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Abstract

I argue that uncomputable formal problems are intuitively, mathematically, and methodologi-9
cally analogous to empirical problems in which Hume’s problem of induction arises. In particular,
I show that a version of Ockham’s razor (a preference for simple answers) is advantageous in11
both domains when infallible inference is infeasible. A familiar response to the empirical problem
of induction is to conceive of empirical inquiry as an unending process that converges to the truth13
without halting or announcing for sure when the truth has been reached. On the strength of the
analogies developed, I recommend the adoption of a similar perspective on uncomputable formal15
problems. One obtains, thereby, a well-de�ned notion of “hyper-computability” based entirely
on classical computational models and on standards of success that have long been regarded as17
natural in the empirical domain.
c© 2003 Published by Elsevier B.V.19
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1. Introduction: relations of ideas, matters of fact

Hume [6] held that all mathematical and logical reasoning is anchored in the mere23
“relation of ideas” within the mind. According to Hume, ideas are surveyable in their
entirety by a mind of su�cient acuity, so that all a priori truths can be reduced to25
mental inclusions (e.g., “unmarried” is part if the concept of “bachelor = unmarried
male”). Hume conceived of empirical “matters of fact” quite di�erently. To be certain27
of an empirical law, one must already have seen all possible cases covered by the
law at an instant, but only �nitely many instances are observed by a given stage of29
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inquiry. Thus, Hume arrives at his celebrated problem: if logic does not justify the1
induction of laws from instances, what does? He answers that inductive generalization
is an unjusti�ed habit—something we simply do and get away with when we get away3
with it.
One response to Hume’s problem [3,4,8,10,17,19] is to drop the tacit requirement that5

successful inquiry must halt, ring a bell [9], or otherwise infallibly signal having found
the right answer. Then inquiry can be said to succeed in the sense that it stabilizes,7
eventually, to the right answer, possibly with some surprises and retractions of earlier
answers along the way. In this manner, empirical inquiry can be both fallible and9
truth-directed. One would prefer a scienti�c method that is guaranteed to signal its
arrival at the truth, but there is no such procedure for drawing general conclusions11
from particular instances. In such cases, a weaker kind of success must be entertained
if one is to speak of scienti�c success at all. 113
Hume seems to assume that formal problems are infallibly solvable and that em-

pirical problems are not, but neither claim is true in general. The empirical question15
“will it rain tomorrow?” is decidable infallibly by waiting to see 2 and uncomputable
formal problems are not infallibly solvable by algorithmic means. Indeed, infallibly17
solvable empirical problems are quite analogous to computably decidable formal prob-
lems and empirical problems that have no infallible solution are strongly analogous to19
uncomputable formal problems. That is no accident. In light of Turing’s philosophical
analysis of algorithmic computability in terms of Turing machines [21], algorithmic21
unsolvability arises out of �niteness and locality conditions of the agent quite analo-
gous to those that give rise to the problem of induction, e.g., the agent (the Turing23
machine’s read–write head) cannot scan or write on in�nitely many tape squares in an
instant or discriminate letters from an in�nite alphabet (because the di�erences would25
end up being sub-microscopic), etc.
My aim in this paper is to emphasize some analogies, intuitive, mathematical, and27

methodological, between formal and empirical reasoning. 3 Intuitively, uncomputable
problems like the halting problem seem to demand certainty that something will never29
happen (e.g., that a computation will never halt) based only on a �nite run of experience
(the computation has not halted yet). Mathematically, some well-known theorems in31
the theory of computable functions can be interpreted as providing deep connections
between formal and empirical reasoning. Methodologically, I argue that “Ockham’s33
razor”, a systematic bias in favor of “simple” answers in the face of uncertainty, can

1 Alternatively, one can retain the halting condition if one substitutes some notion of “con�rmation” or
“coherence” for truth as an aim of inquiry. My view, for what it is worth, is that this “ersatz” approach
gives up too quickly on truth and underestimates the problem of computing the “ersatz” con�rmation or
coherence relation. As I have discussed this issue at length elsewhere [11,12,15], I will not do so here.
2 Yes, empirical infallibility in such cases demands the exclusion of such philosophical doubts as being

a brain in a vat that is fed neural stimulation giving rise to rain-like sensations. But one must also suspend
doubts about properly following an algorithm or about the possible inconsistency of arithmetic in the formal
case, so again the two cases are analogous. Infallibility is always relative to some restricted range of
possibilities.
3 I have discussed analogies between computability and empirical reasoning before in several places

including [10,11,13–15].
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be shown to facilitate convergence to the truth in both the empirical and the formal1
domains when infallible solutions are infeasible.
On the basis of the preceding analogies, I recommend a convergent, defeasible per-3

spective on uncomputable formal problems as well as on inductive empirical problems. 4

This approach yields a natural concept of “hyper-computation” based entirely on classi-5
cal computational models. The basic idea is not new. It was pioneered by Putnam [19]
and Gold [4] and has since then served as a fertile source of ideas within computational7
learning theory. 5

2. The problem of induction9

Hume freely admitted his debt to ancient skepticism. In the late middle ages, Buridan
recounted the ancient argument for inductive skepticism as follows:

11
Let us assume... that from the will of God, whenever you have sensed iron, you
have sensed it to be hot. It is sure that... you would judge the iron which you see13
and which in fact is cold, to be hot, and all iron to be hot. And in that case there
would be false judgments, [even though] you have as much experience of iron as15
you now in fact have of �re. 6

Quaint as it is, Buridan’s argument establishes a negative theorem about what can17
be learned from empirical evidence and how. A few de�nitions are required in order
to state precisely what the argument shows. The world a�ords the scientist with an19
unending input stream � of discrete inputs coded as natural numbers. Let NN denote
the set of all input streams. An empirical proposition says something about what this21
in�nite sequence will be like. For example, “always hot” says that the input stream
will be an unending sequence of “hot” observations. Each empirical proposition is23
identi�ed with the set of input streams of which it is true, and hence is a subset
of NN. An empirical presupposition P is an empirical proposition that delimits the25
range of possible input streams over which one would like to succeed. An empirical
question is a countable collection � of mutually exclusive empirical propositions called27
potential answers to the question. If � is an input stream satisfying an answer to �,
let ans�(�) denote the unique answer in � that contains �. Answers are in�nite sets.29
To give methods something concrete to output, let numbers be assigned to answers by
an injective mapping � :�→N called the answer coding function for �. An empirical31
problem is a triple (P;�; �), where P is an empirical presupposition, � is an empirical
question whose potential answers cover P, and � is an answer coding function for �. It33
is assumed that every input stream in the presupposition satis�es some potential answer
to the question. In Buridan’s problem, the empirical presupposition is that the input35
stream will consist entirely of observations of “hot” or “non-hot” and the empirical
question is whether or not every observation will be “hot” (i.e., whether the input37

