56

Chapter 7

Many-one Reduction

Reduction is one of the most central concepts of the theory of computability.
Informally, problem X reduces problem Y just in case there exists a way to
transform an arbitrary solution to X into a solution to Y.

If X reduces problem Y, then up to computability, Y is no harder than X,
for there is no way that Y could be unsolvable if X is solvable. Thus, one writes

X>Y

iff X reduces Y. So reducibility provides a notion of relative difficulty among
problems.

You may then wonder if, for example, there is a “hardest” problem among,
say, the r.e. sets. Such problems are said to be r.e.-complete. A decision
procedure for an r.e.-complete problem would amount to a solution to every r.e.
problem.

Reduction is important because it allows you to turn solutions to one problem
into solutions to another. If you know that X > Y and you have a decision
procedure for X, the reduction yields a decision procedure for Y.

More importantly, if X > Y and you can argue that Y is not decidable, then
neither is X. So reduction is a handy way to prove that a problem is unsolvable:
just show that it reduces a problem already known to be unsolvable. So far,
your only example of an unsolvable problem is the halting problem. The proof
was by diagonalization. That worked because the halting problem is concocted
to be the counter-diagonal of the characteristic matrix of the r.e. sets. Now
you can use reduction to prove that more intuitively presented problems are not
effectively decidable.

7.1 Definitions

Many-one reducibility is defined as follows:

X<, Y < (3 total recursive g)(Vz) (X(x) < Y (g(z))).

57

58 CHAPTER 7. MANY-ONE REDUCTION

Then say that Y many-one reduces X, or that X is many-one reducible to
Y. The definition says that the total function g projects X into Y and —X into
=Y. Use of the “less than” notation invites the challenge that such notation is
justified.

Proposition 7.1

<,n is a pre-order (reflexive and transitive).

X<,,Y < Y<,,X.
Exercise 7.1 Prove it.

Symmetrizing a pre-order always yields a natural concept of equivalence:
X=,Y <= X, YAY<, X,

This is called many-one equivalence. Equivalence relations allow us to define
equivalence classes called many-one degrees.

[X]m = {Y € N|X=,,Y}.

Another mathematical instinct is to lift the original pre-order to define a partial
order on equivalence classes:

[(X]m < [Ym = X<,V

But this kind of talk can result in contradictions pretty fast unless you show
that the relation [X],, <, [Y]m doesn’t depend on the representatives X,Y
used to pick out the respective classes. In other words, you must show that <,,
is indeed a partial order over degrees. If you haven’t already done this in your
discrete math class (or if you didn’t care about it then), do it right now.

Now let I' C Pow(IN). Then Define:

X isT-hard < (VWY €T') Y<,, X.

X is I'-complete < X €' A X is I'-hard.

7.2 R.e. Completeness

Recall that a set X is m-complete in a collection of problems just in case X is
in the collection and each member of the class m-reduces to X. It turns out
that K is m-complete among the r.e. sets. That sounds like a hard thing to
prove: how can you construct infinitely many m-reductions all at once? In this
case, it’s surprisingly easy.

Proposition 7.2 K is r.e. complete.

7.3. PRESERVATION RESULTS 59

Proof. You need to reduce each r.e. set to K. Suppose S is r.e., so for for
some k, S = W},. Define

Ylz,y) =~ (pz) Uk, (2)0, (2)1, ()
Pr ().

Choose an index and apply s-m-n to obtain total recursive g such that:

(bg(m) (y) = 1/)(557 y)

12

Thus,
S(@) <« Wil
= ¢r() |
= Y(z,9()) |
= g (9(2)) |
— K(g(2))
4

7.3 Preservation Results

The main applications of reducibility theory are consequences of the elementary
but important fact that recursive enumerability and recursiveness are preserved
downward in the many-one ordering. The idea is that the reduction is a “pre-
processor” that “converts” the new problem X into inputs for the problem Y
in such a way that the solution to Y is converted into a solution to X.

Proposition 7.3
1. X<, YAY isre. = X isr.e.
2. X<,, Y AY is recursive = X is recursive.
Proof. Suppose X<,,,Y. Then
(3 total recursive g)(Vz) X (z) < Y (g(z)).

