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Abstract

1 Introduction
“Luminosity” with respect to knowledge means that whenever one has knowledge, one
is in a position to know that one has knowledge. Timothy Williamson has a well-known,
sorites-like argument, based on the safety requirement for knowledge, for the surprising
conclusion that we do not know what we know in ordinary perceptual circumstances
(2000). Safety is the requirement that one’s true belief could not easily have been
false. More recently, in a pair of intriguing examples based on numberless clock faces
(2010a, b), Williamson has attempted to extend his position by providing examples
in which one knows but one’s degree of belief that one knows is extremely small, not
due to aphasia or ignorance, but due to the very semantics of knowledge. A crucial
feature of Williamson’s examples is that the sense of “could easily” is interpreted in
terms of We respond that, in cases of visual acuity, the relevant sense of “could easily
have been false” pertains to “could easily have been produced in error”, rather than
“are actually false in nearby worlds”. We show that, under the former interpretation,
full luminosity is possible and that Williamson’s Sorites-like argument is necessarily
unsound, even though each premise is true with high objective chance. Thus, contrary
to Williamson’s insistence, the argument is an instance of the lottery paradox.

∗This work was supported generously by the National Science Foundation under grant 0750681.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.
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2 Williamson’s Sorites-Like Argument Against KK

Let t be the height of a tree in inches and let the subject be near-sighted and be located
a block away from the tree. Consider the situation in which t = 666. Let pi state that
t = i. Let n be a large quantity (e.g., 666). Williamson’s argument is the following:

1. premise: K¬p0;

2. premise: ¬K¬pn;

3. premise: K is closed under logical entailment;

4. premise:
∧n−1

i=0 K(pi+1 → ¬K¬pi);

5. conclusion:
∧n−1

i=0 K¬pi → KK¬pi.

The reasoning is valid. Suppose for reductio that
∧n−1

i=0 K¬pi → KK¬pi holds. Williamson
proves the following lemma:

n−1∧
i=0

K¬pi → K¬pi+1. (1)

Suppose that K¬pi. Then by the reductio hypothesis KK¬pi. Note that K¬pi and
pi+1 → ¬K¬pi entail that ¬pi+1. So since both premises are known (by the lemma
hypothesis and the fourth premise), it follows from closure of K under entailment (the
third premise) that K¬pi+1. Now we can reason as follows, using the first premise and
the lemma:

K¬p0;
K¬p0 → K¬p1;
K¬p1;
K¬p1 → K¬p2;
...
K¬pn.

The last line contradicts the second premise. So the argument’s conclusion follows by
reductio ad absurdum.

What about soundness? The first premise seems indubitable—even blurry vision
can detect the green mass of the tree, which must occupy some nonzero height. We
also grant the second premise, because ¬pn is false and, therefore, cannot be known.
The relevant instances of closure of K under entailment do not seem troublesome,
especially after Williamson reminds us of the entailments. The fourth premise is the
crucial one, but it also seems very plausible—blurry vision can’t resolve inches from
a block away. So the KK principle must fail for at least one height between 0 and
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n − 1—the argument doesn’t say which. Williamson would prefer to conclude that it
always fails.

A more detailed argument g
Let t : W → R. Define:

R(w, w′) ⇔ w′ is close to w; (2)
w |= Sϕ ⇔ (∀w′ ∈ R(w)) w′ |= ϕ; (3)

w |= t = r ⇔ t(w) = r. (4)

Interpret Sϕ as “it is safely the case that ϕ”. Define “it is easily the case that ϕ as the
dual of safety:

Eϕ ⇔ ¬S¬ϕ. (5)

Think of p as a statement whose truth depends only on the value of t. Williamson
assumes the following theses:

1. |= Kϕ → Bϕ;

2. |= Kϕ → S¬(Bϕ ∧ ¬ϕ);

3. |= �(t = r → p) ∨ �(t = n → ¬p), for all r;

4. |= �(Bp ∧ t = u ∧ |u − v| < c → E(t = v ∧ Bp)).

The margin for error principle follows.

Proposition 1. |t(w) − t(w′)| < c ∧ w |= Kp ⇒ w′ |= p.

Thus:

Proposition 2. |t(w) − t(w′)| < c ⇒ w |= p ⇔ w′ |= p.

