
36

Chapter 5

The Church-Turing Thesis

“Effective computability” is not a mathematical notion. Informally, an effec-
tively computable function is a total function whose values can be obtained by
mindlessly following an explicit procedure whose successive steps are determined
by unambiguously explicit rules. Let Eff denote the collection of intuitively ef-
fective total functions. It is important to remember that Eff is not a set since
it is not clearly defined in set theory.

The set Tot of total recursive functions is a mathematically defined collec-
tion of total recursive functions. The set Tot is defined in terms of primitive
recursion, composition and minimalization. It is pretty clear that each of these
operators preserves effective computability, but it is far less clear that Tot ex-
hausts the effectively computable functions, so Eff ⊆ Tot.

The proposition Eff ⊆ Tot is the Church-Turing thesis. The Church-
Turing thesis is far from being obvious, in light of the development thus far.
True, Tot skirts an obvious diagonal argument, but avoiding one diagonal argu-
ment implies nothing about susceptibility to others that have not been thought
of yet.

Since Eff is not a mathematically defined concept (that’s the whole point
of defining Tot!) one can’t prove that Tot = Eff . But one can try to provide a
philosophical or empirical argument for the thesis. The two standard arguments
are as follows.

5.0.1 The Amazing Coincidence Argument

No language for defining intuitively effective functions has ever yielded a defi-
nition of a function outside of Tot (although many such notations fall short of
capturing all of Tot, as we have seen). This is the argument usually quoted
in textbooks. It is a kind of physicist’s argument, like discovering that wave
mechanics and matrix mechanics are the same theory.

The proof strategy is straightforward. Let X be a given class of functions
computed by a given computational formalism. To show

Part ⊆ X,

37

38 CHAPTER 5. THE CHURCH-TURING THESIS

we show that the basic functions are in X and that X is closed under the three
partial recursive operators C,R,M . This is usually easy (because the number
of primitives is so small— that’s why it pays to develop computability theory
in a “small” formalism). Demonstrating the converse:

X ⊆ Part,

can be toughter, depending on how rich or fussy the new formalism is. The
basic strategy is this:

1. Use finite sequences of numbers to represent in a natural way instanta-
neous computational states of computations directed by program M .

2. Code these sequences as single numbers using the primitive recursive Gödel
coding.

3. Write a primitive recursive function init(m,~x) = s that converts a list ~x of
input arguments into the Gödel code s of the initial computational state
of the computation.

4. Then write a primitive recursive function transit(s) = s′ that transforms
each state code number into its successor state code number to simulate
computations.

5. Finally, we write a primitive recursive relation Output(s, y) = y that de-
termines whether the process has yet halted with output y.

The work involved is not deep and is similar to what we did when we pro-
grammed the universal function (Cf. Cutland for lots of this).

The preceding argument didn’t impress either Church or Gödel. The fact
that all the analyses “stop” at the same place doesn’t necessarily mean that the
capabilities of algorithmic mathematics have been exhausted. It might mean
only that everyone has seized upon a natural, easily axiomatized subclass of
effectively computable functions whose extension requires a much more subtle
insight. That’s hardly wild skepticism: physical possibilities violating Newto-
nian mechanics eluded us for over two centuries. Why shouldn’t arcane styles
of effective reasoning prove equally elusive?

5.0.2 Turing Machines

What did impress Gödel was Turing’s argument based on Turing machines.
A Turing machine consists of an infinite tape divided into discrete squares and
a “read-write-head” connected to a finite state control mechanism. That’s not
strictly true, for there are no infinite tapes in the world. At best, there is a
paper factory that adds more squares of tape upon demand. So we will assume
that the input is written on a finite scrap of tape and that whenever the read-
write head moves off of this scrap, a new square is added just in time. Then the
position of the read-write head on the scrap can be measured from the left end

39

of the scrap. Paying attention to these details at the outset will be useful when
it comes time to show that Turing-computable functions are partial recursive.

Each square is either blank (0) or printed with a discrete mark (1). Hence,
the set of possible tape marks is Sym = {0, 1}. Non-existent squares will also be
thought of as “blank”. Thus, the current state of the tape is a finite, Boolean
sequence, which is understood to be a mapping τ from a finite, initial segment
of the natural numbers to Sym. The current position of the read-write head on
τ is some n ∈ dom(τ). Notice, the head position can never be off of τ , since we
assume that new squares are added whenever the head moves off of the previous
tape scrap.