4 Cf. In this respect, my position agrees with those expressed in the papers by Kugel and Burgin in this
volume.
5 For reviews and bibliographies, cf. [8,10,17].
6 J. Buridan, Questions on Aristotle’s Metaphysics, Book II, Question 1, translation in [7].
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stream is the constant “hot” sequence). Code “hot” as 1 and “non-hot” as 0. Then the1
presupposition of Buridan’s problem is the set 2N of all in�nite Boolean sequences
and the question is the partition �= {{1}; 2N − {1}}, where 1 is the unit constant3
function. The question is binary, so let � arbitrarily code {1} as 1 and 2N − {1} as 0.
So Buridan’s empirical problem can be represented as the triple (2N; �; �).5
An empirical method for problem (P;�; �) responds to each �nite, initial sequence

of an input stream with some code number in the range of � or with ‘?’, which indicates7
a refusal to choose an informative answer. Let N∗ denote the set of all �nite sequences
of natural numbers. Thus, an empirical method for problem (P;�; �) is a map of type9
M : N∗ → (rng(�)∪ {‘?’}). What makes an empirical method “empirical” is that it
never gets to see the whole, in�nite input stream at once; it only gets to see ever larger11
initial segments and must “leap” from the current observations to some opinion whose
truth may depend on what the tail of the input stream will be like for eternity. The13
aim of guessing is, straightforwardly enough, to �nd the right answer. Say that method
M solves empirical problem (P;�; �) in the limit just in case in each input stream �15
satisfying the presupposition of the problem, there is a stage after which each output
produced by M along � is the (unique) potential answer in � satis�ed by �. Notice17
that this success concept requires only stabilization to the right answer. The transition
from error to truth is silent. No bell or halting state certi�es success when it occurs.19
It is easy to construct a method that solves Buridan’s problem in the limit: select

the answer “always hot” until a “non-hot” input is encountered and switch to the21
answer “not always hot” thereafter. This method not only converges to the right answer
eventually; it is guaranteed, in the worst case, to retract its earlier views at most23
once (when “always hot” is replaced with “not always hot”). In general, a retraction
occurs when an informative answer is dropped for some distinct answer, informative or25
uninformative. Retractions are the painful but unavoidable symptom of fallibility. But
needless retractions are another matter entirely. It is desirable to minimize retractions27
in the design of empirical methods in much the same way that computational time and
space are routinely minimized in the design of computing strategies.29
The method just described starts with “always hot”, in the sense that the method’s

initial output is “always hot”. When a method is guaranteed to succeed with one31
retraction starting with h, say that the method is a refutation method for h. Such
a method favors h over ¬h until some problem arises and then prefers ¬ h forever33
after. Since the rejection of h cannot be “taken back” without another retraction, the
rejection of h is analogous to the halting of a computation, for it certi�es that the truth35
has been found. If h is true, however, the truth has been “found” from the outset but is
never announced by an infallible sign. That is the characteristic situation of successful37
empirical science. Similarly, one can say that a method is a veri�cation method for
“not always hot”, since it starts out with the denial of “not always hot” and switches39
to “not always hot” when verifying evidence is received. A veri�cation method for h
is a method that solves the problem with one retraction starting with ¬h.41
Finally, what Buridan’s argument proves is that there is no veri�cation method for

“always hot” in the empirical problem he describes. For suppose there were one. As43
a veri�cation method, it starts with “not always hot”. The method succeeds in each
input stream of hot or non-hot observations, so feed it the constantly hot sequence45
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until it outputs “always hot” (which it must, on pain of failing to converge to the right1
answer in the constantly hot input stream). That is one retraction. Now switch over to
non-hot inputs, forcing the method to retract again to “not always hot”, for a total of3
two retractions. Contradiction. Buridan’s God is merely a colorful personi�cation of the
preceding, mathematical construction of a possible input stream on which the learner5
fails, a construction that depends on the intrinsic di�culty of the problem rather than
upon the actual presence of a malicious agent in nature.7
For another example, let h= “there will be exactly one hot observation” and let the

question be whether h is true. It is easy to solve this problem in the limit: output ¬h9
until the �rst hot observation, output h until the second hot observation, and output
¬h forever after. This procedure neither refutes nor veri�es either side of the question11
because it retracts twice (starting with ¬h) if there are at least two hot observations.
Furthermore, no possible method succeeds with just one retraction. For assuming that13
the method succeeds, God (or nature) can present cold observations until the method
converges to ¬h. Then God can present a hot observation followed by all cold obser-15
vations until the method retracts to h. One more hot observation forces a retraction to
¬h, for a total of at least two retractions. If the hypothesis in question is “there will17
be exactly one or strictly more than two hot observations”, then three retractions are
required, and so forth. If it is presupposed that there will be at most �nitely many hot19
observations and the question is how many there will be, the problem is not solvable
under any worst-case retraction bound. Some problems are not even solvable in the21
limit. Suppose you wish to know whether there will be �nitely or in�nitely many hot
observations. Buridan’s God can show you hot observations while you say “�nitely23
many” and non-hot observations while you say “in�nitely many”. Whichever answer
you converge to, you are wrong and if you do not converge you also fail.25
Slight modi�cations of Buridan’s problem give rise to increasingly complex problems

empirically solvable in successively weaker senses. The harder problems do not merely27
embody the problem of induction; they involve nested problems of induction, of which
retractions are merely the painful, outward sign. In the base case, there are problems29
that require no retractions at all: these are the empirical problems that involve no
problems of induction at all and that can, therefore, be answered with infallibility, in31
analogy to solvable formal problems.

3. The “problem of computation”33

It sounds perfectly natural to speak of the “problem of induction” (the impossibility
of a veri�cation procedure for many scienti�c questions) but one rarely, if ever, speaks35
of “the problem of computation” (the impossibility of a veri�cation procedure for many
formal questions). And yet, the two situations are quite similar, both on the face of37
it and at a deeper, structural level. In this section, I describe how formal problems
give rise to degrees computational unveri�ability matching the degrees of empirical39
unveri�ability discussed in the preceding section.
To begin with, a formal question is just like an empirical question except that41

the possible input streams are replaced with single, numerical inputs. More precisely,
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a formal problem is a triple (P;�; �), where P is a subset of N called a formal1
presupposition, � is a partition of P called a formal question, and � is an injective
assignment of code numbers to answers in � called an answer coding function.3
Formal problems present single number inputs that can be “received” all at once,

whereas empirical problems present in�nite sequences of numbers that can only be5
“received” in a piece-meal fashion. So far, Hume’s position seems right: in formal
problems you have the input and you have the concept to be applied to it, so you7
merely have to focus your “mind’s eye” on the two of them to see with mathematical
certainty whether the concept applies to the input. In empirical reasoning, infallibility9
may be impossible because you never see the whole input stream all at once.
But the dichotomy between infallible formal reasoning and fallible empirical reason-11

ing was already questionable in Hume’s day. If full “clarity and distinctness” could be
achieved on each input, then formal reasoning would, indeed, always terminate with13
certainty. But if full “clarity and distinctness” is never achieved on some inputs, and
if the process of achieving it has bumps and surprises along the way, one may as15
well think of formal reasoning as an ongoing, fallible process analogous to empirical
inquiry [16].17
The theory of computability underscores the preceding point with mathematical pre-

cision. In the familiar halting problem, the input domain is the set N of all natural19
numbers and the question is whether the Turing machine with code number n eventu-
ally returns an output when started on input n. Let K denote the set of all n for which21
the answer to the question is a�rmative. Let �(K) = 1 and �(N − K)= 0. Then the
halting problem is the triple (N; {K;N − K}; �). In the ensuing discussion, I will use23
¬K as an abbreviation for N − K .
Intuitively speaking, the di�culty posed by the halting problem is empirical. When25

an algorithm takes a long time to return an answer, one begins to suspect that the
algorithm will never terminate, but how can one be sure? No amount of waiting yields27
certainty that the computation will never halt, any more than it can result in certainty
that every observation will be “hot”.29
This empirical argument falls short of a proof, however, for perhaps the achievement

of clarity and distinctness with respect to the input and the concept to be applied to31
it involves something more clever than just sitting around and waiting for a simulated
computation to halt—after all, you already have the program and the input and every-33
thing about the computation is mathematically determined by this pair. As it happens,
such means are bound to fail, but the usual proof of this fact is a static, diagonal35
argument with more a�nity to Cantor than to Hume.
The strong impression that the halting problem involves something like the problem37

of induction is vindicated, however, by an alternative proof strategy that looks quite
similar to Buridan’s argument for inductive skepticism. 7 As in Buridan’s argument,39
the proof shows that there is no computable veri�er for non-halting (i.e., for ¬K), in
the sense of a Turing machine that eventually halts with 1 (i.e., “yes”) if and only if41
it is provided with the index of a machine that does not halt on its own index. The
“fooling” strategy of Buridan’s God can be implemented against a would-be veri�er43