Thus, if all values of t are possible, p is necessarily true or necessarily false.
The point of Williamson’s later efforts (2011a, b) is to extend the preceding ar-

gument to show that the KK principle essentially does always fail even in such cases
of visual acuity and that, moreover, it fails in a spectacular way: the subject even
finds it very probable that she does not know what she knows by looking. Even more
strikingly, the KK principle does not fail for familiar reasons such as ignorance of one’s
own beliefs or one’s own acuity, but due entirely and ineluctably to the very logic of
knowledge.
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3 Basic Epistemic Logic
Williamson’s new arguments are framed within standard, modal, epistemic logic, whose
elements we quickly review. A Kripke frame for epistemic logic is just a pair (W, R),
where W is a set of “possible worlds” and R is a binary, reflexive “accessibility relation”
over W . Propositions are just subsets of W . K is an operation on propositions. The
intended interpretation is that Kϕ is the proposition “S knows that ϕ”. Formally, the
truth conditions for Kϕ are as follows:

w ∈ Kϕ ⇐⇒ (∀w′ ∈ W ) R(w, w′) ⇒ w′ ∈ ϕ. (6)

Clearly, much depends on the choice of R. If we had some antecedent idea of what
“epistemic world accessibility” is, then definition (6) would be an explanatory analysis
of knowledge in terms of R. But for obvious candidates, that is a terrible idea. For
example, suppose that R(w, w′) means “for all S has been infallibly informed in w, the
actual world might be w′”. Then Kϕ would imply that ϕ is a deductive consequence of
infallible information—a quick recipe for radical skepticism. Williamson reverses the
explanatory order by defining R in terms of K, so that R(w, v) says only that for all S
knows in world w, the actual world is v. By formulating his clock examples in Kripke
semantics, Williamson can hold his cards close regarding what knowledge is, leaving
the critic to fill in and to defend the missing details, such as what S believes, how
visual perception works, and what constitutes visual justification.

4 Knowledge States
Even on Williamson’s non-committal interpretation, Kripke semantics is not entirely
vacuous regarding the nature of knowledge. The assumption that any sharp-edged
proposition is known in the case of perception is open to question. Perception could
guide actions even if it resulted only in a posterior probability distribution over positions
of things. Propositions could be a rough-and-ready way to communicate and reason
with more nuanced, underlying, degrees of belief.1 In that case, the assumption that
knowledge is propositional is already a faux pas. And even if it is conceded that
some propositions come to be known by perception, epistemic logic commits one to
the unrealistic view that knowledge is closed under logical entailment.2 It follows
that we already know all of mathematics and the results of all lengthy computations.
Presumably, it remains only to “recollect” them via “stimulation” by the actual proofs

1For a principled account of how that might go without inviting the lotter paradox, cf. (Lin and
Kelly 2011).

2For suppose that w ∈ Kϕ and ϕ logically entails ψ. Then each world accessible from w makes ϕ
true and each such world also makes ψ true, so w ∈ Kψ.
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and computations. We concede these assumptions, however, because our principal
concern lies elsewhere.3

Given the deductive closure condition, Williamson represents the overall knowledge
state of S as the strongest proposition known by S. Define:

R(w) = {w′ ∈ W : Rn(w, w′)}. (7)

The truth conditions for Knϕ can be re-expressed succinctly as follows:

w ∈ Kϕ ⇐⇒ R(w) ⊆ ϕ. (8)

In the case in which ϕ = R(w), we have:

w′ ∈ KR(w) ⇐⇒ R(w′) ⊆ R(w). (9)

Setting ϕ = KR(w) yields:

w ∈ KKR(w) ⇐⇒ R(w) ⊆ KR(w) (10)
⇐⇒ (∀w′ ∈ R(w)) w′ ∈ KR(w). (11)

Now w′ ∈ KR(w) can reexpressed via (9):

w ∈ KKR(w) ⇐⇒ (∀w′ ∈ R(w)) R(w′) ⊆ R(w). (12)

This formulation makes it apparent that there are degrees of failure of the KK principle
for R(w) in world w. Of course, w ∈ R(w) because R(w) is known in w. If w ∈
KKR(w), R(w′) ⊆ R(w) holds for each w′ in R(w). A maximal failure of w ∈ KKR(w)
occurs when w is the only world w′ in R(w) for which R(w′) ̸⊆ R(w). A minimal failure
occurs when there is only one world w′ in R(w) such that R(w′) ̸⊆ R(w). And then
there are all the cases in between.

In order to measure degrees of failure of the KK principle, Williamson calculates
the fraction:

p(KKR(w) | R(w)) = |{w′ ∈ W : R(w′) ⊆ R(w)}|
|R(w)|

. (13)

Since R(w) is the knowledge state of S, the quantity p(KKR(w) | R(w)) can be viewed
as the “objective” probability of KKR(w), given everything that S knows. Williamson
refers to this as the evidential probability of KKR(w) in w. We will not venture to
debate the aptness of his terminology here. Better, for present purposes simply to

3For systematic developments of the strong analogies between empirical and formal inquiry, cf.
(Kelly ***, ***, ***).
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refer to think of p(KKR(w) | R(w)) as a measure of the degree to which the KK
principle holds for S with respect to the knowledge state R(w) of S. In particular,
p(KKR(w) | R(w)) = 1 if w ∈ KKR(w) and p(KKR(w) | R(w)) = 1/|R(w)| in the
worst cases. Therefore, as |R(w)| goes to infinity, the worst case value of

p(KKR(w) | R(w))

approaches zero. Williamson’s goal is to show that the worst case happens routinely
in ordinary cases of visual perception.

