llctl‘\fl? o
the teacher, we treat the teachabilify problem as der-:ldmg whether the learning
process can possibly be successful. We inferpret le.arnmg as a game anFl hens:e‘v'\re
identify learnability and teachability with the ex1sten(?e of winning lSLI:athle::l in
those games. In this context, we analyze different learnming a,nd t‘ez?chmg a:tltluf c—::s,
varying the level of the teacher’s helpfulness and the learner’s Wﬂlmgness‘ :o‘ eclmT.
We use sabotage modal logic to reason about thes-e gares zlmd, in E}dltll(}ll‘al‘,
we identify formulae of the language that characterize the elestence 0 \ﬂ;mn;l}llg
stratogics in each of the scenarios. We provide the complexity results for the
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related model-checking problems. They support the intuition that the cooperation
of agents facilitates learning. Additionally, we observe the asymmetric nature of
the moves of the two players and investigate a version without strict alternation
of moves.

Finally, in Chapter 8 we consider another type of inductive inference that
consists of iterated epistemic reasoning in multi-agent scenarios. We generalize the
Muddy Children puzzle to treat arbitrary quantifiers in Father’s announcement.
Each child in the puzzle is viewed as a scientist who tries to inductively decide a
hypothesis. The interconnection with other scientists can influence the discovery in
a positive way. We characterize the property that makes quantifier anmouncements
relevant in an epistemic context. In particular, we show what makes them
prone to the oceurrence of iteration of epistemnic reasoning. The most immediate
contribution to dynamic epistemic logic is a concise, linear representasion of the
epistemic situation of the Muddy Children. Moreover, we give a characterization
of the solvability of the Muddy Children puzzle and a uniform way of deciding
how many steps of iterated epistemic reasoning are needed for reaching the
solution. This explicit, step by step analysis brings us closer to investigating the
infernal complexity of episternic problems that the agents are facing and allows a
comparison with computational complexity results from the domain of natural
language guantifier processing.

Chapter 9 concludes the thesis by giving an overview of results and open
questions.

As the reader may lave observed from the above overview, the topics of
this dissertation are drawn mainly from the domain of logic and theoretical
computer science, at points reaching out to game theory and cognitive science.
The approach is highly interdisciplinary. Even though the author’s goal was to
make this thesis self-contained, the reader is still assumed to be acquainted with
basics of mathematical logic, computability and complexity theory.

Sources of the chapters

Chapter 3 is based om:

Clierasimezuk, N. (2009). Bridging learning theory and dynamic epistemic
logic. Synthese, 169(2), 371-384.

Gierasimezuk, N. (2009). Learning by erasing in dynamic epistemic logic.
In LATA0G: Proceedings of Ird International Conference on Language and
Automate Theory and Applications, vol. 5457 of LNCS. (pp. 362-373).
Springer.

Chapter 4 is based on:
Baltag, A., Gierasimezuk, N., & Smets, S. (2010}, Truth tracking and belief
revision. Mamnuscript. Presented at NASSLLI10, Bloomington.

Chapter 5 is based on:
Dégremont, C., & Gierasimezuk, N. (2009). Can doxastic agents learn? On
the temporal structure of learning. In X. He, J. F. Horty, & E. Pacuit (Eds.)

LORI09: Proceedings of Znd International Workshop on Logic, Rationality,
and Interaction, vol. 5834 of LNCS, (pp. 90-104). Springer.

Dégremont, C., & Gierasimezuk, N. (2010). Finite identification from the
viewpoint of epistemic update. To appear in Information and Computation.

Chapter 6 is based on:
Gierasimezulk, N., & de Jongh, D. (2010). On the minimality of definite
finite tell-tale sets in finite identification of languages. The Yearbook of Logic
and Interactive Rationality, (pp. 26-41). Institute for Logic, Language and
Computation, Universiteit van Amsterdam.

Chapter 7 ig based on:
Gierasimezulk, N., Kurzen, L., & Veldzquez-Quesada, F. R. {2009). Learning
and teaching as a game: A sabotage approach. In X. He, J. F. Horty,
& E. Pacuit (Eds.) LORI’08: Proceedings of 2nd International Workshop
on Logic, Rationelity, end Interaction, vol, 5834 of LNCS, (pp. 119-132).
Springer.
Cierasimezuk, N., Kurzen, L., & VeldzgquesQuesada, I, R. (2010). Games
for learning: A sabotage approach. Submitted to Logic Journal of the
Interest Group in Pure and Applied Logic.

Chapter 8 is based on:
Clierasimezuk, N., & Szymanik, J. (2010}, Muddy Children Playground:
Number Triangle, Internal Complexity, and Quantitiers. Presented at Logic,
Rationality and Intelligent Interaction Workshop, ESSLLI'1], Copenhagen.



-_hapter 2

Mathematical Prerequisites

T'his chapter gathers background information on the two ma, jor paradigms discussed
21d linked in this thesis. First, preliminarics of formal learning theory are given.
Then we discuss the basics of dynamic epistemic logic approaches to information
‘wnd belief change. In both cases the existing literature varies in basic notions
‘and notation. The decisions taken in this chapter should be viewed as defining
“the framework and laying the grounds for this thesis, rather than restricting
: :'fhe paradigms or indicating a general preference. For exhaustive overviews and
references the reader is advised to consult respectively (Jain ¢t al., 1999) and (Van
Ditmarsch, Van der Hoek, & Kooi, 2007).

2.1 Learning Theory

Learning theory is concerned with sequences of outputs of recursive functions,
focusing on those that stabilize on an appropriate value (Gold, 1967; Putnam, 1965;
Solomonolf, 1964a,b). As mentioned in the introduction, the general motivation
here is the possibility of inferring general conclusions from partial, inductively given
information, as in the case of language learning (inferring grammars fromn sentencces)
and scientific inquiry (drawing general conclusions from partial experiments).
These processes can be thought of as games between Scientist {Learner) and
Nature (Teacher). At the start there is a class of possible worlds, or a class
of hypotheses. Tt is assumed that both Scientist and Nature know what those
possibilities are, i.e., they both have access to the initial class. Nature chooses one
of those possible worlds to be the actual one. Scientist’s aim is to guess which
one it is. He receives information about the world in an inductive manner. The
stream of data is infinite and contains only and all the elements from the chosen
reality. Each time Scientist receives a piece of information he answers with one
of the hypotheses from the initial class. We say that Scientist identifies Nature's
choice in the Hmit if after some finite number of guesses his answers stabilize on
a correct hypothesis. Moreover, it is required that the same is true for all the

I
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possible worlds from
class is chosen by Nat
follows, the possibili
called languages.