7 Such an argument is attributed to Scott in [1].
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Mm of ¬K as follows. Let d be a Turing machine index with the following property.1
On arbitrary input x, the Turing machine Md indexed by d ignores x altogether and
simulates the computation of Mm on input d. If the simulated computation of Mm on3
input d ever halts with the answer �(¬K), Md returns some arbitrary output (say,
whatever Mm halts with on input d) on input x. If the simulated computation of Mm5
on input d never halts, Md simulates it forever and never produces an output on input
x. So it is as if machine Md “pretends” never to halt on input d (or on any other7
input) until Mm becomes irrevocably convinced that Md never halts on input d. Then
Md halts on all inputs, including d, so d is in K , but Mm has irrevocably committed9
itself (by halting with �(¬K)) to the view that d is in ¬K . If Mm never halts on input
d, then Md never halts on input d, so d is in ¬K , but Mm never halts with output11
�(¬K). Either way, d witnesses that Mm fails to verify ¬K .
This is essentially an instance of Buridan’s skeptical argument, with Md in place of13

Buridan’s God and “never halts” in place of “never cold”. True, the “fooling strategy”
in this argument does not have control over empirical inputs to the would-be veri�er15
to be fooled. But the proposed fooling strategy Md modi�es its own behavior through
time as it watches the would-be veri�er use all the means at its disposal to try to17
�gure out what Md will do in light of the very code of Md. So it is as though the
fooling strategy Md has replicated Buridan’s classical fooling strategy in the would-be19
veri�er’s internal experience.
It is easy to sympathize with Hume here. The input is whatever it is and the deductive21

means you apply to it are entirely up to you, so how can your own, inner experience of
what you have already received be hijacked by a malicious skeptical strategy? The key23
to the argument is the self-referential assumption that there exists a Turing machine Md

that can simulate the computation of would-be veri�er M on input d. By modifying its25
own behavior in light of the outcome of the computation M (d), machine Md e�ectively
seizes control of M ’s internal experience. It su�ces to obtain Md up to input–output27
behavior, since the manner in which Md produces its input–output behavior is irrelevant
to the membership of d in K . Let Mu be the universal Turing machine, 8 which has the29
property that for each Turing machine index i and input y;Mu(i; y) returns the output
(if any) of the computation Mi(y). Recall that m is the index of the Turing machine31
we wish to “fool”. Hence, the partial function  (y; x)≈�u(m; y), 9 whose value is the
result of ignoring x and passing along the result of simulating Mm on input y, is Turing33
computable. To complete the construction, one must show that there exists a Turing
machine index d such that for all x, �d(x)≈  (d; x)≈�u(m; d). In other words, �d(x)35
passes along Mm(d), the �nal response (if any) of would-be veri�er Mm of ¬K . To
obtain such a d, apply the s-m-n theorem to obtain a total, computable function s such37
that �s(y)(x)≈  (y; x). Then by the Kleene recursion theorem, there exists a Turing
index d such that �s(d) = �d.39

8 The basic computability results cited in this paragraph are presented in many texts on the theory of
computable functions. A nice, elementary source is [2].
9 The relation ≈ signi�es that either both functions have the same de�nite value or that both functions

are unde�ned.
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Although ¬K is not computationally veri�able, ¬K is computationally refutable (in1
the sense that some Turing machine halts with “no” on input n i� n is in K). On input
n, simply simulate the computation of M on input n until the computation halts and3
halt with “no” when it has done so. So just like “all observations are hot”, the formal
question “the computation of M on input n never halts” is computationally refutable5
and not veri�able.
The preceding connection between formal and empirical reasoning is strengthened by7

allowing Turing machines to output successive answers on an output tape in response
to a given input without ever halting. One can then rede�ne computational veri�cation9
just as in the empirical case, as convergence to the right answer with at most one
retraction starting with “no”, and similarly for refutation. This is equivalent to the11
usual de�nition of veri�ability in terms of halting. 10 Say that a Turing machine solves
a formal problem in the limit just in case the machine converges to the right answer13
eventually, no matter which possible input is provided.
Formal problems can also involve close analogues of the “nested” problems of in-15

duction mentioned earlier. Let K1 denote the set of all Turing machine indices i such
that the computation of Mi on input i returns exactly one output (in sequence, according17
to the convention described in the preceding paragraph). There is an obvious method
for solving K1 with 2 retractions starting with “no”: just simulate the computation Mi19
on input i. Say “no” until an output is produced, say “yes” until a second output is
produced and then say “no” forever after. Also, an extended skeptical argument shows21
that two retractions are not enough starting with “yes”. Let d be a Turing machine
index that feeds itself to the given machine M and refuses to produce any outputs until23
the computation of M retracts to “no”. Then Md writes one output on its output tape
and refuses to write any more outputs until M retracts to “yes”. Finally, Md writes25
another output, forcing M to retract again to “no”, for a total of three retractions.
Putnam [19] noticed the analogy between such formal predicates and the problem of27
induction and referred to formal predicates that can be decided with n retractions as
n-trial predicates. The theory of such predicates is tidier if one also keeps track of29
whether the �rst output is “yes” or “no”, as in the empirical case [11].
Next, suppose you know in advance that you will be given only indices of machines31

that produce at most �nitely many outputs and the question is how many outputs a
given machine will produce. The obvious method is to count the current number of33
outputs of the simulated computation. That method does not succeed under any �nite
retraction bound, but no method possibly could. For let M aspire to succeed with k35
retractions. Index d can feed itself to M and elicit M to k + 1 retractions by the
preceding recipe. Since d produces at most k + 1 outputs, it satis�es the problem’s37
formal presupposition.
To obtain a formal problem that is not even computably solvable in the limit, ask39

whether the given index gives rise to an in�nite sequence of outputs (just what was
presupposed in the preceding example). To see why, mimic the empirical, skeptical41

10 Given a veri�er in the original sense, simulate its program on the given input and periodically output
“no” until the simulated veri�er halts with “yes”. Thereafter, output only “yes”. In the other direction,
simulate the new-style veri�er until it outputs its �rst “yes”. Then output “yes” and halt.
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argument presented in the preceding section, using the Kleene recursion theorem to1
achieve self-reference in the manner illustrated in the preceding examples. Thus, each
of the empirical problems in the preceding section has been shown to have an analogue3
in the formal domain that is solvable in a closely analogous, fallible sense.