Suppose Y is recursive. Then Y (z) is a recursive function of z. So X(z) =
Y (g(z)) is a recursive function of z. So X is recursive.

Suppose Y isr.e. So for some n, Y = W,, = dom(¢,,). The composition C(¢,, g)
is also partial recursive. You have

C(dn,9)(x) | = onlg(z)) |
= Y(g(x))
= X(z).

Thus, X = dom(C(¢n,g)), so X is r.e.d

60 CHAPTER 7. MANY-ONE REDUCTION

7.4 Examples

Now you may use the preceding result to show that lots of new problems are un-
solvable, by reducing K or =K. For example, consider the following, elementary
input-output properties of partial recursive indices.

Zd(x) <= ¢z=o0;
Tot(z) <= W,=N;
Und(z) <= W,=0;
Inf(zx) <= W, is infinite;

Onto(z) <= E,=N.

In general, let I' C Part be given. Define
index(I') = {n e N : ¢, € T'}.

Now say that X is an index set just in case there exists a I' C Part such that
X = index(T"). All the above are index sets.

Exercise 7.2 Is K an index set?

Proposition 7.4
K<,,Zd,-~Und,Tot,—Tot, Inf,-Inf;
-K<,,~Zd,Und, Tot,—Tot,Inf.
Proof. The second statement follows from the first by proposition 7.1.

For the first statement, the idea is to produce a very informative reduction.
For example, suppose you can construct a total recursive g such that that

by = o ifie K;
IOV 0 ifi¢ K.
Such a g reduces K to Zd, ~Und, Tot and Inf all at once! For example:

bon € zd ifi€K;
9(®) -Zd ifi¢ K,

and similarly for =Und, Tot, and Inf.

So how do you produce such a function? Since you are trying to construct
a total recursive function of indices, you will expect that you will use the uni-
versal construction together with the s-m-n theorem. Start with the universal
construction:

¥(i,)

1

o(uz.U (i, (2)o, (2)1, (i)
0 if ¢(d) L
T otherwise
0 ifie K;
T otherwise.

7.4. EXAMPLES 61

Then apply the usual s-m-n sequence to obtain total recursive g such that
bg(iy () >~ (i x)
0 ifieK;
T otherwise.

1

This total recursive g witnesses,
K<,,Zd,-~Und,Tot, Inf.

To reduce K to =Zd, —Tot, and —Inf, you need a sneakier strategy. The
preceding construction went “with the grain”, halting just in case a given index
halts on itself. It’s easy to make ¢g4¢;)(«) halt when ¢;(i) halts. This time, we
need ¢,(;) to do a lot of halting when ¢; (i) does not halt. That sounds suspicious.
Doesn’t halting when something else doesn’t halt presuppose a solution to the
halting problem? Not quite. The trick is that ¢4¢;)(2) can halt with 0 on
input when ¢;(i) does not halt under resource bound x. Using the universal
construction, define the partial recursive function:

'L/)(Z,:E) = (/LZ) (vy < x) _‘U(iaxaya <Z>)
{ 0 if (vy < .’E) _‘U(i,.’b, Y, <7’>)7

T otherwise.

Now apply the usual s-m-n sequence to arrive at a total recursive g such that:

bg(iy () >~ (i, z);
{ 0 if (Vy <z) ~(U(i,z,y,(i));

T otherwise.

Notice that if ¢;(i) T then the first condition is met for all x and if ¢;(i) | then
there is some y such that the first condition is not met for any = > y. Hence,

1

some finite domain function otherwise.

{0 ifi ¢ K;

some finite domain function if i € K.
Hence, g witnesses that K is reducible to =Zd, —=Tot, —=Inf. -

Corollary 7.5
—Zd,Und, Tot,—~Tot,Inf,—~Inf are not r.e.
Zd,~Zd,Und,~Und,Tot,—Tot,Inf,~Inf are not recursive.

Proof. Propositions 7.3, 7.4

Exercise 7.3 Show that Onto,~Onto are not r.e. Hint: use slight modifica-
tions of the preceding constructions to reduce both K and —K to Onto. Instead
of returning 0 when the relevant condition is condition is met, return x.