The set of possible actions on the tape by the machine is Act = {0, 1, R, L},
where “0”, “1” stand for “print zero”, and “print one”, respectively, and “L”
stand for “move right” and “move left”, respectively. A (deterministic) Tur-
ing machine over alphabet Sym consists of a pair quadruple (Q,α, σ, q0, qh),
where

• Q is a finite set of natural numbers called control states;

• q0, qh ∈ Q, α is a total function α : Q× Sym→ Act;

• σ is a total function σ : Q× Sym→ Q.

Interpret α(q, b) = a, σ(q, b) = q′ to mean that if the finite state control is
currently in state q and the currently scanned symbol is b, then perform tape
act a and reset the control state to q′. State qh indicates that the answer is
ready and is called the halting state. In our setup, the machine will keep
going forever after entering the “halting state” but you may as well turn it off
because the answer is at hand. Usually one thinks of the machine as stopping
when the halting state is reached, but that really makes no difference and adds
nuisance cases to the mathematics. State q0 is called the initial state.

A computational state for M = (Q,α, σ, q0, qh) is a triple (q, τ, p), where

1. q ∈ Q is a control state;

2. τ is a tape state (i.e., a finite sequence of symbols from Sym); and

3. p is a position on the tape (i.e., an element of the domain of τ).

Let Sym∗ denote the set of all finite sequences of symbols. Since in set theory
n denotes the set of all its predecessors, a sequence of length n is a total map
on domain n. Thus we may write:

Sym∗ = {τ : (∃n ∈ N) τ : n→ Sym}.

Then the possible computational states for M are defined as follows:

CS = {(q, τ, p) : q ∈ Q ∧ τ ∈ Sym∗ ∧ q ∈ dom(τ)}.

40 CHAPTER 5. THE CHURCH-TURING THESIS

Define:

state(q, τ, p) = q;
tape(q, τ, p) = τ ;

position(q, τ, p) = p.

If τ is a sequence, then let τ ∗ δ denote the concatenation of finite sequence
τ on the front of finite sequence δ. Denote the result of writing symbol b in the
xth position in sequence τ as τ [b/x]. If b ∈ Sym, then let bn denote the sequence
(b, . . . , b) of length n. The set-theoretical definitions of these operations are as
follows:

lh(τ) = |τ |;
τ ∗ δ = τ ∪ {(lh(τ) + i, δ(i)) : i < lh(δ)};
τ [b/x] = τ − {(x, τ(x))} ∪ {(x, b)};

bn = {(i, b) : i ≤ n};
(b) = {(0, b)}.

Let M [x1, . . . , xn] denote the computation of M on inputs x1, . . . , xn. A
computation is a sequence (finite or infinite) of computational states. The kth
state in the computation is denoted by M [x1, . . . , xn](k), so we may think of
M [x1, . . . , xn](k) as a total mapping

M [x1, . . . , xn] : N → CS.

This function is defined recursively as follows.
The initial state of computation M [x1, . . . , xn] is defined as

M [x1, . . . , xn](0) = (q0, 1x1+1 ∗ (0) ∗ . . . ∗ (0) ∗ 1xn+1, 0),

For example, the input state for computationM [2, 0] is given by (q0, (1, 1, 1, 0, 1), 0).
Notice that the read-write head is conventionally initialized at the beginning of
the first block of units. Think of the initial head position as the Turing machine’s
“input prompt”.

Next, one must specify the successive computational states. Assume that

M [x1, . . . , xn](k) = (q, τ, p).

Then define:

M [x1, . . . , xn](k + 1) = (q′(q, τ, p)), τ ′(q, τ, p), p′(q, τ, p));
q′(q, τ, p) = σ(q, τ(p));

p′(q, τ, p) =

p if α(q, τ(p)) ∈ {0, 1};
p+ 1 if α(q, τ(p)) = R;
p− 1 if α(q, τ(p)) = L ∧ p > 0;
0 if α(q, τ(p)) = L ∧ p = 0;

τ ′(q, τ, p) =

τ [α(q, τ(p))/p] if α(q, τ(p)) ∈ {0, 1};
(0) ∗ τ if α(q, τ(p)) = L ∧ p = 0;
τ ∗ (0) if α(q, τ(p)) = R ∧ p = lh(τ)− 1;
τ otherwise.