4. Topological complexity5

The structural features of empirical problems that are responsible for the problem
of induction are neither logical nor probabilistic, but topological. A topological space7
consists of a set W , together with a collection of subsets of W that are called open sets.
The open sets of a topological space on set W must satisfy the following, four axioms:9
(1) W is open.
(2) ? is open.11
(3) Arbitrary unions of open sets are open.
(4) Finite intersections of open sets are open.13
Think of W as a set of possible worlds or ways the world might be for all one knows.
Let propositions be subsets of W (i.e., each proposition is identi�ed with the set of15
worlds in which it is true). Here is an informal argument that the veri�able propositions
over W constitute the open sets of a topological space, where veri�ability means that17
there exists an empirical method of some sort that halts with “yes” if the proposition
is true and that always says “no” otherwise.19
The set W is the vacuous proposition that is true in all possible worlds. This proposi-

tion is trivially veri�able (say “yes” no matter what). The contradictory proposition ?21
is veri�able (say “no” no matter what). Finite conjunctions (intersections) of veri�able
propositions are veri�able (wait for a “yes” for each conjunct before returning “yes”)23
and an arbitrary disjunction (union) of veri�able propositions is veri�able (wait for a
“yes” for at least one disjunct before returning “yes”). Hence, the veri�able proposi-25
tions are the open sets in a topological space on W , which may be called veri�ability
space. Furthermore, axiom (3) cannot be strengthened to arbitrary intersection under27
this interpretation, for suppose you have an in�nite conjunction of veri�able proposi-
tions. The respective veri�cations could arrive at ever later times, so there is no time by29
which you can be sure that all of the conjuncts are veri�ed (the problem of induction).
So the striking asymmetry between axiom (3) and axiom (4), which is characteristic of31
all topological reasoning, is a re�ection of the problem of induction. Topology is often
thought of as “plastic geometry”. It is equally, if not more generally, the mathematical33
theory of ideal veri�ability.
Here is another way to make a similar point. Let proposition h be non-open in the35

veri�cation topology. Since h is non-open, h contains a limit point w of ¬h, so every
open neighborhood of w catches an element of ¬h. In other words, ¬h is false in w,37
but every veri�able proposition true at w is consistent with ¬h. Since each evidential
proposition true of w is veri�able and �nite conjunctions of veri�able propositions are39
veri�able, w is a world at which ¬h is false, but each �nite body of evidence true of w
is compatible with ¬h. That is the problem of induction! So the problem of induction41
is a topological invariant of empirical problems.
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In the preceding discussion I assumed some intuitive features of veri�ability and1
showed that they imply the closure axioms for open sets in a topological space. It
is also revealing to show that in a naturally selected topology on input streams, the3
open sets are precisely the veri�able propositions (in the explicit sense of empirical
veri�ability de�ned in Section 2 above). Let � be a �nite sequence of natural numbers.5
Let [�] denote the set of all in�nite sequences that extend �. Let basic open sets be sets
of form [�]. Let open sets be unions of basic open sets. Now restrict the resulting space7
to the empirical presupposition P. This is a widely studied topological space [5] called
the Baire space restricted to P. Now it can be proved (rather than intuitively assumed,9
as in the preceding paragraph) that open sets are veri�able: wait until the input stream
extends a basis element contained in the open set before saying “yes”. The converse11
can also be proved: if h is veri�able, then h may be expressed as the union of all basis
elements corresponding to �nite input sequences on which the method says “yes”.13
Dually, the refutable propositions are exactly the closed propositions and the decidable
(veri�able and refutable) propositions are the clopen (closed and open) propositions.15
A limit point of ¬h in the restricted Baire space is an input stream whose �nite

initial segments can always be extended to input streams in ¬h. So if a limit point of17
¬h happens to satisfy h, then h is true but inputs never guarantee the truth of h, which
is again the problem of induction. So the problem of induction arises, topologically19
speaking, precisely when the actual input stream is a limit point of a false answer. This
happens exactly when the actual world is on the boundary of at least two answers (i.e.,21
it is a limit point of both answers). So the problem of induction is the problem of
boundary points.23
Veri�cation and refutation make sense only with respect to a �xed hypothesis h.

More generally, an empirical problem (in the sense de�ned above) is solvable with zero25
retractions i� each answer is open: just wait for veri�cation of a potential answer. Since
the answers constitute a partition of the presupposition, it follows that each potential27
answer is also closed, or clopen for short. So the easily solved empirical problems can
be characterized in terms of the topological structure of the problems themselves.29
The idea generalizes to problems requiring k retractions. The di�erence complexity

[18] of an empirical problem (P;�; �) is no greater than k i� there exists a �nite,31
ascending sequence (S0 ⊆ · · · ⊆ Sk) of open sets such that
1. Sk =P,33
2. for each i6k, each potential answer in � is open in the restricted space Si − Si−1,
where by convention S−1 =?.35

It follows that a problem is solvable with k retractions i� it has di�erence complexity k. 11

11 Given a method that succeeds with k retractions and given i6k, let Si be the set of all input streams
on which the method retracts at least k − i times. Then Si is open because it is a union of basic open sets,
so (1) is satis�ed. Also, the method retracts along an input stream in Si − Si−1 exactly k − i times. Since
the method succeeds, the answer output by the method after the k − ith retraction is true. So answer A is
de�nable within Si − Si−1 as the set of all input streams on which method M produces A after retraction
k − i, which is a union of basic open sets in the restricted space Si − Si−1, so (2) is satis�ed. Conversely,
suppose that the di�erence complexity of (P;�; �) is k. Let method M output answer A i� A is veri�ed
given Si − Si−1, where i is least such that Si is veri�ed by the current inputs (recall that S−1 =? by
convention).
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This condition can be trivially reformulated in a way that will make the analogy1
to computability easier to see. Impose the discrete topology on N, in which every
singleton {n} is open. Thus, a map f from the Baire space to N is continuous i� for3
each n in N, the inverse image f−1(n) is open in the Baire space. Since each answer
in � is the pre-image of some code number under the composed mapping (� ◦ ans�),5
it follows immediately that the di�erence complexity of an empirical problem (P;�; �)
is no greater than k i� there exists a �nite, ascending sequence (S0 ⊆ · · · ⊆ Sk) of open7
sets such that
1. Sk =P,9
2. for each i6k, the function (� ◦ ans�) is continuous on the restriction of the Baire
space to Si − Si−1, where by convention S−1 =?.11

Topological properties of sets often have “point-wise” characterizations. For example,
an open set is just a set whose members are all interior points. In the present applica-13
tion, an input stream is an interior point of an answer just in case it eventually presents
inputs that verify the answer. The idea generalizes in a natural way to k retractions.15
De�ne
1. input stream � is a 0 interior point of problem (P;�; �) i� � is an interior point17
of some answer A in �;

2. input stream � is a k+1-interior point of (P;�; �) i� � is an interior point of some19
answer A in � in the problem that results when P is restricted to input streams that
are not k-interior points of (P;�; �); 1221

3. input stream � is a k-limit point of (P;�; �) i� � is not a k-interior point of
(P;�; �).23

It follows that �nite sequence (S0 ⊆ · · · ⊆ Sk) witnesses that (P;�; �) has di�erence
complexity 6k i� for each i6k, Si contains only i-interior points of (P;�; �). Hence,25
a problem is solvable with k retractions i� it contains only k-interior points. So the
k-limit points are the input streams in which one faces at least a k + 1-fold problem27
of induction: removing them from the problem results in a problem solvable with just
k retractions.29
Since k-limit points are where k-fold problems of induction are faced, it is worth

taking a closer look at them. A 0-limit point is just an input stream satisfying an answer31
A such that no matter how much you have seen, there is an input stream satisfying
some other answer compatible with what you have seen already. This is just a single33
problem of induction, as in Buridan’s example of inferring “always hot”. A k+1 limit
point is an input stream satisfying an answer A such that no matter how much you35
have seen, there is a k-limit point satisfying some distinct answer compatible with what
you have seen already. For example, the input stream in which no hot observations are37
seen is a 2-limit point in the problem in which it is known that the color will change
at most two times and the question is how many times.39
Solvability in the limit has its own topological characterization. A �02 Borel set is a

countable union of closed sets. An empirical problem is solvable i� each answer is �0241

12 The concepts k-limit point and k-interior point can be extended by trans�nite induction over an extension
of the ordinals giving rise to a trans�nite version of the relationship between retractions and empirical
complexity [12].
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[10]. This condition is equivalent to saying that there is an in�nite, increasing, nested,1
!-sequence (S0 ⊆ · · · ⊆ Sk : : :) of open sets such that
1.