Let 7 C N be an infinite recursive set; we CUa language. Iy

the genery] case, we will be interested n indexed families of recursive languages,

Le., classes ¢ for which a computahle function FiNxU 5 {0, 1} exists that
uniformly decides C,ie,

the initial class, i.e., regardless of whi
ure o be true, Scient;

e firpit, In what
ties are taken to be se

ts of integers, and thoy will be often

call any 8

. 1 ifw € S-i;

fw) = {0 if we¢ g

In large parts of this thesis we will also consider C tq be {51,5,,. .. v}, a finite
class of finite sets, in which case we will use 7 for the seb containing indices of sets
mce, e, Iy = {1,..., n}. We will often refer to the get
realities are taken to be sets nsi
The global mput for Seienti

theory, such streams arc often called texts

Definition 2.1.1. By a text (positive pre

seutation) € of § we mean an infinite
sequence of clements Srom § Enumeraty
(allowing repetitions).

ng all and only the eclements Sfrom §

Definition 2.1,9. We will use the Jollowing notation:
® &n is the n-th element of z;

® £ is the Sequence (g1, g, |

1 En);
€} 1s the set of elements that oceur in g;

® Let U* be the set of all
we mean that o 4s g pr

® sef(

finite sequences overU. If o, § U*, then by o 1 Fil

eper initial segment of 8.

o L isq learning Sunction—g TECUTSIVE ap from findte datqg Sequences to
indices of hypoﬂzeses, LU 3N we

will sometimes toke the learning
Junction to be [, . 7+ = NU{tL Then

the function is allowed to refrain
Jrom JWing a naiyral number

Answer, in which case the oulput 1s marked by
T, but the function TEMaing recursiye,?

We sometimes relax ihe condition, of
recursivity of I, #o discuss some cases of non-effective Jindte identzﬁabz’hty‘
We will ho mainly

sometimes glso known
of information that,
informant,

*The symbol 1 in the couext of le
does not stop,

ces of positive informatio
nments (see,
also negative

1, fexts. They are
2.g., Jain ef al., 1999). The type
mformation js usnally called an

nder the nane of envire
besides Ppositive, inclirdeg

Arning fnctions should not he read as a calculation that
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TCHN i mite s wch that set(T) =T
ite set. Then T is the finite sequence su y
. h(b'%;:ﬁﬁgﬂi S:ﬁhem |- 1 stands for the cardinality of a set, and T
. rt ’ ) 1 e n r, ~.
: lccr?l"ites the integers from T in increasing order
“enum :

1. Finite Identification

e Y iti i d b l'pil
‘ ab‘llit Of a ClaSb Gf lﬂaﬂguages f]."O]:[l pOSll.lve da[a- 15 de e y e
d llti A -

Tiit ..
:11_1. ¢ g chain of conditions.

liow |
ﬁﬁition 2.1.3. A learning funclion L:
.e. 5

1 ‘i l .d l"ﬁ S C J’]; 'LU} PeXex ' [ y g » al Some
.... n'ite y aentijles J; = : on e 1 1efl z”,du, fz'[ l 2VET, £ t t
; ?J:tjjtﬂs a S?;”gle T}alﬂre '6;

) ; or S;;
finitely identifies S; € C iff it findtely identifics S; on every e for S;
initely lifies 55
3 finitely identifics C iff it finitely identifies every S; € C.

4 8. 8 ﬁ‘nﬂ ‘l Z(i ’?H&Z;‘i{lblﬂ 'L}j ere s a lfm‘ 1L TLCLT0TL jz Ih(li‘ ﬁ?‘.'.:',‘-'lely
th ST e AT LJ fu C
Ciyf C 3
[a 5 C

s Fnitely identifiable
Example 2.1.4. Let C; = {S; = {0,i} | i € N — {0}}. Cy is finitely identifia
‘Example 2.1.4. Le i ;
f;:;be ?ollowing Junction L : U* — Nu {1}

+ if set{ein)={0} ar Sk <n L{etk) £ 1,

max(set(c[n)) otherwise,

L{eln) = {

e L ’t[!JOt CEL8 . ] T: s i'at recelyes a ’.'L‘u:'m.f)el
NEY t};‘(iS 1; t”ﬂtp”ts Ihe o) C hJ h 8 A8 8GO CETY

I:"L ot w 3

dﬁiie? €1 Lhﬂ'”. (], G’nG ,hﬂ pJOch’tﬁiC ends.
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h 1 StI‘lCti hiS 0 .Uﬂ S, can Coils d a fimite class o
rI\O Se8 NOW e V{.) H we NSIAe 5 £
thé].t 18 Ilot ﬁnltely ldentiﬁa.ble.

; : . Cy is not finitely
=18 = {0,...,i} | ¢ € {1,2,3}} /
B e ) sen to be the actual
Examplfiez To see that, assume that Sy = {0,...,2} is f]l?iii?deo-that e
i he learning function can never concluswe'y ¢ it 5y io the
worldli l e t(, eFé'r' all it knows, 3 might appear in the future, so it has
actual language. I s
the Ss-possibility open.

= b y haS Elh skt V

A a.Ild ‘:‘sll_ﬂl lent ¢o (h 01 TOr i nite den( na { (i l)ee 1
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2. D; is finite, and
8. for any index j, if D; © S; then S; = 55.

On the basis of this notion, finite identifiability can be then characterized in
the following way.

Theorem 2.1.7 (Mukouchi 1992). A elass C is finitely identifiable from positive
date iff there is an effective procedure D : N — P=“(N), given by n = D, that
on input ¢ produces a definite finite tell-tale of S;.

In other words, each set in a finitely identifiable class contains a finite subset
that distingunishes it from all other sets in the class. Moreover, for the effective

identification it is required that there is a recursive procedure that provides such
definite finite tell tale-set.

2.1.2 Tdentification in the Limit

Let us consider again Example 2.1.5, i.e., take C; = {S; = {0, ... A iie {1,2,3}),
but now assume that S5 is the actual language. Then Scientist cannot conclusively
decide that it is the case. There is however a way to deal with this kind of
uncertainty. Namely, if we allow Scientist to answer each time he gets a new piece
of data, we can define the success of learning using the notion of convergence to the
right answer. After seeing 0, [ and 2 Learner can keep conjecturing Sy indefinitely,

because in fact 3 will never appear. This leads to the notion of identification in
the limis,

Definition 2.1.8 (Identification in the limit (Gold, 1967)). Learning Junetion L:
1. identifies S; € C in the limit on € iff for co-finitely many m, L{gim) = 1;
2. identifies S; € C in the limit iff it identifies S; in the limit on every £ for Si;
3. identifies C in the limit ff it identifies in the limat every S; € C.

A class C is identifiable in the limit off there is o learning function that identifies
C in the limst.

Below we give some examples of classes of languages which are identifiable in
the limit. First let us consider an example of a finite class of finite sets.

Example 2.1.9. Recall the class Cy from the previous example. Cy is identifinble
i the limit by the following function L U* — N

L(gln) = max(set(s[n)).

We can use the same learning function to identify an infinite class of finite
sets.

fearning Theory 13

Example 2.1.10. Let Cy = {8; | § € N— {0}, where S, = {1,...,n}.

The property of identification in the limit of the class Cy is lost when we enrich
ith the set of all natural nunbers.

arﬁple 2.1.11. Let Cy = {S; | # € N}, where Sp = N cmfi J'for n>1, 8, =
~..,n}. Cy is not identifiable in the limit. To show that this is the case, let us
ime that there is a function L that identifies C;. We will conz?'tmct_ai text, €
which I fails: € starts by enumerating N in order: 0,1,2, .. .,.af arriving at.a
er k, L decides it is Sp, we start repeating k mcieﬁn.itely. Thzs means we will
ave o text for Sy. As soon as L decides it is S we ..:ont'mue withk+1,k+2,...,
g‘f'we get a text for Sy, etc. This shows that there is a text for a set from Cy on
hich L fails.

We have already seen an infinite class of finite sets that is identifiable %n the
Firnit. The next example shows an infinite class of infinile sets that is identifiable

in the limit.

