68

Chapter 8

The Kleene Recursion
Theorem

Pill Grates at Macrohard Corporation hates the numbering ¢-. He wants, of
course, to replace it with his competing, proprietary numbering - that is subtly
different in useless ways. Since Pill knows that 7~ isn’t very good, he has to
resort to industrial cunning in order to sell it. His plan is to wipe ¢- off of
the planet by releasing MH-Virus™into the ambient computing environment.
The Coke Classic™swilling MH-Virus™design team has been ordered to find
a computer virus that wrecks the performance of every program index in the ¢-
system. That is, MH-Virus™is supposed to compute a total recursive function
v such that for each n, k,

b # Da(ny-

You are agent Gédel number 007 and your job is to foil Grates’ diabolical plan.
Your first question is, naturally, one of principle. Can a plan that diabolical
possibly succeed, or is Grates just wasting his money?

Here is an analogy from analysis. Suppose you are challenged to drag a
pencil from the left side to the right side of a square of paper without crossing
the diagonal running from lower left to upper right and without lifting the
pencil. You'll find you can’t do it, because the diagonal is “in the way” (take a
moment to try it). In mathematical terminology, the unbroken pencil trail is a
continuous mapping f of the closed unit interval [0, 1] into itself. If the pencil
line crosses the diagonal, that means that some pair (z,z) € f, so f(z) = x. So
no continuous mapping of the closed unit interval into itself alters every point.
A point unaltered by f is called a fixed point of f, so we can summarize the
discussion by saying that every continuous mapping of the closed interval into
itself has a fixed point, or a point it leaves unaltered.

Pill Grates wants a computable deformation of the partial recursive functions
that alters each function. You might now suspect that his plan faces a similar
difficulty: that some program’s behavior must somehow end up unaltered. That
is precisely what happens. In fact, the construction is literally analogous to

69

70 CHAPTER 8. THE KLEENE RECURSION THEOREM

showing that each unbroken pencil line across a square must touch the diagonal
of the square.

In the statement of the following theorem, total recursive f represents Grates’
MH-Virus™and the theorem says that there is some index whose input-output
behavior isn’t altered by f. That isn’t to say that the computations themselves
are unaltered— f may succeed in slowing down all computations to an imprac-
tical degree, for example. And the index whose behavior is preserved may be
very uninteresting. It may be an index for the everywhere undefined function,
for example.

The Kleene Recursion Theorem
(Vk)(Vf € Tot)(3n)[(¢) = ¢)]

Proof. T’ll do it for the case of £k = 1 and drop the annoying superscripts. The
proof of this theorem is facilitated by a convention. Consider the embedded
expression

D4,,(z) (Y)-
It is pretty clear that if
() ~ 2
then
P, () = Pz

But what if ¢, (%) is undefined? Then our numbering isn’t “given a number to
interpret”, so ¢4, (z) (¥) does not denote a function. But there is another way
to look at it. Let w be a universal index for numbering ¢-. Now we have that
for each y,

Pu(Pn (D), (1) T,

where T means “undefined”. Thus, we may also think of the whole expression
as denoting the everywhere undefined function

¢¢n (f) = @

Now let an arbitrary, total recursive “virus” f be given. Think of a two-
dimensional table in which the cell T'[n,m] is filled by the function ¢, (m)-.
The table looks like:

Ppo(0) Poo(1) Peo(2)
Pp1(0) Ppr(1) P (2)
¢¢2(0) ¢¢2(1) ¢¢2(2)

(Think of this table as standing in for the closed unit interval of reals in
our analogy). Every cell of the table is filled with a partial recursive function

71

because of our convention for dealing with the case in which ¢,,(m) is undefined.
Consider the (underlined) diagonal of the table. We will now see, remarkably
enough, that the diagonal of the table

Do (0) Py (1)> Ppo(2)5 - - -

is also a row of the table

. (0)> P (1)s P (2)5 - - -

where the function ¢, generating the row is a total recursive function. We do
this using the universal and s-m-n properties as follows. Using a universal index
uw of numbering ¢-, define partial recursive function

Y(n,x) =~ du(Pn(n), (z))
~ g (n)(T).

Since ¢- is onto Part, choose w such that

Ow(n,) ~p(n,x).

Using the s-m-n property of numbering ¢-, we obtain a total recursive s such
that

Gsw,n)(T) = duw(n,).
Now compose in a constant function to obtain a unary total recursive g such
that for all n,
g9(n) = s(w,n).
Let ¢; = g. Unwinding the definitions, we obtain:

Do;(m)(T) = Dy ()

>~ Dy(wn)(T)

~ y(n,x)
Y(n,)
Pu(Pn(n), (z))
~ Gy, (n)(T).

So as promised, the diagonal of the table is also the jth row table where
¢; = g is a total recursive function:

R

12

Pp;(n) = Pg(n) = Ppn(n)-

Now consider the total recursive virus f. Since g is total recursive, so is ¢, =
C(f,g). Let so we also have that

DF(9(0))> Pr(g(1))> Prg(2))s- - -

72 CHAPTER 8. THE KLEENE RECURSION THEOREM

is the nth row of the table. Now (just as in our attempt to draw a line across
the unit square), this row intersects the diagonal at ¢y, (n) = @(g(n))- Now let’s
check the effect of the virus f on the index g(n), which exists because g is total:

Drigm) (@) = Pp,n) (@)

So the behavior of the index g(n) is unaltered by f. -

Exercise 8.1 FEarn a middle-management position at Macrohard: design a to-
tal recursive virus f such that the fixed point index guaranteed by Kleene’s the-
orem has to compute the everywhere undefined function (). What does this tell
you about the possibility of proving a fized point theorem for Prim?