⋃∞
i=0 Si=P and3

2. for each i, each potential answer in � is open in the restricted space Si+1 − Si.
Recall that the �nite retraction characterization is the same, except that the nested5
sequence of open sets is �nite, which provides a nice, structural insight into the dif-
ference between the two cases.7

5. Formal complexity

Closely analogous concepts of structural complexity apply to strictly computational9
problems. Say that a function is computable over restricted domain P i� there exists
a Turing machine M that returns f(x) for each input x in P. Now de�ne that the11
e�ective di�erence complexity of formal problem (P;�; �) is 6k i� there exists a
�nite, increasing sequence (S0 ⊆ · · · ⊆ Sk) of recursively enumerable sets such that13
1. Sk =P and
2. for each i6k, the function (� ◦ ans�) is computable over the restricted domain15

Si − Si−1, where by convention S−1 =?.
Then it follows that a formal problem is e�ectively solvable with k retractions i� it17
has e�ective di�erence complexity k. 13 This is just the topological characterization
of empirical success “recursively enumerable” in place of “open” and “computable” in19
place of “continuous”. The corresponding analogy

open: recursively enumerable :: continuous : computable;21

is a familiar heuristic in descriptive set theory [18].
There is a point of disanalogy, however, for e�ective di�erence complexity admits23

of no point-wise characterization. Recall that an empirical problem has di�erence com-
plexity exceeding k i� the problem contains a k-boundary point. Hence, adding a single25
k-boundary point to a problem solvable with k retractions makes the problem intrinsi-
cally harder. But there is no single input one can add to a formal problem to make it27
intrinsically harder. For any single input n that is added to formal presupposition P in

13 Suppose Turing machine M solves (P;�; �) with k retractions. Then let Si denote the set of all n such
that M retracts at least k − i times on input n. Let x be in Si − Si−1, where i6k. Then M retracts exactly
k − i times on input x. Let fi(x) be the k − ith output of M on input x. Observe that fi is computable (using
M as a subroutine) and the domain of fi covers Si − Si−1. Also, since M succeeds with k retractions, fi
agrees with (� ◦ ans�) over the restricted domain Si − Si−1. Conversely, let (S0 ⊆ · · · ⊆ Sk) witness that the
e�ective di�erence complexity of (P;�; �) is no greater than k. Since each such Si is recursively enumerable,
let Turing machine Mi formally verify membership in Si . Also, for each i¡k, let Turing machine Li compute
(� ◦ ans�) over restricted domain Si − Si−1. On input x, let the computation of M on input x proceed in
stages as follows. At stage n, let m be the least i such that Mi halts on input x with output 1 within n steps
of computation. Then return the result of the computation of Lm on input x. By construction, M retracts at
most k times on input x. Let x be in P. To see that M converges to the right answer on input x, let i be
the unique value such that x is in Si − Si−1. Eventually, a stage n is reached at which Mi(x) returns 1 in
n steps of computation. Thereafter, M (x) returns the result of the computation Li(x), which is the correct
answer (� ◦ ans�)(x).
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a formal problem (P;�; �) solvable with k retractions, there is some Turing machine1
that employs a rote “lookup table” to associate n with the right answer for n and that
passes control to a k-retraction solution to the problem.3
Formal problems that are not solvable under any retraction bound are also struc-

turally analogous to empirical problems with the same property, for a formal problem5
with �nitely many possible answers is solvable in the limit i� each answer is a �02
arithmetical set, where such a set has form7

S =
⋃

i∈R
¬Wi;

where R is a recursively enumerable set and Wi is the (recursively enumerable) do-9
main of �i. In other words, countable unions of closed sets in the empirical picture
are replaced with r.e. unions of complements of recursively enumerable sets in the11
formal picture. In general, Borel complexity in topology is analogous to arithmetical
complexity in the theory of computability. This analogy is another familiar theme in13
descriptive set theory [18].

6. Index problems15

The analogy between formal and empirical reasoning is tighter still if one focuses
on a special collection of formal problems sometimes referred to as index problems. 1417
An index problem is a formal problem in which the natural number input is viewed
as the index of a Turing machine and the question posed concerns only the input–19
output behavior of the machine indexed by the numerical input. Equivalently, an index
problem is a formal problem in which no two numbers that index the same partial21
computable function satisfy distinct answers.
An index problem is non-trivial i� its question has at least one answer that is neither23

N nor ?. Rice’s theorem [2] says that no non-trivial index problem is e�ectively
solvable without retractions. The theorem can be proved by means of a “skeptical25
argument”. Let (P;�; �) be a non-trivial, index problem. Since the problem is an index
problem, all indices for the everywhere unde�ned function ? are in some answer A in27
�. Since the problem is also non-trivial, there is some distinct function � whose indices
are all in some distinct answer B in �. Let M be a would-be decision procedure for29
(P;�; �). On an arbitrary input x, let the “fooling strategy” Md simulate the computation
of M on input d (via Kleene’s recursion theorem) until such time as M returns the31
unique answer true of all indices for the everywhere unde�ned function. Thereafter, the
fooling strategy returns the result of simulating a program for � on input x. In short,33
Md refuses to produce any outputs until M becomes sure that Md will never produce
any outputs, and then produces outputs in accordance with � (note the analogy to35
Burdian’s skeptical argument). Hence, if M never concludes that d is in A, then d is

14 One usually speaks of “index sets” rather than “index problems” due to the penchant of computability
theorists for focusing on binary questions.
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indeed in A and if M ever does conclude that d is in A, then d is in B, so M fails to1
decide the problem in either case.
The story extends to formal veri�ability. A simple-minded, empirical strategy for3

determining some feature of the input–output behavior of a given index is to perform
“computational experiments” on the indexed program, running it for various amounts5
of time on various inputs to see what sorts of outputs are produced. 15 A much more
sophisticated approach would involve some formal analysis of the code of the pro-7
gram, itself. The Rice–Shapiro theorem [2] is the remarkable claim that a computa-
tional agent can determine no more about the input–output behavior of an arbitrary9
program by looking at the program than it could by performing computational experi-
ments on it, treating it as an otherwise unknown “black box”, for if an empirical agent11
could not verify the input–output property from experiments, then no amount of ef-
fective analysis of the code could formally verify the same property over arbitrary13
Turing machine indices. This is not a mere analogy: it is a deep and striking math-
ematical relationship between empirical and formal reasoning that holds for all index15
problems.
Some topological concepts are required to state the theorem precisely. Let � be a17