Example 2.1.12. Let Cs = {8, | So =N — {n},n € N}. C5 is identifiable in the
limit by the learning function L U — N:

L(en) = min(N — set(e[n)).

A characterization of classes that arc identifiable in the limit can be given in
terms of findte tell-tale sefs® (Angluin, 1980).

Definition 2.1.13 (Angluin 1980}. A sei D; is a finite tell-tale set for S; € C if
1. D; €8,
2. D; is finile, and
3. for any index 7, if D; C S then 5; ¢ 55
Identifiability in the limit can be then characterized in the following way.

Theorem 2.1.14 (Angluin 1980). An indered family of recursive l.cmgua,ges C':
{S; | i € N} is identifiable in the limnit from positive data iff there is an effective
procedure D, that on input i enumerates all elements of o finite tell-tale sct of S;.

In other words, cach set in a class that is identifiable in the Jimit contains a
finite subset that distinguishes it from ail its subsets in the class. Moreover, for
the effective identification it is required that there is a recursive procedure that
enumerates such finite tell-tales.

3The notion of definite finite tell-tale set from Definition 2.1.6 in the previous sectit'm, isa
modification and strengthening of the presently discussed, original notion of finite-tell tale set.
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2.1.3 Other Paradigms

Learning by Erasing Learning by erasing (Lange, Wiehagen, & Zeugmann,
1996) is an epistemologically intuitive modification of the identification in the
limit. It has not drawn much attention in the field of
but for our purposes (a comparison with the approach of dynamic epistemic
logic) it is interesting. Very often the cognitive process of converging to a correct
conclusion consists of climinating those possibilities that are falsified during the
inductive inquiry. Accordingly, in the formal model the outputs of the learning
function are negative, i.e., the function cach time eliminates a hypothesis, instead
of explicitly guessing one that is supposed to be correct. The difference between

the definition of this approach and the usual identification is in the interpretation
of the conjecture of the learning function.

an ordering of the initial hypothesis space

This allows one to interpret the actual positive gness of the learning-by-erasing

function to be the least hypothesis (in the given ordering) not yet eliminated,
Let us give now the two definitions that shape the notion of learning by erasing.

formal learning theory

In learning by erasing one assumes
isomorphic to the natural numbers.

Definition 2.1.15 (Function stabilization). Tn learning by erasing we say that a
function stabilizes to number k on environment e iff for co-finitely many n c N:

k=min({N—{L{ef1), ..., L(In)}}).

Definition 2.1.16 (Learning by erasing (Lange et al., 1996)). We say that
learning function I.:

1. learns S; € C by erasing on ¢ iff L stabilizes to i on e;
2. learns S; € C by erasing iff it learns S; by erasing from every e for S;;
3. learns C by erasing iff it learns every 5; € C by erasing.

A class C is learnable by erasing iff there is o learning function that learns C by
ETaSsINg.

It is easy to observe that in this setting learnability heavily depends on the

chosen enumeration of languages, since the positive conjecture of the learning

tunction is interpreted as the minimal one that has not yet been eliminated.
Several t;

ypes of learning by erasing have been proposed. They vary in the
condition of whicli hypotheses the learning function is allowed to remove {for
details and results on learning by erasing see Lange et al., 1996)

Function learning Let us now mention another paradigm of learning in the

limit—function learning. This falls out of the scope of the language-learning
paradigm, but the notion of identification is in its essence very simitar. The success
of learning is again defined in the limit as convergence to a correct hypothesis,

Chapter 2. Mathematical Prerequisites
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& however we take possible realitics to be total recursive funcil:ions. This
o ade concrete in various ways. For instance, it has been consllderfad as a
'iriodel program synthesis in the context of learning and empirical inquiry
¢ Jantke, 1979; Shapiro, 1998); in linguistics, the framework has been used
' ! . . o T h
¢ ci{ language learning in the context of (inding an appmpus.mte assigninent of
mos'yni"x-ctic structures to syntactic representations (for discussion see Wexler &
p o ;
licover, 1980). | J
' 'Cf?ce ‘;ve consider a different type of structure here, we have to change the
on of text.4

finition 2.1.17. A text of a function, €, is any infinite seqv’iencc o;}e;}liri i!’
g infindte sequence of pairs of numbe’rs ), such that forheaah m' de e
':cdc;ily one y such that {x,y) occurs in the sequence. In other words a text
netion g is any enumeration of the content of the graph of g.

or text of lunctions we will use the notation inl‘.rod.uced in Definition 2.1.2.

Let us take C; to be a class of total recursive functions. For each g € € : we
snsider Turing machines (o, which compute g. We cal.(e Iy ={n{y. czo.mpute&...g}.
us now agsume that g € C; and ¢ is a text for g. We specify function
ntification in the limit by the following definition.

efinition 2.1.18 (Tdentification in the limit of functions). We say thal a learning

1. identifies a funclion g € C; in the limit on e iff for co-finitely many m,
Ligtm) =k and k € Iy;

2. identifies g € C in the imit iff il identifics g in the limit on every € for g;
7 8. identifies O in the limdt iff il identifics every h € C in the lmit.

Function learning differs from language learning in nuany 1'espects: (1)?0 of
he most important differences Hes in the specific proper'tles of pgsmble 1ea: 1'11es
.functions. Namely, environments of functions carry more 111f0rma.t1911 tlilal? st eam}si
of data defined for set learning. Tn an envircnment for a tf)tal function it is enoug
to examine a finite fragment of the environment to d-ec1de Whet}mr a given tpem"
{n,m) is in the whole sequence. That is so be-cause in safme finite lfr?tgmé{a C“;i
can find either {(n,m) itself or some (n,m’) with m # m . In ‘th.e‘ lat er‘ LET x
follows that (n,m) is not in the sequence. In iangufll,ge learning it is 1m1?055f1 ﬁe.t.
conclude the non-existence of an element in an cnv1r0ment on thc‘basxs‘ o lmle
examnination. This allows the class of all recursive ifunctlons to b-e 1dent1f1a%) e in
the limit (see Jain et al., 1999). Let us also mention that ‘?ota,hty of funct;ons
implies that for every m, there is an m, such that (n,m) is an element of an

4Similarly to the case of set learning, we take a text to be a positive presentation of a fgnctjon.
We are not. concerned herc with negative information at all.
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environment. ‘Therefore, it makes little difference to the learning if the function

Is enumerated in order {g(0), g(1),...). In that case learning is equivalent to the
ability to guess the next value of the function after a certain ime.

2.2  Logics of Knowledge and Belief

Modal logics of epistemic change are uged to analyze the information flow in
multi-agent systems (see, e.g., Baltag et al., 1998; Van Benthem, Van Eijck,
& Kooi, 2006; Gerbrandy, 1999a,b). The approach of dynamic epistemic logic,
DEL for short, {Plaza, 1989, see also Van Ditmarsch et al., 2007 for a handbook
presentation) focuses on formalizing the principles of such epistemic changes.

2.2.1 Epistemic Logic

Let us begin with the notion of epistemic model. In what follows A — {1,...,n}
is a finite sot of agents and PROP is a countable set of prepositional letters.