5 Safety
In Williamson (2000), the crucial premise of the sorites-like argument is motivated in
terms of safety from error. Let Sϕ abbreviate that “it is safely the case that ϕ”.

6 Williamson’s First Clock
In (2010a), Williamson invites the reader to consider a modernist clock dial with a
single pointer and a blank face (fig. 1.a). The hand position is digitized, so it can point
at one of N discrete positions 0, 1, . . . , N − 1 and let T be the set of all such positions.
Let ρ(t, t′) denote the distance between positions t and t′ on the clock face, measured
in terms of the nearest number of discrete steps between t and t′ (fig. 1.b). In the
example, the clock is not moving (maybe the battery is missing) and S is looking at
the clock from some distance, so its hand is stuck in one of the N positions.

t

(a) (b)

t

ρ(t, t )

Figure 1: Williamson’s modernist clock

For ease of presentation, Williamson takes the set W1 of possible worlds to be the
N possible, discrete positions of the pointer:

W1 = T. (14)
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That seems reasonable enough—it is a routine practice to exclude irrelevant clutter
from models. According to Williamson, it is plausible to assume that S can only
discern that the pointer is within d ≤ N units, left or right, of the true position t,
where d depends on the visual acuity of S, her distance from the clock, clarity of the
intervening air, lighting, etc. (figure 2.a). Formally:

R1,d(t, t′) ⇐⇒ ρ(t, t′) ≤ d, (15)

That also seems plausible—exact precision can’t be expected at every distance and it

t

d

d

(a) (b)

t

d

d

Figure 2: Williamson’s perfectly centered known intervals

is very implausible that there is a particular distance at which perfect resolution stops
and perfect ignorance starts.

The KK defender is already trapped, for the only world w′ such that R(w′) ⊆ R(w)
is w, itself. Hence, the model realizes the worst case failure of the KK principle, so as N
and d ≤ N go to infinity, the evidential probability p(KKR(w) | R(w)) approaches zero.
The result does not rely on holograms, vats, or the usual philosophical legerdemain.
Nor does it hinge on a banality such as assuming that S has aphasia and does not
even believe that she believes R1,d(w)—belief is not even mentioned in the model. And
the underlying logical framework adds almost no content to the example aside from
logical omniscience, which does not seem to do any heavy lifting in the example. It is
almost as though Williamson’s skepticism is pulled from thin air—or pure logic. One
can hardly resist taking a closer look.
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7 Improbability of Williamson’s First Clock
Williamson’s motivation for modeling perceptual knowledge with intervals is not en-
tirely clear, but we assume that it is related to his discussion of safety.

Williamson does not expand on the underlying reasons for that fact. One standard
reason for reporting measurements as intervals rather than as point values is that myr-
iad, independent causes of error collaborate to generate off-center measurements, with
a low chance of producing wildly inaccurate measurements. Therefore, if one reports
a sufficiently large interval around the measured value one obtains, there is a high
chance—called the confidence level—that the interval contains the true value. How-
ever, on that story, the chance is 1 that the interval so produced is centered perfectly.
In the clock example, readings are discrete, so the chance of obtaining a perfectly cen-
tered interval is non-zero, but it can be driven arbitrarily low by reducing the distance
between the discrete readings. So after one generates such a perceptual interval, one
hardly knows that it is perfectly centered on the true reading (fig. 2. a,b). Far more
plausibly, one knows that it is not—but we need not insist on that point.

Perhaps Williamson would reject that whole story—some sort of mental vagueness
aside from visual acuity is responsible for dilating the interval. But that is still im-
plausible. In Williamson’s model, S knows that her perceptual interval is perfectly
centered. It is hard to see how she could know any such thing unless either (i) she
made a lucky guess that Williamson counts as knowledge or (ii) her visual cortex is
somehow capable of recording perfectly accurate positional information that her higher
cognition somehow fumbles.

HERE
Even if S does not know the true observation exactly, her visual system must at

some level record the clock reading with perfect accuracy in order to cause perfectly
centered intervals.

The perfect centering assumption is also wildly implausible, for even if S does
not know more than an interval, her brain must somehow capture perfect positional
information at some hidden level and then censor it from the cognitive level pertinent to
propositional knowledge. One wonders how S’s hum-drum 20/30 eyesight can see better
than the best telescopes and why her higher-level cognition throws that miraculously
accurate information away.

None of that would matter if Williamson’s anti-luminosity conclusion did not de-
pend on the perfect centering assumption, but it depends entirely on that assumption.
Because intervals are perfectly centered, the only world in which S’s knowledge state is
the same as in the actual world is the actual world itself. To put the point another way,
S knows that her intervals are perfectly centered, so if she did know exactly what her
known interval is, then she could deduce the exact clock reading as the center of that
interval. But she can’t plausibly know the exact clock reading, so she must not know
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what her known interval is. If she did not know that her known interval is perfectly
centered, the absurd conclusion would not follow from her knowing what her known
interval is. We conclude that Williamson’s first clock model is fanciful and that the
strong non-luminosity it implies is a direct consequence of the fancy.