�nite set of input–output pairs (i.e., a �nite function). Let [�] be the proposition that
these input–output pairs have occurred (i.e., [�] is the set of all partial computable19
functions extending �nite function �). Let open propositions about input–output behav-
ior be unions of propositions of form [�]. By arguments similar to those already given,21
the open propositions in this sense are exactly the propositions about input–output be-
havior that could be veri�ed empirically by watching a black box that conceals an23
unknown Turing machine, to which inputs can be provided from outside.
If S is a set of indices, then let Se denote the set of all partial computable functions25

with indices in S. If (P;�; �) is a formal index problem, then let the empirical problem
generated by (P;�; �) be the triple (Pe;�e; �e), where �e is just {Ae: A is in �} and27
�e(Ae)= �(A). The Rice–Shapiro theorem then says that answer A is formally veri�able
in problem (P;�; �) only if answer Ae is empirically veri�able in the empirical problem29
(Pe;�e; �e).
The Rice–Shapiro theorem can be proved by means of yet another skeptical argu-31

ment. Suppose that (N; �; �) is an index problem with possible answer S. Suppose,
further, that the set of functions � whose indices are all in S is not open in the topo-33
logical space just described in the preceding paragraph. Then there exists  ∈� such
that  is a limit point of the complement of � (with respect to the space of all partial35
computable functions). In other words, (∗) each �nite subfunction of  is extended by
some partial computable function in the complement of �.37
Consider the case in which some �nite subfunction � of  is also in �. Then by (∗),

some partial, computable � extending � is not in �. Implement a “fooling strategy” Md39
for an arbitrary, would-be formal veri�er M of S, as follows. On input x, let Md jointly
simulate in parallel the computation of M on d (via Kleene’s recursion theorem) and41
the computation �(x). If the latter computation halts �rst, then output �(x). If M (d)
halts �rst, pass control to a computation of �(x) and return the result, if any. Hence,43

15 This is called “dovetailing” [2].
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Md computes � (so that �(S) is correct of d) if M never halts with �(S) on input d.1
Otherwise, Md computes � (so that some answer other than �(S) is correct). So M
fails to verify S.3
Now consider the alternative case in which every �nite sub-function of  is in the

complement of � (so that  , itself, is in�nite). Implement a “fooling strategy” Md for5
an arbitrary, would-be formal veri�er M of S, as follows. On input x, let Md simulate
the computation of M (d) (via Kleene’s recursion theorem). If M does not halt with7
answer �(S) within x steps of computation, output  (x). Else, go into a gratuitous loop
on input x. Hence, Md computes  (so that �(S) is correct of d) if M never halts9
with �(S) on input d. Otherwise, Md computes a �nite sub-function of  (so that some
answer other than �(S) is correct). So M fails to verify S.11
The Rice–Shapiro theorem assumes that, for all you know, you may receive as input

any element of N. If only indices with a special property are expected, the Rice–Shapiro13
theorem may fail. For example, suppose that P contains all Turing machine indices
for �nite functions and a single index z for the zero constant function 0. Suppose the15
formal question � is whether the given index computes 0. The answer “zero constant
function” is not open in the empirical problem generated by this problem, but the17
formal problem is nonetheless solvable by a Turing machine that maintains a lookup
table with index z written on it. The proof of the Rice–Shapiro theorem fails in this19
example because the Kleene recursion theorem may produce a tricky index that is not
in P.21
The Rice–Shapiro argument generalizes to index problems requiring k retractions

in the following way: if (N; �; �) is formally solvable with k retractions, then (Ne;23
�e; �e) is empirically solvable with k retractions. So iterated problems of induction
give rise to iterated formal retractions in the corresponding formal problem. The proof25
iterates the two cases of the Rice–Shapiro theorem. Suppose that (Pe;�e; �e) has di�er-
ence complexity ¿k. Then (Ne; �e; �e) has a partial recursive k-limit point  . When27
k =0, it follows that  is a limit point of some answer Ae. The two cases of the proof
of the Rice–Shapiro theorem now arise: either each �nite sub-function of  satis�es29
a distinct answer, or some �nite sub-function � of  satis�es Ae, in which case some
proper extension of � satis�es a distinct answer, since  is a limit point of a distinct31
answer. In either case, a fooling strategy can be constructed. When k¿0, no �nite
sub-function of  is a k − 1-interior point, for if it were, then  would be as well.33
Hence, the set of all input streams of complexity greater than k − 1 includes all �nite
sub-functions of  . Again, either none of these functions satisfy Ae or one of them35
does. If none does, construct a fooling strategy that pretends to be  until M concludes
A (the set of all indices of functions in Ae) and that pretends to be a �nite sub-function37
� of  until M concludes the (distinct) answer satis�ed by �. After that, since � is
itself a k−1-limit point, the induction hypothesis guarantees that control can be passed39
to a fooling strategy that achieves another k retractions, for a total of k + 1. If some
�nite sub-function � of  satis�es Ae, then since  is a k-limit point of some answer41
incompatible with Ae, it follows that among k − 1-limit points, there exists a k − 1-
limit point � satisfying a distinct answer from Ae that extends �. A fooling strategy43
can pretend to be � until M concludes Ae and can pretend to be � until M retracts
to the incompatible answer satis�ed by �. Since � is a k − 1-limit point, the induction45
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hypothesis says that control can be passed to a fooling strategy that achieves k more1
retractions, for a total of k + 1.

7. Empirical simplicity and Ockham’s razor3

A characteristic feature of empirical science is Ockham’s razor, a preference for
simple theories when several competing theories account for the current data. But why?5
There is no shortage of explanations: we like simplicity, simpler theories are easier to
understand or compute with, simple theories explain better or are easier to cross-check,7
etc. But such arguments are instances of wishful thinking, for the simplest theory might
be false, regardless of our good reasons for wishing it to be true and the task of science9
is to �nd the truth, not to varnish it. If one prefers the simplest theory because one
knows in advance that the world is simple, then the complex alternative theories are not11
really alternatives after all and the empirical question is trivial (it has just one possible
answer). If the simplest answer is assumed to be more a priori probable than the other13
answers, then the other answers probably are not real alternatives. If one prefers the
simplest theory because it is better “con�rmed or supported” than the other theories,15
the question arises afresh: what do “con�rmation” or “support” have to do with �nding
the true answer? If one uses the simplest theory to accurately predict new observations17
even when we know that the simplest theory is false (as in linear regression), then
one concedes that Ockham’s razor is opposed to �nding the true theory. In each case,19
it is hard to see how Ockham’s razor could serve the interest of �nding the truth. The
connection between truth and simplicity is arguably the most fundamental puzzle in21
the philosophy of science and induction.
Here is an answer to the conundrum that �ts with the convergent perspective on23

inquiry discussed above: choosing the simplest theory compatible with experience is
necessary if we are to minimize the number of times we retract earlier answers en25
route to the truth in the worst case (which, incidentally, will be a complex rather
than a simple world) [12]. Hence, simplicity does not indicate the truth (the world27
may be complex and may even probably be complex) but simplicity nonetheless helps
us to �nd the truth in the sense that any other bias results in avoidable, worst-case29
ine�ciency en route to the truth.
For a very rudimentary illustration of the argument for this claim, suppose you know31

that there are at most three golf balls in a box and the question is how many balls there
are. Each ball is exhibited, without replacement, at some time of Nature’s choosing.33
There are four intuitive senses in which “no balls are in the box” is the simplest
of the three possible answers to this problem. First, it involves the least existential35
commitment of all the answers, since it posits no balls. Indeed, Ockham’s original
statement of his principle was to not multiply entities beyond necessity. Second, it is37
most uniform, in the sense that it is satis�ed only if no ball ever appears, whereas the
other answers imply a mixture of “no new ball” experience with “new ball” experience.39
Third, it is the most testable, in the sense that it is empirically refutable (if it is false,
the appearance of a ball eventually establishes this fact) but the other answers are not41
refutable (e.g., “one ball” is false in the zero-ball world but is consistent with any
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�nite amount of ball-free experience). Fourth, it has fewer free parameters than the1
other potential answers. If there is no “hot” observation, then there is no question as to
when hot observations occur, but if there is a hot observation, it must occur at some3
time t1 and if there are two, they must occur at distinct times t1; t2, etc.
Now suppose that a method prefers an answer other than “no balls” prior to seeing5