Definition 2.2.1. An epistemic model M based on a set of agents A is a triple:
(I/V) (Ni)‘iEA: V):
where W 7 0 is a set of states, for cach i € A, ~; 15 a binary equivalence relation
on W, and V : Prop — P(W} is a valuation.
A pair (M, w), where M = (W, {~)ica, V) is an epistemic model and w € W,
will be called a pointed epistemic model.
The information that agent 4 possesses in state w is denoted by
Kilwl={ve W | w~;v}.
It stands for all information within the uncertainty range of agent ¢ with respect
to w. Accordingly, the knowledge of agent i in state w consists of those statements
that are truc in all worlds he considers possible from state w. To explicitly
talk about knowledge we will use the language of basic epistemic logic (sec, e.g.,
Blackburn, Rijke, & Venema, 2001).
Definition 2.2.2 (Syntax of Cwi). The syntaz of epistemic language Ly is
defined as follows:
pi=rl-pleVe| Ky

where p € PROP, i € A, We will write T for pV —p and L for =T,
Definition 2.2.3 (Semantics of Ler). We interpret Ly, in the states of epistemic
models as follows.

M,iwip 3

M, w i: ' iff

MawkEpvyp iff

M, w ': Ki(p iff

we Vip)

it is not the case that M, w = ¢

Myw b or Myw b 1

for all v such that w ~; v we have M, |= ¢

wogics of Knowledge and Belief 19

us now provide an axiomatic system for epistemic logic EL (see, e.g.,
:kburn et al., 2001).

. y if ¢ is a substitution instance of a tautology of propositional logic
sc if b, then b K
F Kl ) = (Kip = Ki)
F Kip— @
F Kip — KiKp
F Ry — KR
P if Fp—1pand Fp, then E4

Theorem 2.2.4. The aziomatic system EL is complete with respect to the cluss
oF pistemic models.

Jpistemic Update

stemic models are static---they represent the informational Fstate of an f}gent in
sporal isolation. We wilt now male the setting more dynamic by a}ss.ummg.th&t
nts observe some incoming data and are allowed to revise their 1niormat10_na1
‘shates. We will consider update (sce Van Benthem, 2007)—a policy that restricts
'.'I'nodeis; each time a picce of data is encountered, it is assumed to be truth.ful and
‘all worlds of the epistemic model that do not satisfy this new informatlon are
“oliminated. The definition below formalizes the notion of update with a formula .

Definition 2.2.5. The updale of an epistemic model M = (W, {~+;)ica, V) ?sz’th
a Jormula , restricts M to those worlds that satisfy @, formally M | = M" =
(VV’1 (N;)’iEA) V,);

L W={weW |wkye};
2. for cachie A, ~{ =~y W';
3V =V W

Obviously, the incoming information that triggers update net?d not be Propos.i—
tional, not even purely linguistic, It can be any event that itself has an ep%stem}c
structure.® Below we consider a quite challenging case of an update with cpistemic
information.

51% consider changes caused by such arbitrary events, the notion of event mr)fiet a.rfd product
update has been introduced (Baltag et al., 1998). The former represents the epistemic content
of an event, the latter stands for combining ar: epistemic model with an event model.
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Muddy Children We want to devote some space to the classical logical puzzle
which received a considerable amount of attention in dynamic episternic logic (see,
€.8., Van Ditmarsch et al., 2007, Gerbrandy, 1999a; Moses, Dolev, & Halpern,
1986). We discuss it here to give a flavor of complicated epistemnic regsoning that
can be successtully analyzed within DEL ramework. We will return to the puzgle

in the last chapter of this thesis, where we also propose 2 novel representation of

this problem.

Example 2.2.¢ {(Muddy Children Puzzle), The children, who were plagring outside
Jor a while, are colled back in by their father. Some of them are dirty, in particuler
they have mud on their foreheads. The father decides to Play with them and says:

(1) At least one of you has mud on your forehead.

And tmmediately after, he asks:

(I} Can you tell Jor sure whether or not you have mud on your foreheqd? If yes,
step forward and announce your statys.

Each child can see the mud on others but cannot sce his or her own forehead,
Nothing happens. After that the father repeats 1. St nothing. Bui after he repeats
the question three times suddenly all children know whether or not they have mud
on their forehead. How is that possible?

The framewark of dynamic epistemic logic allows a clear and comprehensive
explanation of the underlying phenomens, Leb us briefly explain the classical

Mas Ty and m, that express that the corresponding child ig muddy. The initia]
epistemic model of the situation is depicted in Figure 2.1.

In the model, possible worlds correspond to the ‘distribiution of mud’ on
children’s foreheads, -8.; My, iy, —imn, stands for g being muddy and b and c
being clean. Two worlds are joined with an edge labeled with z, if the two worldg
are in the uncertainty range of agent z (ic., if agent o cannot distingnish between
the two worlds). We drop the reflexive arrows for each state for clarity of the
presentation. The boxed gtate stands for the actual world, Now, let, us see what
happens after the firgt anncuncement is made,

{1) At least one of you has mud on your forehead.

In prepositional logic, this statement hag the following form: (1") my Vimy v m,.
Since the children trust their father, they all eliminate world wg in which (1) is

formula (1°). The result is depicted in Figure 2.9.
Now the father asks for the first time:

21
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C
b ' a

{wg : mq, My, "M}

Wy g Ty TRE)
(wg @ Ma, ~mp ) / \ a o :

| b >< c

[H

| a b |

/ [T P T P
s+ s . ) !

\\\\ e :
\ . (g : ﬂm.,l.ﬂmb,mc) . /
N

P —)

Figure 2.1: Initial epistemic model of the Muddy Children puzzle

C
b | a

/ (wn 2 Mo, My, —me)
/ (wy : —trg, g, me)

{wg = Mo, —mp, Mme) a I
| b >< ¢
c
| a b |
) / fior ¢ mma, my, ime)
(wg : mg, =My, —~me \

(g 7 ~Tita, =iy, Me}

3 ¢ cement
Figure 2.2: Epistemic model after father’s announcem

¢ mud on your head?
(I) Can you tell for sure whether or not you have 1

The agents’ reasoning can be as follows. In world W agenf;l dc knC(l)\::,l ;,gjhaétr l'lzz
s dirty ere 38 no uncertainty of agent ¢ between this world an e o
. f.h‘fty {Fheieaf) Therefore, if the actual world was wg, agent ¢ wou noxg »
;Nir:}'cl:t(;hai?ilzsnfniun(;e it. The same holds for agents ;} a.,nc.l Eina};ai ?g;ﬁ;i;ﬁo th7e,
respectively. But in our stery chlldrc.an stay silent. Bel;]Sl el: ey, sy o ot
oty (Kot Koara) (it Ky omn) (o 1 ) Nou
Formauyl.' _"( : ::1 i?hose aworlf:ls that do net satisfy this formulai 'ti)5,1ﬂ53,?_U7.
e (j\mun((il ! of the next stage is smaller by three worlds (Figure 2.3). e
ep]Stem;f mZa, ee ?t is again clear that if one of the ws, ws, wy was t?tle actuaé Islaiio
the ?zs;eftfvega;gent would have announced their knowledge. But in our sc
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- ¢ .\
b ] a

/ {wg : ia, my, ~mg) \

(wz = ma, -my, m,) (ws : —mg, my, me)

Figure 2.3: Epistemic model in the second stage of epistemic inference

the children still do not respond. Then the father asks again;
sure whether or not you have mud on your forehead?’.
their inference on the silence in the previous step,
the actual situation cannot he any of wy, ws, wy. So, they all eliminate the three

states, which leaves them all with Just one possibility (Figure 2.4). All uncertainty
disappears and they all know that they are dirty.