41

It remains to define the output, if any, of computation M [x1, . . . , xn]. Since
the so-called “halt state” may be entered infinitely often (the computation never
really halts in our setup). There is an epistemological moral here— all that
matters is that the machine put up a flag indicating that the answer is correct
and that the machine never gets to “take back” that signal later. Halting is just
one way to provide an irrevocable signal (the machine has to commit suicide, so
it can’t change its mind later). If you don’t like the idea of the machine living
its own life after it correctly answers your question, you can kill it yourself!

M [x1, . . . , xn] ↓k ⇔ state(M [x1, . . . , xn](k)) = q0 ∧
(∀k′ < k) state(M [x1, . . . , xn](k′)) 6= q0;

M [x1, . . . , xn] ↓k y ⇔ M [x1, . . . , xn] ↓k ∧
(∃i, j) tape(M [x1, . . . , xn](k)) = 0i ∗ 1y ∗ 0j ;

M [x1, . . . , xn] ↓ y ⇔ (∃k) M [x1, . . . , xn] ↓k y;
M [x1, . . . , xn] ↓ ⇔ (∃k) M [x1, . . . , xn] ↓k .

For all the above, let ↑ indicate 6↓.
Now we can link up computations with functions. Say that M computes φ

just in case for each −→x , y,

φ(−→x) ' y ⇔M [−→x] ↓ y.

Then say that φ is Turing-computable just in case some Turing machine M
computes φ. Let Tur denote the set of all Turing-computable functions and
Ttot denote the set of all total Turing computable functions.

Exercise 5.1 Show that the following are Turing-computable:

1. The projection pi
k;

2. the zero function o;

3. the successor function s.

In applications, it is convenient to represent Turing machine M as the finite set
of quadruples

M ′ = {(i, b, j, a)) : qi ∈ Q ∧ b ∈ Sym ∧ qj = σ(qi, b) ∧ a = α(qi, b)},

where without loss of generality, one can assume that dom(σ) = dom(α) so that
each such quadruple is defined.

5.0.3 Turing’s Simulation Argument

Turing computations are opaque and ugly, even for simple functions like mul-
tiplication. But Turing’s point for introducing them was never to use them.

42 CHAPTER 5. THE CHURCH-TURING THESIS

They were the linchpin of Turing’s argument that Eff ⊆ Tot. The argument
goes something like this. Consider a mathematician following an algorithm. The
algorithm specifies a finite set of rules for modifying scribbles on a notebook in
light of the current state of mind of the mathematician. The mathematician
may have boundless originality, but the states of mind relevant to following the
algorithm are finite and discrete. Also, only finitely many distinct notational
states can occupy a page of the scratch pad, else a microscope would be required
to follow the algorithm (Turing wryly notes that Chinese characters seem to be
an attempt to challenge this assumption). Simple reduction arguments turn
the scribblings into bits on a linear tape, the mathematician into a finite state
automaton (for the purposes of his involvement in the computation) and the
algorithm into a set of rules for elementary operations on the tape. So the
mathematician is simulated in all relevant respects by a formal Turing machine.
Let Tur denote the set of all Turing-computable functions. The preceding ar-
gument purports to show philosophically that

Eff ⊆ Tur.

One can now prove mathematically that Tur = Part along the lines described
above. Thus

Tot = Eff .

Here is an interesting autobiographical description of the reception of the
two arguments by Stephen C. Kleene. Since Kleene was a student of Church
and invented much of computability theory, he was in a fine position to report!

Church had been speculating, and finally definitely proposed,
that the λ-definaable functions are all the effectively calculable function—
... which I in 1952... called “Church’s thesis”. When Church pro-
posed [the CT] thesis, I sat down to disprove it by diagonalizing out
of the class of the λ-definable functions. But quickly realizing that
the diagonalization cannot be done effectively, I became overnight a
supporter of the thesis.

Gödel came to the Institute for Advanced Study [at Princeton]
in the fall of 1933. According to a ... letter from Church..., Gödel
“regarded [the CT] thesis as thoroughly unsatisfactory”. Soon there-
after, in his lectures in the spring of 1934, Gödel took a suggestion
that had been made to him by Herbrand in a letter in 1931 and mod-
ified it to secure effectiveness. The result was what is now known as
“Herbrand-Gödel general recursiveness.” ...

In a February 15, 1965, letter to Martin Davis, Gödel wrote,
“However, I was, at the time of these lectures [1934] not at all con-
vinced that my concept of recursion comprises all possible recur-
sions...”.