62 CHAPTER 7. MANY-ONE REDUCTION

7.5 Recursive Inseparability

Suppose that X,Y are subsets of N. We say that X and Y are recursively
inseparable just in case there exists no recursive set S such that X C S
and SNY = (. In other words, there is no way to draw a “recursive line”
between X and Y. So of course if X and Y are not disjoint, then they are
recursively inseparable. Recursive inseparability is interesting, because each
recursive inseparability result yields a whole family of non-recursiveness results
all at once. The smaller X and Y are, the informative it is to know that X and
Y are recursively inseparable.

Exercise 7.4 Show that if X and Y are recursively inseparable and X', Y’ are
disjoint and X C X' andY C Y’ then X', Y’ are recursively inseparable.

Exercise 7.5 Show that if there is a total recursive f that sends every mem-
ber of K into X and every member of ~K into Y then X,Y are recursively
inseparable.

Exercise 7.6 Show that {n : ¢, = pi} and {n : ¢, = 0} are recursively
inseparable. Hint: use the preceding exercises.

7.6 Rice’s Theorem

(Rogers exercise 5-29) In the preceding result, none of the index sets in ques-
tion turned out to be recursive. In fact, no nontrivial index set is recursive.
In practical terms, that means that a compiler of a general programming lan-
guage cannot reliably check for any input-output property of the program being
compiled. The following proposition establishes these facts. To facilitate the
statement of the theorem, say that a set is nontrivial just in case it is neither
N nor @. The idea is that to determine any nontrivial set theoretic property of
¢, one would have to determine, for some z, whether ¢;(x) |, but one would
need special powers to infallibly conclude that ¢;(x) 1.

Proposition 7.6 Rice’s theorem No nontrivial index set is recursive.

Proof. Let T" be a nontrivial subset of Part.
Case I: suppose @ € T.
Then since I' is nontrivial, there exists some § € Part — I". Now construct:

P(x,y) = 6(y) + o((uz) Uz, (2)o, (2)1, (7))

By using s-m-n in the usual way, construct total recursive g such that

(rbg(z) = 5(?/) + 0((:“‘2) U(Cﬂ, (2)07 (Z)la <£L'>))

Thus,
—K(z) = ¢ga =0Tl = g(z) ¢ index(T).

7.7. THE RICE-SHAPIRO THEOREM 63

So ~K <, index(I"). Thus, index(T") is not r.e. and hence is not recursive.

Case II: suppose § € I'. Then since I is nontrivial, there exists some § €
Part—T'. So the same reduction g establishes that K<, index(G), so —index(T")
is not r.e. and hence index(T") is not recursive.

7.7 The Rice-Shapiro Theorem

(Rogers Exercise 5.37)

There are no interesting recursive index sets. But there are clearly interesting
r.e. index sets; ~Und, for example (do you see why this is r.e.?) Can we obtain a
nice, general characterization of the r.e.index sets? Yes! And the result is very
interesting from an epistemological point of view. We need a couple of natural
concepts to do so. Let 6 be a partial recursive function. Define

[0] = {¢ € Part: 0 Co}.

That is, [f] denotes the set of all partial recursive functions that extend [6].
Say that
I’ is experimentally verifiable <=

there exists a set A of finite functions such that I' = UGGA[G].

Why do I call this “experimental verifiability”? Well, suppose that T' is
experimentally verifiable in the sense just defined. Suppose you investigate
whether z € index(T) by treating = as a black box and simulating index x in
a dovetail construction to discover more and more values of ¢, through time.
Then whenever you observe that the data points you have received extend some
0 € A, you know that the function you are experimentally studying is in T,
because every extension of a finite function in A is in I'. Conversely, if the data
never extend a finite function in A, then the function you are studying is not in
I, so you are correct never to declare with certainty that the function you are
studying is in T'.

The following result provides a more logically explicit way of looking at
experimental verifiability.

Lemma 7.7

I is experimentally verifiable <= (V¢ € Part) ¥ € I' < (3 finite 6 C) (0 €
).