Figure 2.4; Epistemic model in the third stage of epistemic inference

‘Can you tell for
Now the children bage
and come to the conclusion that

Public Announcement

All announcements made in the above scenario tri
model according to Definition 2.2.5. The public
makes them influence all agents’ uzcertainty r
defined above, can be extended to account for t
‘action’ expression of public announcement, wri

gger an update of the epistemic
character of the announcements
anges. Basic epistemic logic, as
his type of update with a specific
tten as lp.

Definition 2.2.7

{Syntax of Lpar). The syntax of epistemic language Lpp,, is
defined as follows:

p=plplpVe | K| Al
A=l

where p € PROP, i € A,

Definition 2.2.8 (Semantics of £

terpretation is given in D
follows.

paL). For the epistemic fragment Lpp, the in-
efinition £.2.5. The remaining clause of Lpay s as

Mow = kel it M,w = then M | ,w =
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iormatizati L of Lpay, can be composed of the previously given
Ging O;‘;g;::;ﬁi“i;f enriche(llA\?vith the following reduction axioms (Plaza,
0)

' 1 F{lglp & (& —p), for p e PrOP

2 F[ly]p & (o — llld)

3 H{pl(v v E) & (lely v [lelé)

4+ [lg]Kap & (@ = Killply)

. rem 2.2.9 (Plaza 1989). The aziomatic system PAL is complete with respect
e0 N A
the class of epistemic models.

The change that epistemic models undergo when subjected .to public anflogjjce%
ent correspands to the revision with so-called ‘hard’ information. Such a revision
ZBZasonable if the information originates from a reliable source.

.2 Doxastic Logic

he notion of irrevocable knowledge defined in the pre‘\n'ou.s En:lbsectior;1 IS’ Veli
trong. It implicitly indicates that unless complete certainty is resﬁ:he]cal, tt(, dii){];r

of ini he state of the world. In order to tallc about wealke
oes not form any opinion on & . - . e
Sjnformational states, like belief, epistemic modgls halve to be modified to account
“for the order on states given by agents’ doxastic attitudes.

:.I'j.eﬁnition 2.2.10 (Baltag & Smets 2006}, An epistemic-plausibility model M

s a trinle

(W, (~idiea, (Zi)iea, V),

“where W £ B is a sct of states, for each i € A, <; is a total well-founded preorder®
s a valuation.

W, and V : Prop — P(W) s a va
" A pair (M, w), where M = (W, (~)iea, (<iliea, V) an epistemnic plausibility
model and w € W, is called o pointed epistemic plausibility model.

For each i € A we will assume that <; T ~.

Now the language of epistemic logic can be extended to account for belief.

Definition 2.2.11 {Syntax of Lpox). The syntax of dozestic-epistemic language
Lpox s defined as follows:

Lp:z pl""tlpl(pvﬁpiKﬁolB:P"p

where p € PROP, i € A.

i is i itive. Later we will relax the
¢A preorder is a binary relation that 1s.rcflcx1ve and tra?sﬁltl_?eo i.a T :
restriction to well-founded preorders and adjust the relevant definitions,
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Definition 2.2.19 {Semantics of Loox). We tnterpret Lpox in the states Of..:

dozastic-epistemic models in the Jollowing way.

MowlkEp iff
MwkE-p i
Mauwlkpvy i
MowE Ky i
Mowl= By i

w € V{p)

it is not the case that A, w =

M,wEp or Myw =

for all  such that wrw we have M, v = ¢

for all w € K;w] if 0 mine, (K;fw] 1 [l4]) then » E o

We define ||| such that lell ={wew|w = ¢}

For axiomatizations of Lpox the reader is advised to consult (Board, 2004)
and (Baltag & Smets, 2008b).

Plausibility Upgrade

change. However, plausibility ordering gives an opportunity to define different,
more sophisticated operations on beliefs, operations that do not require state
deletion. As we will see in Chapter 4, such revisions are useful if the

source of
information is not completely trustworthy.

Lexicographic Upgrade The lezicographic upgrade of an epistemic plaugibility
model M = (W, (~;);c4, (<i)iea, V) with a formula {, rearranges the preorders
by putting all states satislying ¢ to be more plausible then others. Let us take

<U=<il llell, and <P = <1 [l

Definition 2.2.13. The lexicographic upgrade of an epistemic Plausibility model
M = (W, (~)iea, (idiea, V) with a formula ¥ is defined as follows:

M 1} w = (I/V) (Ni):'GAa (Si)iEA: V))
where for each i € A and forallv,we Ks[wl:
v < wiff (v <fw or v <f w or (v F= o and w = ~p)).

"The language of announceme

nts that trigger lexicographic upgrade is given in
the following way.

Chapter 2. Mathematical Prevequisiteg’
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= pi-pieVe| KepiBlol Al
A=y

on LC- D ] ent L 10X
Defin ics For the dozastic-epistemic fragmen

5 aps 2.2.15 (Semantics of [.ﬂ,). 451 ros ;

' i"'tltrljm"cﬂmtwn is(qivcn in Definition 2.2.12. The remaining clause of ﬁﬂ 13 as
nterpretd L

M,w = tely iff Mppwy

: i rade (also known as minimal

Ervativ‘_% Ul;zgra(:eqez }\lfiufogz‘;glﬁf,e 2%%?7) of EE,n epistemic plausibility

W elgf (ff;f-bg 1 (<)E 4, V) with a formula ¢, rearranges tlhe preorders

:ﬂﬁ T;ogﬂy’ th:z ;"flé,st;‘l;usible states satislying ¢ rlfég?pc flalislblte etlga,rllta;
ms leiving the rest of the preorder the same. Let <[ = <, [ {

ing, el S
f? : 'ltion 2.2.16. The conservative upgrade of an epistemic plausibility model
e—~nEW (N-).-eA (<i)iea, V) with a formula ¢ is defined as follows:

MT(P = (WJ (Ni)iE.Aa (S;)iGAJ V):

here for each i€ A and for oll v,w € Kilw):

v < wiff (v <™ w or v € ming[|el])-

Definition 2.2.17 {Syntax of £4). The syntazx of the dozastic-epistemic language
Defini 2.
Ly is defined as follows:
K | BYw | [Alp
pi=pl|~e|eVel Ke| By
A=ty
“where p € PROP, 1 € A. o | |
Definition 2.2.18 (Semantics of £4). For the dozastic-epistemnic fmgmerzf C'D(;)i
n ) ' ’ o N 3 [ :',S \
thfz5 interpretation is given in Definition 2.2.12. The remaining clause of L4
follows. Mo el 5 Mo =
Complete axiomatization for the logics of the two ty];?es of upgrade: ((J{li; i‘::)le;
i b pa complete axiomatic system for conditional 'Dclhef cgmplemcn e‘ o
gl\cjlettign a,);ioms Van Benthem {2007) gives a detailed discussion on the subject,
redu . )
oge ith explicitly formulated axioms. L | . -
Log(i‘thecrh:ﬂterejl(pw wi}il cover these upgrade methods again in a systfsn}e%tl(,. Wa.]if
We xInlrilE colznpare their reliability in the context of singl(;—agfantl iellllctfd(;\;ssfm.
thi i i ts to analyze some classical beliet-r
In this, we will follow other attemp ' lyze son : . -
pIil'oblems within the framework of dynamic epistemic and doxastic logic




Learning and Epistemic Change

1 the present chapter we show how the paradigms of learning theory and dymarmic
pistemic logic can be linked. We will discuss the interface between learning theory
and dynamic epistemic logic in the context of iterated information change and
elief revision.