Church (1936) and I (1936a) published equivalence proofs for
Herbrand-Gödel general recursiveness to λ-definability. So, under
Church’s thesis, there were now two exact mathematical characteri-
zations of the intuitive notion of all effectively calculable functions....

43

The last of the original three equivalent exact definitions of ef-
fective calculablity is computability by a Turing machine [1936-37].
...

For rendering the identification with effective calculability the
most plausible— indeed, I believe compelling— Turing computabil-
ity has the advantage of aiming directly at the goal [i.e., the math-
ematician simulation argument]....

It seems that only after Turing’s formulation appeared did Gödel
accept Church’es thesis, which had then become the Church-Turing
thesis.1

5.0.4 Turing-Computable Functions are Partial Recursive

The technical side of Turing’s argument is that Tur ⊆ Part, from which it
follows immediately that Tur ⊆ Tot. The proof is by a simulation argument.
Code Turing computational states as natural numbers (they are already pairs
of form (σ, p), where σ is a finite, Boolean sequence, so that’s trivial— that’s
the advantage of dealing with the paper factory from the outset) and then
implement the transition function as a primitive recursive function from states
to states. For totality, reserve some number (e.g., 0) to stand for “computation
crashes or input number fails to code a state”. Then use minimalization to look
for a halting state and read off the output. This illustrates the importance of
minimalization— it’s what patiently waits for the machine to halt— primitive
recursion would have to possess a prior bound on how long the computation
would take.

Exercise 5.2 Carry out the proof.

5.0.5 Partial Recursive Functions are Turing Computable

Well, if Turing did his job on the philosophical argument that effectively com-
putable functions are Turing computable, then the fact that partial recursive
functions are effective should entail that Part ⊆ Tur! But one can also prove it
directly.

Exercise 5.3 Prove that Part ⊆ Tur. The proof proceeds by induction on par-
tial recursive derivation tree depth. You have already shown that the basic func-
tions are Turing computable. It remains only to show that Turing computable
functions are preserved under the operators C,R,M . Thus, you need to show
that Turing machines can implement these operations.

5.0.6 What Church’s Thesis doesn’t say

Turing’s reductive argument does not show that Turing machines can compute
whatever a physically implementable computing machine could compute or that

1Kleene 1981, op. cit. pp. 59-61.

44 CHAPTER 5. THE CHURCH-TURING THESIS

human intelligence is Turing computable. It is only the intuitively effective or
algorithmic that is treated by the argument. The argument that the mental
state may be treated as though it were a member of a discrete, finite space works
only because the mind is assumed to be working out a “mind-less” mathematical
algorithm. To extend this to arbitrary mental or mechanical processes is quite
another matter. Many cognitive scientists do assume that mentation is effective,
but the reasons for this assumption are not unclear, as a Turing-style argument
has not been given. Nor is it clear that such an argument can be given in the
absence of a philosophically clear pre-theoretical understanding of the nature of
mentation.

5.1 Arguments “by Church’s Thesis”

Granting the Church-Turing thesis, any crisp procedural specification entitles
us to infer that a partial recursive index exists for the function.

To compute k-ary ψ on inputs ~x do blah blah blah.

By the Church-Turing thesis (CT), there exists an n such that ψ = φk
n.

Yippee! But don’t do it until I say you may. And then make sure you provide
a procedure. CT doesn’t do the programming for you!

5.2 Acceptable Indexings2

In physics, it is a disaster to confuse “coordinate effects” with physical reali-
ties. Imagine a scientist using a microscope to look for the equator! Here is
a computational analogy: programming languages are to computable reality
as coordinate systems are to physical reality. Physical coordinates allow us to
refer to physical events. Programs allow us to refer to computable functions.
The arbitrariness of coordinates is handled by the fact that physical laws are
invariant under the relevant group of coordinate transformations (inertial trans-
lations). Such laws are said to be What sorts of transformation should preserve
computable reality? You guessed it: computable transformations.

More abstractly, sufficiently powerful computer languages may be viewed as
numberings of the partial recursive functions. To be really careful about it, a
numbering of Part is a surjective (onto) mapping:

ψ : N2 → Part

where ψk
i denotes the ith k-ary partial recursive function according to numbering

ψ. Now let δ, ψ be numberings. Say that δ compiles into ψ just in case for each
k there exists a total recursive ck such that for each i, k, δk

i = ψk
ck(i). “Compiles

into” is a pre-order (reflexive and transitive). Say that δ intercompiles with
ψ just in case each numbering compiles into the other. Intercompilation is an
equivalence relation.