Exercise 8.2 Your mean boss at Macrohard saw what you just wrote in the
previous exercise. To keep your job, you now have to write a virus that alters
the behavior of every index that computes a non-total function. Write one and
find a total function index whose input-output behavior isn’t changed! Intuitively,
why is it hard to write a virus that wrecks both total and partial programs?

8.1 Where Did it Come From?

The proof of the recursion theorem is easy to follow, but not to come up with.
How did Kleene even formulate the theorem prior to proving it?

Kleene was a student of Alonzo Church, whose pet invention was the lambda
calculus. The idea is really fairly simple. Strictly speaking, the function f is
denoted by the logical constant f, not by the open formula f(z). But while it is
easy to say that + denotes addition and sqrt denotes the square root function,
sooner or later we run out of primitive symbols, as with polyomial functions
like 222 + x, so we want to say “the function f(x) = 222 + 2”. Of course, we
“know what we mean”, but this is technically “notational abuse”, a felony in
seven southern states.

Wouldn’t it be nice if there were a notational device to distinguish the open
formula from the function it defines? That is what the lambda calculus provides.
Read

(\z)[222 +]

as “the function of 2 whose value on argument x is 222 + 72”. Then you can
write
()22 4 2])(2) = 2- 22 +2 = 10.

The terms of the pure lambda calculus are defined inductively as follows.
1. Each variable z is a term.
2. If M is a term, then (Ax)M is a term.

3. If M, N are terms, then M N is a term.

8.2. KLEENE FUN 73

Note that functional application is written as concatenation, so that fz = f(x).
After all, nothing but habit prevents you from thinking of 2 as a function that
maps =2 to 4 and x> to 8.

Now I can get to the (fixed) point.

Proposition 8.1 (Lambda fixed-point theorem) (VF)(3X)[FX = X].

The proof is elegance itself, compared with Kleene’s fixed-point construction for
the numbering of the partial recursive functions. Let F' be given. Now define
the term:

X = (@) [Fazx](A\x)[Fax).

Now calculate:
X = (Ax)[Fzzx](\z)[Fax]

= FX.

This is one of the most familiar facts about the lambda calculus. You can now
imagine Kleene trying to massage this familiar syntactic manipulation into the
more complicated context in which functions operating on functions are traded
for partial recursive functions that operate on indices of other functions.

Exercise 8.3 Clearly, MM = MM, since each object is identical to itself. But
MM also has a value. For example (Az)[x](Ax)[z] = (A\x)[z]. Find an elegant
example of an M such that the value of MM is also M M. Hint: think of the
operation of applying a term to itself. If you apply this operation to itself, it
applies itself to itself.

This sort of zany stuff made people wonder if the lambda calculus is actually
about anything at all, or is just clever symbol-shifting. After all, how can self-
application be an operation applied to itself? The question remained open until
our own Dana Scott found a systematic semantics for the lambda calculus.

8.2 Kleene Fun

We usually use the recursion theorem in tandem with the universal and s-m-n
theorems. The recursion theorem can generate curiosities, like a partial recursive
function that returns its own index on every input.
self-printing program. At first it seems easy to make a self-printing program:
something like
print(progam).

But that won’t do because what is printed is program, not the actual program
print(program). Now we start to wonder if it is possible. It looks like there might
be an infinite referential regress, in which the program tries forever to refer to
itself but always misses the outermost “print” command in its own program.
We would like to say

print(me),

74 CHAPTER 8. THE KLEENE RECURSION THEOREM

but most programming languages don’t have self-referential personal pronouns
like “me”. Nonetheless, it is always possible to get the same, self-referential
effect, as long as your programming language (i.e., numbering of Part) satisfies
the s — m — n and universal theorems. The projection function p, is partial
recursive. So let

On :pg'

Now apply the s-m-n theorem to obtain a total recursive s such that for all x,

¢s(n,3c) (y) = ¢n(x7y)
~ pi(z,y).
Now let
g(a:) = S(Cn(x)v '7;) = 8(”733)7

so g is total recursive. By the Kleene recursion theorem, we obtain an m such
that

(bg(m) = (bm-

Thus, for each z:

I (T) = Pgim)(T)

>~ Pyn,m) ()
bn(m,y)
p3(m,y)
m.

1

1

Exercise 8.4 Show that each partial recursive function ¢; has a finite variant
¢; that is “self-referential” in the sense that pz.¢; #0=j and Yk > j, ¢;(k) =~
oi(k). .

Exercise 8.5 Show that double recursion over the partial recursive functions
yields a partial recursive function. Before we only said that it is “intuitively
effective”. By the Church-Turing thesis it follows that double-recursion is partial
recursive. But we can now prove this fact formally, bypassing the Church- Turing
thesis. Hint: follow the pattern of the preceding example. Write an expression
for the recursion in which the recursive call is just a free variable. Apply s-m-n
to this variable position and then apply Kleene’s fixed point theorem. This is
why it’s called the “recursion theorem”.

The Kleene recursion theorem has far wider significance than these examples
suggest. As we will see later, it is a powerful tool for locating the problem
of induction inside of purely formal problems. As such, it allows for simple,
intuitive proofs of facts that require convoluted, reductio arguments without it.