8 Williamson’s Second Clock
The preceding difficulties stem from Williamson’s well-intentioned pedagogical decision
to simplify the presentation of the model by identifying worlds with clock readings.
That initial decision made it impossible for him to model ignorance about centering
of the knowledge state, since such ignorance requires that multiple possible centers be
associated with the same true clock reading. Williamson corrects that fault in a second
article (***) that presents a more complex model in which KKR(w) again fails to the
maximum degree.

Each possible world is now assumed to be a pair (t, c), where t is the true clock
reading and c is the center of the clock interval known by S. Williamson imposes no
constraints on such pairs, so the set W1 of worlds in the model is the set of all pairs of
positions:

W2 = T × T. (16)

Williamson proceeds to define the accessibility relation R2,d. Since R2,d(t, c) is now a
set of pairs, it is convenient to define the interval known by S in (t, c) to be:

I2,d(t, c) = {t ∈ T : (∃c′ ∈ T ) (t′, c′) ∈ R2,d(t, c)}. (17)

In an impressive show of bravado, Williamson generously concedes to the luminist that
S is self-aware enough to know the midpoint of her own known interval:

R2,d((t, c), (t′, c′)) ⇒ c = c′. (18)

We accept his offer, with the assurance that if S is assumed to know an interval and
is also assumed to be irremediably clueless what that interval is, we are happy to
concede that S is non-luminous—but only under those assumptions. Williamson’s
second constraint is inherited from his first model, namely, that the interval known by
S is never narrower than 2d + 1:

ρ(t, t′) ≤ d ⇒ R2,d((t, c), (t′, c)). (19)

We grant that assumption as well, assuming that d cannot be reduced without unduly
compromising confidence. Finally, of course, knowledge is true, so:

R2,d((t, c), (t, c)). (20)
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Williamson then proposes that the “obvious” way to realize these constraints is to let
the width of the interval known by S in (t, c) dilate by adding the distance of the
interval’s midpoint c from the true clock reading t to the fixed distance d so that the
total interval width is 2(ρ(t, c) + d) + 1 rather than the fixed width 2d + 1 assumed in
Williamson’s first model (fig. 3).

(a) (b)

t

d

d
c

t

d

d

c ρ(t,c)

ρ(t,c)

Figure 3: Williamson’s dilating confidence intervals

R2,d((t, c), (t′, c′)) ⇐⇒ c = c′ ∧ ρ(t′, c) ≤ ρ(t, c) + d. (21)

It is immediate from the definition that R2,d satisfies the required properties (18, 19,
20).

Now Williamson obtains his intended result—at least in the world (t, t) in which
the known interval is exactly centered. Suppose that t′ ̸= t. Then, due to the dilation
of I2,d(t, c) as ρ(t, c) increases, R(t, t′) ̸⊆ R(t, t). Thus, the unique world (t, c) such that
R(t, c) ⊆ R(t, t) is (t, t), itself—the worst case failure of the KK principle for R(t, t).

9 Improbability of Williamson’s Second Clock
Williamson is more reticent concerning what happens in his second model in worlds
other than (t, t). In fact, his model says that luminosity increases dramatically as the
known interval becomes more off-center. For suppose that ρ(t, c) ≥ kd. Then, 2kd of
the total of 2kd + 2d + 1 worlds have clock readings t′ that are closer to the center c
of the interval than t is, so those worlds have narrower known intervals on the same
centers, so by condition (9), each such world is in KR2,d(t, c). By letting N and k grow
without bound, the evidential probability p(KKR2,d(t, c) | R2,d(t, c)) approaches 1, so
S becomes more luminous without bound as the interval she knows is more off-center
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and the clock positions become closer together. This sharp and startling implication of
the model does not seem to have any basis in ordinary thinking about knowledge and
Williamson provides no guidance for interpreting it.

The extreme non-luminosity of the model would still be interesting, in spite of its
strangeness, if the non-luminosity followed entirely from the plausible principles (18,
19, 21). But, in fact, it depends entirely on the ad hoc dilation rule that gives rise to the
strangeness. Williamson is correct that some sort of dilation term is required to ensure
principle (refawarax), but the dilation need not occur when the confidence interval of
size 2d + 1 happens to be true. And when that interval is false, the dilation need not
extend beyond the true value. In fact, in light of the preceding discussion of confidence
intervals, that alternative dilation rule is far more intuitive than Williamson’s. In
the next section, we present a pair of alternative dilation rules that have an intuitive
underlying rationale in terms of confidence intervals.