Proof. Suppose I' is experimentally verifiable.

Thus, there exists a collection A of finite functions such that I' = (Jyc A [0].
Let ¢ € Part be given.

Suppose that ¢ € T

Then for some finite § € A,¢p € [§] CT.

Hence, 6 C 1.

Since 6 € [0], we have 0 € T.

64 CHAPTER 7. MANY-ONE REDUCTION

Conversely, suppose (3 finite § C ¢)0 € T.
So for some finite 7 € A,0 € [7] CT.
Sor CHC
So¢ e [r] CT.

For the converse of the lemma, suppose that

(V¢ € Part) (¢ € I' < (3 finite 0 C) § € T).

For each 1 € I', choose such a 6.

Define A = {0y : ¢ € T'}.

Since each ¢ € I is included in [0y], we have: I' C (g [0]-
Also, [0y] C T, by choice of [0y], so Jgenlf] CT.

Thus, I' = (Jyea [0].

The following result says that if formal methods can verify a property of
input-output behavior by peering at the programs, then an ideal agent would
have been able to verify the input-output property from experimental evidence
derived from studying the program as a black box on various inputs for various
amounts of runtime. This is an amazing fact. A priori, one would expect to do
a lot better by looking at code than by simply doing behavioral experiments.
Properties that are not experimentally verifiable are exactly the properties that
pose Hume’s problem of inductive skepticism. Thus, we see that some index sets
are not formally verifiable because of empirical skepticism. This seems to cut to
the heart of the traditional empiricist distinction between relations of ideas and
matters of fact. The idea was that relations of ideas are relatively unproblematic
since the mind has complete control of the ideas “all at once”, whereas empirical
truth always outruns our observations. The following result shows that the same
is actually true in formal reasoning by computational means.

Proposition 7.8
T is not experimentally verifiable = - K<, ,index(T).

Hence, index(T") is r.e. = T is experimentally verifiable

Proof. Suppose that I is not experimentally verifiable. Then by the preced-
ing lemma,
—(V¢) € Part) ¥ € T < (3 finite § C) 9 € T

Driving the negation in yields (3¢ € Part) such that:

CaseI: ¢ €T A(Vfinite § C) 0 ¢ T.
or
Case II:) ¢ T' A (3 finited C) 6 € T.

Case I: Consider the situation. Some ¥ € T' has the unfortunate property
that each finite evidence sequence drawn experimentally from 1 is the complete
evidence for a non-member of I'. That’s just the problem of induction, which
tells us that empirical verifiability is impossible. Now we are going to make the

7.7. THE RICE-SHAPIRO THEOREM 65

problem of induction into a problem for formal program verification. That is,
we are going to cross the philosophical boundary between matters of fact and
relations of ideas!

In particular, we are going to reduce =K to index(I"). So

e given an index x such that =K (x), we want to produce an index that acts
like 9, and

e given an index x such that K(z), we want to produce an index that acts
like some finite subfunction of .

Intuitively, we can do this by means of a universal construction that simulates
¢.(x) for longer and longer runtimes waiting to see it halt. As more and more
time passes, the construction produces more and more of the outputs specified
by 1, so that if ¢,(x) never halts, we produce all of ¥. On the other hand, if
¢.(x) halts, we use this as a signal to stop making new outputs, so we end up
producing some finite subfunction of 1. Notice that his reduction “goes against
the grain”, turning halting into non-halting (check the example above to see
how to set up such a construction).

Case II: In this situation, there is a function ¥ not in I such that some finite
subfunction 6 of ¢ is in I'. Again, we wish to reduce —K to index(I'). We can
do this by a universal construction that pretends to be 77?7 until ¢,(z) halts
and that starts making outputs from ¢ thereafter. ...

Exercise 7.7 Finish cases I and II. Hint: follow the intuitive motivation, in-
spect the reductions involved in proposition 7.4, and give proper constructions
using the universal and s-m-n theorems.

Exercise 7.8 Use lemma 7.7 and proposition 7.8 to show that the set of all
indices of functions with values never exceeding k is not r.e. If you feel shaky,
try a few of the problems mentioned in corollary 7.5.