31 Identification as an Epistemic Process

Tn Chapter 2 we gave the prerequisites of formal learning theory with its central
hotion of identification. Assuming the reader’s familiarity with those standard
tools, we will now discuss the epistemology hehind finite and limiting identification.

What are the epistemic components of identification in the limit? The entan-
glement of the notions of knowledge, certainty and belief in imiting learning is
widely used in explanations of the paradigm. We quote Gold (1967) in his seminal
paper Language identification in the limat:

In the case of identifiability in the limit the learner does not necessarily
Enow' when his guess is correct. He must go on processing the infor-
mation forever because there is always the possibility that information
will appear which will force him to change his guess.

With time the epistemic metaphor in identification in the limit became even more
explicit, involving notions of certainty, justification, possible worlds, etc.:

[...] Thus the Scientist is never justified in feeling certain that her last
conjecture will be her last.

On the other hand, fidentifiability in the limit] does warrant a different
kind of eonfidence, namely that systematic application of guessing rule
will eventually lead to an accurate, last conjecture [...}. 1f we know

1The emphasis is mine.
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that the actual world ig drawn from [a clags identifiable in the limit],
then we can be certarn that our ing

uiry will ultimately suceeed [..].
(Jain et al., 1999, pp. 11-12)

Later, even Dotions of int;

rogpection of knowledg,
introduced:

"This does not entail that (the learner] knows je g
[...] [the learner] may lack any reason to beljey
have begun to tonverge. Nonetheless, to the ext;
perspective on, knowledge can he Sustained, o
scientific discovery in the sense of acquiring
Osherson, 1998, p. 13)

nows the answer, since
e that his hypotheges
ettt that the reliability
ur paradigms concern
knowledge. (Martin &

Finally, the epistemic dominance of

limiting identification over certa
once summed up in the following w.

&y

Class of hypotheses The pracedure of learning starts with a class of hypotheses,
a class of posgible states of the world, i can be interpreted ag the backgromd
knowledge of Scientist, his uncertainty range (see, e.g., Martin & Osherson, 19973,
Scientist eXpects that one of the possibilities is true, and in the framework it ig

guaranteed that he ig right-—Nature indeed chooses one from the class fixed in the

beginning. Among the consequences of such g ireatment of background kmowledpe
is that the actual world is

always one of the options Scientist constders possible.
Another implication is that learn

ing is not simply verifying or falsifying a single
hypothesis, although those fwo processes can be viewed ag important components
of identification (Gierasimczuk, 2009b). The fact, of picking one from g class is an
Important factor in learnabﬂity analysis. T4 allows considering learnability ag o
broperty of classes of hypotheses determined by some externa) properties.

carning and Epistemic Change

e, belief and reliability were

inty has been

2
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ions The key word “learning” is ofte.n
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{.)=In e o fOF(EH saolrileeett',];ﬁ?gg tl‘PliSE )(i)t} Lall,(fthe incoming information ISf
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e th’?ﬁg 512111?“(:]: Eilcllita;?:zzg taken to b(.) ti.’uthful. .Occ(iﬂ,si):e%j
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situations (see, e.g., Grice, 1975). An
that it is positive, ie., daia ennm
assumption is often challenged by ir

Inductive, step-by-step process As briefly mentioned in the previoug points,
the process of restricting the hypothesis space to only those hypotheses that
are consistent with the incoming data, resembles update or public announcernent
(Baltag et al., 1998). Can learning in the limit of hypothesis 4 be viewed as the
result of announcing the conjunction of data that lead o stabilization on A7 First

let us observe that the point of convergence to a correct hypothesis ig unknown
and in general uncomputable, which makes it al

which finite sequence resulted in the syccess of th
importantly, finite sequences of data cannot be see
& given hypothesis, because which hypothesis ig i
heavily depends on the initial hypothesis space. For instance, let ng consider
two classes: ¢ = {1},{2}} and ¢, = {{1},{1,2}}, and let hy be a hypothesis
corresponding to the set {1}. In this case the single event of updating with 1
is equivalent to announcing f, in case C1 had been the initial sef of hypotheses,

but it does not announce f; when Scientist hag to pick from Cs, since the other
hypothesis is stil] possible.

announcement of
1t fact announced by the data

Infinite procedures The learning theory framework ig defined for potentially
infinite universes, but even for finite worlds the Sequences of data are infinite,
Tke reason for this is that we want to account for situations when Scientist does
not know the finiteness or size of the entity he investigates. If the initial clags
of hypotheses is not drastically restrictive, Scientist can hever know whether aj)
the elements have already been enumerated. This leads to infinite procedures
and conditions defined in the

limit. Our epistemic setting should reflect thege
broperties. It should aflow talking about epistemic states as invariay

it from some
point onwards, without, specifying when this happens.

Such an approach to

., Stalnaker, 2009). As we will
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other classic requiremnent put on datg, ig
erates only elements of the language. Thig
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i stty close to the classical justified
edge s 17 O thehs'u;fc?l(:lltlz)%e;)ﬁs ;c}?ebgeliilrlf:ij‘i{)n ascribed to 'Plato. Ingied,
el fsee, e'.g'; Ct lsf rwa;'d a hy,pothesis thak is true, he believes that it bls

ly St Pui : some reasons to choose it and those reasons can (E

6, and mMOTenver he l?fnilted) justification. However, from the pers;'}ecttu'm:ti)
od o6 8 (O[:ten Vellr-}(;l e’, preceded by a sequence of belief changes,_ls 8 n(,itl}lr

ogent, 115 klmwke' ‘ga:l;vays in progress. There seems to be some 133136 \;{ Cs
crstionn t}}:e :V OrScifnfist is not able to point out the successful lgu;ass;h f ]j;)ht
e et e i ; rCe nge his guess again > lig
o ‘:Ill'uclllf,;otl)leoff }u;lzdi;?rg:}fecgtion OfF)knowledge ir} inducflvz

E ot o t'h‘fl)( IE.';ZE){)S). On the other hand it is more than just a tru
er?nc'i f: ?Hf{rziis(’;oséhange under new true information.

i

, s thent data are assumed
— for learning theory the
s mentioned before, in ¢ s are pretty
ngle age1n11;;e aﬁd true. In our view, this is the reason why hear‘n li:r;iingpqpem
f COH?]?&E paradigm. Although in principle, SC}en}C oo \ge& lc;iuner (a sender
onely m LS . that includes a teacher an
i st a two-player game ithmic reasons the role of the
o be at least a o). f algorithmic reason:
e s ot d a receiver), for many ’ ith the role
.the mformdtloniiinimd. As a r’esult we are concemcdl here only Wlﬂ; of&data.
OFTEL, hgstbe;I;tﬁre can be viewed as an objective, uninvolved dsourICIOt intend
if Scientist. ? ion of fairness. Nature does
i titutes an assurnptior L is predominantly a
i TCHSG ctlhl‘s 1:‘:1(;11&1; process. As a result, learning Lheor)(; lh-fﬁ(}igl?eﬁnilg
0 help or distu o i-agency can be associated with team-learning,
iness. A hint of multi-agency N d by Smith
e-ogert bﬁ?ﬂ;f;esfed by Blum & Blum (1975}, explicitly 111“0?:;: o gharIna
. 4 i 3 il A R - R
('1383;3103\;(:11 since then extensively studied (for ?ln ove;;li:rnstfe amrod o
: - . . tood In this w 2
er, multi-agency unders s igger goal. The
996). HOWT{Y X on their own contributing to some common, blgg‘ ‘ngarginal
.. iear'ners - mgnication and (non-)cooperativeness of the learnsra it e
opic of comn;: epistemic and dynamic doxastic l.ogms study1 ihesi e
: here.. Dyname)'(pll;citly and this is in fact their main focus (ng[l)ﬁ} e
i age , ) : :
mui? ESZEE 3:1I)proach to epigtemic issues see Van Benthem,
multi-¢