2(Rogers, exercise 2-10).

5.2. ACCEPTABLE INDEXINGS 45

Exercise 5.4 To make sure you are awake and understand the definitions:
prove that compilation is a pre-order (reflexive and transitive) and that inter-
compilation is an equivalence relation (reflexive, transitive, and symmetric).

Our special numbering φ is not arbitrary. It has a special structure. For
example, it satisfies the universal and s-m-n theorems. Presumably, it satisfies
many other conditions as well. But perversely enough, we will focus on these two
curious properties. Say that ψ is acceptable just in case satisfies the conditions
of the universal and s-m-n theorems; i.e., just in case:

1. ∃u ∀n, ~x ψ2
u(i, 〈~x〉) ' ψ

lh(~x)
n (~x)

(universal machine property);

2. ∀n,m ∃ total recursive s ∀i, n-ary ~x,m-ary~y (ψn
s(i,~x)(~y) ' ψm+n

i (~x, ~y)).
(s-m-n property)

Now why would acceptability be of any interest? Because it characterizes
the set of all numberings intercompilable with our original numbering ψ. When
you stop to think that the empirical evidence for the Church-Turing thesis is
that all natural programming systems yield numberings intercompilable with
ψ, we see that the universal and s-m-n theorems as it were axiomatize all the
computationally invariant structure of our indexing! That means we may kick
free of all the arbitrary scaffolding and work only with the universal and s-m-n
theorems! But first, as they always say, we have to prove it. The proof is a
beautiful illustration of how the universal and s-m-n constructions interact.

Proposition 5.1 Numbering ψ is acceptable ⇔ ψ is intercompilable with
numbering φ .

We proceed by a series of lemmas.

Lemma 5.2 ψ satisfies the universal machine property
⇒ ψ compiles into φ .

Proof. Suppose that ψ satisfies the universal property. Then for some u,

∀n, ~x (ψ2
u(i, 〈~x〉) ' ψ

lh(~x)
i (~x)). (5.1)

To get rid of the coding on the ~x, define:

δ(i, ~x) ' ψ2
u(i, 〈p1

m(~x), . . . , pm
m(~x)〉). (5.2)

Since rng(ψ) = Part = rng(φ), there exists a z such that

δ = φm+1
z . (5.3)

Since φ has the s-m-n property, there is a total recursive s such that for all
i, x, ~y,

φm
s(i,x)(~y) ' φm+1

i (x, ~y). (5.4)

46 CHAPTER 5. THE CHURCH-TURING THESIS

By composing in the constant function cz, we obtain the total recursive r such
that:

r(x) = s(z, x). (5.5)

Now we use the above to calculate:

φm
r(i)(~y) ' [5.4];

φm
s(z,i)(~y) ' [5.4];

φ1+m
z (i, ~y) ' [5.3];
δ(i, ~y) ' [5.2];

ψ2
u(i, 〈p1

m(~y), . . . , pm
m(~y)〉) ' ψ2

u(i, 〈~y〉)
ψ2

u(i, 〈~y〉) ' [5.1]
' ψm

i (~y).

Thus, r is the desired, total recursive compiler for arity m. a

Lemma 5.3 ψ compiles into φ ⇒ ψ satisfies the universal property.

Proof. Suppose that ψ compiles into φ . Then for each k there exists a
total recursive c such that

ψm
i ' φm

c(i).

By the universal theorem for φ , there is a u such that for all ~y:

φm
c(i)(~y) ' φ2

u(c(i), 〈~y〉).

So we obtain a partial recursive function

δ(i, ~y) ' φ2
u(c(i), 〈~y〉).

Since ψ is onto Part, there exists a z such that for all ~y:

ψ2
z(i, 〈~y〉) ' δ(i, ~y).

Thus, for all ~y, we have:

ψ2
z(i, 〈~y〉) ' δ(i, ~y)

' φ2
u(c(i), 〈~y〉)

' φm
c(i)(~y)

' ψm
i (~y).

So z is a universal index for ψ . a

Lemma 5.4 ψ satisfies the s-m-n property ⇒ φ compiles into ψ .

Exercise 5.5 Prove it.

Lemma 5.5 ψ intercompiles with φ ⇒ ψ satisfies the s-m-n property.

Exercise 5.6 Prove it.