any balls. Nature can continue to exhibit ball-free experience until the method concludes
“no balls” on pain of converging to the wrong answer. Then nature can present a ball7
followed by ball-free experience until the method concludes “one ball”, etc., for a total
of four retractions. But an alternative method succeeds with at most three retractions9
in the worst case: just output “n balls”, where n is the number of balls seen so far.
That method follows Ockham’s razor at each stage.11
The di�erence complexity of an answer to a problem can be de�ned as the greatest

k such that the answer contains a k-interior point. The answer “no balls” has di�erence13
complexity 3, the answer “one ball” has di�erence complexity 2, and, in general, the
answer “n balls” has di�erence complexity k−n, where k is the known upper bound on15
the number of balls. So simpler answers (in the intuitive, scienti�c sense) have higher
di�erence complexity in the topological sense. More generally, one may think of di�er-17
ence complexity degrees as degrees of empirical simplicity. Such intuitive re�ections
of simplicity as uniformity of experience, minimal existential commitment, testability,19
and fewer independent parameters tend to line up with high di�erence complexity in
a given empirical problem.21
Ockham’s razor is vaguely understood to be a preference for the simplest hypothesis

compatible with current experience. However, in the sense just de�ned several answers23
can have the same, maximum simplicity degree. In such cases, the proposed version of
Ockham’s razor says that one may not select an answer unless it is currently the unique25
answer of maximum complexity. Intuitively, this makes sense: if several hypotheses
are simplest, simplicity cannot guide the choice among them.27
Suppose that the maximum simplicity degree (i.e., the problem’s di�erence complex-

ity) is n and that method M violates Ockham’s razor by choosing a hypothesis that29
is not uniquely simplest, among hypotheses compatible with experience so far. Then
nature can continue to present inputs compatible with some distinct, simplest answer31
A until M converges to A on pain of converging to the wrong answer, which counts
as one retraction. Thereafter, Nature can exact n more retractions as before, for a total33
of n+ 1.
Furthermore, an obvious method that complies with Ockham’s razor succeeds in35

each case with no more than n retractions. The method outputs the (unique) answer
A veri�ed relative to the assumption that the world has simplicity degree= k, where37
k is least such that it is currently veri�ed that the world has simplicity degree 6k.
This method retracts only when it is veri�ed that the world has a lower simplicity39
degree than previously thought, and hence retracts at most n times. It converges to the
right answer because eventually it is veri�ed that the world has simplicity degree 6k,41
where k is the true simplicity degree, and then the true answer is veri�ed relative to
the assumption that the world has simplicity degree= k.43
It follows from the two preceding paragraphs that for each problem of �nitely

bounded di�erence complexity, violating Ockham’s razor on the initial conjecture45
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results in a higher than necessary worst-case bound on retractions. For subsequent1
outputs the argument is similar: violating Ockham’s razor then results in a need-
lessly high, worst-case bound on retractions in the sub-problem faced from that point3
onward. 16

A paradigmatic application of Ockham’s razor is curve �tting. Suppose you know5
that the curve to be �t is a polynomial of degree no greater than three. The question is
to guess the polynomial degree, where it is known that the true curve has degree 63.7
That is not very hard: two points determine a line, three points a quadratic, four a cubic,
etc. But the game is more interesting when the data points may contain error. Consider9
a simpli�ed version of curve-�tting in which the method may query any data point
and the data points may involve less than �¿0 error. In this problem, the polynomial11
degrees run in inverse order to simplicity degrees, so that the answer “cubic” has
simplicity degree zero, the answer “quadratic” has simplicity degree one, and so forth.13
Suppose that the data points seen so far are all closer than � to some constant c and
that a given method violates Ockham’s razor by saying that the degree of the true15
function exceeds zero. Nature can present data within � of c forever until the method
converges to “degree zero”. Thereafter, Nature can choose a slightly inclined line that17
still saves all the data presented so far to within � and can then continue to present
data from the line, etc. for a total of four retractions. The Ockham method that always19
sides with the simplest hypothesis compatible with experience requires at most three. 17

In the preceding examples, the size of the box and the a priori bound on the degree21
of the unknown polynomial are necessary to arrive at a �nite bound on the number of
retractions required. Neither problem is solvable under any trans�nite retraction bound23
according to the theory just mentioned, so the preceding argument for Ockham’s razor
does not apply. However, there is still a sense in which Ockham’s method is best25
[20]. Think of a method as “accepting” an answer when it outputs that answer and
as rejecting the answer when it outputs any alternative answer. Then we can view a27
method for a problem as a test for any given answer to the problem. It is then desirable
that the method decide each answer in the limit with the fewest possible retractions.29
In both the ball counting problem and the curve �tting problem, a method minimizes
worst-case retractions in each subproblem of each decision problem determined by an31
answer to the original problem only if it conforms to Ockham’s razor at every stage.

8. Ockham’s formal razor33

It sounds odd to entertain desperate, empirical “guessing” rules like Ockham’s razor
in purely formal contexts, but the preceding analogies between uncomputability and35
the problem of induction suggest a second look.

16 Retractions prior to entering the subproblem are not counted in the sub-problem.
17 The problems just considered have �nite complexity bounds. The retraction-e�ciency argument for
Ockham’s razor can be extended to problems of trans�nite ordinal complexity [12] based on ideas due
to Freivalds and Smith [3].
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In the empirical domain, Ockham’s razor is a preference for the uniquely simplest1
answer compatible with the inputs. Recall that the simplicity degree of an answer to
an empirical question is explicated by the answer’s di�erence complexity. Similarly,3
the methodological simplicity of an answer to a formal question is explicated by its
e�ective di�erence complexity. Let (P;�; �) be a formal problem of e�ective di�erence5
complexity k and let A be an answer in �. De�ne the e�ective di�erence complexity of
answer A in (P;�; �) to be the greatest j such that for each sequence (S0 ⊆ · · · ⊆ Sk)7
of recursively enumerable sets satisfying conditions (1) and (2) in the de�nition of
e�ective di�erence complexity, A − Sk is non-empty. This is quite analogous to the9
de�nition given in the empirical case.
Ockham’s razor is a rule for choosing among several possible answers compatible11

with current experience, but in formal problems at most one answer is compatible
with a given input, so it seems that Ockham’s razor is gratuitous. What is intended,13
of course, is that a Turing machine prefer the simplest answer compatible with the
machine’s “internal” experience on the path toward “clarity and distinctness”, but that15
is a tricky concept to de�ne in general. It makes sense for Turing machines of a certain
kind (those that explicitly simulate di�erent computations for ever greater numbers of17
computational steps or that seek ever longer proofs of contradictions), but not for
arbitrary Turing machine programs, most of which are unintelligible.19
An alternative, more “behavioristic” statement of Ockham’s razor is that one should

never output a simpler answer after a more complex answer has been output, where21
simplicity of answers can be de�ned in terms of e�ective di�erence complexity as was
done in the empirical case. In the empirical case, this follows from the usual de�nition,23
assuming that the method converges to the truth at all, for if one at some point chooses
an answer more complex than the data require, then there exists a (simple) way of con-25
tinuing the data such that a convergent method must shift back to the simpler answer.
The converse holds as well, if one assumes, further, that the method never produces27
an answer that has already been refuted. Neither argument works for formal reasoning,
but one can simply stipulate the new statement of Ockham’s razor in formal problems.29
For an easy illustration, recall the problem in which it is known in advance that the