Experimental verifiability is only a necessary condition for recursive enumer-
ability of an index set.

Exercise 7.9 Find a counterexample to the converse of proposition 7.8. Hint:
Make the property “empirically” easy to decide but make it computationally as
hard as =K to “interpret” the readily available data.

That is because the “verifying data sequences” in A might not be effectively
enumerable. To obtain necessary and sufficient conditions for index(T") to be
r.e., we can effectively encode finite functions as numbers and then require that
the set of code numbers be r.e.

Let Fin denote the set of all finite, partial, unary functions on the natural
numbers. Each such function can be represented as a finite sequence of values,
possibly with some undefined places. It doesn’t hurt to have multiple indices
for each function, so there is no need to worry about including some undefined
places at the end of the sequence.

(3’ 5’ T) 77 T)'

66 CHAPTER 7. MANY-ONE REDUCTION

This can be converted into a sequence of natural numbers by encoding T as 0
and defined value n as n+ 1 and then taking the Gédel number of the resulting

sequence:
(4,6,0,8,0).

Let 6,, denote the finite function whose code number according to this scheme
is n. Hence,

On(x) ~ { %n)z;l if z < Ih(n) A (n)z > 0;

otherwise.

~ (n)z—1-(p2) (x <lh(n) A (n); > 0).

Note that the minimalization does not depend on z, so its value is either zero
or T.

It is possible to move effectively from finite indices to partial recursive in-
dices, but not conversely. The intuitive idea behind this is that one can decide
which pairs are in a finite function from its ff index but not from an arbitrary
partial recursive index.

Proposition 7.9
(3 total recursive f) (Vn) (d(n) = On)-

Proof. You need total recursive f such that for each n, x:

Ps(n) (@) On ()

(n)z—1-(p2) (x < lh(n) A (n): > 0)

P(n, z).

Since 1 is partial recursive, obtain f in the usual way by applying the s-m-n

theorem to . -
Given a set A of finite functions, define

R

12

ff-index(A) = {n|, € A}.

Define:

I' is effectively experimentally verifiable just in case there exists a collection
A of finite functions such that

1. ff-index(A) is r.e.and

2. I'= UeeA[o]

Now we can state an exact characterization of the r.e.index sets in terms of
effective experimental verification. So formal program verification is essentially
the same as effective empirical program verification.

Proposition 7.10 index(T) is r.e. <= T is effectively experimentally verifi-
able.

7.7. THE RICE-SHAPIRO THEOREM 67

Proof. Suppose the right-hand-side of the proposition is true. So we may
choose k so that ff-index(A) = Wy. To verify index(T), we use a dovetail
construction to check whether the given index extends some finite function in
A. We can verify this because we can decide which pairs are in a finite function
from ff indices. That is the whole point of introducing ff indices.

Define

P(n) = (pz) (Vw < 1h((2)o)) U(n, (2)1(((2)0)w)o; ((((2)0)w)1)-

This construction seeks pairs (i, j), where i is a runtime bound and j is viewed
as an ff-index. Then by the definition of the ff indexing, (((2)o)w)o denotes an
element of the domain of §; and (((2)o)w)1 denotes the corresponding value of
;. So on input n, the construction simply searches for an ff index j such that
0; C ¢n. There is such a j just in case

bn € Um[o] =T.

So we have a partial recursive 1 such that index(I') = dom(v)).

Conversely, suppose that indez(I") is r.e. We need to construct a collection
of finite functions such that ff-index(A)is r.e. So let index(I') = W,,. Then by
proposition 7.8 and lemma 7.7 we have

(V¢ € Part) (v € T < (3 finite § C)0 € T). (7.1)

Let some total recursive g translate ff indices into partial recursive indices as
promised by proposition 7.9. Define:

A =A{0x|Wn(g(k))}-

Now define
Y(k) >~ dn(g(k)).
Evidently,
ff-index(A) = dom(v).

so ff-index(A) is r.e. Since index(T") = W, we have A CT. By (%), we have
that each) € I' extends some element of A. Thus I' = (Jyca[f]. So I is
effectively experimentally verifiable.