10 The Clock Illuminated
Suppose that given the ambient lighting, the distance of the clock, the visual acuity
of S, etc, S knows that she can achieve a reasonable confidence level by reporting the
clock reading within an interval of width 2d + 1. Suppose that S is also so fortunate
as to know that there is no Gettier apparatus or other philosophical monkey business
around. That covers just about all the bases—except for truth. So we propose that
there is no Williamsonian dilation as long as the confidence interval of width 2d + 1
produced by S is true. In terms of accessibility (fig. 4.a):

t

c

(c)

t

c
ρ(t,c)

ρ(t,c)

(a)

t

d

d
c

(b)

d

Figure 4: perceptual knowledge based on confidence intervals
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ρ(t, c) ≤ d ⇒
(
R3,d((t, c), (t′, c′)) ⇐⇒ c = c′ ∧ ρ(t′, c) ≤ d

)
. (22)

But now that there is no dilation as long as ρ(t, c) ≤ d, the knowledge state of S no
longer depends on the distance ρ(t, c), so R3,d(t′, c) ⊆ R3,d(t, c) when ρ(t, c) ≤ d. So in
this case (t, c) ∈ KKR3,d(t, c), so S is perfectly luminous and Williamson’s quest for
extreme anti-luminosity comes up empty handed. Since the confidence interval is true
with high chance, the chance that S is not perfectly luminous is at worst very small.
So Williamson’s anti-luminist conclusion is already extremely improbable—in objective
chance, not mere opinion. Perhaps that is satisfactory enough, from a luminist point
of view.

But let’s move on to the case in which the confidence interval of width 2d+1 is false.
What does S know, when her knowledge is grounded on the ability to produce intervals
of width 2d+1 with suitably high confidence and when the interval so produced is false?
That is an interesting question. The answer depends on details about S that are not
settled in the model. If she believes only the interval she produces and it is false, one
might say that she knows nothing about the clock’s reading—she merely has a false
belief (fig. 4.b). But S still knows what the center c of her confidence interval is, so in
terms of accessibility the proposal is:

ρ(t, c) > d ⇒
(
R3,d((t, c), (t′, c′)) ⇐⇒ c = c′) . (23)

So when ρ(t, c) > d, we have that R2,d(t, c) = T × {c}. But then it is evident that
R3,d(t′, c) ⊆ R3,d(t, c), so again the KK principle holds perfectly and S is perfectly
luminous.

Alternatively, one could concede to Williamson that dilation is gradual in case
the confidence interval of width 2d + 1 is false. The procedure of believing a wider
interval on the same center as the interval she produces has higher confidence than the
procedure she follows. By deductive closure, she believes larger intervals containing
the intervals she believes. She is in a position to know all of this. So she is at least as
justified in believing the larger interval as she is in the small interval. On this more
optimistic view, her knowledge state is the narrowest true super-interval with the same
center as her belief state (fig. 4.c). Formally, let R4,d agree with R3,d when ρ(t, c) ≤ d
and in the ρ(t, c) > d case define:

ρ(t, c) > d ⇒
(
R4,d((t, c), (t′, c′)) ⇐⇒ c = c′ ∧ ρ(t′, c) ≤ ρ(t, c)

)
. (24)

Thus, in general:

R4,d((t, c), (t′, c′)) ⇐⇒ c = c′ ∧ ρ(t′, c) ≤ max(d, ρ(t, c)). (25)

Thus, R4,d plausibly substitutes maximization for the summation that occurs in Williamson’s
definition of R2. One might object that the alleged knowledge is Gettiered—S’s true
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belief is based on a false belief. In response, her justification is that the process gener-
ating larger intervals has even higher confidence, which is not false. Still, it might seem
that this story makes knowledge too easy, since there will always be some interval S
knows no matter how screwed up her observation happens to be. A potential response
is that if the disturbance that led to the huge error was “drawn” from the distribution
that the bell curve represents, then it is already factored into her justification, which
is based on that distribution. Some epistemologists might object that the outlier is
in a “different reference class”. That is an interesting, material epistemological debate
that we need not settle now, since Williamson’s anti-luminist argument also fails in
this alternative model. For whenever the ρ(t, c) > d, the known interval is maximally
off-center. And when ρ(t′, c) ≤ ρ(t, c), it follows that the center c is the same and
the known interval is no larger, so once again R4,d(t′, c) ⊆ R4,d(t, c), the KK principle
holds perfectly, and S is perfectly luminous. That is remarkable, given that the width
of R4,d depends on the true position t in the case under consideration.

These models describe the clock task more naturally than either of Williamson’s
models and they are also motivated by a little explanatory story based on standard
statistical ideas about measurement accuracy. But S is perfectly luminous in both.