3.2 Learning via Updates and Upgrades
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together with his uncertainty

about which world is the actual o
the initial epistemic model t

0 be formally defined as
M= (C,~),

where C is the set of worlds and ~ C € x C is an uncertainty relation for Scientist.
For now we do not Tequire any pa

rticular preference of the scientist over C-—g]]
possibilities are equally plausible. Hence

In the beginning Scientist considers all of them

possible. Scientist is gwen the clags of Lypotheses C, Le., he knows what the

alternatives are.

= =@-@ -

Figure 3.1: Initial epistemic model

Next, Nature decides on some state of the world by choosing one possibility
from C. Let us assume that, as a result, S is the chosen world. Then, she decides

on some particular environment &, consistent with Sy. We picture this enumeration
in Figure 3.2 below.

€4
€3
€3

€1

Figure 3.2: Environment ¢ consistent with 9,

The sequence ¢ is successively given to Scientist. Let us foeus now on the firsg
step of the procedure. A piece of data £, is given to the scientist. In Figure 3.3

ion with &; is depicted. Scientist can react to thi
information by adjusting his epistemic state in different ways.

Chapter 8. Learning and Epistemic Change.

ne. Lot us take
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Learning via Update
ic Update

. 1 A i e hi tus
ienti i xce of data is to updale” his stal

; + Scientist to incorporate a new plece ' ‘

way;?:iq is done by eliminating all the sets that do not include £, Weltga,n
: £ : th; process formally by the update of M with g1, (M | &1), IE:SH mi;

e epistemic model M’ = (€', ~), where: C' = {5, € C | &1 € 5.} an
new J
[ C.

&1

Figure 3.3: Confrontation with data

“Yeientist tests C with £1. If a set includes the information, it I'Cmatri a;s a
i(’t:)ility if it does not, it is eliminated (see Figure 3.4). Let us assume that &;
tiot consistent with S and Ss.

N X

Figure 3.4: Epistemic update

€1

——e

This epistemic update can be iterated infinitely many times z?,long ‘fe {)@E}ftézlgl
an ixlﬁnite sequence of models whose result according to the lines o

se called the e-Cenerated Epistemic Model (see, e.g., Van Benthem, Gerbrandy,
“Hoshi, & Pacuit, 2009).

Definition 3.2.1 (Generated epistemic model). The generated epistemic model

M®, with € = €1, €2,63,. .., is the resull of update ({((M | &1) | &a) L ea) | ...

To stay true to our original learning-theoretic motivation wz war}t t;}a;ixiijz-
J is gl i 8 se fas .
i i i del changes when € is given in a stepwi
tigate how the epistemic mo | : sepwise fashion.
i tke focus on its convergence properties.
In particular, we would like to - - : et
ing i i slation, which mirrors not only
eling involves only the equivalence re , rors ot only the ager s
i " indiffere ith respect to what is the actu
uncertainty, but also indifference wi . i the
is especit 1d argue, exclusively suited for preting th
approach is especially and, we cou , sivel; o o
riI;ep of irrevocable knowledge. That is, the agent is said to know something if thi

3 - . .
The event of ]I}(lﬂte 15 & blIn[_)lG stzlgl&agent version of public anncuncement (Baltag et al,



something is true in all worlds in his uncert
~ relation. Therefore, we will be particul
state of such knowledge, i.e.
only one, true set ig lefi,

Example 3.2.2. Let us lake C = {9, S, Sy
n € 1{1,2,38}. Nature makes her choice
us assume that, as q result, Sy is the

- After the first piece of data, 1, the uncertainty
range of the scientist ineludes the whole C. After the secon

4, 2, the scientist
eliminates 5y since it does not contain the event 2 and now he hesittes between
52 and S5, The third picee, 1, d

ves not change anything; however, the next one, 3,
eliminates Ss. Uncertm’nt’y is eliminated. He knows that S3 is the actual world.
Therefore, we can say that he learned gt conclusively, with certainty.

In Chapter 5 we will show that finite identifiability can he modeled within

the dynamic epistemic logic framework, with the use of: possible worlds for
sets; propositions for the Incoming information; and update for the progress in
eliminating umcertainty over the hypothesis space.

Plausibility Update

"The epistemic, update-based approach as set out above is ver
respect to the outcome of learning. At best, we
for finite identification, and not for learning in
identification in the limit we need to be able to 4al
of Scientist. Until now this was impossible becan
were able to define was & fina] irrevocable conclusion. So we want to enrich the
framework to account for A current conjecture—-a hypothesis that is considered
appropriate in a given step of the procedure.

Let us consider the following exampla
uncertainty is never eliminated.

¥y restrictive with
have been able to account only
the limit. In order to move to
k about sequences of conjectures
se the only ‘conjecture’ that we

of a learning scenario, in which the

Example 3.2.3, /n Fzample 2.2.2 Scientist was very lucky. Let us assume for

& moment that nature had chosen Sy = {1,2}, and had Jized the enumeration

€=1,21,2,2,2.2 . In this case Scientist’s uncertainty can never be chiminated.

This example indicates that the central element of the identification in the

limit medel is the unavoidable presence of uncertainty, The limiting framework
allows, however, introducing some kind of operational knowledge (for an account

of procedural kmowledge see Hoshi, 2009), that is expressed by the stability of the
conjectures of the learning function.

Chapter 3. Learning and Epistemic C’hang'é

ainty range defined by the equivalence
arly interested in the convergence to the
, In our case in convergence to the situation in which
Ther we will say that the scientist learned with certainty

Y, sueh that Sp = {1,...n}, for
regarding the wdentity of the world Let
actual world. Then, Nature chooses an
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i i ; 2 learning process that includes the actual
= mOdel aﬂ al%?r;tt}-lgigi?lﬂ;fle;cf)stslilziiities, vfeli:an enrich the epistemic model
e i_lﬂd e I}E'lii/ relation. The relation < represents some preference over
th sore plmlsﬁ '1 eqy E’ ., if Scientist is an Occamist, the preferenct‘e would be
ot hyplm (i)}:nhe s'igr;plicity of hypotheses. In the initial Cpi?tEIlIHC state the