input is an index of a Turing machine that produces at most three sequential outputs31
and the question is how many sequential outputs will be produced. Let M be a Turing
machine that solves the problem in the limit. Let d be the index of a tricky Turing33
machine that refuses to produce an output until M says “no outputs”, that produces one
output until M says “one output”, etc. The simplest answer is “no outputs”. Suppose35
that M violates Ockham’s razor on input d by guessing some non-zero number of
outputs before it guesses “no outputs”. Then the violator uses four retractions in the37
worst case when three would have su�ced over all inputs in the problem. Indeed,
there are in�nitely many variants of the fooling strategy (involving di�erent time lags39
between outputs, for example) and a retraction-minimal solution to the problem must
satisfy Ockham’s razor on the indices constructed via Kleene’s recursion theorem for41
all of them.
This is weaker than the empirical result, because M need not satisfy Ockham’s43

razor on every input. Let x be an input that satis�es the simplest answer. Let M
be a method that �rst returns the least simple answer on input x, only to converge45
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to the simplest answer thereafter. Otherwise, M follows Ockham’s razor. As long as1
the problem requires at least one retraction in the worst case, M succeeds under the
optimal retraction bound in spite of violating Ockham’s razor on some input. This is3
yet another consequence of the possibility of lookup tables.
For a striking example of the analogy between formal and empirical reasoning, con-5

sider a purely formal version of empirical curve �tting. Think of a total, computable
function f as a map g from rationals to rationals by decoding naturals as pairs and in-7
terpreting pairs as rationals. It is assumed in advance that for some polynomial function
h of degree 63, g(x) is always closer than �¿0 to h(x) (think of this as observational9
error). The question is to determine the least polynomial degree k63 such that for
some polynomial function h of degree 63, g(x) is always closer than �¿0 to h(x).11
Since the index of f determines everything about g, it “gives away” the answer

to the question once for all, but to a computational agent the problem is similar to13
the empirical one. The tricky index d for this problem pretends to be for a constant
function with error ¡� until M gives in and reports that �d is a constant function.15
This is accomplished by producing some constant, say zero, on input x if M does not
output “constant” on input d in n computational steps. After M says “degree zero”, d17
pretends to be a linear function with non-zero slope until M gives in and believes it is
a linear function, etc, to exact a minimum of three retractions from M . Now, suppose19
that M outputs a higher polynomial degree than zero before saying degree zero. Then
M retracts four times on d when the obvious Ockham method succeeds with at most21
three retractions in the worst case. If no upper bound on polynomial degree is known,
one still obtains the result that Ockham’s razor is necessary if a single computational23
method is to decide each answer with a minimum of retractions.
The preceding e�ciency arguments assume that the violation of Ockham’s razor25

consists of a complex guess followed by the simplest possible guess. What goes wrong
if the method violates Ockham’s razor by saying “n+1 outputs” prior to “n outputs”,27
where “n + 1 outputs” is not the simplest guess? In analogy with the empirical case,
one may hope that there are sub-problems of the original problem that could have been29
solved with fewer retractions had the method not violated Ockham’s razor on some
(tricky-for-the-method) inputs. In the preceding example, let the sub-problem be all31
indices that produce at least one output. Let M be given. A tricky index d can be
constructed that produces one output right away and then continues with the preceding33
strategy to exact at least two retractions from M if M solves the sub-problem. But if M
ever precedes the answer “one output” with some more complex answer in response to35
d, M will retract at least three times even though the sub-problem is formally solvable
with just two retractions. In this way, Ockham’s razor applies across time in formal,37
as well as in empirical problems.

9. Conclusion: Hume and hypercomputability39

Formal problems and empirical problems are not exactly the same. In the former, the
right answer is determined by what is “given” and in the latter it usually is not. In the41
former, performance can always be augmented to a �nite degree by means of lookup
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tables and in the latter it cannot (one cannot tell, without seeing the future, whether the1
actual, empirical world is a world listed on the table). Philosophical tradition has seized
upon such di�erences to draw a sharp boundary between formal reasoning concerning3
mere relations of ideas and empirical reasoning concerning matters of fact. The former
can supposedly be made infallible by a process of mental rigor guaranteed to terminate5
in clarity and distinctness; the latter cannot be infallible, since the right answer is never
determined by any �nite number of inputs.7
I have argued for an alternative view, according to which uncomputability is an

“internalized” problem of induction. True, the input is given all at once in a formal9
problem and the input ideally determines the right answer, but the input is not fully
taken until the computational agent’s journey toward full “clarity and distinctness” (i.e.,11
its computation) is complete. In uncomputable problems, the process never comes to
full fruition, just as empirical inquiry never halts with infallible knowledge of universal13
laws.
One would like a bell to ring when inquiry has succeeded. Weaker senses of success15

are tolerated in empirical science only because bells that signal success are infeasible.
In light of the many detailed parallels between the problem of induction and uncom-17
putability, a parallel weakening of standards is warranted in the formal domain. If a
formal problem is not decidable, perhaps it is veri�able or refutable. If neither of those19
success concepts is feasible, then perhaps it is defeasibly solvable with no more than
n retractions. If there is no such bound n, then perhaps it is decidable in the limit, etc.21
If empirical science can be said to progress toward the truth in spite of the problem of
induction, then ordinary Turing machines can be said, on closely analogous grounds,23
to progress fallibly toward the truth in spite of uncomputability.
The literature on “hyper-computation” aims at an expanded but plausible sense of25

computability according to which Turing-uncomputable problems are solvable. There
are two paths to this end. Most directly, one can try to “power-up” the computational27
model itself, by appealing to uncomputable oracles, by incorporating exact real numbers
that encode unsolvable problems, by computing in space–times that permit one to see29
in�nite computational traces in an instant etc. (cf. the other articles in this issue).
Similarly, one can attempt to “power-up” empirical science by inventing crystal balls,31
by extending the scientist’s present eyes and mind through all of space and time, etc.
The trouble is to actually implement any of these hyper-methodologies in a manner33
that would inspire con�dence that the implementation is correct (who checks that the
real-valued parameter is set precisely to the right value and who checks that the crystal35
ball really reveals the future)?
An alternative approach is to retain standard computational models, whose37

implementation issues are (relatively) unproblematic, and to follow the lead of em-
pirical science by relaxing the halting condition on algorithmic success when success39
with halting is not feasible. Such an approach contradicts neither the Church–Turing
thesis nor the empirical problem of induction, for these principles govern infallible41
solvability (i.e., solvability with zero retractions). There are extended Church–Turing
theses and problems of induction for 1; 2; 3; : : : retractions, etc. and all of these theses43
are mutually consistent. Uncomputability is not a reason to put aside Turing machines,
any more than the problem of induction is a reason to abandon empirical science.45
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Instead, it is a reason to seek Turing machines that converge to the truth in the strongest1
possible sense.
Hume held that skeptical arguments leave inductive reasoning unjusti�ed, for they3

reveal it to be fallible, unlike purely formal reasoning. His challenge is to show wherein
the justi�cation of fallible reasoning consists. He was doubly mistaken. First, formal5
reasoning is subject to uncomputability, which is, itself, a kind of “internalized” prob-
lem of induction. Second, a method of reasoning (like any other strategy) is justi�ed7
in a given problem insofar as it solves the problem in the best possible sense. So it
is essential to the justi�cation of a given method M to show that no possible method9
converges to the truth in a stronger sense than M does. That requires a skeptical ar-
gument to the e�ect that stronger senses of success are infeasible. Therefore, skeptical11
arguments are both the principal motivation for Hume’s challenge and the answer to it.
In a similar manner, generalized uncomputability arguments justify the application of13
convergent programs in standard programming languages to uncomputable problems.
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