11 Failure of Williamson’s Sorites Argument
It seems that Williamson views his clock models as mere icing on the anti-luminosity
cake—the heavy lifting is supposed to be done by his celebrated Sorites argument
against luminosity. The argument has generated an extensive literature that we will
not review here, as our purpose is merely to focus on how the argument fares in our
models. We take the liberty to adapt Williamson’s argument to the clock setting.
Suppose that the clock face is large and that the N positions 1, . . . , N are sufficiently
close together to make them impossible to discriminate but the face is wide enough
that N/2 is easily discriminable from 1 on the opposite side of the face. Let qi denote
the proposition that the true value is exactly i. Some clock reading is true, say position
1. In that case, due to the proximity of the clock readings, we have:

¬K¬q2. (26)

Given that the clock face is wide, S knows that the clock does not read the diametrically
opposed value N/2:

K¬qN/2. (27)

It seems that S would have to have an unrealistically sharp focus on her own belief
state to know exactly where her confidence interval ends. So Williamson assumes that,
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for each i such that i such that 1 < i ≤ N/2, if S knows that she knows that the true
reading is not i + 1, then she also knows that the true value is not i:

KK¬qi → K¬qi−1. (28)

Now, assume for reductio argument that S is luminous. That implies that for each
i ≤ N/2:

K¬qi → KK¬qi. (29)

The N/2 respective statements of forms (28) and (29) yield, for each i ≤ N , that:

K¬qi → K¬qi−1. (30)

By (27) and the N instances of (30) one obtains:

K¬q2, (31)

which contradicts (26). So some statement of form (29) is false and, hence, so is
luminosity.

We have just seen that S is luminous in models (W2, R3,d) and (W2, R4,d). Since
the models also validate Williamson’s epistemic logic, it must be that the models make
some premise false. Here is a very interesting feature of Williamson’s argument—it is
necessarily unsound, in the sense that some premise or other is false in every possible
world, but whichever premise happens to fail in a given world does so with extremely
low chance in that world. So S knows that the argument is unsound. Nonetheless,
in light of the logic of confidence intervals, each individual premise has a very high
chance of coming out true! So the usual practice of running down the list of premises
and checking them for plausibility results in judging the argument to be sound. The
subtlety of the argument’s unsoundness helps to explain its persistent interest and
also serves as a caution against a piece-meal approach to evaluating the soundness of
Sorities-like arguments.

It facilitates our analysis to define the perceptual interval known by S in (t, c) as
follows:

T3,d(t, c) = {t′ < N : (∃c′ < N) R3,d((t, c), (t′, c′))}; (32)

Since T3,d(t, c) is an interval over the clock face, T3,d(t, c) has a right (maximum)
endpoint if T3,d(t, c) does not cover the entire clock face.

1. Clock reading 1 is the right endpoint of T3,d(1, c) (figure 5.a). Then premise (26)
fails, since S knows that the true reading is not t − 1. But the failure only occurs
with very low chance, because the chance is extremely small that the confidence
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Figure 5: failure of the Sorites argument

interval would be sampled all the way to the left with respect to the true clock
reading.4

2. The known interval T3,d(1, c) includes N/2 (figure 5.b). Then premise (27) fails.
But given that the disk of the clock is large, it would be extremely improbable
to sample a confidence interval that far away from the true clock reading 1.

3. The known interval T3,d(1, c) does not include N/2 and t is not the right endpoint
of T3,d(t, c) (figure 5.c). Position 1 is in T3,d(1, c) but N/2 is not in T3,d(1, c), so
there is a right endpoint t of T3,d(1, c) and t falls properly between 1 and N/2.
The conditional of form (28) for i = t + 1 is false. For recall that KK holds in
the model, so since t + 1 is outside T3,d(1, c), we have that ¬qt+1 is entailed by
T3,d(1, c) and, hence, is known. Since KK holds in the model, KK¬qt+1 is true
at (1, c). But t falls inside the interval, so qt is not known. But again, it is very
hard to sample a confidence interval whose endpoint is exactly t, so the chance
that the t + 1th instance of (28) failing is extremely small.

12 Assumed Ignorance of Centering
Williamson’s anti-luminosity is not inevitable—we have just explained its slippery un-
soundness in the confidence interval model of perception. But the perfect luminosity
of our models is not inevitable either. Our models assume, like Williamson’s, that
S is aware of the exact radius d and center c of her confidence interval. In light of

4It is usually assumed that the sampling distribution in measurement is approximately Gaussian
and centered on the true clock reading. Thus, it is extremely improbable to sample an interval whose
center is so far away from 1 in this case, under the assumption that the positions are very close together.
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the preceding discussion, Williamson may prefer to retract those generous concessions.
However, without the concessions, Williamson’s models lose their magic. If it is simply
assumed that S does not know what her knowledge state is, then it is immediately
apparent that S does not know what her knowledge state is and, hence, does not know
that she knows the strongest proposition she knows. Nobody needed a Sorites argument
or fancy logic for that.

Williamson is still in a position to score an interesting point against luminisim,
however. The luminist might be happy if slight failures of S to access her known interval
of clock readings were to result in large failures of the KK principle, as measured by
Williamson’s evidential probability that she knows what she knows. In fact, that is the
case, as we now demonstrate.