.d ?’Ccoufutl}%e scientist again ranges over the whole of C. Thls time howe'vez
CQTtELm_tY c?d d‘and Scientist’s current belief is the most prcferrC.d h)lzpothesu.;.
h 1?;zsrels Erle Szflsider the initial epistemic plausibility state of Scientist to be:

ereLore,

M = (Ca ~ S)

dure of erasing worlds that are inconsis.tent with successiv-ely- 1ncolmJ1£I}1g‘
e » g5 in the previous section. This time however let us intr odl}ce he
e e Sa:m(ti Efa w}';icil is ingerpreted as the actual conjecture of t‘he Scientist.
. ﬂt‘gue*"'bhs ELnee that is most preferred—the smallest one accor(.img to <. In
: &llways“t es?at of'most preferred hypotheses is almost nvariably interpreted as
?}?X%t:a; i?lgis tahe agent, believes in. Let us go back to Examp}le ?;ES;Wh(EI(; 31\;2,:11;;
o T seoi iminating S, Scientist’s attention fo
S v 52&?&3;3?2){111?1% 611&,1 the mogt preferred hypothesis, and as \sjuch
. the‘n > lbt dkas ]Ol;g as it is consistent with £, In this part%cular case, since
;Iaf bi.f:fllcj)zj : world consistent with Ss, it will never be contra%dlcted, (sio SC;:IE;SI‘E
ol i ¢ . However, his preference directs
\?\j_ill &ITJV&YS' biﬁ?iiﬁﬂ ﬁiﬁtﬁz, irvlictl;hiaut his beir;g aware of the .corr.cctpess.
tO behe‘vef in h : otl;(;sis may become safe---whatever true information is given,
he'behe lfn 'a e z}lie scientist $o change his mind. And this state (.)f safety .Whl}i(?
lt' WIH ]‘JG't Glicertéxin%;y s Intuitively the ane that occurs in identification in fle
mal'nta;il‘l ng'{?’ ng to the picture sketched here, we will show (111 Ch;‘lpter 4) thc}{t
l'leI;lrlrtl-ing (iJz\Otlh; ligmit can be modeled within the dynamic d(chastlc ltt?gm [ilzzlgllj:zofr();
iti incoring i mation; update
using: possible worlds for sets; Drop‘omtmns for 111(,om1r‘1§ 1iqo§ i
a8 in eliminating uncertainty over tl.rle hypothesis space; ; bility
. :L]fa,gg{l)lg;: the underlying hypothesis space; in each st(gphof 11;};‘(:,.11113;0(,?:1&]’:&;:;%&,
.fmost preferred hypothesis as the actual positive guess of the le g

13.2.2 Learning via Plausibility Upgrades

i iffer ' react he
Extending this approach we will also investigate different ways of magtmg It;)dgng
incoming information: except for update we will also consider wafysl 0 hupgupdm‘é
(i i sw data. Upgrades are useful when
» preference relation as a reaction to new . seful o
Fhiorgizrong in the situations in which the source of information is not entirely
is too s — A

ibil i T . itions of
regtricti lausibility ordering. The condi :
o o o o bot bese any lfesflrmtllon Obnhglrl ?)r]:t;;?ng ‘u‘eyoften assutned of such doxastic
: g ectedness of the plausibi E o of o
“l";ﬂ‘i‘).““d(’dﬁzss :3} ]wci?ln?ee later, in our setting, the well-foundedness of the initial p]allglbx ity
situations, As wi 2e lat; :
preorder might not always be possible.



Chapter 8. Learning and Epistemic Change:

" reliable. We want to focus on two types of upgrades: lexicographic and minimal:

(see Chapter 2). Upgrades can be performed on the epistemic plavsibility models
step-by-step as in the case of iterated update. Interpreting the minimsl hypothese
as the ones that the agents believes in at any finite point of the procedure, agai
allows considering sequences of conjectures.

3.3 Learning as a Temporal Process

In the above-described paradi

with the corresponding set of environments. The latter can be seen as possible -
“streams of events” or “histories” that may occur if the relevant hypothesis is true.
A history can in its turn be represented as a branch in the tree of all possible
courses of events. Accordingly, hypotheses can be viewed as sets of histories or
trees. The intuitive way to deal with hypotheses in 2 temporal framework is to
mtroduce a temporal model of all the possible streams of information determined
by the hypothesis.

Let us consider a set ¢ — {{1},{1,2},{1,2,3}} and the corresponding set,
of hypotheses I, = {h1, h2, hs}. We know that h1 corresponds to the set {1},
so it is consisternt with only one environment g == 1,1,1,1,1,. .. Therefore, it
can be identified with only one possible sequence of events, history H, which is
represented by the frame presented in Figure 3.5.

1 1 1 1

e e T e

M

Figure 3.5: History for hypothesis hy

It is of course different for the hypothesis Ay which corresponds to the get
{1,2}. Here, possible histories are all tw-sequences over the set {1, 2}, that include
at least one oceurrence of 1 and 2. Therefore the hypothesis is represented as a
binary tree.

Let us put this idea formally. If § is a set, then S* is the set of all finite
sequences over .5 (all finite strings of elements of S). Let us take a class C and
Sn € C. The set S, determines an epistemic temporal logic frame

F= (Sm H‘na N)y

where H, = §* is a protocol (says which sequences of events are allowed), that is
closed under non-empty prefixes; and ~ is a binary relation on H,.

Such an epistemic temporal frame indicates which sequences of data can be
expected when the corresponding hypothesis is true. This way of thinking allows

viewing the class of kypotheses C as a set of protocols, a forest of temporal frames
(see Figure 3.6).

gm each hypothesis from the given class is associated :
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Figure 3.6: Epistemic temporal forest F

To sum 1p, we interpret hypotheses to be sets of histories, 1.e., sets of secpueimejf
O S ’ ' . . . G , 8 0
- reintberpret, the possible realities as se
f ing events. Therefore, we can reinterpre : : s .
Fl]"l"rrtlf'};i:n%llis approach lead:,% to a generalized, unilorm view of learnabllhty of
?fmis stlructures. Function leazning and set learning become analyzable on a
e irni ing th umentation of
'To account for identification in the limit, following the arg v 1‘_ o
svious sections it seems to be necessary to enrich the tempoli'a; iﬁo 1:ne 8 er b
ili i . will account for the beliefs at each level of the tempo
sibility ordering that will account for lie . fempor
.a!m;}?#h}; latter fan be generated from the initial class as in the previous case.
rest. L fro tial s -
‘hen the temporal epistemic plausibility frame is given as follows:

JTS == (Sn:Hns ™ S)

Qur aim in all the above deseribed semantic interpretations is to give an
pistemic (temporal) characterization of learnability.

3.4 Summary

T this chapter we gave an introduction to our modeling of the I;TGFGSSI?f lllduCtIV(;
i ic epi i i { dynamic doxastic logic. For now we
nference in dynamic epistemic logic and d; L logic. For now we
avoi ism in or irst, provide motivation and basics of the trans
avoided formalism in order to first provi fon _ o ransition
: : ticular, we indicated that update is app
from one framework to ancther. in par lar, we fale s awpe
' e notion of finite identifiability as convergence .
priate to analyze the no T
ing i imi her hand, has to be supported by | :
Learning in the limit, on the of b ] y an unceriying
i i is space. This indicates that it should be formalize
ordering of the hypothesis space. ater b shot orma zed %
i i ¢ lausibility relation is a standard y
doxastic logic, where the preference or p bili  standard lemet
i i ion in the limit is viewed as reaching safe .
of any model, and identification in : ' } pelier, We
i ; t of the learning paradigm, hypo
also proposed to view one componen : | e, oheses anc
i : dels. Thig allows investigating prop
hypothesis spaces, as temporal mo opertics of
i ic revisi at requires certain sequences of events, confo g
the epistemic revision that requires cer : : of - ‘
Somoptemporal protocols. We postulate that identifiability can be ex?resied in
‘temporal logic interpreted over the corresponding epistemic temporal forests.



