
Chapter 9

The Demons of
Uncomputability and
Incompleteness

It seems, intuitively, that the halting problem is about machines not being able
to see the futures of other machines. Think of Hume’s problem of induction:
no matter how many times the sun has risen, it might not rise tomorrow. Just
replace “the program hasn’t halted” for “the sun has risen”. My Dell computer
often raises this difficulty for me. The Windows 98 operating system sometimes
acts like it is hung. But once I waited five minutes and it actually came back.
How long do you wait? Whatever “waiting time” you preordain as enough,
Windows 98 might require one second more.

Everybody thinks of it that way. And yet, the proof that the halting problem
is non-verifiable is just a motorized version of Cantor’s static, diagonal argu-
ment. So is all the philosophy of science talk really irrelevant, once you have the
right attitude beaten into you? Or does the usual presentation miss something
important?

Here’s another way to do it. Classical skeptical arguments involve a “demon”
who feeds data to the scientist in the most misleading possible way. Given a
scientist who claims to have a method for verifying that the sun will always
rise tomorrow, the demon simply resolves to feed the scientist data in which the
sun always rises until the scientist concludes that it always will. If the scientist
never does so, the demon continues to make the sun rise, and the scientist fails
to verify what is true. If the scientist does finally succumb to the evidence, the
demon presents a day on which the sun does not rise, so the scientist verifies
what is false. Either way, the scientist loses.

Can you do the same thing to an arbitrary program index i who claims to
be able to verify the halting problem? Let’s try the analogous thing. You need
a computable demon index d that is dedicated to fooling our given method i.
The demon index d simulates the computation of i on input d (the demon’s
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own index) and refuses to halt on itself until it sees in its simulation that i has
become sure from inspecting d that d won’t halt on itself. Then d halts on itself.
Stop now and compare this to the preceding skeptical argument.

The story I just told involves self-reference. To make it rigorous requires the
Kleene recursion theorem. Let a hopeful “sucker” index i that wishes to verify
K be given. To construct an index for a demon devoted to fooling i, set up
a universal construction that halts only when i halts on a given index j. By
Kleene’s recursion theorem, j will miraculously become the demon’s own index.
The following will do:

ψ(j, x) ' (µz) U(i, (z)0, (z)1〈j〉).

This is partial recursive, so there is an n such that

φn(j, x) ' ψ(j, x).

Now apply s-m-n to j to obtain total recursive s such that for all j, i, x,

φs(n,j)(x) ' φn(j, x).

Fix n as a constant in the construction:

g(j) = s(n, j).

Now by the Kleene recursion theorem, there exists an index d such that

φg(d) = φd.

This is our demon index. Then we have

φd(d) ' φg(d)(d)
' φs(n,d)(d)
' φn(j, d)
' ψ(j, d)
' (µz) U(i, (z)0, (z)1, 〈d〉).

Thus, d is just like the skeptical demon. It halts on itself (thereby falsifying the
hypothesis K(d) just in case i halts on d, indicating that i is sure that d won’t
halt on itself:

φi(d) ↓ ⇐⇒ φd(d) ↓
⇐⇒ K(d)

Thus, i does not verify K.
The standard, Cantorian proof works only for problems of a special form.

This “skeptical” procedure is both more intuitive and much more flexible. The
skeptical approach is therefore the first approach to try for negative results
concerning problems based on partial recursive indices.
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Exercise 9.1 The standard halting problem K involves unary functions because
it is a diagonal argument. The zero-ary halting problem consists of exactly those
indices of zero-ary functions that halt on no input. Use the demon technique to
show directly that the zero-ary halting problem is not decidable.

Exercise 9.2 Use the demonic technique to establish three of the negative re-
sults from proposition 7.4. Give an intuitive interpretation of each construction.

9.1 Skeptical Argument for Rice’s Theorem

The same idea can be used to give a direct, skeptical argument for Rice’s the-
orem. Notice that in the following argument, an arbitrary would-be decision
procedure is shown to fail on a demonic index that “internally” outsmarts it.

Demonic proof. Suppose that Γ is nontrivial.
Case I: ∅ ∈ Γ. Then there is some ψ ∈ Part−Γ. Let n be your best attempt at a
decision procedure for index(Γ). We will construct a demon index d that refuses
to halt on any input until φn takes the bait and concludes that φd = ∅ ∈ Γ.
Thereafter, the demon starts producing outputs agreeing with ψ.
Using the universal construction, define

δ(x, y) ' o((µz) U(n, (z)0, 1, 〈x〉)) + ψ(y).

Choose an index, and apply s-m-n to obtain total recursive g such that:

φg(x)(y) ' δ(x, y).

Applying the Kleene recursion theorem, we obtain a d such that:

φd(y) ' φg(d)(y)
' δ(g(d), y)
' o((µz) U(n, (z)0, 1, 〈x〉)) + ψ(y).

Hence,

φn(d) ' 1 ⇒ φd(y) = ψ 6∈ Γ
¬(φn(d) ' 1) ⇒ φd(y) = ∅ ∈ Γ.

So d witnesses that φn is not a decision procedure for index(Γ).
Case II: Substitute 0 for 1 in case I.a

9.2 Skeptical Argument for Rice-Shapiro

Here the skeptical structure is even more interesting.
Demonic proof of proposition 7.8.
Suppose that Γ is not experimentally verifiable. By lemma 7.7 of the preceding
chapter,

¬(∀ψ ∈ Part)(ψ ∈ Γ ↔ (∃ finite θ ⊆ ψ) (θ ∈ Γ)).
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Case I: (∃ψ ∈ Part) ψ ∈ Γ ∧ (∀finite θ ⊆ ψ) θ 6∈ Γ. We need a demon that
produces more and more of ψ so long as the “sucker” φn hasn’t taken the bait
and concluded that the demon φd is ψ ∈ Γ. Then as soon as our “sucker” takes
the bait, the demon stops producing any more outputs of ψ, so the demon is
some finite θ 6∈ Γ. Define:

δ(x, y) ' o((µz)(∀w ≤ y)(¬U(n, y, w, 〈x〉)) + ψ(y)).

Choose an index, and apply s-m-n to obtain total recursive g such that:

φg(x)(y) ' δ(x, y).

Applying the Kleene recursion theorem, we obtain a d such that:

φd(y) ' φg(d)(y)
' δ(g(d), y)
' 0((µz)(∀w ≤ y)¬U(n, y, w, 〈d〉)) + ψ(y).

Hence,

φn(d) ' 1 ⇒ φd(y) = ψ ∈ Γ)
¬(φn(d) ' 1) ⇒ (∃ finite θ) φd(y) = θ 6∈ Γ.

So d witnesses that φn is not a verification procedure for index(Γ).a

Exercise 9.3 Give the demonic argument for case II.

Exercise 9.4 Use the Kleene recursion theorem to show that there is no effec-
tive translation of standard partial recursive indices into finite indices. Hint: let
an arbitrary candidate index i of the translation be given. Then i is supposed to
have the property that for each x such that φx is a finite function, θφi(x) = φx.
Construct a demonic d using the Kleene recursion theorem that pretends to be
an index for the everywhere undefined function ∅ until φi(d) returns j such that
θj = ∅ and that returns 0 on just input 0 thereafter.

Why is this hard to prove via many-one reduction of the halting problem?