We begin by relaxing S’s perfect knowledge of the center c of her own known
confidence interval. To keep notation under control, rename c as c0 and d as d0. Now
introduce new parameters c1, d1 such that S has generated a higher-order confidence
interval around c0 whose midpoint is c1 and whose width is 2d1 + 1 (fig. 6.a).
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Figure 6: ignorance of centering

ρ(t, c) ≤ d ⇒
(
R3,d((t, c), (t′, c′)) ⇐⇒ c = c′ ∧ ρ(t′, c) ≤ d

)
. (33)

For now, assume that S is perfectly luminous about d0 and d1—of course, Williamson
might question that as well, but it turns out that he doesn’t need to in order to make
his point. That leaves the value of c1 free to vary, so each possible world is now a
triple (t, c0, c1). Let W3 denote the set of all such possible worlds. Recall that there
are two policies for defining S’s knowledge state when her confidence interval over a
parameter is false: (i) she knows nothing about the parameter (fig. 6.b) or (ii) she
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knows the least interval on the same center that contains the true parameter value (fig.
6.c). We develop option (ii) here, leaving the easier case (i) for the reader. Consider
world (t, c0, c1) with respect to fixed parameters d0, d1. The strongest interval for t
known by S is the smallest interval centered on c0 of width ≥ 2d0 + 1 that contains
t. The strongest interval for c0 known by S is the smallest interval centered on c1 of
width ≥ 2d1 + 1 that contains c0. And we allow, on Williamson’s behalf, the liberal
concession that at least c1 is known perfectly by S:

R4,d0,d1((t, c0, c1), (t′, c′
0, c′

1)) ⇐⇒


c′

1 = c1;
ρ(t′, c0) ≤ max(d0, ρ(t, c0));
ρ(c′

0, c1) ≤ max(d1, ρ(c0, c1)).
(34)

Note that:

R4,d0,0 = R4,d0 , (35)

so R4,d0,0 validates KK. We now proceed to show that the violation of KK can
be severe, in Williamson’s sense of evidential probability, even when d1 = 1. Let
w = (t, c0, c1) be an arbitrary world.

Knowledge is a bit more complicated in this model, since it concerns both the
interval of clock readings known by S and the (dissociated) interval of possible centers
of the former interval that is known by S. Let T4,d0,d1(t, c0, c1) be the former interval
(in world (t, c0, c1) and let C4,d0,d1(t, c0, c1) be the latter.

T4,d0,d1(t, c0, c1) = {t′ < N : (∃c′
0 < N) R4,d0,0((t, c0, c1), (t′, c′

0, c1))}; (36)
C4,d0,d1(t, c0, c1) = {c′

0 < N : (∃t < N) R4,d0,0((t, c0, c1), (t′, c′
0, c1))}. (37)

It is easier to think of accessibility in terms of these known intervals. Each world
(t′, c′

0, c′
1) accessible from (t, c0, c1) has component c′

0 drawn from C4,d0,d1(t, c0, c1) and
component t′ drawn from T4,d0,d1(t, c0, c1). Component c′

1 is fixed at the value c1:

Proposition 3.

R4,d0,d1(t, c0, c1) = T4,d0,d1(t, c0, c1) × C4,d0,d1(t, c0, c1) × {c1}. (38)

Proof. The ⊆ inclusion is immediate, by definitions (36) and (37). For inclusion ⊇,
suppose that (t′, c′

0, c′
1) is not in R4,d0,d1(t, c0, c1). Then by (25), one of the following

cases obtains:

c′
1 ̸= c1; (39)

ρ(t′, c0) > max(d0, ρ(t, c0)); (40)
ρ(c′

0, c1) > max(d1, ρ(c0, c1)). (41)

In case (39), c′
1 is not in {c1}. In case (40), t′ is not in T4,d0,d1(t, c0, c1). In case (41),

c′
0 is not in C4,d0,d1(t, c0, c1).
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Worlds are three dimensional. The preceding proposition says that R4,d0,d1(t, c0, c1) is
a two-dimensional, finite rectangle whose sides are the known intervals for t and for c0.
Furthermore, it is easy to verify from definition (53) that:

Proposition 4.

|T4,d0,d1(t, c0, c1)| = 2 max(d0, ρ(t, c0)) + 1; (42)
|C4,d0,d1(t, c0, c1)| = 2 max(d1, ρ(c0, c1)) + 1. (43)

Now one may calculate:

|R4,d0,d1(t, c0, c1)| = |T4,d0,d1(t, c0, c1) × C4,d0,0(t, c0, c1) × {c1}| (44)
= |T4,d0,d1(t, c0, c1)| · |C4,d0,0(t, c0, c1)| . (45)

The important point for Williamson is that, in our model, the centering parameter c0
performs the same function that t served in Williamson’s first model—no value of c0
other than the actual value allows for knowledge that one knows when S’s confidence
interval is true (i.e., in the very probable case in which ρ(t, c0) ≤ d0).

Proposition 5. Suppose that ρ(t, c0) ≤ d0. Then: R4,d0,d1(t′, c′
0, c′

1) ⊆ R4,d0,0(t, c0, c1) ⇒
c0 = c′

0.

Proof. Immediate consequence of proposition 3 and (12).

The preceding proposition is false when ρ(t, c0) ≤ d0 > d0.
Therefore, in light of propositions 5 3 and (12), we have the following result when

ρ(t, c0) ≤ d0 > d0:

|KR4,d0,d1(t, c0, c1)| ≤ |T4,d0,d1(t, c0, c1) × {c0} × {c1}| (46)
= |T4,d0,d1(t, c0, c1)|. (47)

Hence, the evidential probability of KR4,d0,d1(t, c0, c1) when ρ(t, c0) ≤ d0 > d0 is no
greater than:

T4,d0,d1(t, c0, c1)
T4,d0,d1(t, c0, c1)C4,d0,0(t, c0, c1)

= 1
|C4,d0,0(t, c0, c1)|

(48)

= 1
2 max(d1, ρ(c0, c1)) + 1

. (49)

The smallest possible concession the luminist can make to Williamson short of full
validation of the KK principle is to set d1 = 1. But then the preceding expression
for evidential probability is at most 1/3 and the failure of KK becomes even larger
as d1 increases. So by Williamson’s criterion, the failure of the KK principle is very
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likely to be large, even given the minimum uncertainty about the position of of one’s
confidence interval over clock readings. The minimum uncertainty can be made arbi-
trarily small, in terms of angular separation, by increasing the number of potential clock
readings without increasing the size of the clock. That is a surprising and apparently
uncomfortable result for moderate luminists.

13 Soundness of the Sorites Argument
***ETC***

14 Critique of Centering Ignorance
It is difficult to interpret S’s ignorance of the center of her own confidence interval in the
preceding model as anything but an assumed aphasia in S. Perhaps the interval is latent
and dispositional, whereas S’s knowledge thereof is explicitly propositional, and explicit
cognition has trouble eliciting latent cognition. But then why shouldn’t dispositional
knowledge of latent, dispositional knowledge should suffice for KK? Moreover, it
is risky to conclude on the basis of armchair intuitions that we don’t have latent,
second-order knowledge on the basis of manifest intuitions—some serious, cognitive
neuroscience is required. Furthermore, if a scientist who publishes an explicit confidence
interval believes what she publishes and performed the statistical rituals properly, it
seems that she has access to her known interval, so one might say that anyone with
access to a statistics text is “in a position” to avoid the failure of KK in the preceding
clock model. In any event, it should hardly come as a surprise that S fails to know
that she knows if she is assumed not even to believe that she knows what she knows.
For that reason, Williamson explicitly disavows arguments for non-luminosity that are
based on an explicit denial that S believes that she believes, so apparently he would
not be much comforted by the non-luminosity result obtained in that model.

It remains impressive that the smallest possible failure to believe that one believes
results in a large failure to know that one knows in our model. But that result is
also less interesting than it might seem. Williamson’s original examples are shocking
because the alleged non-luminosity they illustrate concerns ordinary perceptual knowl-
edge about the clock reading t. In the preceding model, the non-luminosity concerns
the entire knowledge state K4,d0,d1(t, c0, c1), which involves the relative position of c0
and c1 as well as the position of t. If we focus, as Williamson does, on the perceived
interval T4,d0,d1(t, c0, c1) around t, then the probability that S knows that she knows

19



her perceived interval is just:

p(KT4,d0,d1(t, c0, c1) | T4,d0,d1(t, c0, c1)) = |KT4,d0,d1(t, c0, c1)|
|T4,d0,d1(t, c0, c1)|

(50)

= |T4,d0,d1(t, c0, c1)| − 2d0 |T4,d0,d1(t, c0, c1)|(51)

= 2d2 + 2d1 + 1
2d1 + 1

. (52)

If, plausibly, the aphasic quantity 2d2 is small compared with the confidence interval
width 2d0 + 1, then the degree of failure of KK with respect to position is also small,
so even if Williamson were to embrace aphasia as an argument for non-luminosity,
the amount of non-luminosity obtained is pretty much just the amount of assumed
aphasia—hardly a just cause for alarm.

15 Empirical Non-Luminosity
A more plausible and uncontroversial source of non-luminosity concerns the width of S’s
confidence interval. In the case of observational noise, the width of the interval depends
on the variance or spread of the approximately Gaussian distribution over observational
errors, and that parameter must be estimated empirically, for the situation at hand.
That empirical estimate is also noisy, resulting in a meta-confidence-interval over d0.
Let c2 be the center of that interval and let its width be 2d2 + 1. Then, it is natural to
define accessibility as follows:

R5,d0,d2((t, c0, c2), (t′, c′
0, c′

2)) ⇐⇒


c′

1 = c1;
ρ(t′, c0) ≤ max(d0, ρ(t, c0));

ρ(d′
0, c2) ≤ max(d2, ρ(d0, d2)).

(53)
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